

FCC PART 90

TEST REPORT

For

Hytera Mobilfunk GmbH

Fritz-Hahne-Str 7 D-31848 Bad Muender Germany

FCC ID: ZW4DIF5400

Report Type: Product Type:

Original Report TETRA Digital base station

Test Engineer: Dean Liu

Report Number: RDG151201005-00A

Report Date: 2015-12-11

Sula Huang

Reviewed By: RF Leader

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

ean. Lau

Sola Hugel

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLETEST CONFIGURATION BLOCK DIAGRAM	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
RESULT	
FCC §2.1046 & §90.205- RF OUTPUT POWER	10
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §2.1046, §90.210& §90.221- ADJACENT CHANNEL POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	12
FCC §2.1049 & §90.209,§90.691 – OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST FROCEBORE TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	18
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	18
TEST DATA	18
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	21
APPLICABLE STANDARD	21
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	23

Report No.: RDG151201005-00A

APPLICABLE STANDARD	2	1
Fest Procedure		
FEST EQUIPMENT LIST AND DETAILS		
FECT DATA	ວ	ď

Report No.: RDG151201005-00A

FCC Part 90 Page 3 of 24

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Mobilfunk GmbH's* product, model number:*DIF-R5400 (FCC ID:* ZW4DIF5400) or the "EUT" in this report was a *TETRA Digital base station*, which was measured approximately:445mm (L)×535mm (W)×643mm (H) rated input voltage: AC120V/60Hz or DC -48V.

*All measurement and test data in this report was gathered from production sample serial number: 200021. The EUT supplied by the applicant was received on 2015-12-02.

Report No.: RDG151201005-00A

Objective

This test report is prepared on behalf of *Hytera Mobilfunk GmbH* in accordance with Part 2, and Part 90 of the Federal Communication Commission rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2014.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 90 Page 4 of 24

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: RDG151201005-00A

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 90 Page 5 of 24

SYSTEM TEST CONFIGURATION

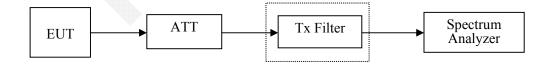
Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

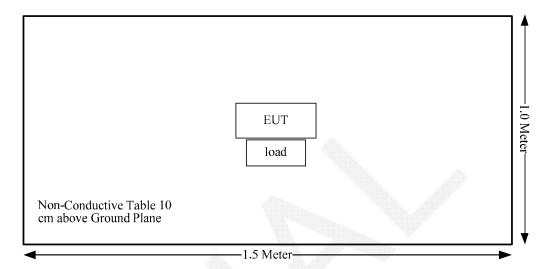
No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Weinschel Corp	Terminal Load	1440-3	MD447
AA-MCS	Attenuator(40dB)	CAT-50-40-200-Nm-Nf	0602-010
N/A	RF Coaxial Cable	1m	N/A
Minicircuits	10 dB Attenuator	UNAT-10+	D15542
Wilson	6 dB Attenuator	6dB	859936

Report No.: RDG151201005-00A

External I/O Cable


Cable Description	Length (m)	From/Port	To
RF Coaxial Cable	0.1	EUT/RF Port	Attenuator

Test Configuration Block Diagram

FCC Part 90 Page 6 of 24

Block Diagram of Test Setup

Report No.: RDG151201005-00A

FCC Part 90 Page 7 of 24

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§90.210; §90.221	Adjacent Channel Power	Compliance
§2.1047;§90.207	Modulation Characteristic	Not Applicable*
\$2.1049; \$90.209; \$90.210; \$90.691	Occupied Bandwidth	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Not Applicable*

Report No.: RDG151201005-00A

Not applicable*: Modulation Characteristic test item is not required for digital device

FCC Part 90 Page 8 of 24

FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RDG151201005-00A

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E , H or S (minutes)		
0.3-1.34	614	1.63	*100	30		
1.34-30	824/f	2.19/f	*180/f ²	30		
30-300	27.5	0.073	0.2	30		
300-1,500			f/1500	30		
1,500-100,000			1.0	30		

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Max Turn up Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
450.0125	8	6.31	51	125893	650	0.15	0.30

Note: The manufacturer does not specify an antenna to be used with this device, but a typical installation has a gain up to 8 dBi.

