

OET 65

TEST REPORT

Product Name	Mobile Internet Device
Trademark	nabi
Model	NABIJR-NV5A, nabi-Junior
FCC ID	ZYQ-NABIJR-NV5A
Client	KEEN HIGH HOLDING(HK) LIMITED

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co., Ltd.
Test Report

GENERAL SUMMARY

Product Name	Mobile Internet Device	Model	NABIJR-NV5A, nabi-Junior
FCC ID	ZYQ-NABIJR-NV5A	Report No.	RXA1211-1114SAR
Client	KEEN HIGH HOLDING(HK) LIMITED		
Manufacturer	SAME AS APPLICANT		
Standard(s)	<p>IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.</p> <p>SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.</p> <p>KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters.</p> <p>KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p>KDB 941225 D07 UMPC Mini Tablet Devices v01: SAR Evaluation Procedures for UMPC Mini-Tablet Devices</p>		
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards.</p> <p>General Judgment: Pass</p> <p style="text-align: center;">(Stamp)</p> <p style="text-align: center;">Date of issue: December 7th, 2012</p>		
Comment	The test result only responds to the measured sample.		

Approved by 初伟中

Director

Revised by 凌致宏

SAR Manager

Performed by 许红梅

SAR Engineer

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1.	General Information	5
1.1.	Notes of the Test Report.....	5
1.2.	Testing Laboratory	5
1.3.	Applicant Information	6
1.4.	Manufacturer Information.....	6
1.5.	Information of EUT	7
1.6.	The Maximum SAR _{1g} Values	9
1.7.	Test Date	9
2.	SAR Measurements System Configuration.....	10
2.1.	SAR Measurement Set-up	10
2.2.	DASY5 E-field Probe System	11
2.2.1.	ES3DV3 Probe Specification	11
2.2.2.	E-field Probe Calibration	12
2.3.	Other Test Equipment	12
2.3.1.	Device Holder for Transmitters	12
2.3.2.	Phantom	13
2.4.	Scanning Procedure	13
2.5.	Data Storage and Evaluation	15
2.5.1.	Data Storage.....	15
2.5.2.	Data Evaluation by SEMCAD	15
3.	Laboratory Environment.....	17
4.	Tissue-equivalent Liquid	18
4.1.	Tissue-equivalent Liquid Ingredients.....	18
4.2.	Tissue-equivalent Liquid Properties	19
5.	System Check	20
5.1.	Description of System Check	20
5.2.	System Check Results	22
6.	Operational Conditions during Test	23
6.1.	General Description of Test Procedures	23
6.2.	Test Position	24
7.	Test Results	25
7.1.	Conducted Power Results	25
7.2.	SAR Test Results	27
7.2.1.	802.11b.....	27
7.2.2.	BT Function	28
8.	700MHz to 3GHz Measurement Uncertainty.....	29
9.	Main Test Instruments	31
	ANNEX A: Test Layout	32

TA Technology (Shanghai) Co., Ltd.
Test Report

ANNEX B: System Check Results	34
ANNEX C: Graph Results	35
ANNEX D: Probe Calibration Certificate	42
ANNEX E: D2450V2 Dipole Calibration Certificate	53
ANNEX F: DAE4 Calibration Certificate	62
ANNEX G: The EUT Appearances and Test Configuration	67

TA Technology (Shanghai) Co., Ltd.

Test Report

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Yang Weizhong
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.
Test Report

1.3. Applicant Information

Company: KEEN HIGH HOLDING(HK) LIMITED
Address: Unit 13, 7/F Technology Park, 18 On Lai street Shatin New Territories
 HK
City: Hongkong
Postal Code: /
Country: China

1.4. Manufacturer Information

Company: SAME AS APPLICANT
Address: /
City: /
Postal Code: /
Country: /

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information

Device Type:	Portable Device	
Exposure Category:	Uncontrolled Environment / General Population	
State of Sample:	Prototype Unit	
Product Name:	Mobile Internet Device	
IMEI:	/	
Hardware Version:	V1.0	
Software Version:	Android 4.0	
Antenna Type:	Internal Antenna	
Device Operating Configurations:		
Operating Mode(s):	802.11b; (tested)	
	802.11g; (untested)	
	802.11n HT20; (untested)	
	Bluetooth; (untested)	
Operating Frequency Range(s):	Mode	Tx (MHz)
	802.11b	2412 ~ 2462MHz
Test Channel: (Low - Middle - High)	1-6-11	(802.11b) (tested)

TA Technology (Shanghai) Co., Ltd.
Test Report

Equipment Under Test (EUT) is a Mobile Internet Device. The detail about EUT is in chapter 1.5 in this report. The detail about EUT is in chapter 1.5 in this report. The EUT has an internal antenna for BT/WiFi antenna that can be used for Tx/Rx. During SAR test of the EUT, SAR is only tested for 802.11b. SAR is not required for 802.11 g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

TA Technology (Shanghai) Co., Ltd.
Test Report

1.6. The Maximum SAR_{1g} Values

Body Worn Configuration

Mode	Channel	Position	Separation distance	SAR _{1g} (W/kg)
802.11b	High/11	Test Position 5	0mm	0.312

1.7. Test Date

The test is performed on December 6, 2012.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

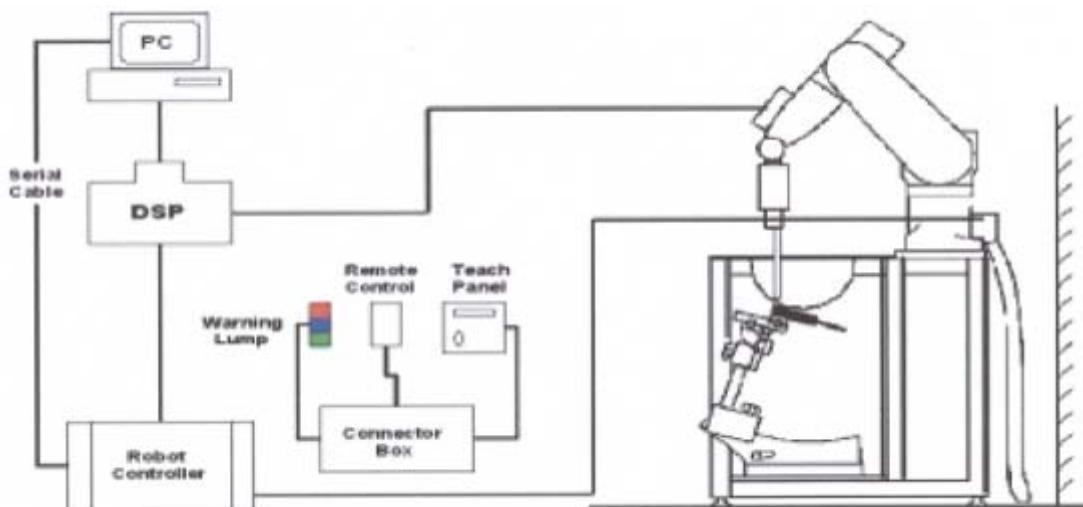


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. ES3DV3 Probe Specification

Construction Symmetrical design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to 4 GHz
Linearity: ± 0.2 dB
(30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)
 ± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g Linearity:
 ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)
Tip diameter: 3.9 mm (Body: 12 mm)
Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz
Dosimetry in strong gradient fields
Compliance tests of mobile phones

Figure 2. ES3DV3 E-field Probe

Figure 3. ES3DV3 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the different positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W)
Available	Special

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values

TA Technology (Shanghai) Co., Ltd.

