

MPE Calculation

Applicant:	Coulisse B.V.
Address:	Vonderweg 48 Enter, 7468 DC Netherlands
FCC ID:	ZY4CM06E1
Product:	Tubular Motor
Model No.:	CM-06-E-R, CM-06-E-V
Reference RF report #	709502409690-00B, 709502409690-00C, 709502409690-00D

According to subpart 15.247(i) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1,500	/	/	f/1500	30
1,500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data for BLE

Maximum peak output power at antenna input terminal (dBm):	5.03
Maximum peak output power at antenna input terminal (mW):	3.184
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	2.2
Maximum Antenna Gain (numeric):	1.660
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0011
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

The max power density 0.0011 (mW/cm²) < 1 (mW/cm²)

Result: Compliant

Calculated Data for Thread

Maximum peak output power at antenna input terminal (dBm):	-0.89
Maximum peak output power at antenna input terminal (mW):	0.814
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	2.2
Maximum Antenna Gain (numeric):	1.660
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0003
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

The max power density 0.0003 (mW/cm²) < 1 (mW/cm²)

Result: Compliant

Calculation method for 433.92MHz

$$\text{EIRP} = p_t \times g_t = (E \times d)^2 / 30$$

where

p_t	is the transmitter output power in watts
g_t	is the numeric gain of the transmitting antenna (dimensionless)
E	is the electric field strength in V/m
d	is the measurement distance in meters (m)

For 433.92MHz.

Field Strength (EMeas):	88.10(dBuV/m)=0.0254V/m (f=433.92 MHz)
Measurement Distance(dMeas):	3 (m)
Equivalent Isotropically Radiated Power(EIRP):	0.000193548W=0.193548mW

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

PG = 0.193548mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density $0.193548\text{mW}/4 \pi R^2 = 3.8524 \times 10^{-5}(\text{mW/cm}^2) < 0.28928 (\text{mW/cm}^2)$

Result: Compliant

Simultaneous transmission of MPE test exclusion for worst case configuration

(1) BLE: the ratio is $0.0011/1=0.0011$
433.92MHz:the ratio is $3.8524*10^{-5}/0.28928=1.33174*10^{-4}$

The sum of the MPE ratios for all simultaneous transmitting antennas (433.92+2.4G Wi-Fi):
 $0.0011+1.33174*10^{-4}=0.00123$

As the sum of MPE ratios for all simultaneous transmitting antennas is ≤ 1.0 , simultaneous transmission MPE test exclusion will be applied.

(2) Thread: the ratio is $0.0003/1=0.0003$
433.92MHz:the ratio is $3.8524*10^{-5}/0.28928=1.33174*10^{-4}$

The sum of the MPE ratios for all simultaneous transmitting antennas:
 $0.0003+1.33174*10^{-4}=0.000433$

As the sum of MPE ratios for all simultaneous transmitting antennas is ≤ 1.0 , simultaneous transmission MPE test exclusion will be applied.

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

A handwritten blue ink signature of the name "Hui TONG".

Hui TONG

EMC Section Manager

Date: 2024-12-20

Prepared by:

A handwritten blue ink signature of the name "Jiaxi XU".

Jiaxi XU

EMC Project Engineer

Date: 2024-12-20

Tested by:

A handwritten blue ink signature of the name "Tianji XU".

Tianji XU

EMC Test Engineer

Date: 2024-12-20