To comply with FCC RF exposure requirements, a minimum separation distance of 650 cm is required between the antenna and all public persons.

Result: Compliance

FCC Part 90 Page 9 of 24

^{* =} Plane-wave equivalent power density

FCC §2.1046 & §90.205- RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RDG151201005-00A

Spectrum Analyzer Setting:

RBW	VBW
100 kHz	300 kHz

Test Equipment List and Details

				Name of the second	
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	831259/019	2015-07-28	2016-07-27
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10
/	RF Coaxial cable (0.5 dB)	0.1m	/	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.3
Relative Humidity:	39 %
ATM Pressure:	101.9 kPa

The testing was performed by Dean Liu on 2015-12-07.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 10 of 24

ModulationMode	f _c (MHz)	Conducted power (dBm)
	450.0125	49.05
π/4-DQPSK	460	49.04
	469.9875	49.02
	450.0125	45.12
QAM	460	45.06
	469.9875	45.11

Report No.: RDG151201005-00A

Note: $\pi/4$ -DQPSK: The rated power is 49 dBm, QAM: The rated power is 45 dBm

FCC §2.1046, §90.210& §90.221- ADJACENT CHANNEL POWER

Applicable Standard

FCC §2.1046, §90.210& §90.221

According to FCC§90.221 (b) (1), Maximum adjacent power levels for frequencies in the 450-470 MHz band:

Report No.: RDG151201005-00A

Frequency offset	Maximum ACP (dBc) for devices 1 watt and less	Maximum ACP (dBc) for devices above 1 watt
25 kHz	−55 dBc	−60 dBc
50 kHz	-70 dBc	−70 dBc
75 kHz	-70 dBc	−70 dBc

(2) In any case, no requirement in excess of -36 dBm shall apply

Test Procedure

The EUT was connected to the Spectrum Analyzer with a suitable attenuator.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	831259/019	2015-07-28	2016-07-27
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10
/	RF Coaxial cable (0.5 dB)	0.1m	/	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

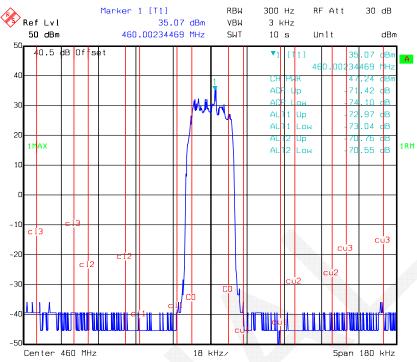
Temperature:	21.9~23.3
Relative Humidity:	39~44 %
ATM Pressure:	101.4~101.9 kPa

The testing was performed by Dean Liu on 2015-12-03 & 2015-12-08.

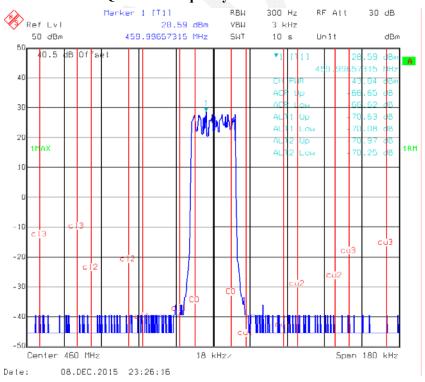
Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

FCC Part 90 Page 12 of 24


Modulation Mode	f _c (MHz)	Frequency offset (kHz)	offset Channel Power	
		± 25	71.42	60
π/4-DQPSK	460	± 50	72.97	70
		± 75	70.55	70
		± 25	66.62	60
QAM	460	± 50	70.08	70
		± 75	70.25	70

Report No.: RDG151201005-00A


$\pi/4$ -DQPSK for Frequency 460.0000 MHz

Report No.: RDG151201005-00A

Date: 03.DEC.2015 23:24:34

QAM for Frequency 460.0000 MHz

FCC Part 90 Page 14 of 24

FCC §2.1049 & §90.209,§90.691 – OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §90.209, §90.210 and §90.691

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

Report No.: RDG151201005-00A

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P) dB$.