Test Report

before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 12 mm x 12 mm(2GHz ~ 3GHz) is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DAE4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	Conv F_i
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal,

TA Technology (Shanghai) Co., Ltd.
Test Report

the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / dcp_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
 $[mV/(V/m)^2]$ for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (p \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 1: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

TA Technology (Shanghai) Co., Ltd.
Test Report

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol,. The liquid has previously been proven to be suited for worst-case. The table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	$f=2450\text{MHz}$ $\epsilon=52.70$ $\sigma=1.95$

TA Technology (Shanghai) Co., Ltd.
Test Report

4.2. Tissue-equivalent Liquid Properties

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp °C
		ϵ_r	$\sigma(\text{s/m})$	
2450MHz (body)	Target value ±5% window	52.70 50.07 — 55.34	1.95 1.85 — 2.05	22.0
	Measurement value 2012-12-6	51.69	1.90	

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 4.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

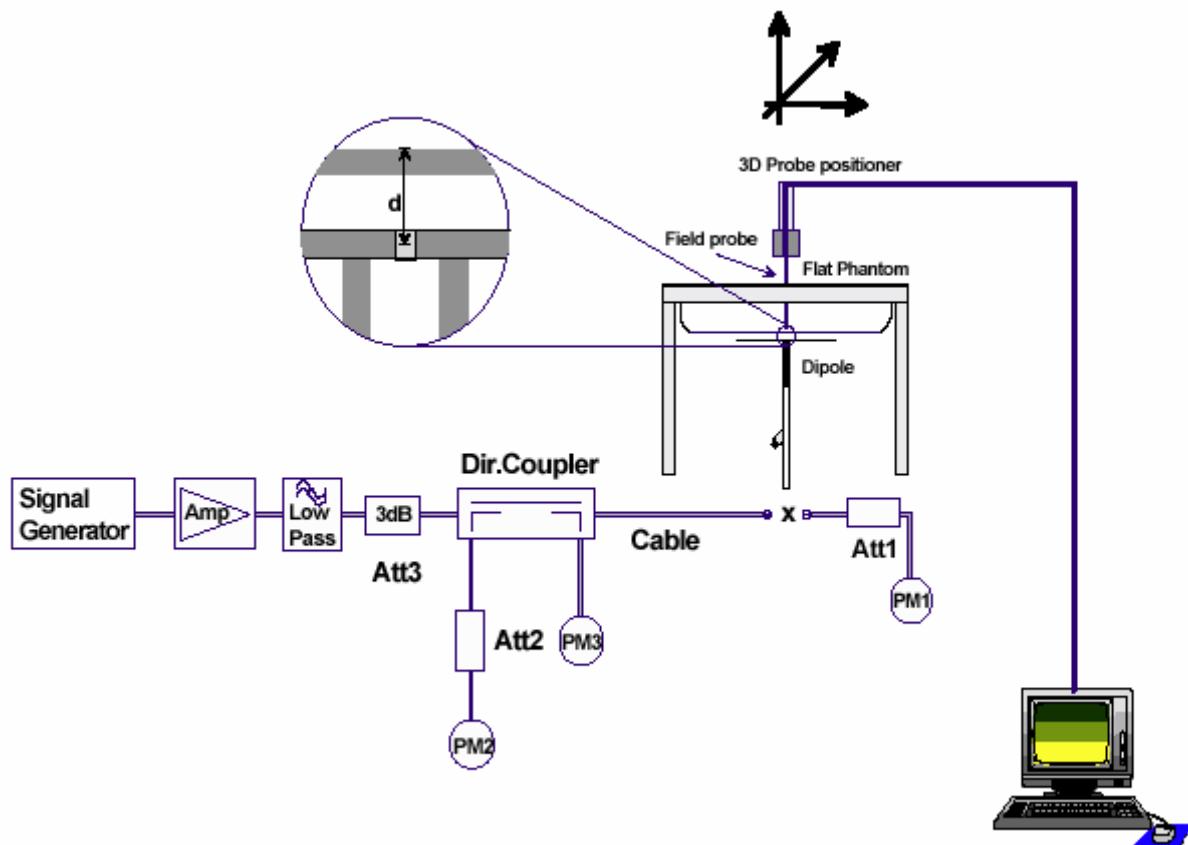


Figure 6 System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D2450V2 SN: 786				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/29/2011	-29.0	/	50.4	/
8/28/2012	-28.1	3.1%	48.9	1.5Ω

TA Technology (Shanghai) Co., Ltd.
Test Report

5.2. System Check Results

Table 4: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp (°C)	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% deviation)
		ε _r	σ(s/m)		(W/kg)		
2450MHz	2012-12-6	51.69	1.90	21.5	13.20	52.80	51.70 (46.53~56.87)

Note: 1. The graph results see ANNEX B.
2. Target Values derive from the calibration certificate

6. Operational Conditions during Test

6.1. General Description of Test Procedures

For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g modes are tested on channels 1, 6, 11. However, if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the “default test channels”, the maximum channel should be tested instead of an adjacent “default test channels”, these are referred to as the “required test channels” and are illustrated in table 5.

Table 5: “Default Test Channels”

Mode	GHz	Channel	Turbo Chan nel	“Default Test Channels”		
				15.247		UNII
				802.11b	802.11g	
802.11b/g	2.412	1 [#]		✓	*	
	2.437	6	6	✓	*	
	2.462	11 [#]		✓	*	

Note: [#]=when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

✓ = “default test channels”

* =possible 802.11g channels with maximum average output 0.25dB>=the “default test channels”

6.2. Test Position

For tablets with a display or overall diagonal dimension 19 cm <20 cm, the SAR procedures in KDB 941225 D07 should be used.

Based upon KDB941225 D07, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested, the EUT is tested at the following 5 test positions:

- Test Position 1: The back side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX G Picture 4) 0 cm from WIFI antenna-to-user (Please see ANNEX G Picture 3).
- Test Position 2: The top side of the EUT towards and directed tightly to touch the bottom of the flat phantom. The antenna-to-edge distance is greater than 2.5cm, so this position does not need to be tested (Please see ANNEX G Picture 3).
- Test Position 3: The bottom side of the EUT towards and directed tightly to touch the bottom of the flat phantom. The antenna-to-edge distance is greater than 2.5cm, so this position does not need to be tested (Please see ANNEX G Picture 3).
- Test Position 4: The left side of the EUT towards and directed tightly to touch the bottom of the flat phantom. The antenna-to-edge distance is greater than 2.5cm, so this position does not need to be tested (Please see ANNEX G Picture 3).
- Test Position 5: The right side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX G Picture 5) The antenna-to-edge distance is less than 2.5cm, so this position does need to be tested (Please see ANNEX G Picture 3).

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Conducted Power Results

Table 6: Conducted Power Measurement Results

Mode	Channel	Data rate (Mbps)	PK Power (dBm)	AV Power (dBm)
11b	1	1	19.91	13.90
		2	19.50	13.49
		5.5	19.88	13.18
		11	19.74	13.25
	6	1	19.87	13.58
		2	19.80	13.50
		5.5	19.70	13.13
		11	19.84	13.26
	11	1	19.71	13.12
		2	19.28	13.08
		5.5	19.20	13.20
		11	19.17	13.21
11g	1	6	19.80	13.50
		9	19.79	13.52
		12	19.50	13.28
		18	19.72	13.26
		24	19.70	13.30
		36	19.80	13.19
		48	19.78	13.46
		54	19.70	13.47
	6	6	19.60	13.25
		9	19.77	13.47
		12	19.78	13.41
		18	19.73	13.44
		24	19.40	13.50
		36	19.54	13.44
		48	19.58	13.19
		54	19.50	13.20

TA Technology (Shanghai) Co., Ltd.
Test Report

11	11	6	19.47	13.36
		9	19.43	13.29
		12	19.57	13.28
		18	19.41	13.36
		24	19.54	13.41
		36	19.24	13.13
		48	19.36	13.24
		54	19.40	13.30
11n HT20	1	MCS 0	19.85	13.90
		MCS 1	19.80	13.46
		MCS 2	19.55	13.77
		MCS 3	19.45	13.85
		MCS 4	19.56	13.70
		MCS 5	19.60	13.57
		MCS 6	19.78	13.49
		MCS 7	19.60	13.70
11	6	MCS 0	19.80	13.79
		MCS 1	19.79	13.58
		MCS 2	19.65	13.47
		MCS 3	19.64	13.70
		MCS 4	19.85	13.68
		MCS 5	19.74	13.66
		MCS 6	19.77	13.25
		MCS 7	19.69	13.50
11	11	MCS 0	19.79	13.66
		MCS 1	19.80	13.48
		MCS 2	19.75	13.60
		MCS 3	19.59	13.40
		MCS 4	19.60	13.69
		MCS 5	19.50	13.10
		MCS 6	19.64	13.40
		MCS 7	19.33	13.10

TA Technology (Shanghai) Co., Ltd.
Test Report

7.2. SAR Test Results

7.2.1. 802.11b

Table 7: SAR Values (802.11b)

Limit of SAR		10 g Average	1g Average	Power Drift	Graph Results	
		2.0 W/kg	1.6 W/kg	± 0.21 dB		
Test Case Of Body		Measurement Result (W/kg)		Power Drift (dB)		
Test Position	Channel	10 g Average	1 g Average			
Test position of Body (Distance 0mm)						
Test Position 1	Low/1	0.008	0.017	0.050	Figure 8	
Test Position 2	N/A	N/A	N/A	N/A	N/A	
Test Position 3	N/A	N/A	N/A	N/A	N/A	
Test Position 4	N/A	N/A	N/A	N/A	N/A	
Test Position 5	High/11	0.119	0.312	0.027	Figure 9	
	Middle/6	0.033	0.088	-0.032	Figure 10	
	Low/1	0.039	0.097	-0.031	Figure 11	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the highest output power channel of each operating mode. If the SAR measured is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the other channels is optional.
3. The other channels were measured at the worst case.
4. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than 1/4 dB higher than measured on the corresponding 802.11b channels.
5. N/A: WIFI antenna is located at top edge(see ANNEX G Picture3). Based upon KDB 941225 D07, when the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

TA Technology (Shanghai) Co., Ltd.

