

SAR Test Report

Product Name: Mobile Internet Device

Model No. : NABIXD-NV10A, MT799-XD

FCC ID : ZYQ--NABIXD-NV10A

Applicant: KEEN HIGH HOLDING (HK) LIMITED

Address: Unit 13, 7/F Technology Park, 18 On Lai

Street Shatin New Territories HK

Date of Receipt: 25/02/2013

Date of Test : 05/03/2013

Issued Date : 27/03/2013

Report No. : 132S028R-HP-US-P03V01

Report Version: V1.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 27/03/2013

Report No.: 132S028R-HP-US-P03V01

QuieTek

Product Name : Mobile Internet Device

Applicant : KEEN HIGH HOLDING (HK) LIMITED

: Unit 13, 7/F Technology Park, 18 On Lai Street Shatin New Address

Territories HK

Manufacturer : KEEN HIGH HOLDING (HK) LIMITED

: Unit 13, 7/F Technology Park, 18 On Lai Street Shatin New Address

Territories HK

Model No. : NABIXD-NV10A, MT799-XD

Trade Name : nabi

EUT Voltage : 230V, 60Hz

Applicable Standard : FCC OET65 Supplement C June 2001

IEEE Std. 1528-2003; 47CFR § 2.1093

Test Result : Max. SAR Measurement (1g)

802.11b: 0.533W/kg

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By : Alice Wi

(Engineering ADM: Alice Ni)

Tested By : Labin Wa

(Engineering Supervisor: Robin Wu)

Approved By : Marlinchen

(Manager: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI

China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China

TABLE OF CONTENTS

Description	Page
1. General Information	6
1.1. EUT Description	6
1.2. Test Environment	8
2. SAR Measurement System	9
2.1. DASY5 System Description	9
2.1.1. Applications	10
2.1.2. Area Scans	10
2.1.3. Zoom Scan (Cube Scan Averaging)	10
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	
2.2. DASY5 E-Field Probe	11
2.2.1. Isotropic E-Field Probe Specification	
2.3. Boundary Detection Unit and Probe Mounting Devi	
2.4. DATA Acquisition Electronics (DAE) and Measurer	
2.5. Robot	
2.6. Light Beam Unit	
2.7. Device Holder	
2.8. SAM Twin Phantom	14
3. Tissue Simulating Liquid	15
3.1. The composition of the tissue simulating liquid	15
3.2. Tissue Calibration Result	15
3.3. Tissue Dielectric Parameters for Head and Body P	hantoms16
4. SAR Measurement Procedure	17
4.1. SAR System Validation	17
4.1.1. Validation Dipoles	17
4.1.2. Validation Result	17
4.2. SAR Measurement Procedure	18
5. SAR Exposure Limits	19
6. Test Equipment List	20
7. Measurement Uncertainty	23
8. Conducted Power Measurement	25
9. Test Results	26

9.1.	SAR Test Results Summary	26
Appen	dix A. SAR System Validation Data	28
Appen	dix B. SAR measurement Data	30
Appen	dix C. Test Setup Photographs & EUT Photographs	41
Appen	dix D. Probe Calibration Data	43
Appen	dix E. Dipole Calibration Data	58
Appen	dix F. DAE Calibration Data	66

1. General Information

1.1. EUT Description

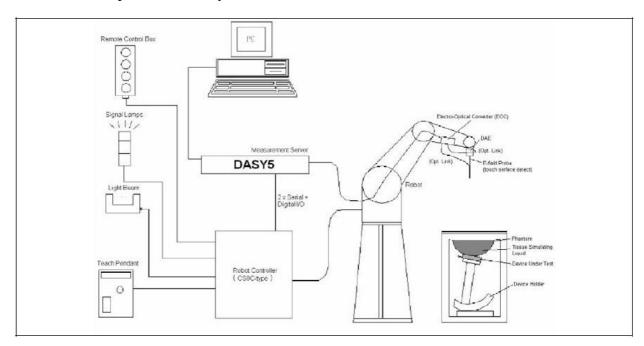
Product Name	Mobile Internet Device		
Model No.	NABIXD-NV10A, MT799-XD		
FCC ID	ZYQNABIXD-NV10A		
Hardware version	0.1C		
Software version	1.3.2		
GPS			
Operate frequency	1575.42MHz		
Type of modulation	BPSK		
Wi-Fi			
Frequency Range	802.11b/g/n(20MHz): 2412 - 2462 MHz		
	802.11a/n(20MHz): 5745-5805 MHz		
Channel Number	802.11b/g/n(20MHz): 11		
	802.11a/n(20MHz): 4		
Type of Modulation	802.11b: DSSS		
	802.11a/g/n: OFDM		
Data Rate	802.11b: 1/2/5.5/11 Mbps		
	802.11g: 6/9/12/18/24/36/48/54 Mbps		
	802.11n: up to 65 Mbps		
	802.11a: 6/9/12/18/24/36/48/54 Mbps		
Device Category	Mobile		
RF Exposure Environment	Uncontrolled		
Antenna Type	PIFA		
Peak Antenna Gain	2.4GHz: 1.95dBi		
	5.8GHz: -0.27dBi		
Max. Output Power	802.11b: 14.40dBm		
(Average)	802.11g: 13.80dBm		
	802.11n(20MHz): 13.85dBm		
	802.11a: 13.47dBm		

Channel List

802.11b/g/	802.11b/g/n(20MHz) Working Frequency of Each Channel:						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz	04	2427 MHz
05	2432 MHz	06	2437 MHz	07	2442 MHz	80	2447 MHz
09	2452 MHz	10	2457 MHz	11	2462 MHz	N/A	N/A

802.11a/n(20MHz) Working Frequency of Each Channel:							
Channel Frequency Channel Frequency Channel Frequency						Frequency	
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz
N/A	N/A N/A N/A N/A N/A N/A						

1.2. Test Environment


Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

Page: 10 of 83

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

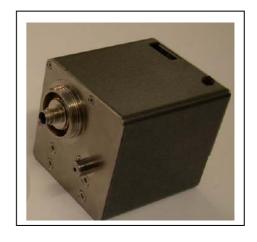
SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in s charges PEEK enclosure material (resistant to c DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only pr compliance testing for frequencies up to 6 GHz v 30%.	obe which enables

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz	5800MHz
(% Weight)	Body	Body
Water	73.2	75.68
Salt	0.04	0.43
Sugar	0.00	0.00
HEC	0.00	0.00
Preventol	0.00	0.00
DGBE	26.7	4.42
Triton X-100	0.00	19.47