Emission Mask I. For transmitters that are equipped with an audio low pass filter, the power of any emission must be attenuated below the unmodulated carrier power of the transmitter (P) as follows:

- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency of more than 6.8 kHz, but no more than 9.0 kHz: At least 25 dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency of more than 9.0 kHz, but no more than 15 kHz: At least 35 dB;
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency of more than 15 kHz: At least 43 + 10 log (P) dB, or 70 dB, whichever is the lesser attenuation.

Emission mask requirements for EA-based systems.

- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 $Log_{10}(f/6.1)$ decibels or $50 + 10 Log_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43 + 10\text{Log}_{10}(P)$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

FCC Part 90 Page 15 of 24

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RDG151201005-00A

The resolution bandwidth of the spectrum analyzer was set at 300 Hz.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	831259/019	2015-07-28	2016-07-27
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10
/	RF Coaxial cable (0.5 dB)	0.1m	/	2015-05-09	2016-05-09

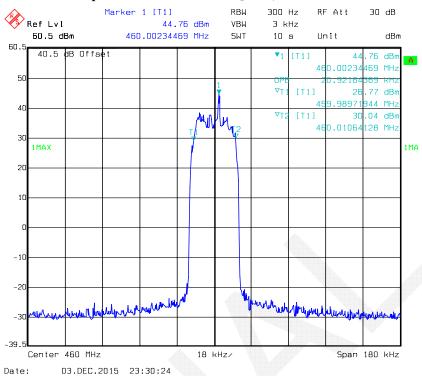
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

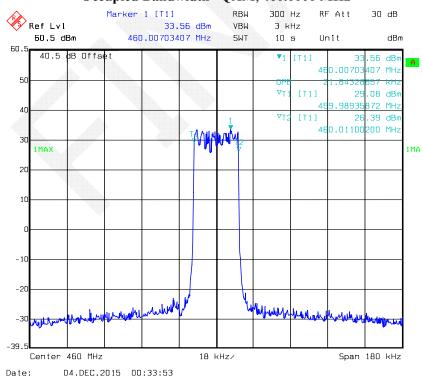
Environmental Conditions

Temperature:	23.8-24.1
Relative Humidity:	37-39 %
ATM Pressure:	101.4 -101.5 kPa

The testing was performed by Dean Liu on 2015-12-03 to 2015-12-04.


Modulation	\mathbf{f}_{c}	99% Occupied Bandwidth	Limit	
Mode	MHz	kHz	kHz	
π/4-DQPSK	460	20.92	22	
QAM	460	21.64	22	

Note: Equipment meets the Adjacent Channel Power limits of §90.221, so emission mask is not tested.


FCC Part 90 Page 16 of 24

Occupied Bandwidth -π/4-DQPSK, 460.0000 MHz

Report No.: RDG151201005-00A

Occupied Bandwidth -QAM, 460.0000 MHz

FCC Part 90 Page 17 of 24

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.

Report No.: RDG151201005-00A

- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P) dB$.