Test Report

7.2.2. BT Function

The output power of BT antenna is as following:

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz
GFSK (dBm)	1.80	1.79	1.82
$\pi/4$ DQPSK (dBm)	1.05	1.10	1.12
8DQPSK (dBm)	0.50	0.56	0.80

Stand-alone SAR

According to the output power measurement result, we can draw the conclusion that:

Because the output power of BT transmitter is $<60/f(\text{GHz})$ ($=13.88 \text{ dBm}$). Stand-alone SAR is not required for BT.

Simultaneous transmit

About BT and WiFi Antenna, $(\text{WiFi Antenna SAR}_{\text{MAX}}) 0.312 + (\text{BT Antenna SAR}_{\text{MAX}}) 0 = 0.312 < 1.6$,
So the Simultaneous SAR are not required for BT and WiFi antenna.

TA Technology (Shanghai) Co., Ltd.
Test Report

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Type	Uncertainty Value (%)	Probability Distribution	k	c _i	Standard uncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	-probe calibration	B	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	B	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	B	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	B	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	B	1.0	N	1	1	1.0	∞
10	-response time	B	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	B	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	B	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	B	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test sample Related								
17	-Test Sample Positioning	A	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	A	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	2.5	N	1	0.6	1.5	9
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.50		
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$	N	k=2	23.00		

TA Technology (Shanghai) Co., Ltd.
Test Report

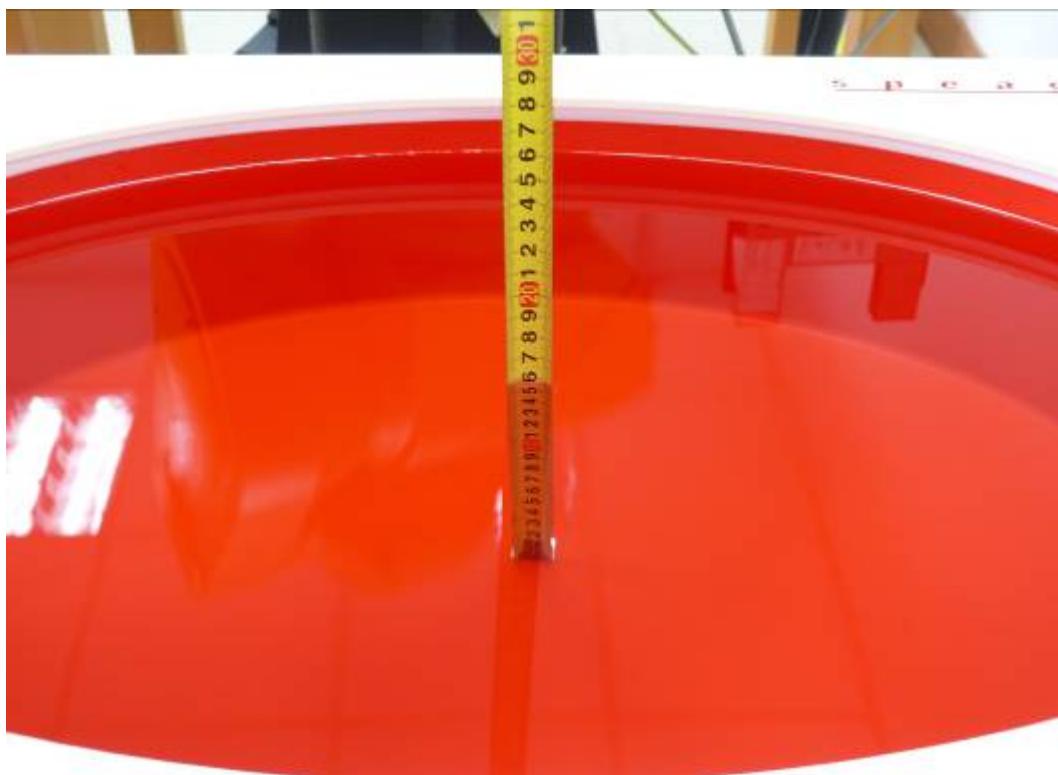
9. Main Test Instruments

Table 8: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year
05	Power sensor	E9327A	US40441622	September 23, 2012	One year
06	Dual directional coupler	778D-012	50519	March 26, 2012	One year
07	Signal Generator	HP 8341B	2730A00804	September 11, 2012	One year
08	Amplifier	IXA-020	0401	No Calibration Requested	
09	BTS	E5515C	MY48360988	December 2, 2011	One year
10	E-field Probe	ES3DV3	3189	June 22, 2012	One year
11	DAE	DAE4	1317	January 23, 2012	One year
12	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Two years
13	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
14	Hygrothermograph	WS-1	64591	September 27, 2012	One year

*****END OF REPORT BODY*****

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RXA1211-1114SAR

Page 32 of 67

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 33 of 67

Picture 2: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date/Time: 12/6/2012 12:30:55 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.90$ mho/m; $\epsilon_r = 51.69$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g

Maximum value of SAR (measured) = 15 mW/g

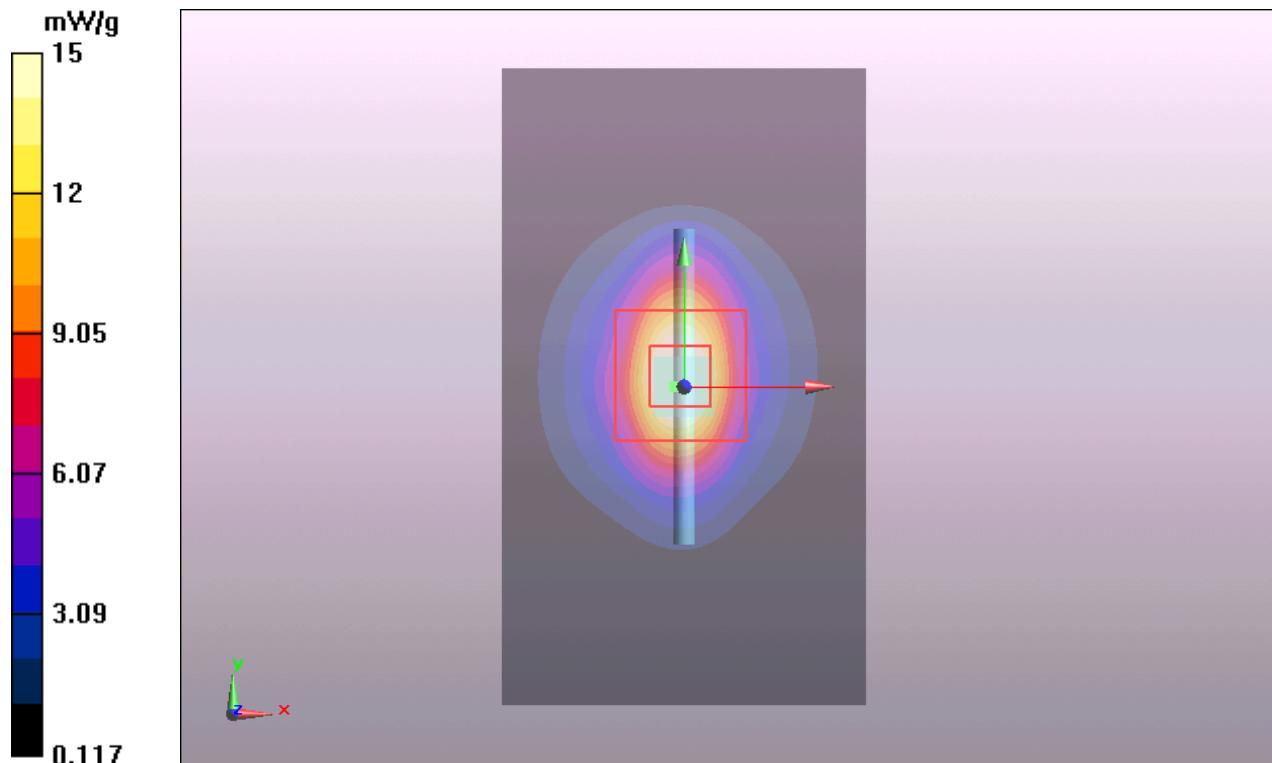


Figure 7 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

802.11b Test Position 1 Low

Date/Time: 12/6/2012 3:10:18 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2412$ MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

