

FCC TEST REPORT

For
Axiom Security Technologies Ltd.

Proximity Reader
Model No.: AX-7CW, AX-7CW/pin, AX-R86, AX-RK86

Test Report Number : ESTSZ110801211F

EST COMPLIANCE LABORATORY LIMITED
4/F, 7th Building, Xinyuan Industrial Park, Xinguang Road,
Xili, Nanshan District, Shenzhen 518055, China
Tel:+86-755-26648640 Fax:+86-755-26648637

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 TEST STANDARDS	3
1.3 TEST METHODOLOGY	4
1.4 TEST FACILITY	4
1.5 TEST EQUIPMENT LIST AND DETAILS	5
2 - TEST PROCEDURE	6
3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS.....	7
3.1 MEASUREMENT UNCERTAINTY.....	7
3.2 LIMIT OF DISTURBANCE VOLTAGE AT THE MAINS TERMINALS (FCC PART 15.207)	7
3.3 EUT SETUP	7
3.4 INSTRUMENT SETUP	7
3.5 TEST PROCEDURE	8
3.6 TEST SITUATION	8
3.7 TEST RESULT	8
4 - RADIATION INTERFERENCE	11
4.1 MEASUREMENT UNCERTAINTY.....	11
4.2 LIMIT OF RADIATED DISTURBANCES (FCC PART 15.209)	11
4.3 EUT SETUP	11
4.4 TEST RECEIVER SETUP	11
4.5 TEST PROCEDURE	12
4.6 RADIATED EMISSIONS TEST RESULT	12
4.7 TEST RESULT	12
5 - FIELD STRENGTH OF RADIATED EMISSIONS - FCC §15.225(A)(B)(C).....	15
5.1 REQUIREMENTS (FCC §15.225):.....	15
5.2 TEST SETUP	15
5.3 TEST RESULTS	15
6 - OUT OF BAND EMISSION - FCC §15.225(D) & §15.209	16
6.1 REQUIREMENTS (FCC §15.225):.....	16
6.2 TEST SETUP	16
6.3 TEST RESULTS	16
7 - FREQUENCY STABILITY - FCC §15.225(E).....	17
7.1 REQUIREMENTS (FCC §15.225):.....	17
7.2 TEST SETUP	17
7.3 TEST RESULTS	17
8 - 20DB BANDWIDTH - FCC §15.215 (C)	18
8.1 REQUIREMENTS (FCC §15.215):.....	18
8.2 TEST PROCEDURE	18
8.3 TEST RESULTS	18
APPENDIX A - EUT PHOTOGRAPHS.....	20
EUT - TOP VIEW	20
EUT - BOTTOM VIEW	20
EUT - INSIDE VIEW	21
EUT - INSIDE VIEW	21
EUT - INSIDE VIEW	22
EUT - INSIDE VIEW	22
APPENDIX B. TEST SETUP PHOTOGRAPHS	23
CONDUCTED EMISSION.....	23
RADIATED EMISSION	23

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

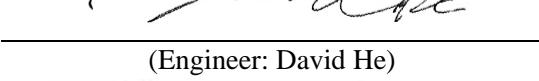
Client Information

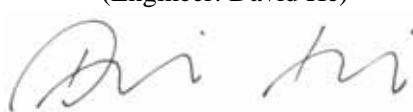
Applicant: Axiom Security Technologies Ltd.
Address of applicant: 12/F, Excellence Times Plaza Building, Yitian Road, Futian District, Shenzhen, China
Manufacturer: RBH Access Technologies Inc.
Address of manufacturer: 2 Automatic Road, Suite 108 Brampton ON L6S 6K8, Canada

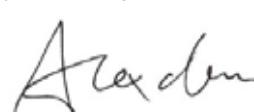
General Description of E.U.T

EUT Description: Proximity Reader
Trade Name: AXIOM
Model No.: AX-7CW, AX-7CW/pin, AX-R86, AX-RK86
Rating: DC 12V via AC/DC Adapter
Test Power Supply: AC 120V/60Hz
Frequency: 13.56 MHz

Remark: *The models of EUT are identical except appearance of equipment. Unless otherwise specified, all tests were performed on model AX-RK86 to represent the other similar models.*


1.2 Test Standards


The following Declaration of Conformity report of EUT is prepared in accordance with
FCC Rules and Regulations Part 15 Subpart C 15.225: 2008


The objective of the manufacturer is to demonstrate compliance with the described above standards.
Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of EST COMPLIANCE LABORATORY LIMITED.