3.2. Tissue Calibration Result

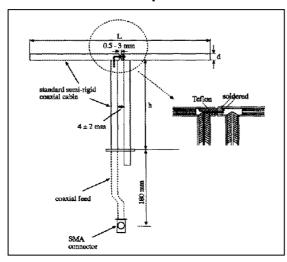
The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue	Body Tissue Simulant Measurement					
Frequency	Description	Dielectric Pa	arameters	Tissue Temp.		
[MHz]	Description	ε _r	σ [s/m]	[°C]		
2450MHz	Reference result	52.7	1.95	N/A		
	± 5% window	50.07 to 55.34	1.85 to 2.05	IN//A		
	05-03-2013	52.09	1.99	21.0		
	Reference result	48.2	6.00	N/A		
5800MHz	± 5% window	45.79 to 50.61	5.70 to 6.30	IN/A		
	05-03-2013	46.27	6.02	21.0		

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Не	ad	Во	dy
(MHz)	ϵ_{r}	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6
5800MHz	20.6	14.2	3.6

4.1.2. Validation Result

System Performance Check at 2450MHz for Body

Validation Dipole: D2450V2, SN: 839

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp.
2450 MHz	Reference result ± 10% window	48.7 43.83 to 53.57	22.8 20.52 to 25.08	N/A
	05-03-2013	49.20	22.28	21.0
5800 MHz	Reference result ± 10% window	73.5 66.15 to 80.85	20.3 18.27 to 22.33	N/A
	05-03-2013	74.80	20.60	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

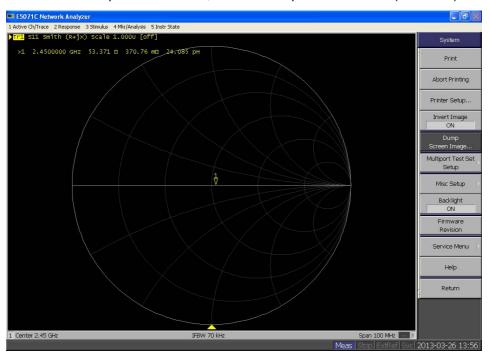
Limits for General Population/Uncontrolled Exposure (W/kg)

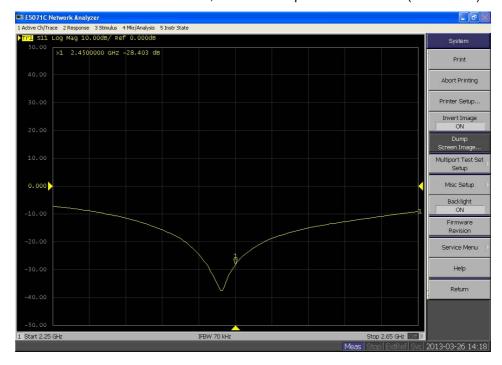
Type Exposure	Uncontrolled		
	Environment Limit		
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg		
Spatial Average SAR (whole body)	0.08 W/kg		
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg		

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date	
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	only once	
Controller	Stäubli	SP1	S-0034	only once	
Dipole Validation Kits	Speag	D2450V2	839	2014.02.22	
Dipole Validation Kits	Speag	D5GHzV2	1078	2014.02.20	
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	
Data	Speag	DAE4	1220	2014.01.23	
Acquisition Electronic					
E-Field Probe	Speag	EX3DV4	3710	2013.03.12	
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A	
Directional Coupler	Agilent	778D	20160	N/A	
Vector Network	Agilent	E5071C	MY48367267	2013.04.10	
Signal Generator	Agilent	E4438C	MY49070163	2013.04.18	
Power Meter	Anritsu	ML2495A	0905006	2013.11.10	
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2013.11.10	

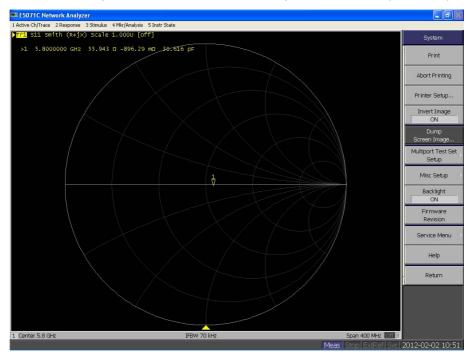
Note: Per KDB 450824 D02 requirements for dipole calibration, QuieTek Lab has adopted two years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

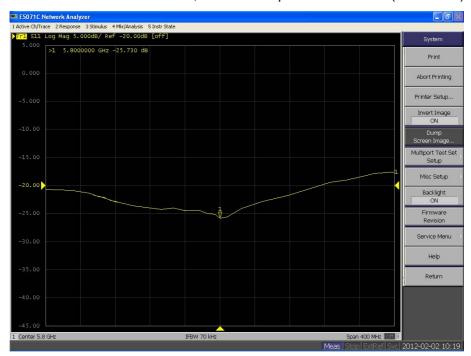

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement (Show below);
- 4. Impedance is within 5Ω of calibrated measurement (Show below).


Impedance Plot for D2450V2

2450 Body

Calibrated impedance: 52.1 Ω ; Measured impedance: 53.4 Ω (within 5Ω)


Calibrated return loss: -32.9 dB; Measured impedance: -28.4 dB (within 20%)



5800 Body

Calibrated impedance: 55.1 Ω ; Measured impedance: 55.9 Ω (within 5 Ω)

Calibrated return loss: -25.7 dB; Measured impedance: -25.7 dB (within 20%)

7. Measurement Uncertainty

		DASY	5 Unc	ertain	tv			
Measurement uncertainty					•	/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	8
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	8
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		•		1	•			
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•		1				
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	Б		0.64	0.42	.4.00/	14.20/	8
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	ω
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	8
(meas.)	12.570	IN	•	0.04	0.43	±1.070	±1.170	~
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
(target)	±0.070	1	γJ	0.0	0.70	±1.7 /0	±1. 7 /0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	12.070		•	0.0	0.70	21.570	±1.2/0	
Combined Std. Uncertainty						±11.0%	±10.8%	387
Expanded STD Uncertainty						±22.0%	±21.5%	

		DASY	5 Und	ertain	ty			
Measurement uncertainty	for 3 GHz	to 6 GHz	z averag	ed over 1	gram / 1	0 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	8
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	8
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	8
Liquid Conductivity	±5.0%	R	-	0.64	0.40	.4.00/	±1.2%	8
(target)	15.0%	K	√3	0.04	0.43	±1.8%	II.Z70	~
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	8
(meas.)	12.570	IN	'	0.04	0.43	±1.076	±1.170	~
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
(target)	±0.070	'`	V.J	0.0	010	-1.770	± 1T/U	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)			<u> </u>	0.0	0.10		/0	
Combined Std. Uncertainty						±12.8%	±12.6%	330
Expanded STD Uncertainty					±25.6%	±25.2%		