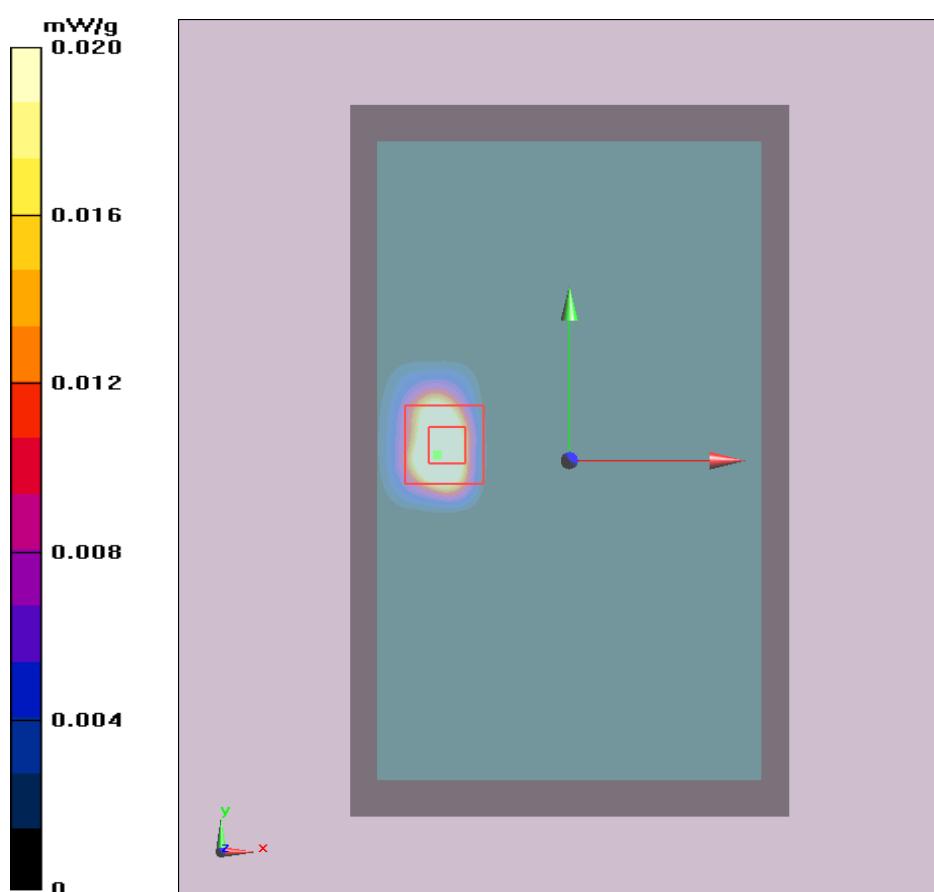
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1/Low /Area Scan (81x131x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.054 mW/g


Test Position 1/Low /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.575 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.055 W/kg

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.008 mW/g

Maximum value of SAR (measured) = 0.020 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Figure 8 802.11b Test Position 1 Channel 1

802.11b Test Position 5 High

Date/Time: 12/6/2012 2:50:51 PM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462 \text{ MHz}$; $\sigma = 1.92 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

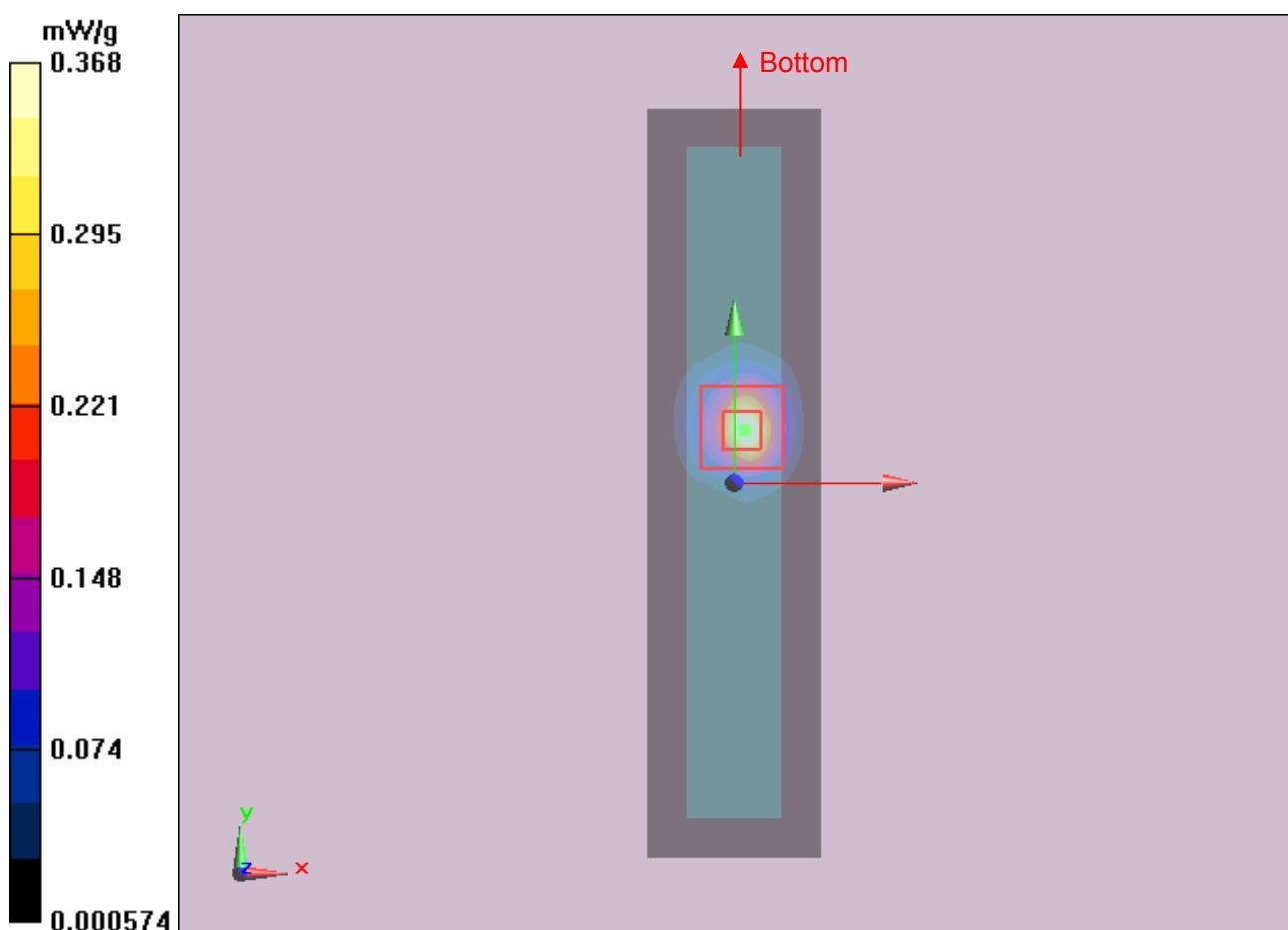
Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

