



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

# TEST REPORT

## Part 15 Subpart C 15.225

### 1. Applicant

Name : HONG International Corp.  
Address : #306 JNK Digital Tower, Digitalro-26gil, Guro-dong,  
 : Guro-gu, Seoul, Republic of Korea  
FCC ID : ZUZ-VSPHOENIXS  
IC : 9811A-VSPHOENIXS

### 2. Products

Name : Electronic Dart System  
Model/Type : -VSPHOENIXS / Electronic Dart System

Manufacturer : HONG International Corp.

### 3. Test Standard

: 47 CFR FCC Part 15 Subpart C  
RSS-210 Issue 8, RSS-Gen Issue 3

### 4. Test Method

: ANSI C63.4-2009

### 5. Test Result

: Positive

### 6. Dates of Test

: March 10, 2012 to May 05, 2012

### 7. Date of Issue

: May 07, 2012

### 8. Test Laboratory

: Korea Standard Quality Laboratories

FCC Designation Number : KR0024

IC OATS Number : 9053A

Tested by

Soon Ho, Kim

Test Engineer:

Approved by

SungBum, Hong

Compliance Engineer:

*This report may not be reproduced without the full written consent of Korea Standard Quality Laboratories.*



**Korea Standard Quality Laboratories**

Testing Laboratories for EMC and Safety Compliance

#102, Jangduk-Dong, Hwasung-City, Kyunggi-Do, KOREA



## CONTENTS

|                                                                     | Page     |
|---------------------------------------------------------------------|----------|
| <b>1. VERIFICATION OF COMPLIANCE.....</b>                           | <b>5</b> |
| <b>2. GENERAL INFORMATION.....</b>                                  | <b>6</b> |
| 2.1 PRODUCT DESCRIPTION.....                                        | 6        |
| 2.2 MODEL DIFFERENCES: .....                                        | 6        |
| 2.3 RELATED SUBMITTAL(S) /GRANT(S).....                             | 6        |
| 2.4 PURPOSE OF THE TEST .....                                       | 6        |
| 2.5 TEST METHODOLOGY.....                                           | 6        |
| <b>3. SYSTEM TEST CONFIGURATION.....</b>                            | <b>7</b> |
| 3.1 JUSTIFICATION .....                                             | 7        |
| 3.2 PERIPHERAL EQUIPMENT.....                                       | 7        |
| 3.3 MODE OF OPERATION DURING THE TEST.....                          | 7        |
| 3.4 CABLE DESCRIPTION FOR THE EUT .....                             | 7        |
| 3.5 EQUIPMENT MODIFICATIONS .....                                   | 7        |
| 3.6 CONFIGURATION OF TEST SYSTEM .....                              | 8        |
| 3.7 ANTENNA REQUIREMENT .....                                       | 8        |
| <b>4. PRELIMINARY TEST.....</b>                                     | <b>8</b> |
| 4.1 ACPOWER LINE CONDUCTED EMISSIONS TESTS.....                     | 8        |
| 4.2 RADIATED EMISSIONS TESTS .....                                  | 8        |
| <b>5. FINAL RESULT OF MEASURMENT.....</b>                           | <b>9</b> |
| 5.1 CONDUCTED EMISSION TEST.....                                    | 9        |
| 5.2 Emission Test .....                                             | 11       |
| 5.2.1 Radiated Emissions .....                                      | 11       |
| 5.2.1.1 Regulation.....                                             | 11       |
| 5.2.1.2 Measurement Procedure .....                                 | 11       |
| 5.2.1.3 Calculation of the field strength limits below 30 MHz.....  | 12       |
| 5.2.1.4 Test Results .....                                          | 13       |
| 5.2.2.5 Calculation of the field strength limits above 30 MHz ..... | 13       |
| 5.2.1.6 Test Results .....                                          | 15       |
| 5.3 Spectrum mask and Occupied bandwidth .....                      | 17       |
| 5.3.1 Regulation .....                                              | 17       |
| 5.3.2 Measurement Procedure .....                                   | 17       |
| 5.3.3 Test Results.....                                             | 18       |
| 5.4 Frequency Tolerance of Carrier Signal .....                     | 20       |

|                                                    |           |
|----------------------------------------------------|-----------|
| 5.4.1 Regulation .....                             | 20        |
| 5.4.2 Measurement Procedure .....                  | 20        |
| 5.4.3 Test Results.....                            | 21        |
| <b>6 EUT Description .....</b>                     | <b>22</b> |
| 6.1 Exemption from Routine Evaluation Limits ..... | 22        |
| <b>7 FIELD STRENGTH CALCULATION .....</b>          | <b>23</b> |
| <b>8. LIST OF TEST EQUIPMENT.....</b>              | <b>24</b> |



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

---

#### Revision History

| Issue Report No. | Issued Date  | Revisions       | Effect Section |
|------------------|--------------|-----------------|----------------|
| KSQ-FCC120401    | May 07, 2012 | Initial Release | All            |
|                  |              |                 |                |
|                  |              |                 |                |



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

---

## 1. VERIFICATION OF COMPLIANCE

- APPLICANT : HONG International Corp.
- ADDRESS : #306 JNK Digital Tower, Digitalro-26gil, Guro-dong, Guro-gu, Seoul, Republic of Korea
- CONTACT PERSON : Choong-Jae, Lee / Assistant Manager
- TELEPHONE NO : +82-2-3667-3986
- FCC ID : ZUZ-VSPHOENIXS
- IC CERTIFICATION NO. : 9811A-VSPHOENIXS

|                                                      |                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------|
| DEVICE TYPE                                          | FCC: DXX - Low Power Communication Device Transmitter IC: Category I Equipment |
| E.U.T. DESCRIPTION                                   | Electronic Dart System                                                         |
| THIS REPORT CONCERNS                                 | Original Grant                                                                 |
| MEASUREMENT PROCEDURES                               | FCC: ANSI C63.4: 2009 IC: RSS-Gen Issue 3                                      |
| TYPE OF EQUIPMENT TESTED                             | Pre-Production                                                                 |
| KIND OF EQUIPMENT AUTHORIZATION REQUESTED            | Certification                                                                  |
| EQUIPMENT WILL BE OPERATED UNDER FCC RULES PART(S)   | FCC PART 15 SUBPART C, Section 15.225 RSS-210 Issue 8, RSS-Gen Issue 3         |
| MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE | Yes                                                                            |
| FINAL TEST WAS CONDUCTED ON                          | 3 m open area test site                                                        |



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

## 2. GENERAL INFORMATION

### 2.1 Product Description

The HONG International Corp., Model VSPHOENIXS (referred to as the EUT in this report) is a Electronic Dart System that is included a RF card reader. The product specification described herein was obtained from product data sheet or user's manual.

|                                               |                                                                                                                                           |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CHASSIS TYPE                                  | Non-Metal                                                                                                                                 |
| TX FREQUENCY                                  | 13.56 MHz                                                                                                                                 |
| MODULATION                                    | ASK                                                                                                                                       |
| LIST OF EACH OSC. OR CRY. FREQ.(FREQ.>=1 MHz) | Main Board: 14.3MHz, Connector Board: 4MHz, Audio Board: 28.63636 MHz, Audio Control Board: 10MHz RF Board: 13.56MHz, RF LED Board: 20MHz |
| ANTENNA TYPE                                  | Inserted into the main board (Pattern Antenna)                                                                                            |
| RATED SUPPLY VOLTAGE                          | 120 V~, 60 Hz, 160 W                                                                                                                      |
| NUMBER OF PCB LAYERS                          | 8 Layers: Main Board<br>4 Layers: Connector Board, Audio Board, Audio Control Board, RF Board and RF LED Board                            |

### 2.2 Model Differences:

- None

### 2.3 Related Submittal(s) / Grant(s)

- Original

### 2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 15.225 and the IC requirements stated in section 6 of the regulation, RSS-Gen Issue 3.