Date of Test : Sep 01~09 , 2011

Prepared by : (Engineer: David He)

Reviewer : (Project Manager: Ronnie Liu)

Approved & Authorized Signer : (Manager: Alex Chen)

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

The maximum emission levels emanating from the device are compared to the FCC Part 15 Subpart C limits for radiation emissions and the measurement results contained in this test report show that EUT is to be technically compliant with FCC requirements.

Global United Technology Service Co., Ltd at 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

1.4 Test Facility

All measurement required was performed at laboratory of Global United Technology Service Co., Ltd at 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

The test facility is recognized, certified, or accredited by the following organizations:

FCC – Registration No.: 600491

Global United Technology Service Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 600491.

The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

1.5 Test Equipment List and Details

Test equipments list of Global United Technology Service Co., Ltd

Equipment	Manufacturer	Model#	Serial #	Data of Cal.	Due Data
3m Semi-Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)*6.4(H)	GTS201	Mar. 30 2011	Mar. 30 2012
Control Room	ZhongYu Electron	6.2(L)*2.5(W)*2.4(H)	GTS202	N/A	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sept. 10 2010	Sept. 10 2011
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2011	Apr. 01 2012
Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2011	Apr. 01 2012
Coaxial Cable	GTS	N/A	GTS402	Apr. 01 2011	Apr. 01 2012
Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2011	Apr. 01 2012
Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2011	Apr. 01 2012
BiConiLog Antenna (26-3000MHz)	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb. 26 2011	Feb. 26 2012
Loop Antenna	ETS	6579	GTS244	Aug. 23, 2011	Aug. 23, 2012
Pre-amplifier(0.1-3000MHz)	HP	8347A	GTS210	Aug. 03 2011	Aug. 03 2012
Double-ridged horn (1-18GHz)	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	Jun. 30 2011	Jun. 30 2012
Pre-amplifier(1-18GHz)	Rohde & Schwarz	8349B	GTS224	Aug. 03 2011	Aug. 03 2012
Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	GTS250	Oct. 28 2011	Oct. 28 2012
Barometer	ChangChun	DYM3	GTS251	Jul. 11 2011	Jul. 11 2012
Shielding Room	ZhongYu Electron	7.0(L)*3.0(W)*3.0(H)	GTS206	Apr. 10 2011	Apr. 10 2012
EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sept. 14 2010	Sept. 14 2011
10dB Pulse Limiter	Rohde & Schwarz	N/A	GTS209	Sept. 14 2010	Sept. 14 2011
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Apr. 14 2011	Apr. 14 2012
Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2011	Apr. 01 2012

2 - Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of EST Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.3oF with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

$$\text{Freq (MHz) METER READING} + \text{ACF} = \text{FS}$$
$$33.20 \text{ dBuV} + 10.36 \text{ dB} = 30.36 \text{ dBuV/m} @ 3m$$

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ± 2.4 dB.

3.2 Limit of Disturbance Voltage at The Mains Terminals (FCC PART 15.207)

Frequency Range (MHz)	Limits (dBuV)	
	Quasi-Peak	Average
0.150 ~ 0.500	66~56	56~46
0.500 ~ 5.000	56	46
5.000 ~ 30.00	60	50

Note: (1)The tighter limit shall apply at the edge between two frequency bands.
 (2) Decreases with the logarithm of the frequency.

3.3 EUT Setup

The setup of EUT is according with ANSI C63.4-2003 measurement procedure. The specification used was the FCC Rules and Regulations Part 15.207 limits.

The EUT was placed center and the back edge of the test table.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Instrument Setup

The test receiver was set with the following configurations:

Test Receiver Setting:

Frequency Range.....150 KHz to 30 MHz
 Detector.....Peak & Quasi-Peak & Average
 Sweep Speed.....Auto
 IF Band Width.....9 KHz