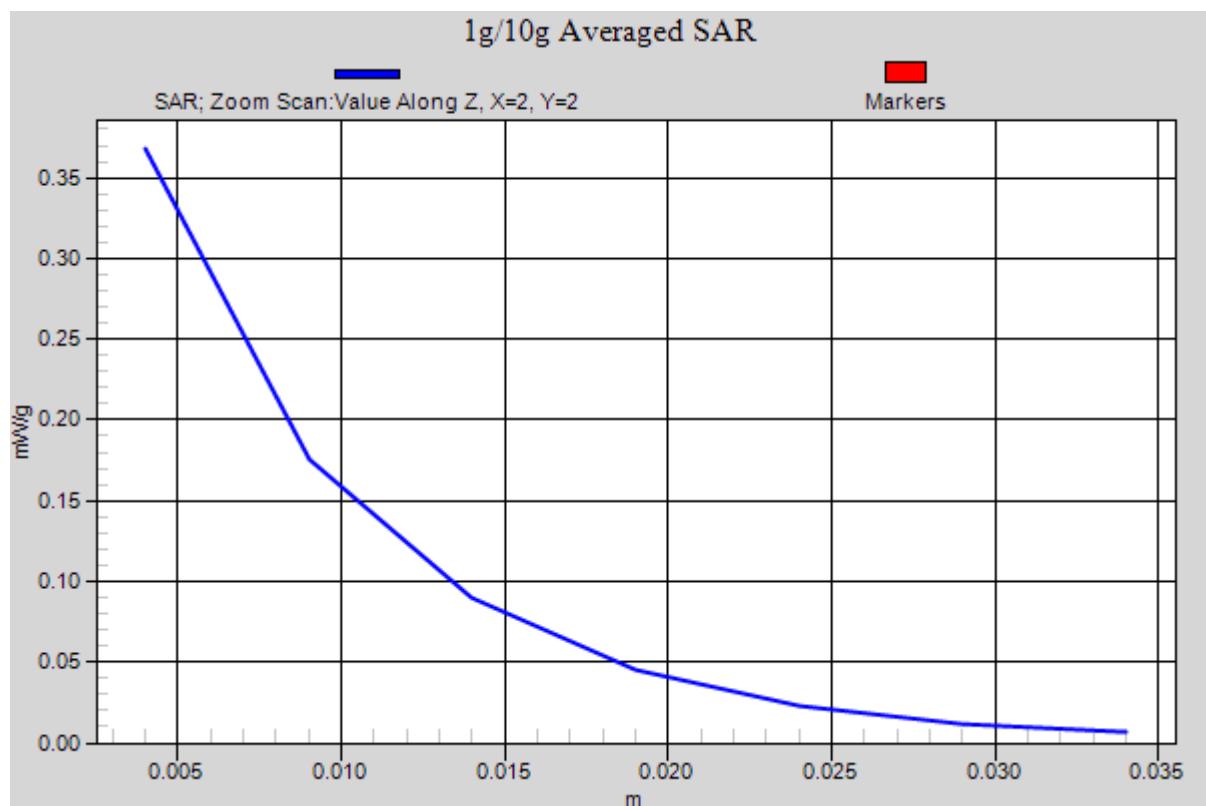
Test Position 5/High/Area Scan (31x131x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.394 mW/g

Test Position 5/High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 6.5 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.769 W/kg


SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.368 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Figure 9 802.11b Test Position 5 Channel 11

TA Technology (Shanghai) Co., Ltd.
Test Report

802.11b Test Position 5 Middle

Date/Time: 12/6/2012 2:36:00 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

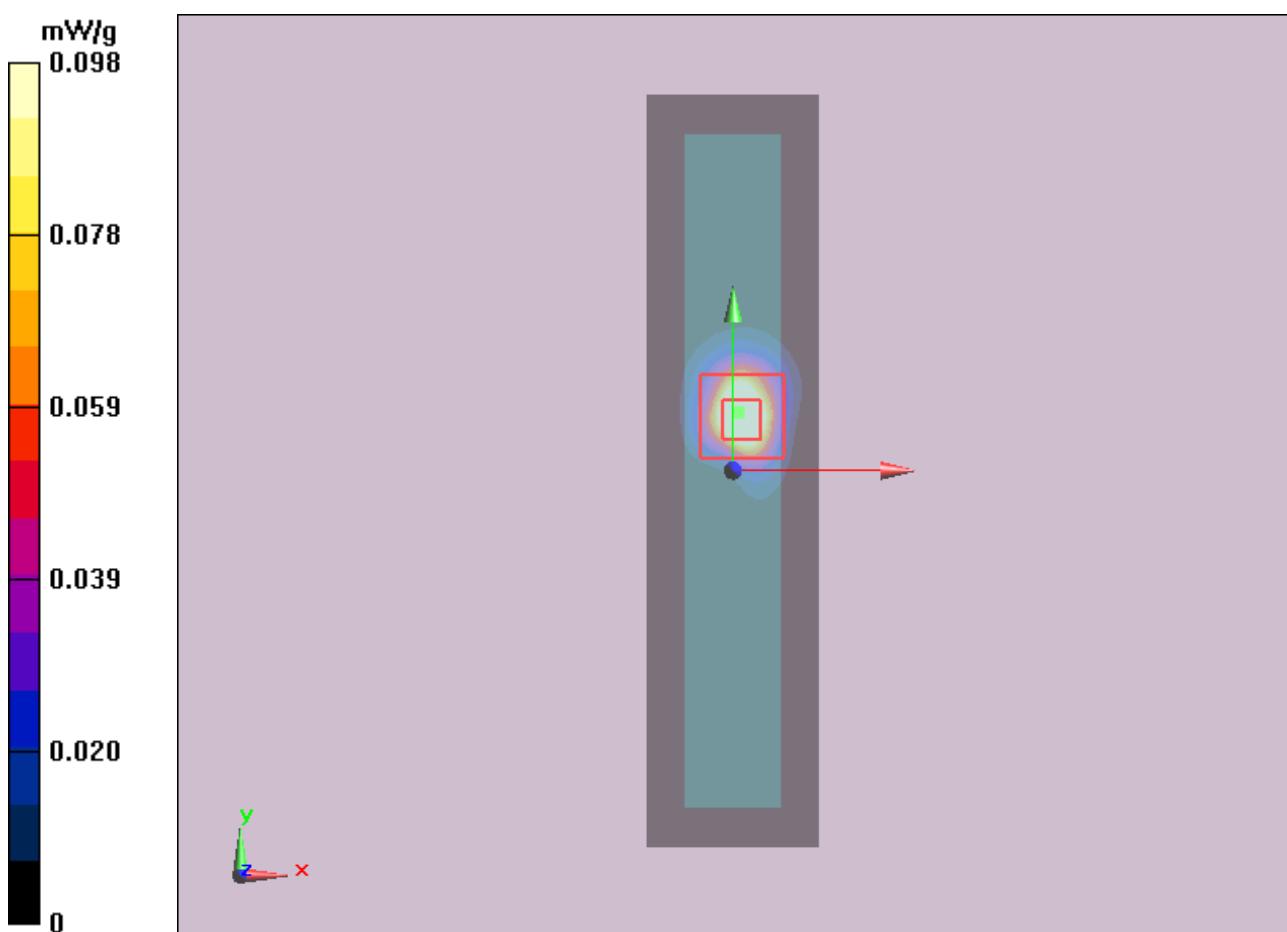
Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5/Middle/Area Scan (31x131x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.190 mW/g


Test Position 5/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.63 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.098 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Figure 10 802.11b Test Position 5 Channel 6

802.11b Test Position 5 Low

Date/Time: 12/6/2012 2:09:21 PM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2412 \text{ MHz}$; $\sigma = 1.85 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012

Electronics: DAE4 Sn1317; Calibrated: 1/23/2012

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5/Low/Area Scan (31x131x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.206 mW/g

Test Position 5/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.76 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.039 mW/g

Maximum value of SAR (measured) = 0.113 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