### 2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4: 2009 and RSS-210, Issue 8 & RSS-Gen Issue 3. Radiated testing was performed at a distance of 3 m from EUT to the antenna.



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

### 3. SYSTEM TEST CONFIGURATION

#### 3.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

| DEVICE TYPE         | MANUFACTURER             | MODEL/PART NUMBER         | FCC ID |
|---------------------|--------------------------|---------------------------|--------|
| Main Board          | GIGABYTE                 | GA-G31M-ES2L              | DoC    |
| Connector Board     | HONG International Corp. | REV 1.61                  | N/A    |
| Audio Board         | HONG International Corp. | 1.1                       | N/A    |
| Audio Control Board | HONG International Corp. | 1.1                       | N/A    |
| RF Board            | HONG International Corp. | N/A                       | N/A    |
| RF LED Board        | HONG International Corp. | LED_MD                    | N/A    |
| LED Interface Board | HONG International Corp. | HONG-LED-INTERFACE VER1.2 | N/A    |
| Power Board         | Open Digital Power       | OFS75                     | N/A    |

#### 3.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

| Model       | Manufacturer             | FCC ID         | Description                  | Connected to |
|-------------|--------------------------|----------------|------------------------------|--------------|
| VSPHOENIX.S | HONG International Corp. | ZUZ-VSPHOENIXS | Electronic Dart System (EUT) | -            |
| VOSTRO 3350 | DELL                     | -              | NOTE BOOK                    |              |

#### 3.3 Mode of operation during the test

- To get a maximum radiated emission from the EUT, the EUT was continuously transmitted RF carrier and the card shall be used with the EUT and tested with together. And the ping testing mode was performed at the same time during the test.

#### 3.4 Cable Description for the EUT

| Ports Name | Shielded | Ferrite Bead | Metal Shell | Length (m) | Connected to |
|------------|----------|--------------|-------------|------------|--------------|
| LAN        | N        | N            | N           | 3.0        | Notebook PC  |

#### 3.5 Equipment Modifications

For getting Class B Limit, following modifications were made by the applicant.

- Internal cable was changed to shielded type and ferrite core was added.
- The gasket was added to the internal of PC case.
- The ferrite core was added to the power cable of LCD monitor.
- The ferrite core was added to the speaker cable.

### 3.6 Configuration of Test System

**Line Conducted Test:**

The power of EUT was connected to LISN. All supporting equipments were connected to another LISN. Preliminary Power line Conducted Emission tests were performed by using the procedure in ANSI C63.4: 2009 7.3.3 to determine the worse operating conditions.

**Radiated Emission Test:**

Preliminary radiated emissions test were conducted using the procedure in ANSI C63.4: 2009 8.3.1.1 and 13.1.4.1 to determine the worse operating conditions. The radiated emissions measurements were performed on the 3 m, EMI chamber and open-field test site. The EUT was placed on the ground plane as typical applications. For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field. The measuring antenna is an electrically screened loop antenna. The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

### 3.7 Antenna Requirement

For intentional device, according to §15.203 and RSS-Gen Issue 3, section 7.1.2, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

**Antenna Construction:**

The transmitter antenna of the EUT is a PCB pattern antenna in the EUT, so there is no consideration of replacement by the user.

## 4. PRELIMINARY TEST

### 4.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

| Operation Mode | The Worse operating condition (Please check one only) |
|----------------|-------------------------------------------------------|
| Standby Mode   | -                                                     |
| TX mode        | X                                                     |

### 4.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

| Operation Mode | The Worse operating condition (Please check one only) |
|----------------|-------------------------------------------------------|
| Standby Mode   | -                                                     |
| TX mode        | X                                                     |



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

## 5. FINAL RESULT OF MEASURMENT

Temperature: 20 °C

### 5.1 Conducted Emission Test

Humidity Level : 32 % R.H.

Limits apply to : FCC CFR 47, PART 15 Section 15.207 and IC RSS-Gen, Section 7.2.4

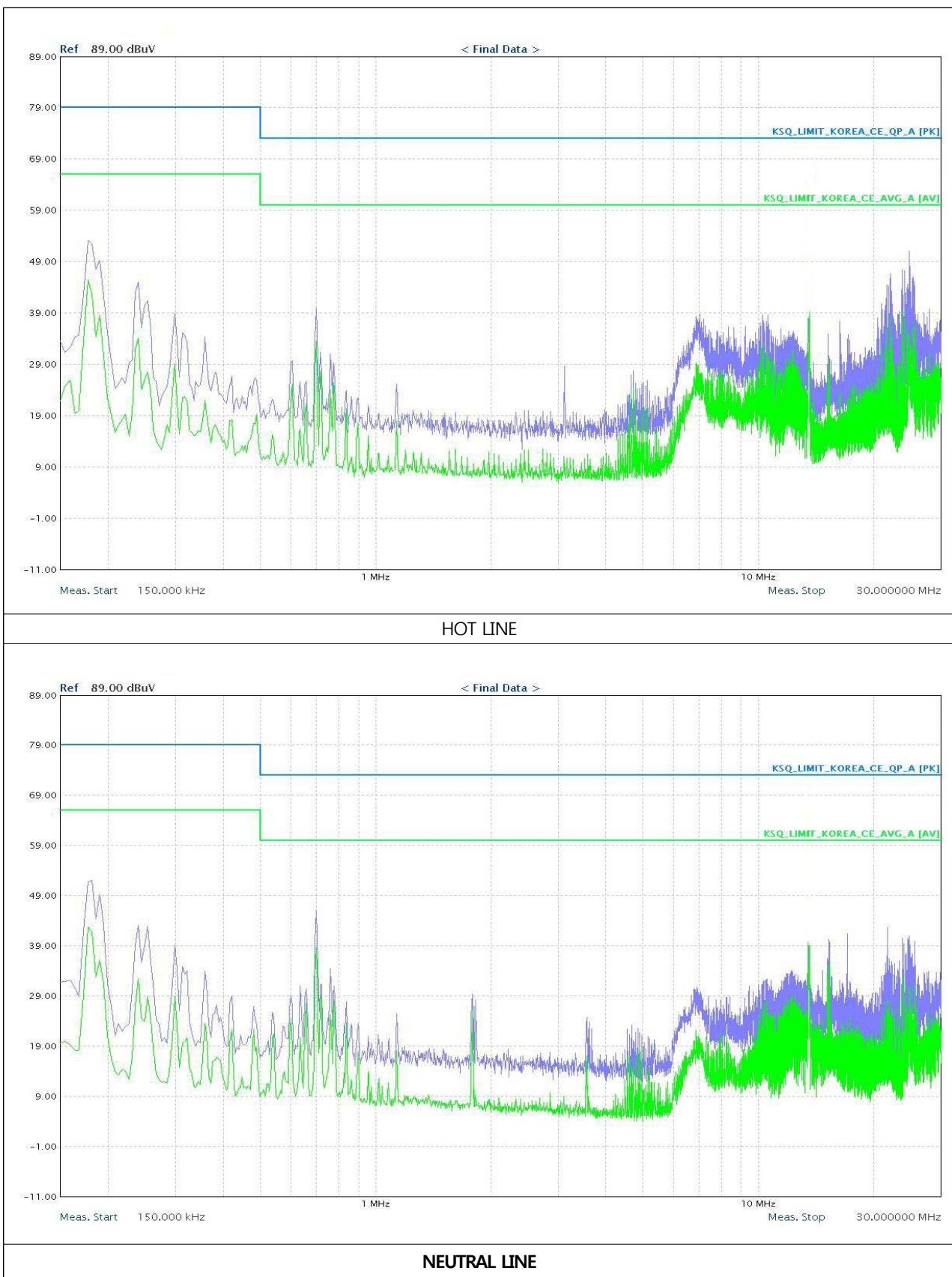
Result : PASSED BY  $-22.64$  dB at 13.56 MHz under average mode