8. Conducted Power Measurement

Test Mode	Data Rate	Channel No.	Frequency	Average Power	
			(MHz)	(dBm)	
		01	2412	14.02	
802.11b	11Mbps	06	2437	14.30	
		11	2462	14.40	
		01	2412	13.38	
802.11g	6Mbps	06	2437	13.72	
		11	2462	13.80	
		01	2412	13.57	
802.11n(20MHz)	6.5Mbps	06	2437	13.72	
		11	2462	13.85	
		149	5745	13.05	
802.11a	6Mbps	153	5765	13.17	
		157	5785	13.31	
		165	5805	13.47	
		149	5745	12.88	
802.11n(20MHz)	6.5Mbps	153	5765	13.01	
		157	5785	13.10	
		165	5805	13.21	

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Body SAR was performed with the device configured in the positions according to FCC OET65. SAR test was performed with the device 0mm (touch) from the phantom for the worst case due to antenna position. Test Position: Bottom of Tablet, Primary Landscape of Tablet. Please refer to the test photograph for details.

9.1.2. Co-located SAR

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum conducted power of Bluetooth 5dBm and the antenna to use separation distance 5mm, Bluetooth SAR was not requied: $[(3.16mW/5)^* \sqrt{2.441}]=0.987<3.0$.

For simultaneous transmission, Bluetooth and Wi-Fi share the same antenna and cannot transmit simultaneously.

9.1.3. Referenced Documents

- 1) FCC OET Bulletin 65 Supplement C [June 2001]
- 2) IEEE 1528-2003
- 3) 616217 D04 SAR for laptop and tablets v01
- 4) FCC KDB Publication 248227 D01v01r02(SAR Considerration for 802.11 Device)
- 5) FCC KDB Publication 447498 D01v05(General SAR Guidance)
- 6) FCC KDB Publication 865664 D01v01(SAR measurement 100 MHz to 6 GHz)

9.2. Test Results

SAR MEASUREMENT										
Ambient Temperature (°C): 21.5 ±2					Relative Humidity (%): 55					
Liquid Temperature (°C) : 21.0 ±2						Depth of Liquid (cm):>15				
Product: Mobile Internet Device										
Test Mode: 802.11b										
Test Position	Antenna	Frequency			Separatio n Distance	Power	SAR 1g	Limit		
Body	Position	Channel	MHz	111	(mm)	Drift (<±0.2)	(W/kg)	(W/kg)		
Bottom of PC	Fixed	1	2412		0	0.05	0.506	1.6		
Bottom of PC	Fixed	6 2437		0	0.09	0.520	1.6			
Bottom of PC	Fixed	11	2462		0	-0.16	0.533	1.6		
Primary landscape of PC	Fixed	11	2462		0	0.15	0.181	1.6		
Test Mode: 802.11g										
Bottom of PC	Fixed	11	2462		0	0.06	0.452	1.6		
Test Mode: 802.11n	(20MHz)									
Bottom of PC	Fixed	11	2462		0	0.02	0.458	1.6		
Test Mode: 802.11a	1						_			
Test Position	Antenna Position	Frequency			eparation Distance	Power Drift	SAR 1g	Limit		
Body		Channel	MHz	'	(mm)	(<±0.2)	(W/kg)	(W/kg)		
Bottom of PC	Fixed	153	5765		0	0.06	0.345	1.6		
Bottom of PC	Fixed	161	5805		0	0.10	0.319	1.6		
Primary landscape of PC	Fixed	161	5805		0	0.04	0.195	1.6		
Test Mode: 802.11n(20MHz)										
Bottom of PC	Fixed	161	5805		0	0.06	0.276	1.6		

Appendix A. SAR System Validation Data

Date/Time: 05-03-2013

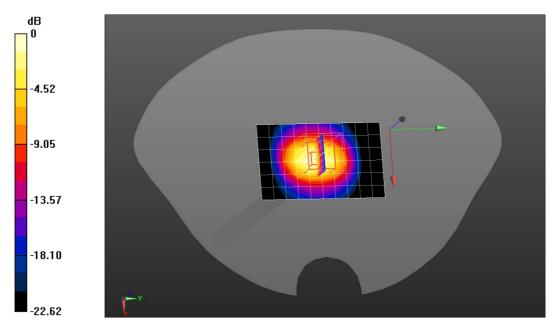
Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ = 1.99 mho/m; ϵ r = 52.09; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 13.2 mW/g

Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm,Reference Value = 81.516 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 25.881 mW/g

SAR(1 g) = 12.3 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 14.1 mW/g

0 dB = 14.1 mW/g = 22.98 dB mW/g

Test Laboratory: QuieTek Lab System Check Body 5800MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

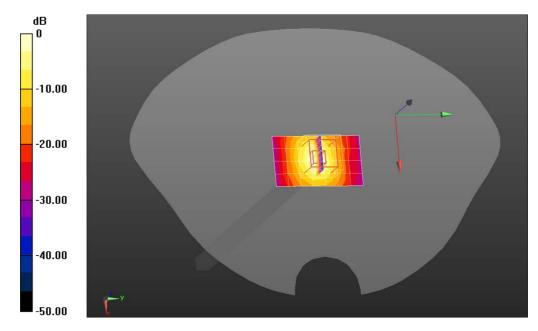
Communication System: CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5800 MHz;

Medium parameters used: f = 5800 MHz; σ = 6.02 mho/m; ϵr = 46.27; ρ = 1000 kg/m³; Phantom section:

Flat Section; Input Power=100mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(3.89, 3.89, 3.89); Calibrated: 12/03/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Body 5800MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm,Maximum value of SAR (measured) = 13.2 mW/g

Configuration/System Check Body 5800MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm,Reference Value = 38.526 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 30.951 mW/g

SAR(1 g) = 7.48 mW/g; SAR(10 g) = 2.06 mW/g Maximum value of SAR (measured) = 15.1 mW/g

0 dB = 15.1 mW/g = 23.58 dB mW/g

Appendix B. SAR measurement Data

Date/Time: 05-03-2013

Test Laboratory: QuieTek Lab 802.11b 2412MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

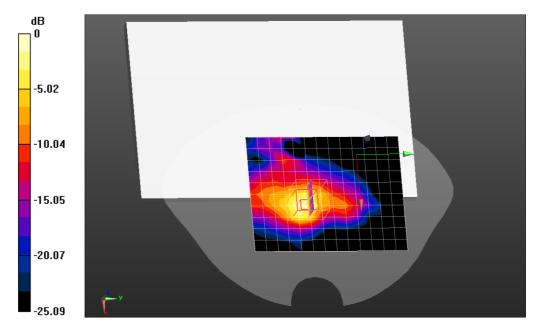
Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1.0; Frequency: 2412