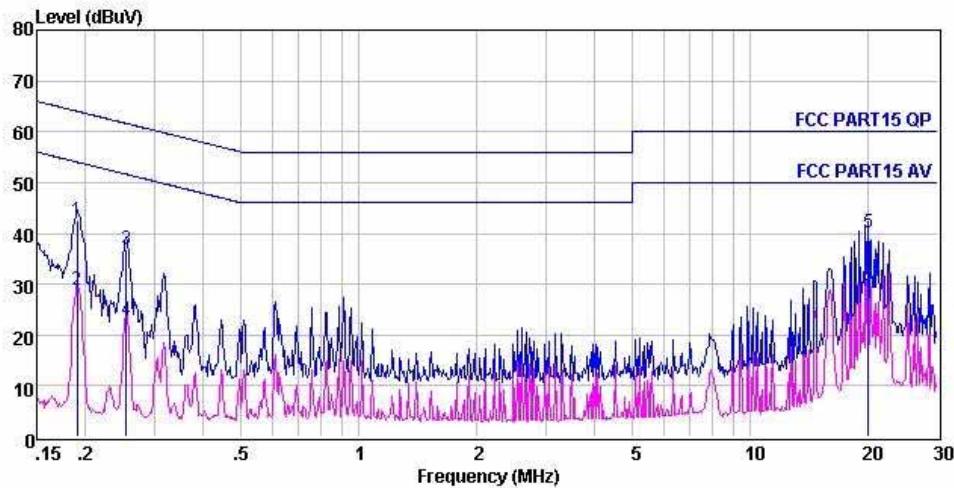
3.5 Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "QP". Average readings are distinguished with a "AV".

3.6 Test Situation


Temperature ()	26.3
Humidity (%RH)	56.1
Barometric Pressure (mbar)	1001.4
EUT	Proximity Reader
M/N	AX-RK86
Operating Mode	ON

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.
(2) Where QP reading is less than relevant AV limit, the AV reading will not be measured.
(3) When AV reading is less than relevant limit 20dB, the AV reading will not be recorded.

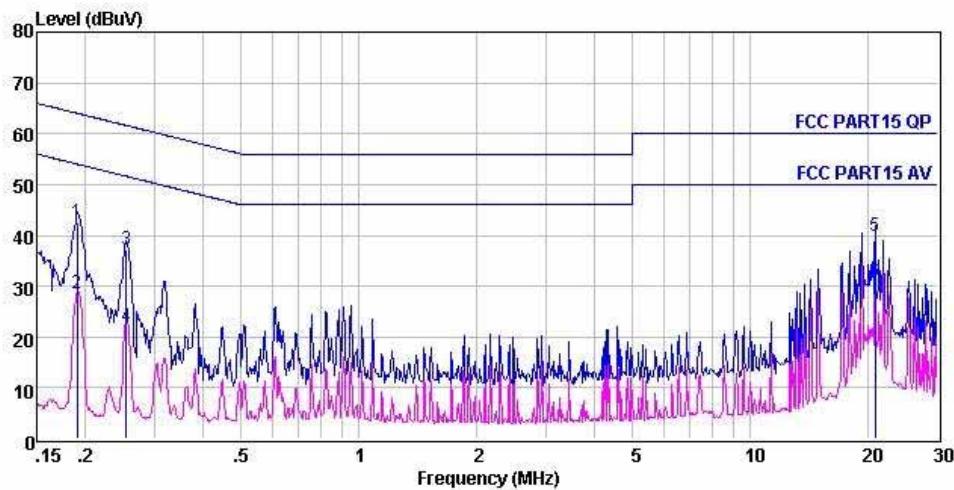
3.7 Test Result

Pass

Details see the following pages.

Condition : FCC PART15 QP LISN(2011) LINE

EUT : Proximity Reader


Model : AX-RK86

Test mode: On mode

Power: : AC 120V/60Hz

Engineer: : David

Freq	Read	LISN	Cable	Limit	Over	Remark
	MHz	dBuV	dB	dB	dBuV	
1	0.190	41.84	0.66	0.10	42.60	64.02 -21.42 QP
2	0.190	28.13	0.66	0.10	28.89	54.02 -25.13 Average
3	0.253	36.14	0.63	0.10	36.87	61.64 -24.77 QP
4	0.253	22.15	0.63	0.10	22.88	51.64 -28.76 Average
5	19.950	39.90	0.15	0.21	40.26	60.00 -19.74 QP
6	19.950	29.36	0.15	0.21	29.72	50.00 -20.28 Average

Condition : FCC PART15 QP LISN(2011) NEUTRAL

EUT : Proximity Reader

Model : AX-RK86

Test mode: On mode

Power: : AC 120V/60Hz

Engineer: : David

Freq	Read	LISN	Cable	Limit	Over	Remark	
	MHz	Level	Factor	Loss	Level	Line	Limit
1	0.190	41.76	0.66	0.10	42.52	64.02	-21.50 QP
2	0.190	27.79	0.66	0.10	28.55	54.02	-25.47 Average
3	0.253	36.31	0.63	0.10	37.04	61.64	-24.60 QP
4	0.253	21.36	0.63	0.10	22.09	51.64	-29.55 Average
5	20.814	39.60	0.14	0.21	39.95	60.00	-20.05 QP
6	20.814	30.59	0.14	0.21	30.94	50.00	-19.06 Average

4 - Radiation Interference

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 4.0 dB.