EUT Operating : Electronic Dart System

Condition : Transmitting Mode

Date: March 12, 2012

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 9 kHz)


| Frequency<br>(MHz) | Line | Peak (dB V)    |             | Margin (dB) |
|--------------------|------|----------------|-------------|-------------|
|                    |      | Emission level | Q.P. Limits |             |
| 0.17               | N    | 46.81          | 79.00       | -32.19      |
| 0.18               | H    | 47.72          | 79.00       | -31.28      |
| 0.24               | N    | 37.12          | 79.00       | -40.48      |
| 0.69               | N    | 42.16          | 73.00       | -30.84      |
| 0.72               | H    | 44.15          | 73.00       | -28.85      |
| 15.34              | H    | 40.01          | 73.00       | -32.99      |
| Frequency<br>(MHz) | Line | Average (dB V) |             | Margin (dB) |
|                    |      | Emission level | Limits      |             |
| 0.17               | N    | 42.72          | 66.00       | -23.28      |
| 0.18               | H    | 43.36          | 66.00       | -22.64      |
| 15.32              | N    | 35.43          | 60.00       | -24.57      |
| 15.34              | H    | 36.46          | 60.00       | -23.54      |

Line Conducted Emission Tabulated Data

Remark : "H": Hot Line, "N": Neutral Line.

See next page for an overview sweep performed with peak and average detector.

Tested by: Soon Ho, Kim / Project Engineer



## 5.2 Emission Test

### 5.2.1 Radiated Emissions

#### 5.2.1.1 Regulation

FCC 47CFR15 – 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field strength limit<br>(uV/m) | Field strength limit<br>(dBuV/m) | Measurement<br>Distance (m) |
|--------------------|--------------------------------|----------------------------------|-----------------------------|
| 0.009 – 0.490      | 2400/F(kHz)                    | 48.5-13.8                        | 300                         |
| 0.490 – 1.705      | 24000/F(kHz)                   | 33.8-23.0                        | 30                          |
| 1.705 – 30.0       | 30                             | 29.5                             | 30                          |
| 30 –88             | 100                            | 40.0                             | 3                           |
| 88 –216            | 150                            | 43.5                             | 3                           |
| 216 – 960          | 200                            | 46.0                             | 3                           |
| Above 960          | 500                            | 54.0                             | 3                           |

#### 5.2.1.2 Measurement Procedure

##### Radiated Emissions Test, 9kHz to 30MHz (Magnetic Field Test)

1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions at a distance of 3 meters according to Section 15.31(f)(2).
2. The EUT was placed on the top of the 0.8-meter height, 1 x 1.5 meter non-metallic table.
3. Emissions from the EUT are maximized by adjusting the orientation of the Loop antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions if applicable.
4. To obtain the final measurement data, each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector with specified bandwidth.

##### Radiated Emissions Test, 30 MHz to 1000 MHz

1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
2. The EUT was placed on the top of the 0.8-meter height, 1 x 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360 degrees.
3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 30 to 1000 MHz using the Biconical and Logperiodic broadband antenna.
4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 x 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
6. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.

### 5.2.1.3 Calculation of the field strength limits below 30 MHz

1. No special calculation for obtaining the field strength in dBuV/m is necessary, because the EMI receiver and the active loop antenna operate as a system, where the reading gives directly the field strength result (dBuV/m). The antenna factors and cable losses are already taken into consideration.
2. For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f)(2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).
3. All following emission measurements were performed using the test receiver's average, peak, and quasi-peak detector function with specified bandwidth.

**5.2.1.4 Test Results (Test mode : TX on)**

Table 3: Test Data, Fundamental Frequency(Ver/hor)

Date: Mar 04, 2012

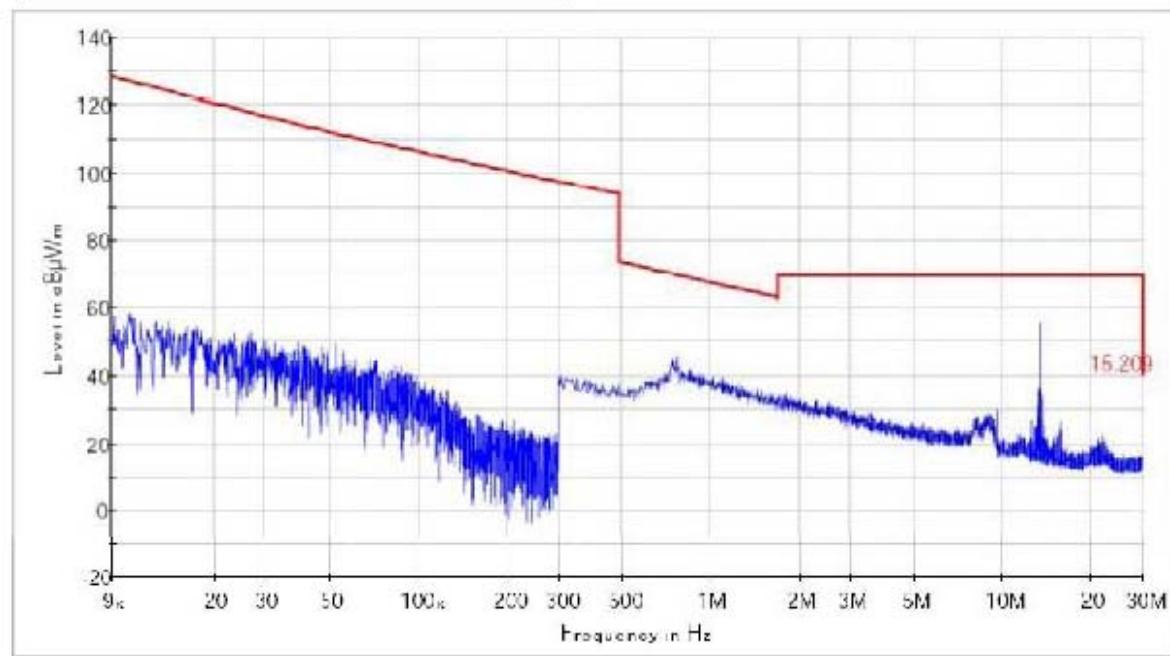
| Frequency( MHz) | Pol. | Reading(dB $\mu$ V) | AFCL (dB/m) | Actual(dB $\mu$ V /m) | Limit(dB $\mu$ V/ m) | Margin(dB) | Detector |
|-----------------|------|---------------------|-------------|-----------------------|----------------------|------------|----------|
| 13.560          | V    | 45.46               | 9.94        | 55.40                 | 124                  | 68.60      | QP       |
| 13.560          | V    | 45.69               | 9.94        | 55.53                 | -                    | -          | AV       |