MHz; Medium parameters used: f = 2412 MHz; σ = 1.94 mho/m; ϵ r = 52.23; ρ = 1000 kg/m³; Phantom

section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11b 2412MHz-Bottom/Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.488 mW/g

Configuration/802.11b 2412MHz-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm,Reference Value = 16.140 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.139 mW/g

SAR(1 g) = 0.506 mW/g; SAR(10 g) = 0.224 mW/g Maximum value of SAR (measured) = 0.581 mW/g

0 dB = 0.581 mW/g = -4.72 dB mW/g

Test Laboratory: QuieTek Lab 802.11b 2437MHz-Bottom

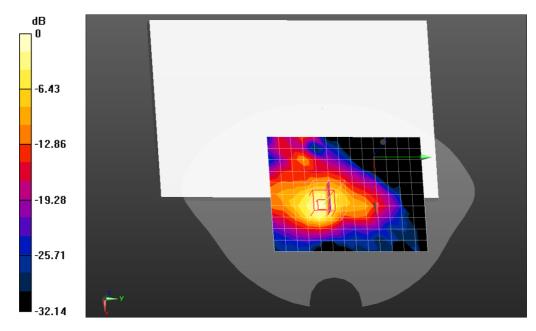
DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.97$ mho/m; $\epsilon r = 52.14$; $\rho = 1000$ kg/m³; Phantom

section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11b 2437MHz-Bottom/Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.528 mW/g

Configuration/802.11b 2437MHz-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm,Reference Value = 14.137 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.186 mW/g

SAR(1 g) = 0.520 mW/g; SAR(10 g) = 0.229 mW/g Maximum value of SAR (measured) = 0.596 mW/g

0 dB = 0.596 mW/g = -4.50 dB mW/g

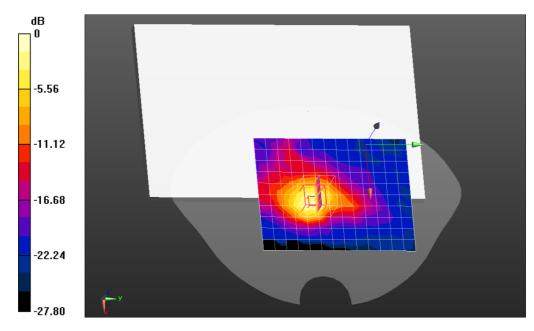
Test Laboratory: QuieTek Lab 802.11b 2462MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1.0; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\epsilon r = 52.043$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

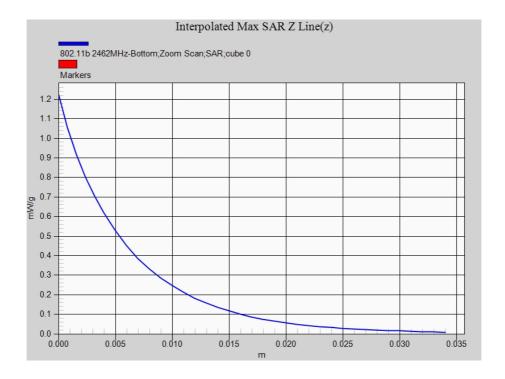
DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11b 2462MHz-Bottom/Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.480 mW/g

Configuration/802.11b 2462MHz-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm,Reference Value = 16.416 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.224 mW/g


SAR(1 g) = 0.533 mW/g; SAR(10 g) = 0.235 mW/g Maximum value of SAR (measured) = 0.613 mW/g

0 dB = 0.613 mW/g = -4.25 dB mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11b 2462MHz-Primary landscape

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1.0; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\epsilon r = 52.043$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

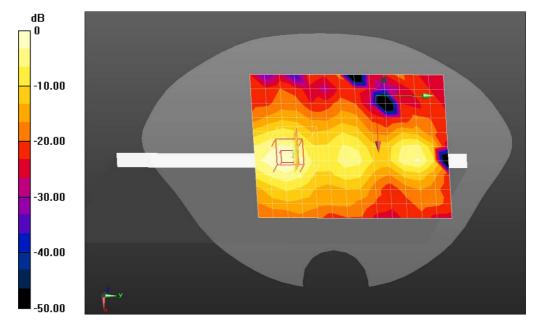
Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11b 2462MHz-Primary landscape/Area Scan (11x14x1): Measurement grid:

dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.205 mW/g

Configuration/802.11b 2462MHz-Primary landscape/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm,Reference Value = 3.601 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.352 mW/g

SAR(1 g) = 0.181 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.198 mW/g

0 dB = 0.198 mW/g = -14.07 dB mW/g

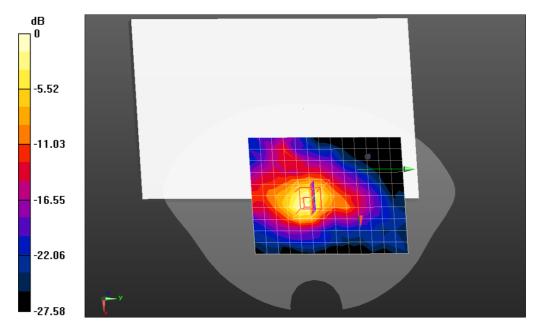
Test Laboratory: QuieTek Lab 802.11g 2462MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: Wi-Fi; Communication System Band: 802.11g; Duty Cycle: 1:1.0; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\epsilon r = 52.043$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11g 2462MHz-Bottom/Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.431 mW/g

Configuration/802.11g 2462MHz-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm,Reference Value = 15.397 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.017 mW/g

SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.199 mW/g Maximum value of SAR (measured) = 0.524 mW/g

0 dB = 0.524 mW/g = -5.61 dB mW/g

Test Laboratory: QuieTek Lab 802.11n(20) 2462MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: Wi-Fi; Communication System Band: 802.11n(20MHz); Duty Cycle: 1:1.0;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2$ mho/m; $\epsilon r = 52.043$; $\rho = 1000$ kg/m³;

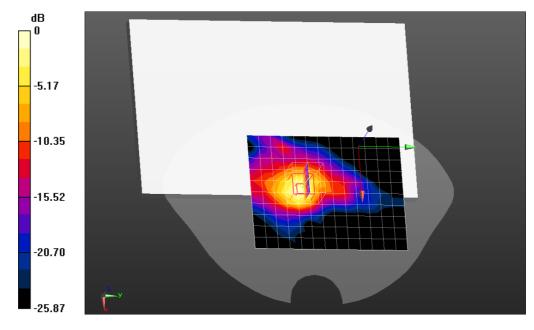
Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(6.98, 6.98, 6.98); Calibrated: 12/03/2012;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11n(20MHz)2462MHz-Bottom/Area Scan (11x14x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 0.491 mW/g