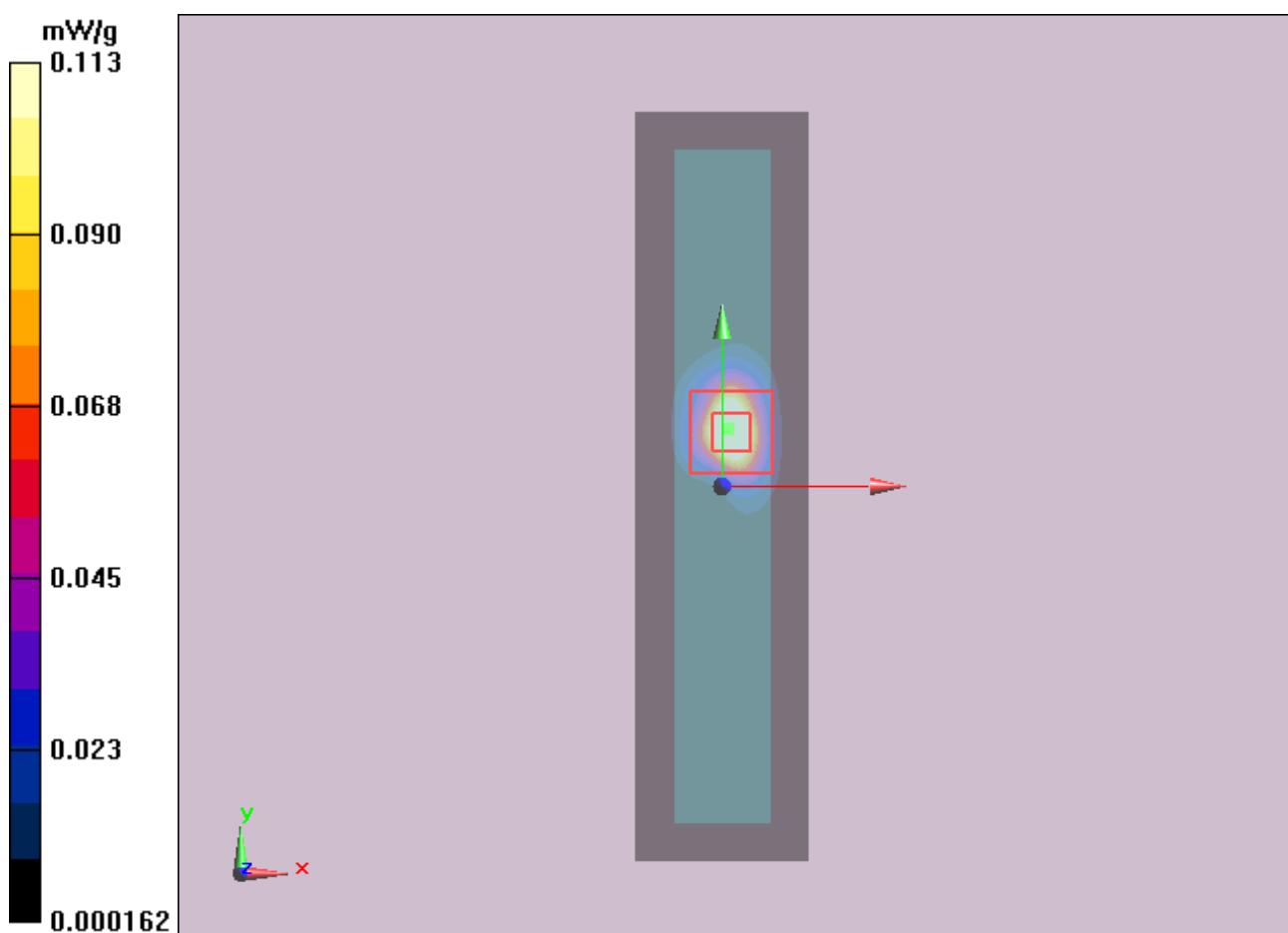


Figure 11 802.11b Test Position 5 Channel 1

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 42 of 67

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zaughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: ES3-3189_Jun12

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3189

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: June 22, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5066 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: June 22, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 43 of 67

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}*: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). *NORM_{x,y,z}* are only intermediate values, i.e., the uncertainties of *NORM_{x,y,z}* does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z* = *NORM_{x,y,z}* * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z*: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORM_{x,y,z}* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 44 of 67

ES3DV3 – SN:3189

June 22, 2012

Probe ES3DV3

SN:3189

Manufactured: March 25, 2008
Calibrated: June 22, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 45 of 67

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²) ^A	1.32	1.35	1.05	\pm 10.1 %
DCP (mV) ^B	99.5	100.6	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	160.3	\pm 3.8 %
			Y	0.00	0.00	1.00	164.9	
			Z	0.00	0.00	1.00	182.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 46 of 67

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.83	6.83	6.83	0.25	1.06	± 13.4 %
450	43.5	0.87	6.37	6.37	6.37	0.14	1.67	± 13.4 %
835	41.5	0.90	5.81	5.81	5.81	0.63	1.24	± 12.0 %
1750	40.1	1.37	4.90	4.90	4.90	0.80	1.14	± 12.0 %
1900	40.0	1.40	4.69	4.69	4.69	0.62	1.31	± 12.0 %
2450	39.2	1.80	4.14	4.14	4.14	0.65	1.36	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 47 of 67

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

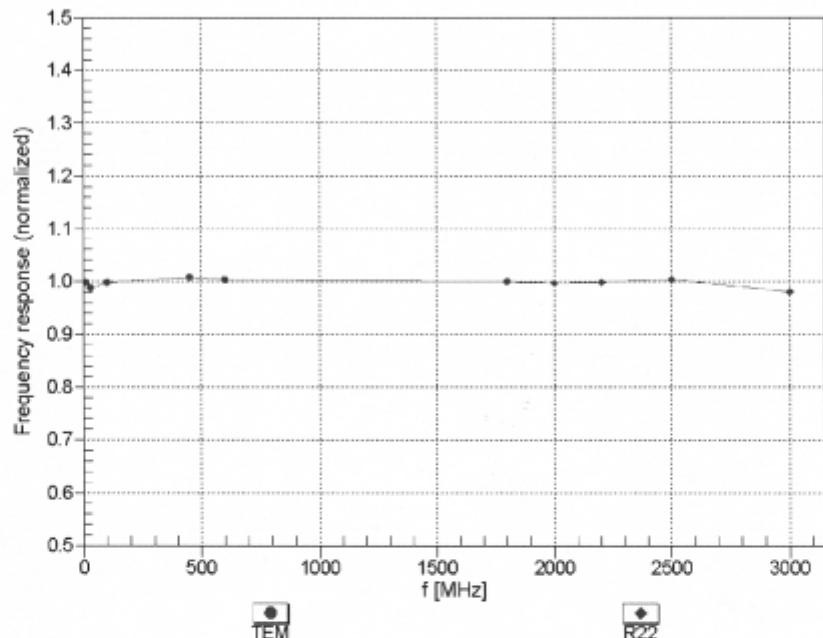
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	6.53	6.53	6.53	0.23	1.90	± 13.4 %
450	56.7	0.94	6.73	6.73	6.73	0.10	1.00	± 13.4 %
835	55.2	0.97	5.81	5.81	5.81	0.54	1.33	± 12.0 %
1750	53.4	1.49	4.65	4.65	4.65	0.67	1.38	± 12.0 %
1900	53.3	1.52	4.36	4.36	4.36	0.62	1.40	± 12.0 %
2450	52.7	1.95	3.96	3.96	3.96	0.64	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RXA1211-1114SAR

Page 48 of 67

ES3DV3- SN:3189

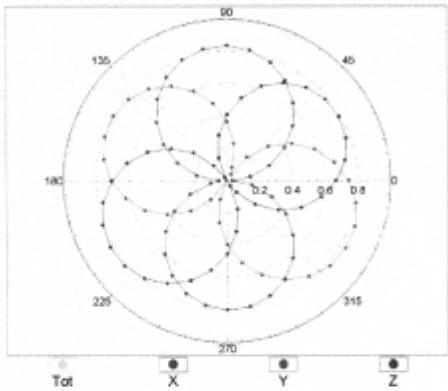
June 22, 2012

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

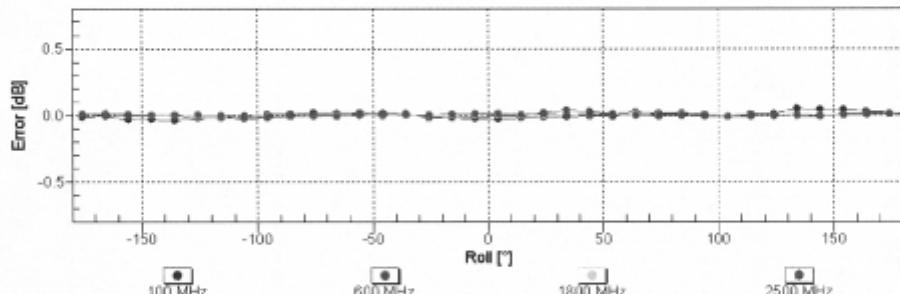
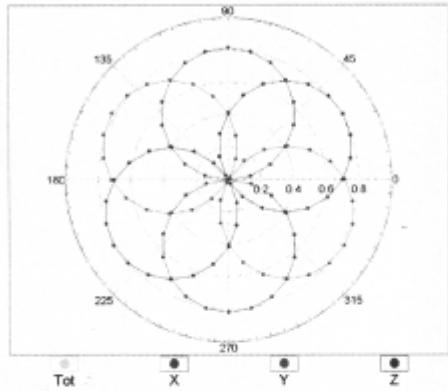
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR


Page 49 of 67

ES3DV3- SN:3189



June 22, 2012

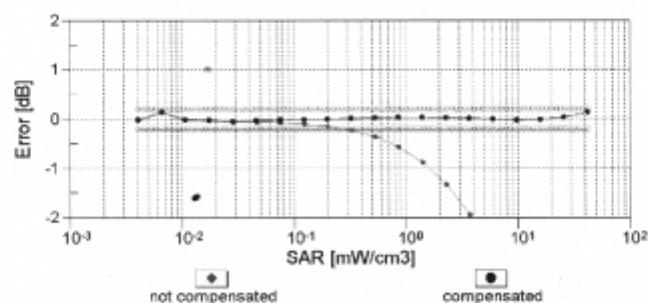
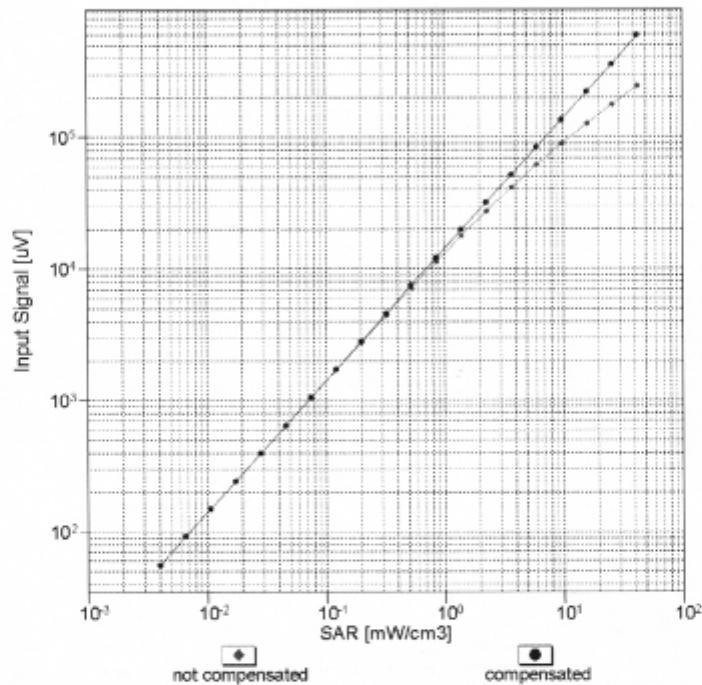
Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RXA1211-1114SAR

Page 50 of 67

ES3DV3- SN:3189

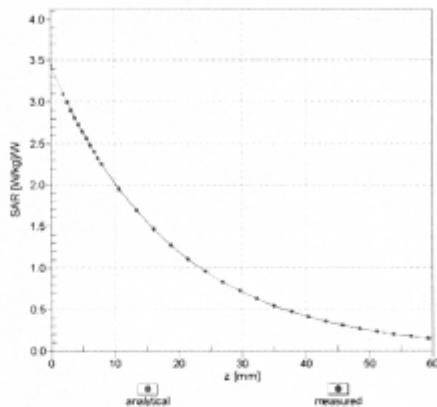
June 22, 2012

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)

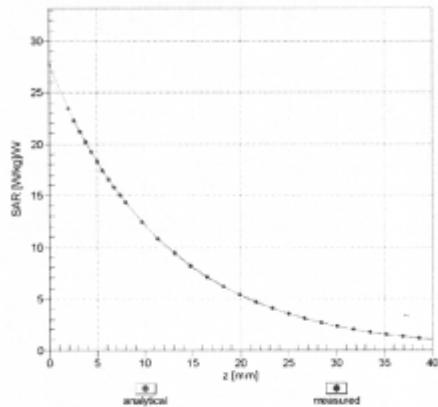
Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

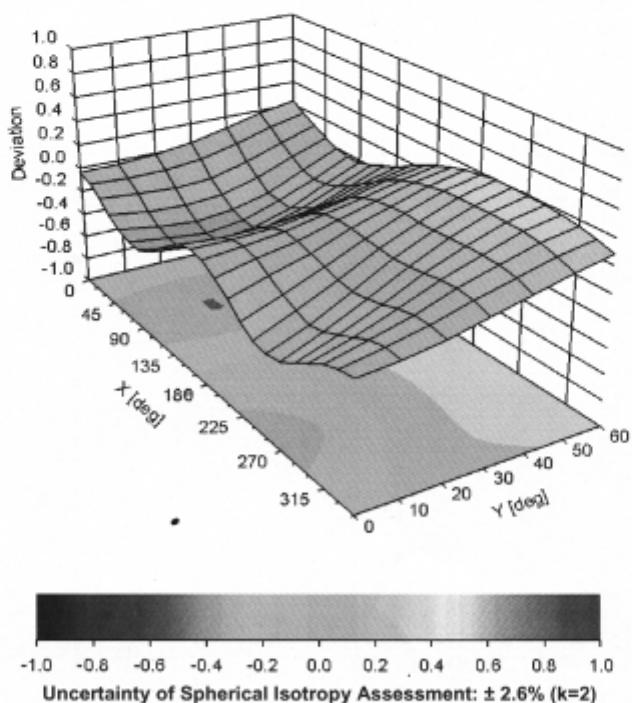

Page 51 of 67

ES3DV3- SN:3189


June 22, 2012

Conversion Factor Assessment

$f = 835 \text{ MHz}, \text{WGLS R9 (H_convF)}$



$f = 1900 \text{ MHz}, \text{WGLS R22 (H_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 52 of 67

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	54.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 53 of 67

ANNEX E: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: D2450V2-786_Aug11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 786

Calibration procedure(s) QA CAL-05.v8
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 29, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: Name Dimce Iliev Function Laboratory Technician Signature

Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: August 29, 2011

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 54 of 67

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
SAR measured	250 mW input power	6.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.4 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL		
SAR measured	250 mW input power	6.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.0 \Omega + 2.4 j\Omega$
Return Loss	-25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.4 \Omega + 3.5 j\Omega$
Return Loss	-29.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 06, 2005

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 57 of 67

DASY5 Validation Report for Head TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³

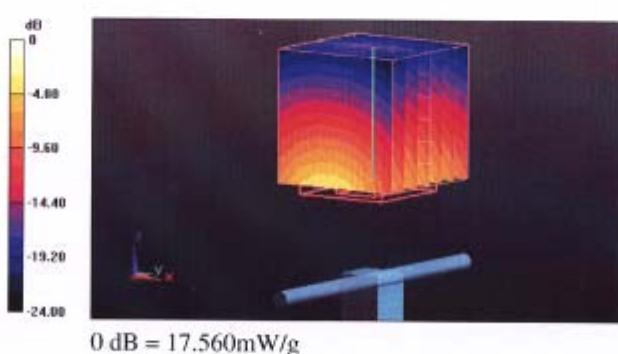
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

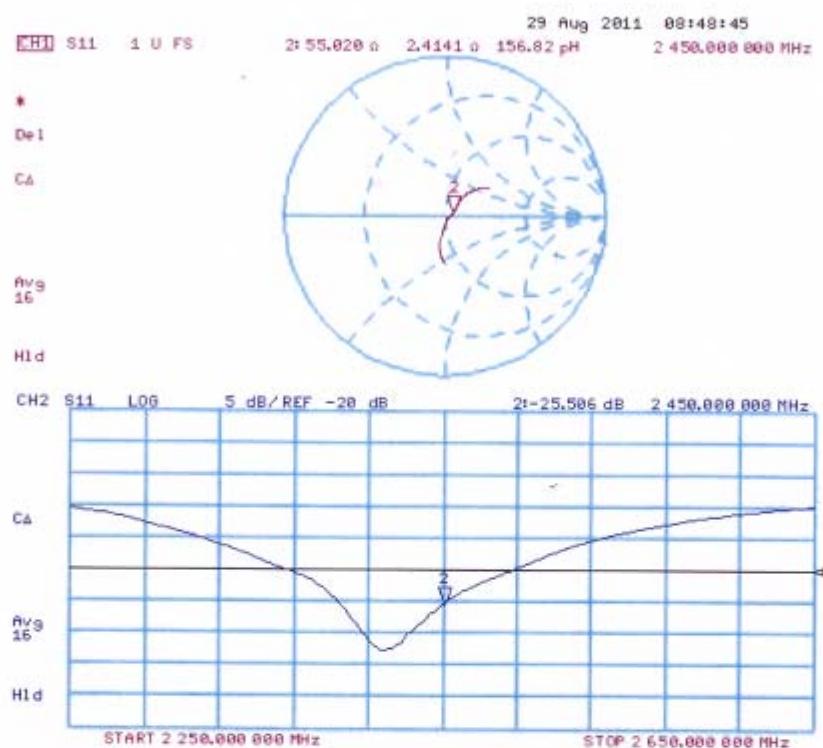

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.303 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g

Maximum value of SAR (measured) = 17.561 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 58 of 67

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 59 of 67

DASY5 Validation Report for Body TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

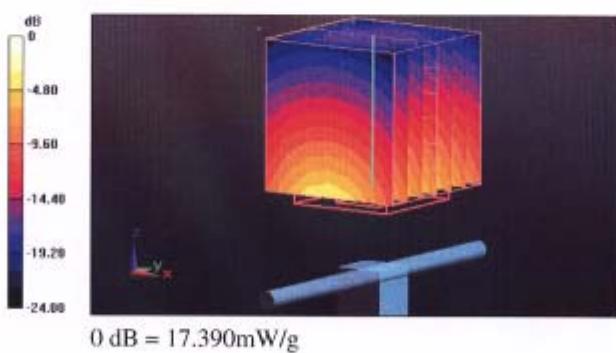
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