| Frequency( MHz) | Pol. | Reading(dB $\mu$ V) | AFCL (dB/m) | Actual(dB $\mu$ V /m) | Limit(dB $\mu$ V/ m) | Margin(dB) | Detector |
|-----------------|------|---------------------|-------------|-----------------------|----------------------|------------|----------|
| 13.561          | H    | 42.57               | 9.94        | 52.51                 | 124                  | 71.49      | QP       |
| 13.561          | H    | 42.77               | 9.94        | 52.71                 | -                    | -          | AV       |

FCC 47CFR15 - 15.209 (9 kHz - 30 MHz)

Table 4: Test Data, Radiated Emission below 30 MHz

| Frequency(M Hz) | Pol. | Height[ m] | Angle [°] | (1) Reading (dB $\mu$ V) | (2) AFCL (dB/m) | (3) Actual (dB $\mu$ V/m) | (4) Limit (dB $\mu$ V/m) | (5) Margin (dB) |
|-----------------|------|------------|-----------|--------------------------|-----------------|---------------------------|--------------------------|-----------------|
| 0.048           | H    | 1.30       | 176       | 37.85                    | 12.38           | 50.23                     | 113.98                   | 63.78           |
| 1.264           | H    | 1.28       | 178       | 19.96                    | 12.18           | 32.14                     | 65.57                    | 33.47           |
| 9.424           | V    | 1.35       | 265       | 11.94                    | 9.98            | 21.92                     | 69.54                    | 47.62           |
| 13.136          | V    | 1.42       | 271       | 12.05                    | 9.73            | 21.78                     | 69.54                    | 47.76           |
| 16.100          | V    | 1.38       | 274       | 11.89                    | 9.44            | 21.33                     | 69.54                    | 48.21           |
| 20.384          | H    | 1.33       | 180       | 10.21                    | 8.83            | 19.04                     | 69.54                    | 50.50           |



Margin (dB) = Limit - Actual  
[Actual = FS + AF + CL ]

1. H = Horizontal, V = Vertical Polarization

2. AF/CL = Antenna Factor and Cable Loss

3. FS = RA + DF

Whrer FS = Field strength in dB $\mu$ V/m  
RA = Reciever Amplitude in dB $\mu$ V/m  
DF = Distance Extrapolation Factor in dB

**Figure 4: Radiated spurious emissions below 30 MHz****Spurious Emissions from 9 kHz to 30 Mhz – Vertical****Spurious Emissions from 9 kHz to 30 Mhz - Horizontal**

### 5.2.1.5 Calculation of the field strength limits above 30MHz

1.No special calculation for obtaining the field strength in dB $\mu$ V/m is necessary, because the EMI receiver and the active loopantenna operate as a system, where the reading gives directly the field strengthresult (dB $\mu$ V/m). The antenna factors and cablelosses are already taken into consideration.

2. For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f)(2) the fields strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).

3. All following emission measurements were performed using the test receiver's average, peak, and quasi-peak detector function with specified bandwidth.

### 5.2.1.6 Test Results(Test mode : TXon)

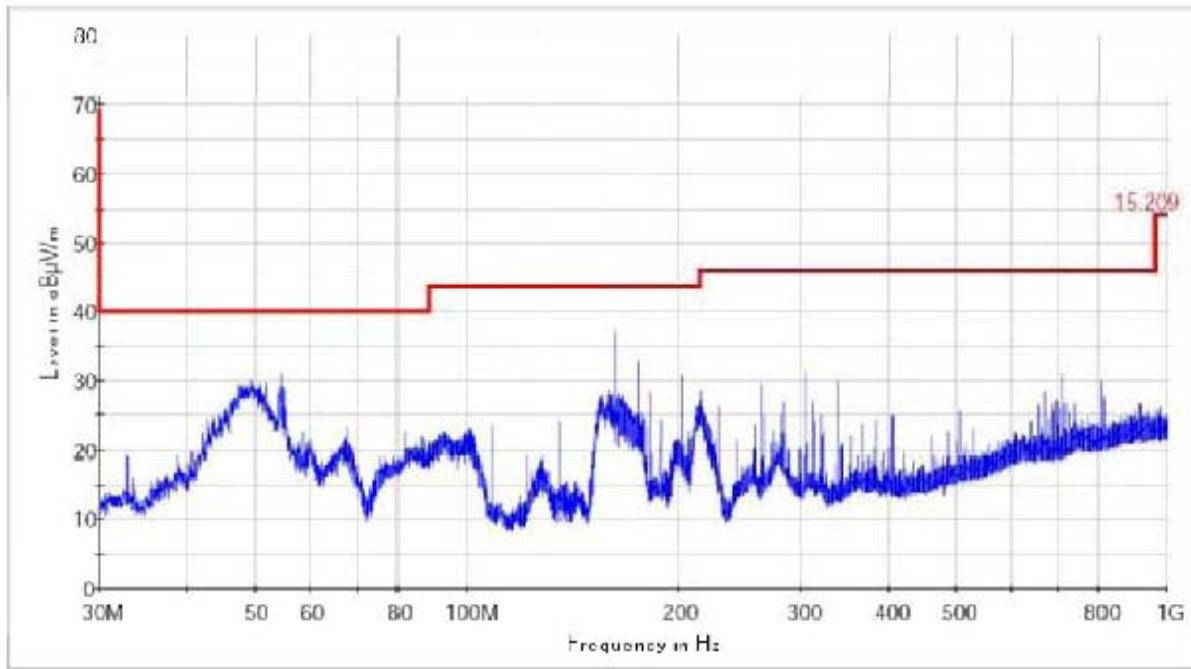
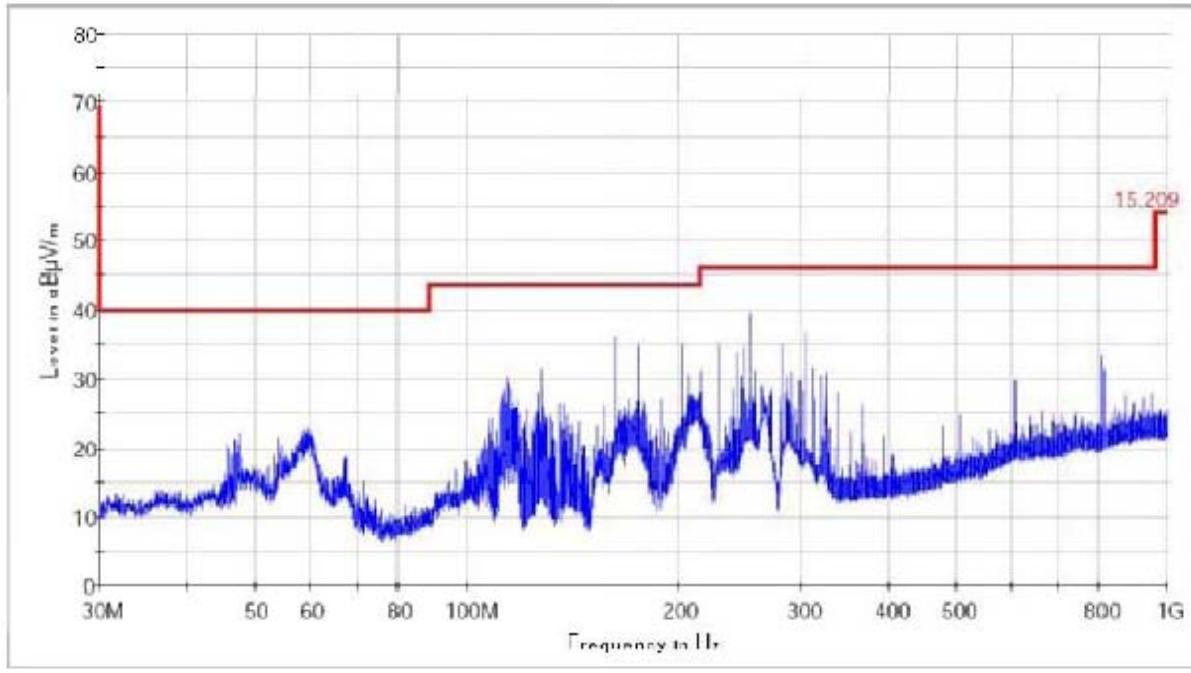
PASS