Configuration/802.11n(20MHz)2462MHz-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm,Reference Value = 7.104 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.037 mW/g

SAR(1 g) = 0.458 mW/g; SAR(10 g) = 0.201 mW/g Maximum value of SAR (measured) = 0.506 mW/g

0 dB = 0.506 mW/g = -5.92 dB mW/g

Test Laboratory: QuieTek Lab 802.11a 5765MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

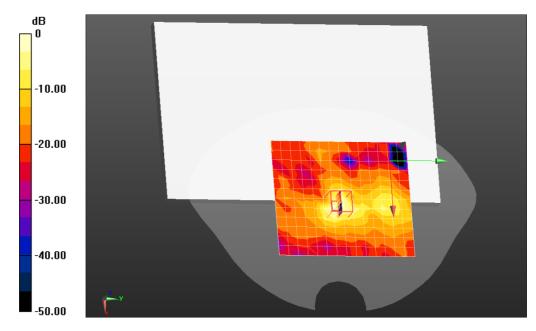
Communication System: CW; Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0;

Frequency: 5765 MHz; Medium parameters used: f = 5765 MHz; $\sigma = 6.21$ mho/m; $\epsilon r = 46.35$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

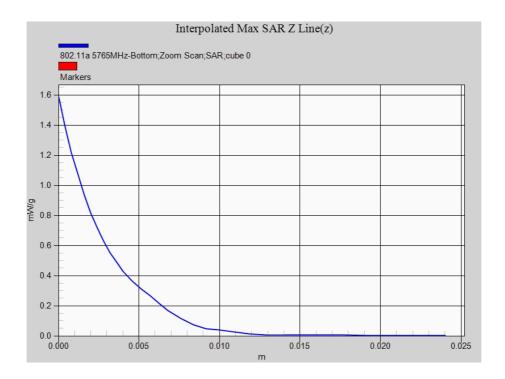
DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(3.89, 3.89, 3.89); Calibrated: 12/03/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11a 5765MHz-Bottom/Area Scan (13x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.824 mW/g

Configuration/802.11a 5765MHz-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm,eference Value = 8.496 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.589 mW/g


SAR(1 g) = 0.345 mW/g; SAR(10 g) = 0.095 mW/g maximum value of SAR (measured) = 0.812 mW/g

0 dB = 0.812 mW/g = -1.81 dB mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab 802.11a 5805MHz-Bottom

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

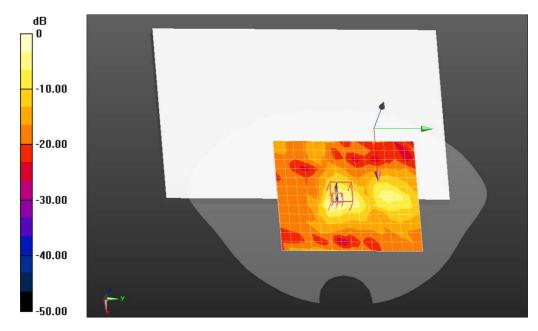
Communication System: CW; Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0;

Frequency: 5805 MHz; Medium parameters used: f = 5805 MHz; $\sigma = 6.25$ mho/m; $\epsilon r = 46.25$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(3.89, 3.89, 3.89); Calibrated: 12/03/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11a 5805MHz-Bottom/Area Scan (13x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.513 mW/g

Configuration/802.11a 5805MHz-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm,Reference Value = 6.652 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.292 mW/g

SAR(1 g) = 0.319 mW/g; SAR(10 g) = 0.093 mW/g Maximum value of SAR (measured) = 0.695 mW/g

0 dB = 0.695 mW/g = -3.16 dB mW/g

Test Laboratory: QuieTek Lab

802.11a 5805MHz-Primary landscape

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

Communication System: CW; Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0;

Frequency: 5805 MHz; Medium parameters used: f = 5805 MHz; $\sigma = 6.25$ mho/m; $\epsilon r = 46.25$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

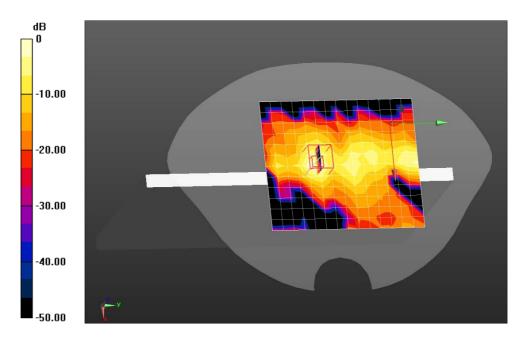
Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.89, 3.89, 3.89); Calibrated: 12/03/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11a 5805MHz-Primary landscape/Area Scan (13x15x1): Measurement grid:

dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.358 mW/g

Configuration/802.11a 5805MHz-Primary landscape/Zoom Scan (7x7x6)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm,Reference Value = 1.807 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.811 mW/g

SAR(1 g) = 0.195 mW/g; SAR(10 g) = 0.053 mW/g Maximum value of SAR (measured) = 0.445 mW/g

0 dB = 0.445 mW/g = -7.03 dB mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5805MHz-Bottom-Tablet Mode

DUT: Mobile Internet Device; Type: NABIXD-NV10A,MT799-XD

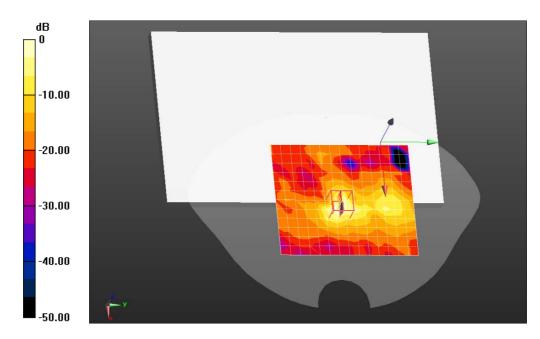
Communication System: CW; Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0;

Frequency: 5805 MHz; Medium parameters used: f = 5805 MHz; $\sigma = 6.25$ mho/m; $\epsilon r = 46.25$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 SN3710; ConvF(3.89, 3.89, 3.89); Calibrated: 12/03/2012;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/802.11a 5805MHz-Bottom/Area Scan (13x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.658 mW/g