4.2 Limit of Radiated Disturbances (FCC Part 15.209)

Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dB μ V/m)
30 ~ 88	3	40
88 ~216	3	43.5
216 ~ 960	3	46
960~1000	3	54

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.3 EUT Setup

The radiated emission tests were performed in the in the 3-meter anechoic chamber, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part 15 limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

4.4 Test Receiver Setup

According to FCC Part 15 rule, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Detector.....Peak & Quasi-Peak
 IF Band Width.....120KHz
 Frequency Range.....30MHz to 1000MHz
 Turntable Rotated.....0 to 360 degrees

Antenna Position:

Height.....1m to 4m
 Polarity.....Horizontal and Vertical

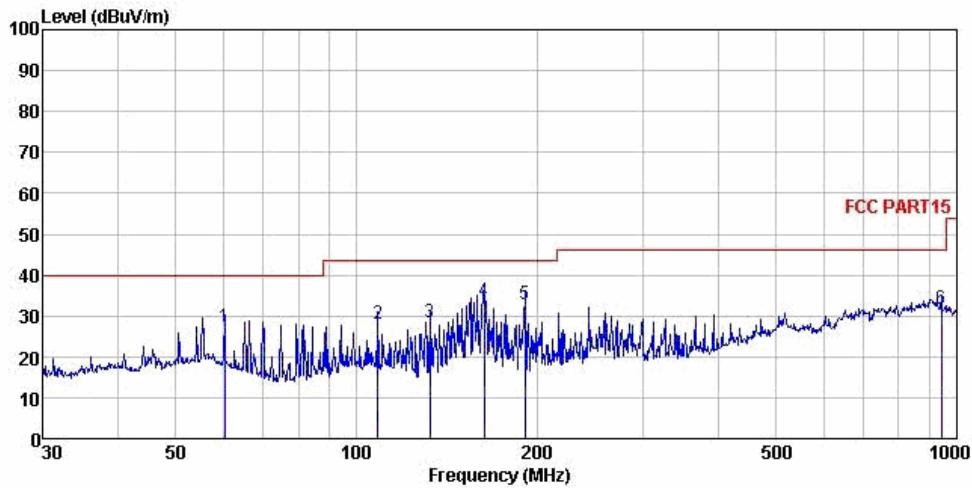
4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within $-10 \text{ dB}_{\mu}\text{V}$ of specification limits), and are distinguished with a "QP" in the data table.

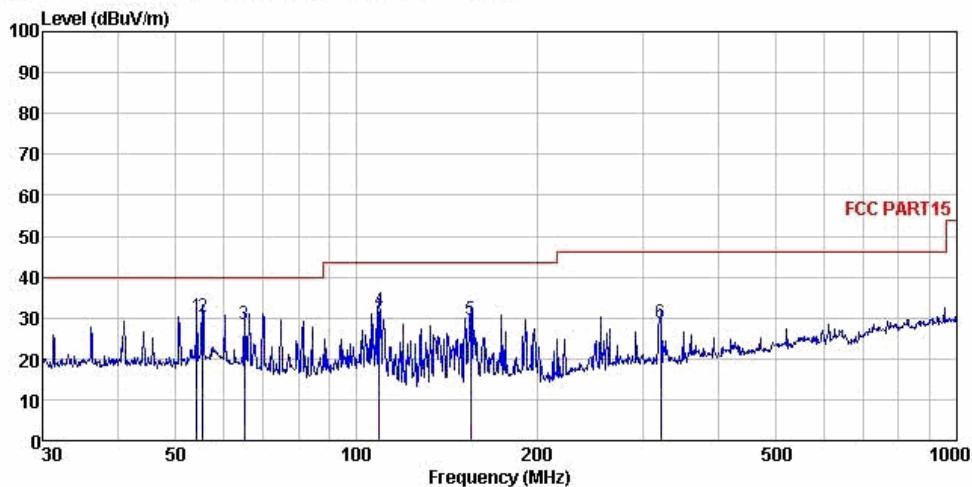
4.6 Radiated Emissions Test Result

Temperature ()	26.3
Humidity (%RH)	56.1
Barometric Pressure (mbar)	1001.4
EUT	Proximity Reader
M/N	AX-RK86
Operating Mode	ON


Test data see following pages.