FCC 47CFR 15.209 and RSS 210 Annex A2.9(b)

Table5:Test Data ,Radiated Emission above 30MHz

Date: Mar 04, 2012

| Frequency(M Hz) | Pol. | Height[ m] | Angle [°] | Reading (dB $\mu$ V) | AFCL (dB/m) | Actual (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|------|------------|-----------|----------------------|-------------|-----------------------|----------------------|-------------|
| 176.28          | H    | 1.58       | 181       | 24.12                | 9.58        | 33.70                 | 43.5                 | 9.80        |
| 203.40          | H    | 1.61       | 181       | 22.61                | 11.69       | 34.30                 | 43.5                 | 9.20        |
| 230.52          | H    | 1.62       | 176       | 21.46                | 12.54       | 34.00                 | 46                   | 12.00       |
| 304.12          | H    | 1.65       | 170       | 21.75                | 14.35       | 36.10                 | 46                   | 9.90        |
| 709.60          | V    | 1.83       | 164       | 4.47                 | 21.93       | 26.40                 | 46                   | 19.60       |
| 811.44          | H    | 1.78       | 175       | 7.49                 | 23.61       | 31.10                 | 46                   | 14.90       |



FCC 47CFR15-15.205 Restricted Band

| Frequency(M Hz) | Pol. | Height[ m] | Angle [°] | Reading (dB $\mu$ V) | AFCL (dB/m) | Actual (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) |
|-----------------|------|------------|-----------|----------------------|-------------|-----------------------|----------------------|-------------|
| 108.48          | V    | 1.54       | 170       | 9.31                 | 12.09       | 21.40                 | 43.5                 | 22.10       |
| 162.72          | H    | 1.61       | 175       | 26.26                | 8.94        | 35.20                 | 43.5                 | 8.30        |
| 251.04          | H    | 1.61       | 175       | 15.35                | 13.14       | 28.50                 | 46.0                 | 17.50       |
| 254.00          | H    | 1.68       | 178       | 17.1                 | 13.20       | 30.30                 | 46.0                 | 15.70       |
| 608.52          | H    | 1.53       | 188       | 6.76                 | 21.04       | 27.80                 | 46.0                 | 18.20       |
|                 |      |            |           |                      |             |                       |                      |             |

Margin (dB) = Limit - Actual  
[Actual = Reading + AF + CL]

1. H = Horzonmal, V = Vertical Polarization

2. AF/CL = Antenna Factor and Cable Loss

**Spurious Emission form 30 MHz to 1Ghz - Vertical****Spurious Emissions from 30 MHz to 1 GHz - Horizontal**

### 5.3 Spectrum mask and Occupied bandwidth

#### 5.3.1 Regulation

##### FCC 47CFR15 – 15.225 and IC RSS-210, Section A2.6

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

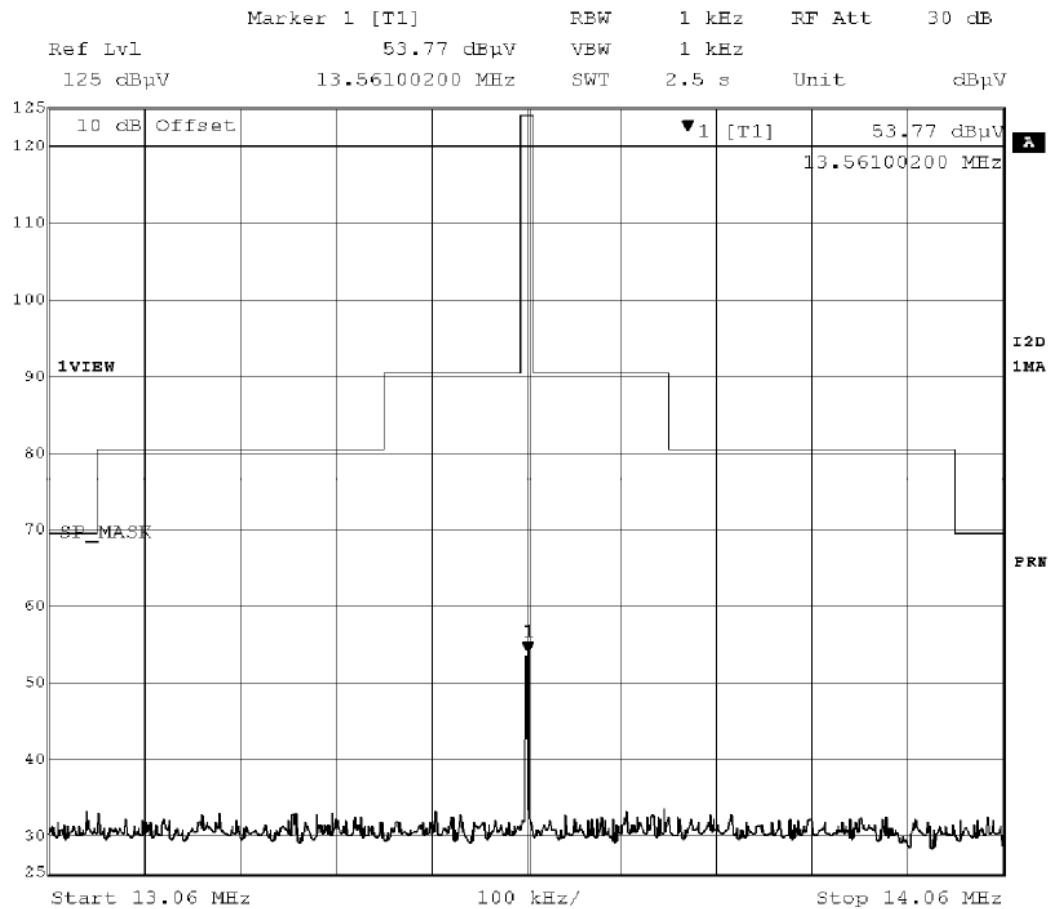
(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