Configuration/802.11a 5805MHz-Bottom/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm, Reference Value = 8.197 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.351 mW/g

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.075 mW/g Maximum value of SAR (measured) = 0.648 mW/g

0 dB = 0.648 mW/g = -3.77 dB mW/g

Secondary portrait

Appendix C. Test Setup Photographs & EUT Photographs

Antenna to User Separation Distances

Bottom of the Tablet

Primary landscape

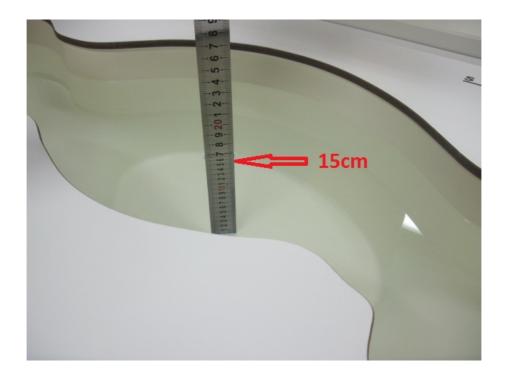
83mm WiFi/BT GPS Ant Tx/Rx Ant

Secondary landscape

Antenna-to-user separation distances:	WiFi/BT Antenna
separation distances.	Tablet-Bottom face: 5mm from WiFi Antenna-to-user
	Tablet-Edges with the following configurations
	Primary landscape: 7mm from WiFi Antenna-to-user
	Secondary landscape: 158mm from WiFi Antenna-to-user
	Primary portrait: 158mm from WiFi Antenna-to-user
	Secondary portrait: 83mm from WiFi Antenna-to-user

Test Setup Photographs

Bottom of Tablet: 0mm distance (Touch)



Primary Landscape: 0mm distance (Touch)

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

Appendix D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-CN (Auden)

Certificate No: EX3-3710_Mar12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3710

QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4, Calibration procedure(s)

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: March 12, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Function Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic Technical Manager Approved by: Issued: March 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3710_Mar12 Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization o o rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3710_Mar12 Page 2 of 11

Probe EX3DV4

SN:3710

Repaired: Calibrated:

Manufactured: July 21, 2009

February 21, 2012 March 12, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.51	0.56	0.44	± 10.1 %
DCP (mV) ^B	101.3	98.9	100.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	114.4	±2.2 %
			Υ	0.00	0.00	1.00	94.4	
			Z	0.00	0.00	1.00	114.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^h The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^b Numerical linearization parameter; uncertainty not required.
^c Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.61	9.61	9.61	0.12	1.00	± 13.4 %
750	41.9	0.89	9.51	9.51	9.51	0.24	1.16	± 12.0 %
835	41.5	0.90	9.18	9.18	9.18	0.22	1.15	± 12.0 %
900	41.5	0.97	8.97	8.97	8.97	0.19	1.35	± 12.0 %
1810	40.0	1.40	8.32	8.32	8.32	0.79	0.60	± 12.0 %
1900	40.0	1.40	8.16	8.16	8.16	0.72	0.66	± 12.0 %
2450	39.2	1.80	7.25	7.25	7.25	0.36	0.91	± 12.0 %
2600	39.0	1.96	6.96	6.96	6.96	0.39	0.95	± 12.0 %
3500	37.9	2.91	6.80	6.80	6.80	0.33	1.09	± 13.1 %
5200	36.0	4.66	5.21	5.21	5.21	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.9.5	4.9.5	4.9.5	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.56	4.56	4.56	0.45	1.80	± 13.1 %

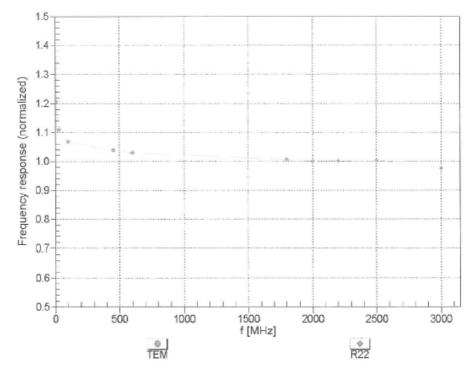
EFrequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

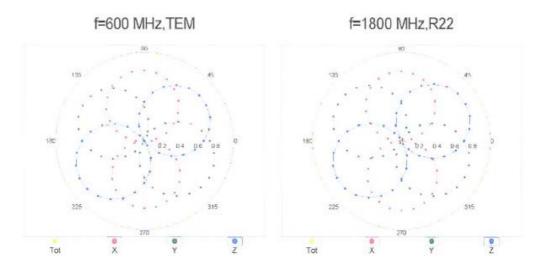
Calibration Parameter Determined in Body Tissue Simulating Media

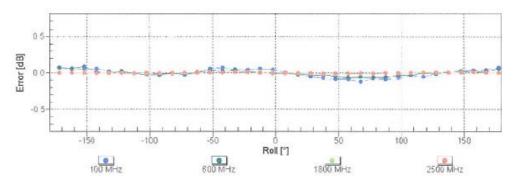

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.69	10.69	10.69	0.06	1.00	± 13.4 %
750	55.5	0.96	9.33	9.33	9.33	0.43	0.86	± 12.0 %
835	55.2	0.97	9.13	9.13	9.13	0.63	0.70	± 12.0 %
900	55.0	1.05	9.04	9.04	9.04	0.39	0.88	± 12.0 %
1810	53.3	1.52	7.73	7.73	7.73	0.33	1.10	± 12.0 %
1900	53.3	1.52	7.43	7.43	7.43	0.42	0.90	± 12.0 %
2450	52.7	1.95	6.98	6.98	6.98	0.79	0.59	± 12.0 %
2600	52.5	2.16	6.68	6.68	6.68	0.79	0.52	± 12.0 %
3500	51.3	3.31	6.23	6.23	6.23	0.36	1.13	± 13.1 %
5200	49.0	5.30	4.20	4.20	4.20	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.82	3.82	3.82	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.89	3.89	3.89	0.60	1.90	± 13.1 %

^{Γ} Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^{Γ} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

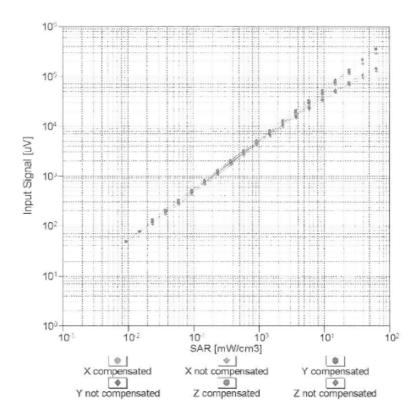
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