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.
(2) Where QP reading is less than relevant AV limit, the AV reading will not be measured

4.7 Test Result


Pass.

Details see the following pages.

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-NEW HORIZONTAL
EUT : Proximity Reader
Model : AX-RK86
Test Mode : On mode
Power Rating : AC 120V/60HZ
Test Engineer: David

	Read	Antenna	Cable	Preamp	Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB
1	60.28	47.24	11.43	0.71	31.95	27.43	40.00	-12.57 QP
2	108.65	48.05	10.54	1.23	31.74	28.08	43.50	-15.42 QP
3	132.69	50.74	8.13	1.41	31.88	28.40	43.50	-15.10 QP
4	163.18	53.29	10.66	1.59	32.05	33.49	43.50	-10.01 QP
5	191.07	54.21	9.17	1.73	32.22	32.89	43.50	-10.61 QP
6	942.13	37.26	22.53	3.40	31.49	31.70	46.00	-14.30 QP

Site : 3m chamber
Condition : FCC PART15 3m VULB9163-NEW VERTICAL
EUT : Proximity Reader
Model : AX-RK86
Test Mode : On mode
Power Rating : AC 120V/60HZ
Test Engineer: David

	Read	Antenna	Cable	Preamp	Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB
1	54.26	47.72	13.75	0.69	31.99	30.17	40.00 -9.83 QP
2	55.41	47.38	14.06	0.69	31.99	30.14	40.00 -9.86 QP
3	65.11	47.12	12.48	0.77	31.91	28.46	40.00 -11.54 QP
4	109.03	51.53	10.77	1.23	31.74	31.79	43.50 -11.71 QP
5	154.82	51.81	8.10	1.54	32.01	29.44	43.50 -14.06 QP
6	321.06	47.36	11.77	2.12	32.30	28.95	46.00 -17.05 QP

5 - Field Strength Of Radiated Emissions - FCC §15.225(a)(b)(c)

5.1 Requirements (FCC §15.225):

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

5.2 Test Setup

The field strength of radiated emissions tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part Subpart C limits.

5.3 Test Results

Pass.

Please refer the following data.

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Remark	Frequency Range (MHz)
13.3478	32.10	0.20	0.00	27.70	80.5	-52.80	QP	13.110-13.410
13.5526	32.10	0.20	0.00	42.70	90.5	-47.80	QP	13.410-13.553
13.5596	32.10	0.20	0.00	59.30	124.0	-64.70	QP	13.553-13.567
13.5670	32.10	0.20	0.00	41.50	90.5	-49.00	QP	13.567-13.710
13.7732	32.10	0.20	0.00	26.90	80.5	-53.60	QP	13.710-14.010

6 - Out Of Band Emission - FCC §15.225(d) & §15.209

6.1 Requirements (FCC §15.225):

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Fundamental Frequency (MHz)	Field Strength of Harmonics and Spurious Emissions
0.009 – 0.490	2400/F (kHz) uV/m @ 300 meters
0.490 – 1.705	24000/F (kHz) uV/m @ 30 meters
1.705 – 30.0	29.54 dBuV/m @ 30 meters or 69.54 dBuV/m @ 3 meters
30 – 88	40.00 dBuV/m @ 3 meters
88 – 216	43.50 dBuV/m @ 3 meters
216 – 960	46.00 dBuV/m @ 3 meters
Above 960	54.00 dBuV/m @ 3 meters

6.2 Test Setup

The field strength of radiated emissions tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part Subpart C limits.

6.3 Test Results

Pass.

Please refer the following data.

Frequency (MHz)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Remark
0.011	105.22	126.8	-21.58	Peak
0.150	70.54	104.0	-33.46	Peak
13.41	47.08	69.5	-22.42	Peak
16.42	47.91	69.5	-21.59	Peak
16.550	46.38	69.5	-23.12	Peak
21.720	45.60	69.5	-23.90	Peak

7 - Frequency Stability - FCC §15.225(e)

7.1 Requirements (FCC §15.225):

(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

7.2 Test Setup

The field strength of radiated emissions tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC Part Subpart C limits.

7.3 Test Results

Pass.