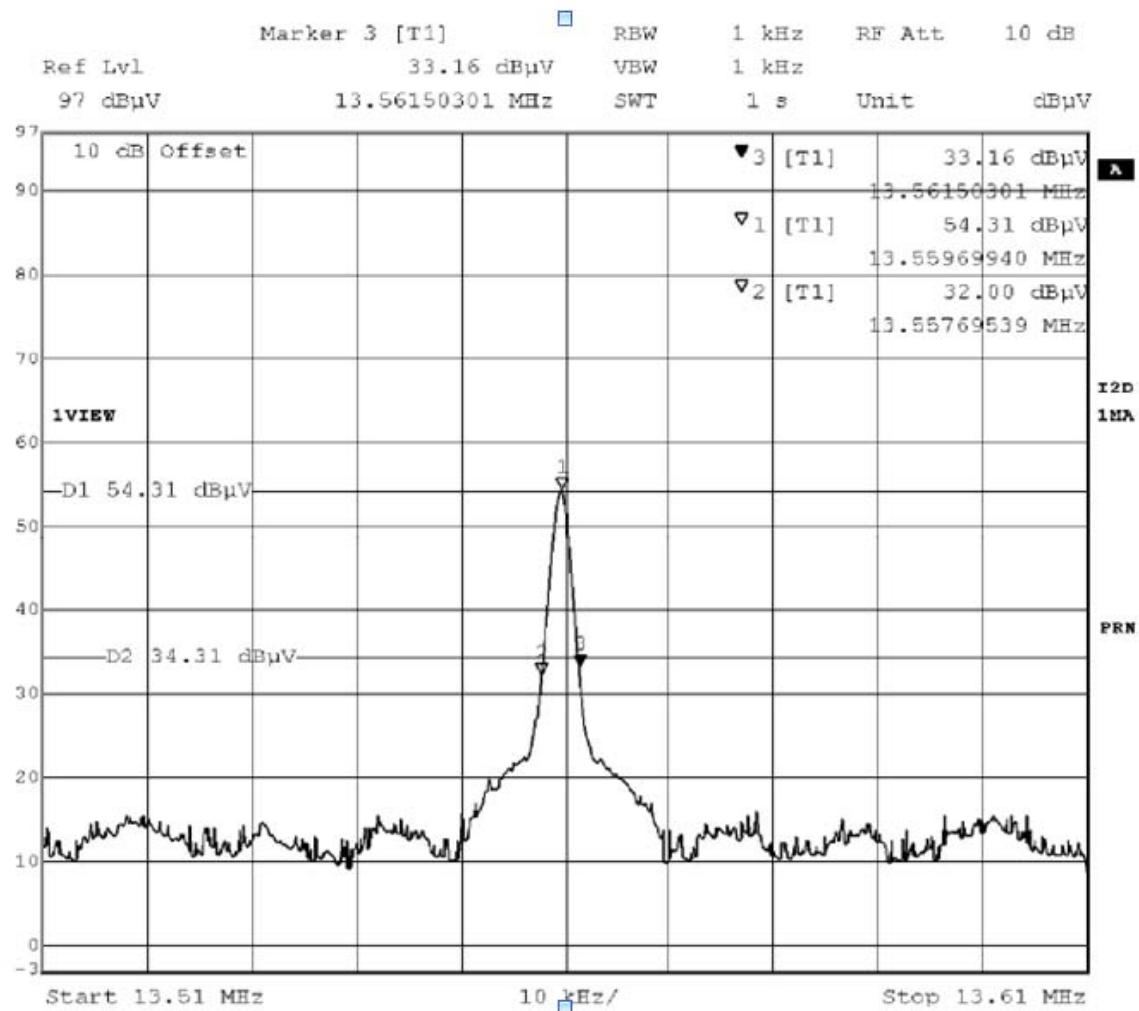
(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

| Frequency<br>(MHz) | Field strength limit<br>(uV/m) @ 30m | Field strength limit<br>(dBuV/m) @ 30m | Field strength limit<br>(dBuV/m) @ 3m |
|--------------------|--------------------------------------|----------------------------------------|---------------------------------------|
| 13.110 – 13.410    | 106                                  | 40.5                                   | 80.5                                  |
| 13.410 – 13.553    | 334                                  | 50.5                                   | 90.5                                  |
| 13.553 – 13.567    | 15,848                               | 84.0                                   | 124.0                                 |
| 13.567 – 13.710    | 334                                  | 50.5                                   | 90.5                                  |
| 13.710 – 14.010    | 106                                  | 40.5                                   | 80.5                                  |

#### 5.3.2 Measurement Procedure


##### Spectrum Mask


1. Place the EUT in the text fixture and switch it on
2. Use the following spectrum analyzer settings: RBW = VBW = 1 kHz, Span = wide enough to capture the whole 13 MHz band including the frequency ranges where the 15.209 limit applies, Trace mode = Max Hold, select the limit line 15.225(a),(b),(c)
3. After trace stabilization, set the marker to the single peak.
4. The reference level will be calculated by the amount of the margin of the wanted signal to its 30 m emission limit plus marker value.
5. The whole signal trace has to be below the limit line.

##### Occupied Bandwidth

1. Place the EUT in the text fixture and switch it on.
2. Use the following spectrum analyzer settings: RBW = VBW = 1 kHz, Span = wide enough to capture the 20 dB bandwidth, Trace mode = Max Hold.
3. After trace stabilization, set the first marker and the first display line to the signal peak. Set the second display line 20 dB below the first display line. The Second marker and its delta marker shall be set to cross point of the spectrum line and the second display line and note these frequencies.
4. Alternatively the 20 dB down function of the analyzer could be used, if this function will be applicable to the displayed spectrum.