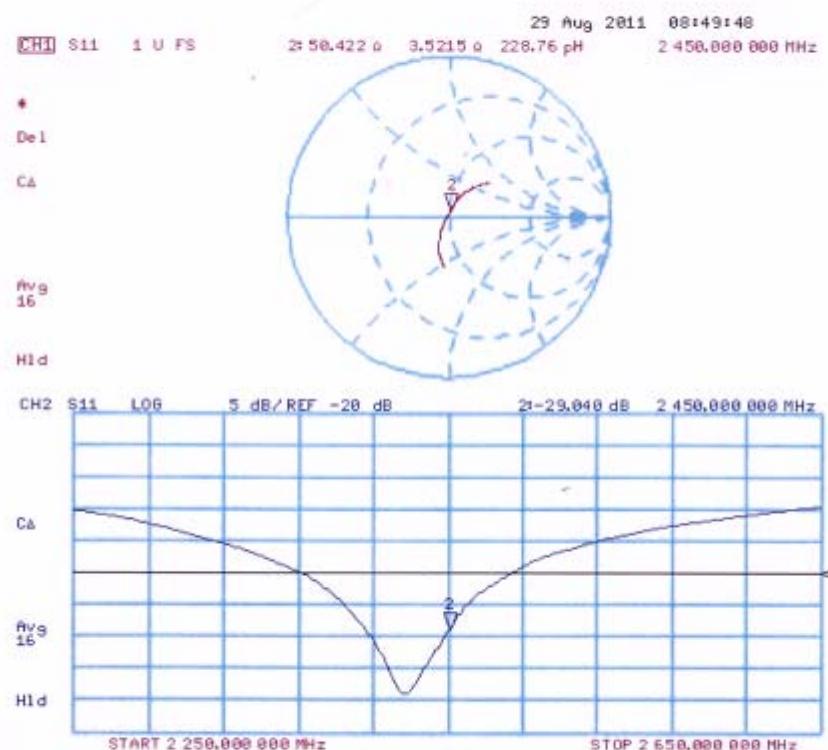

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.118 V/m; Power Drift = 0.0072 dB

Peak SAR (extrapolated) = 27.129 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.1 mW/g

Maximum value of SAR (measured) = 17.387 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1211-1114SAR

Page 60 of 67

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 62 of 67

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **TA Shanghai (Auden)**

Certificate No: **DAE4-1317_Jan12**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BJ - SN: 1317**

Calibration procedure(s) **QA CAL-06.v24**
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **January 23, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check

Calibrator Box V2.1 SE UWS 053 AA 1001 05-Jan-12 (in house check) In house check: Jan-13

Calibrated by: Name **Dominique Steffan** Function **Technician** Signature

Approved by: Name **Fin Bomholt** Function **R&D Director** Signature

Issued: January 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1211-1114SAR

Page 63 of 67

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- **DC Voltage Measurement:** Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- **Connector angle:** The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - **DC Voltage Measurement Linearity:** Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - **Common mode sensitivity:** Influence of a positive or negative common mode voltage on the differential measurement.
 - **Channel separation:** Influence of a voltage on the neighbor channels not subject to an input voltage.
 - **AD Converter Values with inputs shorted:** Values on the internal AD converter corresponding to zero input voltage
 - **Input Offset Measurement:** Output voltage and statistical results over a large number of zero voltage measurements.
 - **Input Offset Current:** Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - **Input resistance:** Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - **Low Battery Alarm Voltage:** Typical value for information. Below this voltage, a battery alarm signal is generated.
 - **Power consumption:** Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.064 \pm 0.1\% \text{ (k=2)}$	$404.056 \pm 0.1\% \text{ (k=2)}$	$403.955 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.98762 \pm 0.7\% \text{ (k=2)}$	$3.98737 \pm 0.7\% \text{ (k=2)}$	$3.98343 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$117.0^\circ \pm 1^\circ$
---	---------------------------

TA Technology (Shanghai) Co., Ltd.
Test Report

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.18	-1.75	-0.00
Channel X + Input	20001.35	0.46	0.00
Channel X - Input	-19997.31	1.96	-0.01
Channel Y + Input	199993.18	-1.24	-0.00
Channel Y + Input	20001.40	0.60	0.00
Channel Y - Input	-20000.04	-0.70	0.00
Channel Z + Input	199991.58	-2.43	-0.00
Channel Z + Input	19999.62	-1.14	-0.01
Channel Z - Input	-20001.31	-1.83	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.74	-0.89	-0.04
Channel X + Input	202.18	-0.01	-0.01
Channel X - Input	-197.58	0.36	-0.18
Channel Y + Input	2000.34	-1.20	-0.06
Channel Y + Input	199.67	-2.39	-1.18
Channel Y - Input	-197.64	0.32	-0.16
Channel Z + Input	2000.69	-0.78	-0.04
Channel Z + Input	200.84	-1.16	-0.57
Channel Z - Input	-198.45	-0.47	0.24

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-23.40	-24.98
	-200	28.01	26.12
Channel Y	200	-2.57	-2.75
	-200	1.67	1.31
Channel Z	200	-11.92	-11.43
	-200	9.80	9.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-2.15	-4.41
Channel Y	200	7.18	-	-2.47
Channel Z	200	7.44	5.46	-

TA Technology (Shanghai) Co., Ltd.

Test Report

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16081	17027
Channel Y	16103	16170
Channel Z	16221	16651

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	-0.45	-1.32	0.40	0.32
Channel Y	-2.63	-3.99	-1.68	0.42
Channel Z	-0.67	-3.07	1.36	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

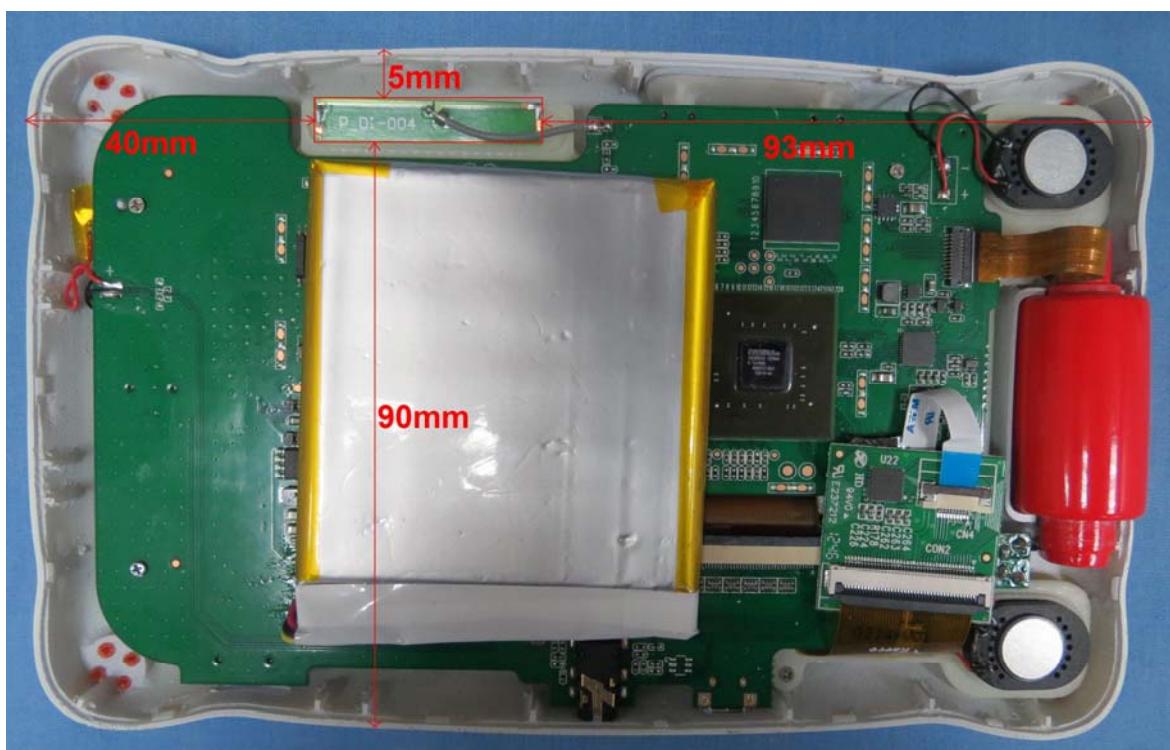
8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RXA1211-1114SAR

Page 67 of 67

ANNEX G: The EUT Appearances and Test Configuration

a: Front side

b: Back View

Picture 3: Constituents of the EUT

TA Technology (Shanghai) Co., Ltd.
Test Report

Picture 4: Test position 1

Picture 5: Test position 5