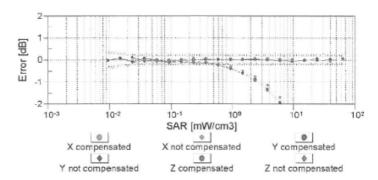



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page: 53 of 83

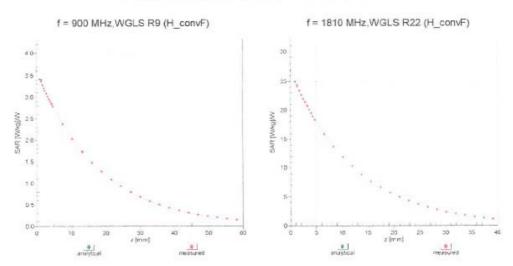
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

Certificate No: EX3-3710_Mar12

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3710_Mar12 Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek-CN (Auden)

Certificate No: D2450V2-839_Feb12

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Dbject	D2450V2 - SN: 83	39	
Calibration procedure(s)	QA CAL-05.v8 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	February 23, 201	2	
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	
[20] [10] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1			Apr-12
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Apr-12 Dec-12
시마스테이터 시점되다. 이 사람이나가 (Trick (Trick)) (Tri	SN: 3205 SN: 601	[TA [THE TABLE TO THE TEXT OF THE TABLE TO A PROPERTY OF THE TABLE TO THE TABL	
DAE4		30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4 Secondary Standards	SN: 601	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11)	Dec-12 Jul-12
DAE4 Secondary Standards Power sensor HP 8481A	SN: 601	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Dec-12 Jul-12 Scheduled Check
DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # MY41092317	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Dec-12 Jul-12 Scheduled Check In house check: Oct-13
OAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # MY41092317 100005 US37390585 S4206	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 601 ID # MY41092317 100005	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12 Signature
Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	30-Dec-11 (No. ES3-3205_Dec11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Dec-12 Jul-12 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12

Certificate No: D2450V2-839_Feb12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Feb12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		1

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	48.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.76 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.8 mW / g \pm 16.5 % (k=2)

Certificate No: D2450V2-839_Feb12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω - 1.0 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 1.0 jΩ
Return Loss	- 32.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

Certificate No: D2450V2-839_Feb12

DASY5 Validation Report for Head TSL

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ mho/m; $\varepsilon_r = 38.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011

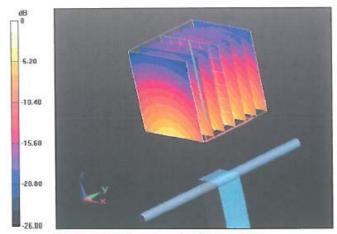
· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

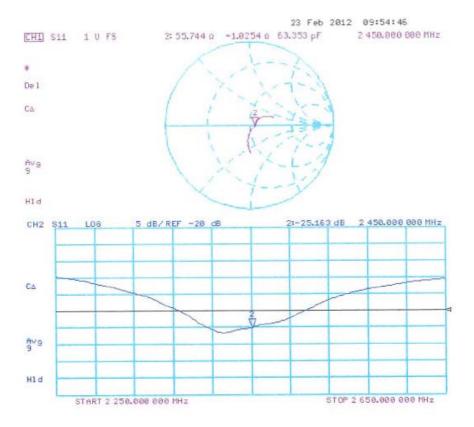
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.155 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 27.8700

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/g


Maximum value of SAR (measured) = 16.839 mW/g

0 dB = 16.840 mW/g = 24.53 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011

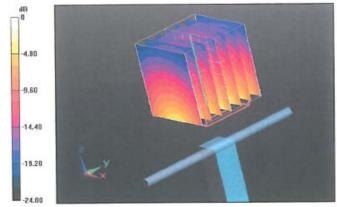
· Sensor-Surface: 3mm (Mechanical Surface Detection)

· Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

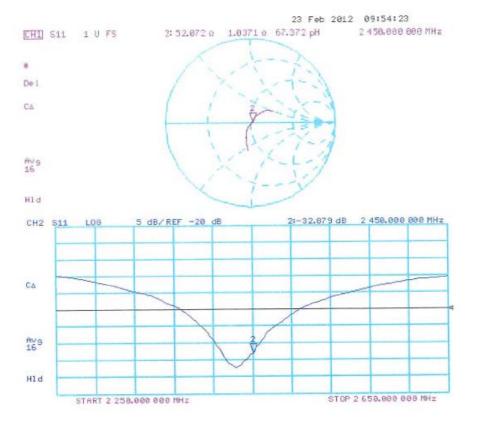
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.056 V/m; Power Drift = 0.0053 dB

Peak SAR (extrapolated) = 25.2250

SAR(1 g) = 12.4 mW/g; SAR(10 g) = 5.76 mW/g


Maximum value of SAR (measured) - 16.258 mW/g

0 dB = 16.260 mW/g = 24.22 dB mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quietek-CN (Auden)


Certificate No: D5GHzV2-1078_Feb12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D5GHzV2 - SN: 1078 Object Calibration procedure(s) QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: February 21, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A US37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5086 (20g) 29-Mar-11 (No. 217-01368) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29 Mar 11 (No. 217 01371) Apr-12 Reference Probe EX3DV4 SN: 3503 30-Dec-11 (No. EX3-3503_Dec11) Dec-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-11) In house check: Oct-12 Name Function Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 22, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1078_Feb12

Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1078_Feb12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

AST system configuration, as far as no	r giveri on page 1.	
DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW /g ± 16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	85.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1078_Feb12

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5800 MHz

Certificate No: D5GHzV2-1078_Feb12

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Page 4 of 13

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.32 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.1 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.5 mW / g ± 17.6 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.79 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1078_Feb12

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.34 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.5 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.03 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1078_Feb12 Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.5 Ω - 8.0 j Ω
Return Loss	- 22.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.7 Ω - 4.0 jΩ
Return Loss	- 26.6 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.7 Ω - 0.5 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.0 Ω - 8.4 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.7 Ω - 4.9 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.1 Ω - 2.0 jΩ
Return Loss	- 25.7 dB

General Antenna Parameters and Design

	· · · · · · · · · · · · · · · · · · ·
Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 26, 2008	

Certificate No: D5GHzV2-1078_Feb12

DASY5 Validation Report for Head TSL

Date: 21.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.753 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 30.0660

SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.32 mW/g

Maximum value of SAR (measured) = 18.532 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.079 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.9620