## 5.3.3 Test Results (Test mode : Modulated)

**PASS****Figure 6: Spectrum Mask Figure 7: Occupied Bandwidth = 3.808 kHz****Figure 6:Spectrum Mask**

**Figure 7: Occupied bandwidth**
Occupied Bandwidth = 3.808 kHz


| $F_L$           | $F_H$           | Bandwidth ( $F_H - F_L$ ) |
|-----------------|-----------------|---------------------------|
| 13.557695 (MHz) | 13.561503 (MHz) | 3.808 (kHz)               |



## 5.4 FREQUENCY TOLERANCE OF CARRIER SIGNAL

### 5.4.1 Regulation

#### FCC 47CFR15 – 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery-operated equipment, the equipment tests shall be performed using a new battery.

### 5.4.2 Measurement Procedure

#### Frequency stability versus environmental temperature

1. Supply the EUT with nominal AC voltage.
2. Turn the EUT off, and place it inside an environmental temperature chamber. For devices that are normally operated continuously, the EUT may be energized while inside the test chamber. For devices that have oscillator heaters, energize only the heater circuit while the EUT is inside the chamber.
3. RF output was connected to a frequency counter or other frequency-measuring instrument via feed through attenuators.
4. Set the temperature control on the chamber to the highest specified EUT operating temperature, and allow the temperature inside the chamber to stabilize at the set temperature before starting frequency measurements.
5. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized.
6. After all measurements have been made at the highest specified temperature turn the EUT off.
7. Repeat the above measurement process for the EUT with the test chamber set at the appropriate temperature.

#### Frequency Stability versus Input Voltage

1. At temperature (20 ± 5°C), supply the EUT with nominal AC voltage
2. Couple RF output to a frequency counter or other frequency-measuring instrument.
3. Turn the EUT on, and measure the EUT operating frequency at startup and two, five, and ten minutes after startup
4. Supply it with 85% of the nominal AC voltage and repeat above procedure.
5. Supply it with 115% of the nominal AC voltage and repeat above procedure.

**5.4.3 Test Results:**
**PASS**
**TEST MODE : TX on**

| Table 6: Test Data, Frequency Tolerance of carrier signal |                     |                                              |         |               |         |               |         |               |
|-----------------------------------------------------------|---------------------|----------------------------------------------|---------|---------------|---------|---------------|---------|---------------|
| Reference Frequency : 13.56 MHz, LIMIT : within 1356 Hz   |                     |                                              |         |               |         |               |         |               |
| Environment Temperature [ C ]                             | Power Supplied [AC] | Carrier Frequency Measured with Time Elapsed |         |               |         |               |         |               |
|                                                           |                     | STARTUP                                      |         | 2 minutes     |         | 5 minutes     |         | 10 minutes    |
|                                                           |                     | [MHz]                                        | Err[Hz] | [MHz]         | Err[Hz] | [MHz]         | Err[Hz] | [MHz]         |
| +50                                                       | 120                 | 13.559<br>831                                | -169    | 13.559<br>812 | -188    | 13.559<br>797 | -203    | 13.559<br>781 |
| +40                                                       | 120                 | 13.559<br>873                                | -127    | 13.559<br>845 | -155    | 13.559<br>835 | -165    | 13.559<br>816 |
| +30                                                       | 120                 | 13.559<br>924                                | -76     | 13.560<br>002 | 2       | 13.560<br>035 | 35      | 13.560<br>051 |
| +20                                                       | 120                 | 13.560<br>027                                | 27      | 13.560<br>011 | 11      | 13.559<br>999 | -1      | 13.559<br>992 |
| +10                                                       | 120                 | 13.559<br>635                                | -365    | 13.559<br>623 | -377    | 13.559<br>616 | -384    | 13.559<br>608 |
| 0                                                         | 120                 | 13.559<br>670                                | -330    | 13.559<br>666 | -334    | 13.559<br>661 | -339    | 13.559<br>649 |
| -10                                                       | 120                 | 13.559<br>705                                | -295    | 13.559<br>700 | -300    | 13.559<br>696 | -304    | 13.559<br>689 |
| -20                                                       | 120                 | 13.559<br>708                                | -292    | 13.559<br>707 | -293    | 13.559<br>706 | -294    | 13.559<br>705 |

| Reference Frequency : 13.56 MHz, LIMIT : within 1356 Hz |                                              |         |               |         |               |         |               |         |
|---------------------------------------------------------|----------------------------------------------|---------|---------------|---------|---------------|---------|---------------|---------|
| Power Supplied [AC]                                     | Carrier Frequency Measured with Time Elapsed |         |               |         |               |         |               |         |
|                                                         | STARTUP                                      |         | 2 minutes     |         | 5 minutes     |         | 10 minutes    |         |
|                                                         | [MHz]                                        | Err[Hz] | [MHz]         | Err[Hz] | [MHz]         | Err[Hz] | [MHz]         | Err[Hz] |
| 85 %                                                    | 13.559<br>790                                | -210    | 13.560<br>024 | 24      | 13.560<br>043 | 43      | 13.560<br>047 | 47      |
| 100 %                                                   | 13.559<br>749                                | -251    | 13.559<br>947 | -53     | 13.560<br>023 | 23      | 13.560<br>040 | 40      |
| 115 %                                                   | 13.559<br>681                                | -319    | 13.559<br>809 | -191    | 13.559<br>973 | -27     | 13.560<br>038 | 38      |

**Err[Hz] = Measured carrier frequency (MHz) – Reference Frequency (13.56 MHz)**

**6 EUT Description**

|                             |                                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kind of EUT                 | Electronic Dart System                                                                                                                                       |
| Operating Frequency Band    | 13.56 MHz                                                                                                                                                    |
| Device Category             | <input type="checkbox"/> Portable (< 20 cm separation)<br><input type="checkbox"/> Mobile (> 20 cm separation)<br><input checked="" type="checkbox"/> Others |
| Field Strength level        | 55.53 dB V/m                                                                                                                                                 |
| Used Antenna                | Internal Pattern Antenna                                                                                                                                     |
| Exposure Evaluation Applied | <input type="checkbox"/> MPE<br><input type="checkbox"/> SAR<br><input checked="" type="checkbox"/> N/A                                                      |

**6.1 Exemption from Routine Evaluation Limits**

The EUT shall be used more or less than 20cm from the user, but the operating frequency of the EUT is 13.56 MHz and output level is less than 2W(33 dBm), so the EUT exempted from routine RF exposure evaluation according to the rule RSS-102, section 2.5.2.