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

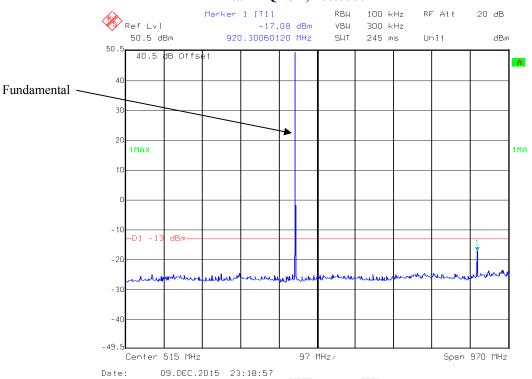
		400	VIOLENIO ADDINIOP		
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	831259/019	2015-07-28	2016-07-27
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10
/	RF Coaxial cable (0.5 dB)	0.1m	/	2015-05-09	2016-05-09

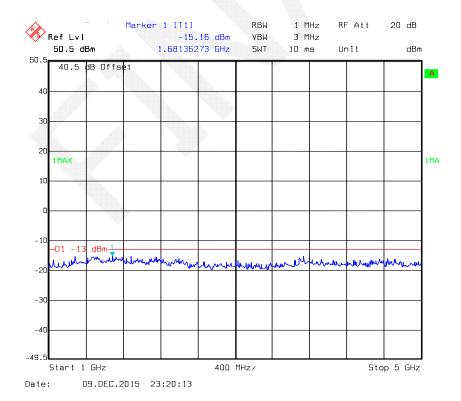
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.1		
Relative Humidity:	39 %		
ATM Pressure:	101. kPa		

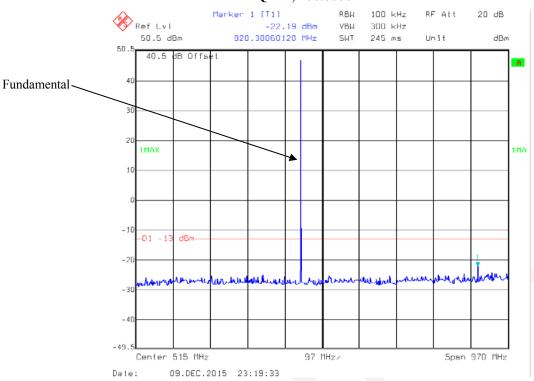

The testing was performed by Dean Liu on 2015-12-09.

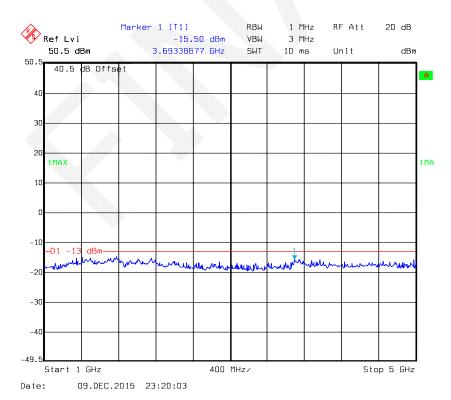

Test Mode: Transmitting

FCC Part 90 Page 18 of 24

$\pi/4$ -DQPSK, 460.0000 MHz

Report No.: RDG151201005-00A





FCC Part 90 Page 19 of 24

QAM, 460.0000 MHz

Report No.: RDG151201005-00A

FCC Part 90 Page 20 of 24

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053, §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RDG151201005-00A

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =43+10 Log₁₀ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	Signal Generator	1026	320408	2015-11-23	2016-11-22
Sunol Sciences	Antenna	ЈВ3	A060611-3	2014-07-28	2017-07-27
ЕМСО	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
/	RF Coxial cable	10m	/	2015-05-09	2016-05-09
/	RF Coxial cable	14m	/	2015-05-09	2016-05-09
НР	Amplifier	8447E	2434A02181	2015-09-01	2016-09-01
R&S	EMI Test Receiver	ESCI	100224	2015-08-03	2016-08-02
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
TDK RF	Horn Antenna	HRN-0118	130 084	2015-09-06	2018-09-06
ETS-Lindgren	Horn Antenna	3115	9808-5557	2015-09-06	2018-09-06
Agilent	Spectrum Analyzer	E4440A	SG43360054	2015-11-23	2016-11-22
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 21 of 24

Test Data

Environmental Conditions

Temperature:	23.3	
Relative Humidity:	39 %	
ATM Pressure:	101.9 kPa	

The testing was performed by Dean Liu on 2015-12-09.