Please refer the following page.

Assigned Frequency (MHz)	13.560MHz		
Temperature	Measured Frequency (MHz)	ppm	Limit (ppm)
-20	13.560923	68.07	100
-10	13.560917	67.63	100
0	13.560945	69.69	100
+10	13.560928	68.44	100
+20	13.560903	66.59	100
+30	13.560934	68.88	100
+40	13.560961	70.87	100
+50	13.560966	71.24	100
85% Voltage at +20	13.560933	68.81	100
115% Voltage at +20	13.560931	68.66	100

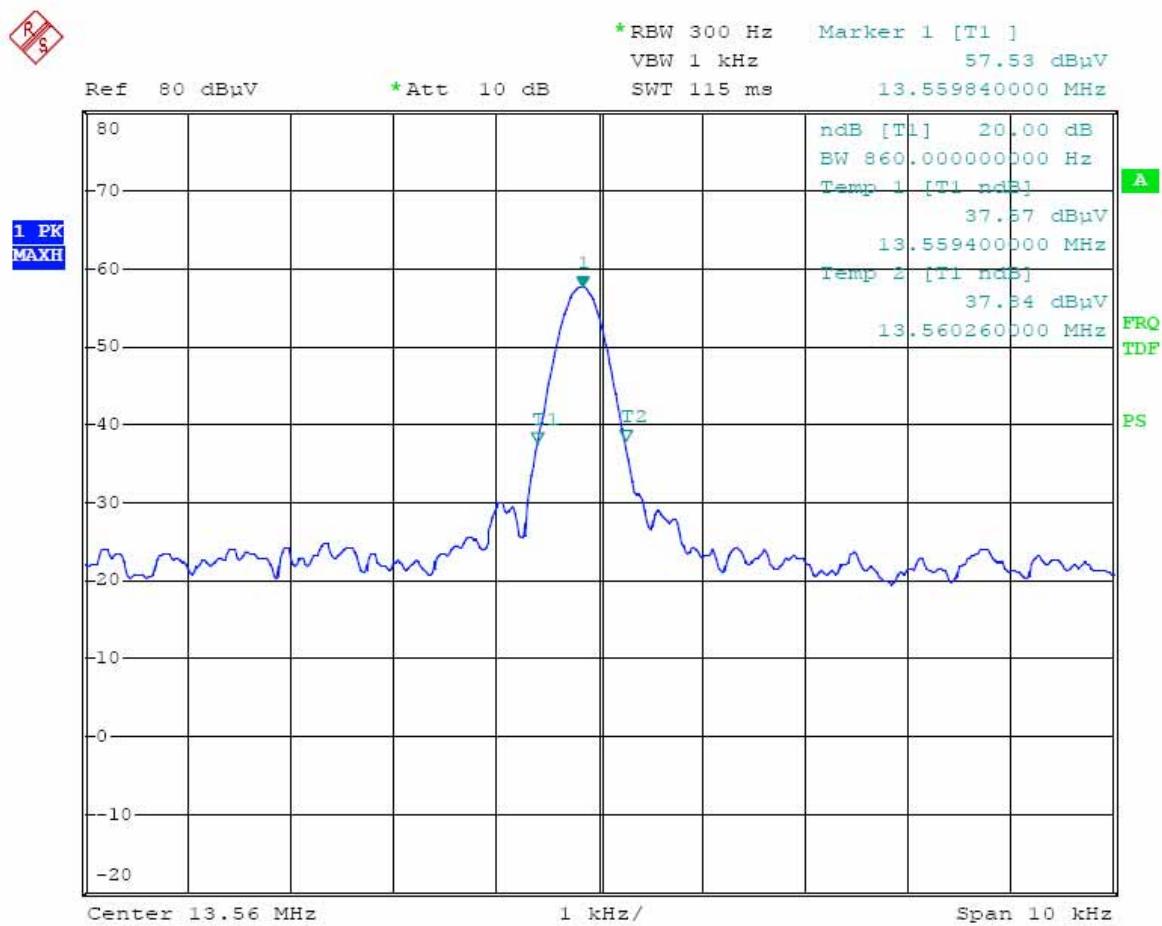
8 - 20dB Bandwidth - FCC §15.215 (c)

8.1 Requirements (FCC §15.215):

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

8.2 Test Procedure

8.2.1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.


8.2.2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.

8.2.3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

8.3 Test Results

Pass.

Please refer the following data.