Report Number : KSQ-FCC120405

FCC ID : ZUZ-VSPHOENIXS, IC : 9811A-VSPHOENIXS

---

## 7 FIELD STRENGTH CALCULATION

Meter readings are compared to the specification limit correcting for antenna and cable losses

$$\begin{aligned} &+ \text{ Meter reading (dB } \mu\text{V)} \\ &+ \text{ Cable Loss (dB)} \\ \hline &+ \text{ Antenna Factor (Loss) (dB/m)} \\ \\ &= \text{ Corrected Reading (dB } \mu\text{V/m)} \\ \hline \\ &- \text{Specification Limit (dB V/m)} \\ &= \text{dB Relative to Spec (\pm dB)} \end{aligned}$$

**8. LIST OF TEST EQUIPMENT**

| No | Description                 | Manufacturer                | Model No.              | Specifications                     | Next Cal. Data | Used equipment                      |
|----|-----------------------------|-----------------------------|------------------------|------------------------------------|----------------|-------------------------------------|
| 1  | EMI Test Receiver           | LIG Nex1                    | LSA-265                | 3Hz~26.5GHz                        | 12.12.18       | <input checked="" type="checkbox"/> |
| 2  | Dipole ANT                  | ElectroMetrics              | TDA-30/1-4             | 30~1GHz                            | 12.03.23       | <input type="checkbox"/>            |
| 3  | Biconical ANT               | ElectroMetrics              | BIA-30S                | 30~300MHz                          | 13.03.23       | <input checked="" type="checkbox"/> |
| 4  | Log periodic ANT            | ElectroMetrics              | LPA-30                 | 0.2~1GHz                           | 13.03.23       | <input checked="" type="checkbox"/> |
| 5  | Bilog Antenna               | Schaffner-Chase<br>EMC Ltd. | CBL6140A               | 50V, 5A                            | 13.05.07       | <input checked="" type="checkbox"/> |
| 6  | Turn Table                  | KEI                         | KEI-TURN               | 1500×1000×800                      | N/A            | <input type="checkbox"/>            |
| 7  | Turn Table                  | KEI                         | KEI-TURN               | 1500×1000×800                      | N/A            | <input checked="" type="checkbox"/> |
| 8  | Loop ANT.                   | Com-Power                   | AL-130                 | 9kHz~30MHz                         | 13.03.24       | <input checked="" type="checkbox"/> |
| 9  | Spectrum Analyzer           | LIG Nex1                    | ISA-265                | 1kHz~26.5GHz                       | 12.05.20       | <input type="checkbox"/>            |
| 10 | Function Generator          | Agilent                     | 33120A                 | 15MHz sine&square                  | 12.06.09       | <input type="checkbox"/>            |
| 11 | Frequency Counter           | HP                          | 5350B                  | 10Hz~20GHz                         | 12.06.09       | <input type="checkbox"/>            |
| 12 | Modulation Analyzer         | Agilent                     | 8901B                  | 10MHz~1.3GHz                       | 12.06.09       | <input type="checkbox"/>            |
| 13 | Audio Analyser              | Agilent                     | 8903B                  | 20Hz~100kHz                        | 12.06.09       | <input type="checkbox"/>            |
| 14 | Attenuator                  | Agilent                     | 8494B                  | 0~11dB, 18GHz                      | 12.06.09       | <input type="checkbox"/>            |
| 15 | Attenuator                  | Agilent                     | 8496B                  | 0~110dB, 18GHz                     | 12.06.09       | <input type="checkbox"/>            |
| 16 | Attenuator                  | Agilent                     | 8495B                  | 0~70dB, 18GHz                      | 12.06.09       | <input type="checkbox"/>            |
| 17 | Attenuator                  | TAE SUNG                    | SMA-1                  | 6dB                                | 12.09.02       | <input type="checkbox"/>            |
| 18 | Attenuator                  | TAE SUNG                    | SMA-2                  | 6dB                                | 12.09.02       | <input type="checkbox"/>            |
| 19 | Power Meter                 | Agilent                     | E4418B                 | 100kHz~110GHz,<br>0.0001uW~25100mW | 12.06.09       | <input checked="" type="checkbox"/> |
| 20 | Power Sensor                | HP                          | 8485A                  | 50MHz~26.5GHz                      | 12.06.09       | <input checked="" type="checkbox"/> |
| 21 | Vibration Tester            | Gana                        | GNV-400                | 10~60Hz, 0~4mm                     | 12.09.09       | <input type="checkbox"/>            |
| 22 | RF Cable                    | Gigalane                    | SMS-LL280-SMS<br>-1.5M | 1.5m                               | N/A            | <input checked="" type="checkbox"/> |
| 23 | Temp & Humidity Chamber     | Seoksan Tech                | SE-CT-02               | -40~150°C, 30~98%                  | 12.06.09       | <input checked="" type="checkbox"/> |
| 24 | Signal Generator            | Leader<br>Electronics       | 3220                   | 100kHz~1.3GHz                      | 12.06.09       | <input checked="" type="checkbox"/> |
| 25 | Oscilloscope                | Tektronix                   | TDS-350                | 200MHz                             | 12.09.02       | <input type="checkbox"/>            |
| 26 | Drop Tester                 | Self-made                   | KSQ-01                 | 150cm                              | N/A            | <input type="checkbox"/>            |
| 27 | Pre Amplifier               | GTC                         | GA-1825A               | 0.1~18GHz                          | 12.06.09       | <input checked="" type="checkbox"/> |
| 28 | Continuous operation tester | GTC                         | CT-100                 | Local Control                      | N/A            | <input type="checkbox"/>            |
| 29 | CW Generator                | HP                          | 83711B                 | 1~20GHz                            | 12.06.09       | <input checked="" type="checkbox"/> |
| 30 | POWER DIVIDER               | Agilent                     | 11636B                 | 26.5GHz                            | 12.06.09       | <input type="checkbox"/>            |
| 31 | Power Sensor                | Agilent                     | 8482B                  | 100kHz ~ 4.2GHz                    | 12.06.09       | <input type="checkbox"/>            |
| 32 | Attenuator                  | Winswell                    | 53-30-33               | dc~2.5GHz, 500W                    | 12.06.09       | <input type="checkbox"/>            |
| 33 | DC Power Supply             | Hanil                       | HPS-505A               | 50V, 5A                            | 12.09.02       | <input type="checkbox"/>            |
| 34 | Slidacs                     | Hanchang                    | 5KV                    | 5kW, 300V                          | 12.09.02       | <input type="checkbox"/>            |
| 35 | Termination                 | Kwang Yeok                  | KYTE-NJ-150W           | 150W                               | 12.09.02       | <input type="checkbox"/>            |
| 36 | Band-limited filter         | MITECH                      | KSQ-02                 | 600Ω                               | 12.09.02       | <input type="checkbox"/>            |
| 37 | Signal Generator            | WILTRON                     | 6759B                  | 10MHz ~ 26.5GHz                    | 12.09.02       | <input type="checkbox"/>            |
| 38 | Digital Multimeter          | DONG HWA                    | DM-300A                | AC/DC 500V<br>Max, 320mA Max       | 12.09.02       | <input checked="" type="checkbox"/> |
| 39 | Horn ANT.                   | SCHWARZBECK                 | BBHA 9120D             | 700MHz ~ 18GHz                     | 12.09.23       | <input checked="" type="checkbox"/> |
| 40 | DC Power Supply             | ALINCO                      | DM-340MW               | 15V, 30A                           | 12.09.02       | <input checked="" type="checkbox"/> |
| 41 | Spectrum Analyzer           | ROHDE&SCHWARZ               | FSV30                  | 1kHz~30GHz                         | 12.08.27       | <input checked="" type="checkbox"/> |