Test Mode: Transmitting

30MHz - 10GHz:

			Sı	ubstituted Me	ethod	43.3.4		
Frequency (MHz)	z) (H/V) Reading Level Gain	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
		1	τ/4-DQPSK	Frequency:4	60.0000 MHz			
920.000	Н	28.59	-45.3	0.0	1	-46.3	-13.0	33.3
920.000	V	25.99	-44.6	0.0	1	-45.6	-13.0	32.6
1380.000	Н	43.55	-57	8.8	1.4	-49.6	-13.0	36.6
1380.000	V	40.23	-60.1	8.8	1.4	-52.7	-13.0	39.7
1840.000	Н	36.07	-63.7	11.4	1.3	-53.6	-13.0	40.6
1840.000	V	33.48	-66.3	11.4	1.3	-56.2	-13.0	43.2
2300.000	Н	31.83	-64.4	11.2	2.3	-55.5	-13.0	42.5
2300.000	V	30.93	-64.9	11.2	2.3	-56.0	-13.0	43.0
			QAM,Fr	equency:460.	0000 MHz			
920.000	Н	28.15	-45.7	0.0	1	-46.7	-13.0	33.7
920.000	V	26.44	-44.1	0.0	1	-45.1	-13.0	32.1
1380.000	Н	43.11	-57.4	8.8	1.4	-50.0	-13.0	37.0
1380.000	V	39.60	-60.7	8.8	1.4	-53.3	-13.0	40.3
1840.000	Н	35.67	-64.1	11.4	1.3	-54.0	-13.0	41.0
1840.000	V	32.79	-67	11.4	1.3	-56.9	-13.0	43.9
2300.000	Н	31.26	-65	11.2	2.3	-56.1	-13.0	43.1
2300.000	V	30.21	-65.6	11.2	2.3	-56.7	-13.0	43.7

Report No.: RDG151201005-00A

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC Part 90 Page 22 of 24

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055, §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RDG151201005-00A

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Equipment List and Details

				4000	
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	831259/019	2015-07-28	2016-07-27
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-4	2015-09-10	2016-09-09
UNI-T	Multimeter	UT39A	M130199938	2015-04-10	2016-04-10
AA-MCS	Attenuator(40dB)	CAT-50-40- 200-Nm-Nf	0602-010	2015-04-10	2016-04-10
/	RF Coaxial cable (0.5 dB)	0.1m	/	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.5
Relative Humidity:	39 %
ATM Pressure:	101.9 kPa

The testing was performed by Dean Liu on 2015-12-09.

Test Mode: Transmitting

FCC Part 90 Page 23 of 24

AC Power Supply:

fc =460 MHz						
Temerature	Voltage	Reading	Frequency Error	Limit		
	Vac	MHz	ppm	ppm		
-30	120	459.999981	-0.04			
-20	120	459.999977	-0.05			
-10	120	459.999973	-0.06			
0	120	459.999968	-0.07			
10	120	459.999960	-0.09			
20	120	459.999947	-0.12	2.5		
30	120	459.999970	-0.07			
40	120	459.999993	-0.02			
50	120	459.999952	-0.10			
25	102	459.999964	-0.08			
25	138	459.999961	-0.08			

Report No.: RDG151201005-00A

DC Power Supply:

$f_c = 460 \text{ MHz}$						
Temperature	Voltage	Reading	Frequency Error	Limit		
	V_{DC}	MHz	ppm	ppm		
-30	-48	459.999975	-0.05			
-20	-48	459.999983	-0.04			
-10	-48	459.999969	-0.07			
0	-48	459.999974	-0.06			
10	-48	459.999968	-0.07			
20	-48	459.999952	-0.10	2.5		
30	-48	459.999970	-0.07			
40	-48	459.999982	-0.04			
50	-48	459.999966	-0.07			
25	-40.8	459.999978	-0.05			
25	-55.2	459.999973	-0.06			

**** END OF REPORT ****

FCC Part 90 Page 24 of 24