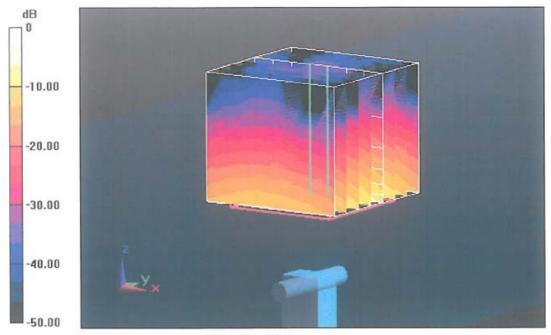
SAR(1 g) = 8.54 mW/g; SAR(10 g) = 2.44 mW/g

Maximum value of SAR (measured) = 19.991 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

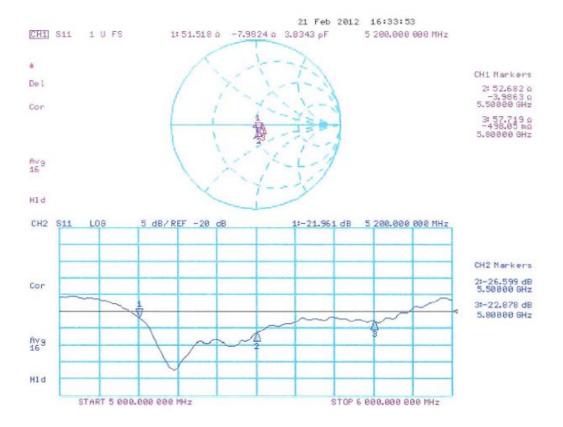
Reference Value = 61.472 V/m; Power Drift = 0.0053 dB


Peak SAR (extrapolated) = 33.1950

SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.27 mW/g

Maximum value of SAR (measured) = 19.013 mW/g

Certificate No: D5GHzV2-1078_Feb12 Page 8 of 13



0 dB = 19.010 mW/g = 25.58 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.48$ mho/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.87$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ mho/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.301 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28.7930

SAR(1 g) = 7.32 mW/g; SAR(10 g) = 2.05 mW/g

Maximum value of SAR (measured) = 17.024 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.671 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.4840

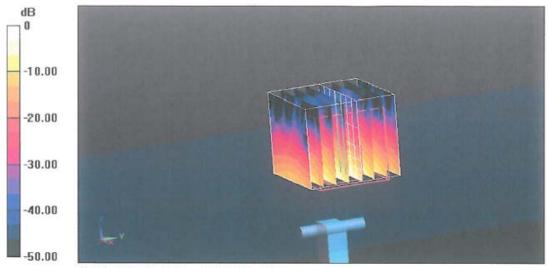
SAR(1 g) = 7.79 mW/g; SAR(10 g) = 2.16 mW/g

Maximum value of SAR (measured) = 18.648 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

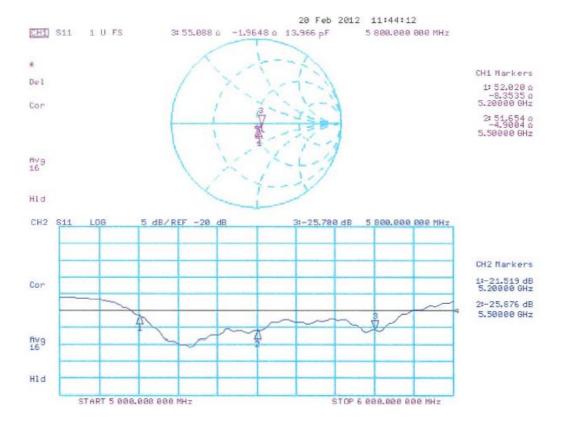
Reference Value = 54.184 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 34.4800

SAR(1 g) = 7.34 mW/g; SAR(10 g) = 2.03 mW/g

Maximum value of SAR (measured) = 18.069 mW/g

Certificate No: D5GHzV2-1078_Feb12 Page 11 of 13



0 dB = 18.070 mW/g = 25.14 dB mW/g

Impedance Measurement Plot for Body TSL

Appendix F. DAE Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Q

Quie Tek (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-1220_Jan13

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 1220 Object QA CAL-06.v25 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) January 24, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-Oct-12 (No:12728) Oct-13 Secondary Standards Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-13 (in house check) In house check: Jan-14 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-13 (in house check) In house check: Jan-14 Function Name Calibrated by: R.Mayoraz Technician Fin Bomholt Deputy Technical Manager Approved by: Issued: January 24, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1220_Jan13

Page 1 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

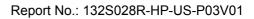
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics


Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220_Jan13

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = 1LSB = 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1µV, Low Range: 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.203 ± 0.02% (k=2)	404.925 ± 0.02% (k=2)	404.155 ± 0.02% (k=2)
Low Range	3.97823 ± 1.55% (k=2)	3.99494 ± 1.55% (k=2)	3.98678 ± 1.55% (k=2)

Connector Angle

Connector Angle to be used in DASY system	176.5 ° ± 1 °
---	---------------

Certificate No: DAE4-1220_Jan13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (μV)	Error (%)
Channel X	+ Input	199994.51	-0.20	-0.00
Channel X	+ Input	20002.32	2.74	0.01
Channel X	- Input	-19999.37	2.24	-0.01
Channel Y	+ Input	199995.12	0.58	0.00
Channel Y	+ Input	19999.79	0.15	0.00
Channel Y	- Input	-20001.15	0.37	-0.00
Channel Z	+ Input	199993.80	-0.47	-0.00
Channel Z	+ Input	19998.06	-1.59	-0.01
Channel Z	- Input	-20003.12	-1.65	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.11	0.30	0.02
Channel X + Input	199.89	-0.29	-0.15
Channel X - Input	-199.74	-0.14	0.07
Channel Y + Input	2000.30	0.54	0.03
Channel Y + Input	200.19	0.06	0.03
Channel Y - Input	-199.81	-0.14	0.07
Channel Z + Input	1999.40	-0.47	-0.02
Channel Z + Input	199.41	-0.98	-0.49
Channel Z - Input	-200.25	-0.72	0.36
	1	1	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	9.11	7.73
	- 200	-8.18	-9.59
Channel Y	200	-9.61	-9.37
	- 200	8.21	8.45
Channel Z	200	12.18	11.90
	- 200	-15.16	-14.84

3. Channel separation

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	(1-)	2.08	-4.00
Channel Y	200	7.59	7/	2.69
Channel Z	200	9.59	6.24	-

Certificate No: DAE4-1220_Jan13

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15892	15975
Channel Y	16014	16213
Channel Z	15705	16067

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.05	-0.80	2.18	0.45
Channel Y	-0.16	-1.22	0.92	0.45
Channel Z	-0.69	-2.22	0.60	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9