

Fangguang Inspection & Testing Co., Ltd.

MEASUREMENT REPORT

FCC PART 15 Subpart C Section 231

Report No.: S20240525011101

Issue Date: 07-11-2024

Applicant: Jiangyin SINBON Electronics Co., Ltd.

Address: 288 Chengjiang Middle Rd., Jiangyin, Jiangsu, China

FCC ID: ZUA-AUTO-NACS02

Product: NACS Charging Cable Assembly-J3400

Model No.: NACS02

Classification: Part 15 Security/Remote Control Devices

FCC Rule Part(s): Part 15 Subpart C (15.231)

Test Procedure(s): ANSI C63.10-2013

Result: Pass

Item Receipt Date: May. 25, 2024

Test Date: Jun. 19 ~ Jul. 04, 2024

Compiled By

Stone Zhang

Senior Test Engineer

Line Chen

(Line Chen)

Engineer Manager

Approved By

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested. The test report shall not be reproduced except in full without the written approval of Fangguang Inspection & Testing Co., Ltd. Wuxi Branch

The test report must not be used by the client to claim product certifications, approval, or endorsement by NVLAP, NIST or any agency of U.S. Government.

Revision History

Report No.	Version	Description	Issue Date
S20240525011101	Rev. 01	/	07-11-2024

CONTENTS

Description	Page
§2.1033 General Information	5
1. INTRODUCTION	6
1.1. Scope	6
1.2. Fangguang Test Location	6
2. PRODUCT INFORMATION	7
2.1. Equipment Description	7
2.2. Product Specification Subjective to this Report	7
2.3. Test Configuration	7
2.4. EMI Suppression Device(s)/Modifications	7
2.5. EUT Photo	7
2.6. Labeling Requirements	7
2.7. Calculation with all conversion and correction factors used	8
3. DESCRIPTION OF TEST	9
3.1. Evaluation Procedure	9
3.2. AC Line Conducted Emissions	9
3.3. Radiated Emissions	10
4. ANTENNA REQUIREMENTS	11
5. TEST EQUIPMENT CALIBRATION DATE	12
6. MEASUREMENT UNCERTAINTY	13
7. TEST RESULT	14
7.1. Summary	14
7.2. Radiated Emissions	15
7.2.1. Limit	15
7.2.2. Test Procedure	16
7.2.3. Test Setting	17
7.2.4. Test Setup	18
7.2.5. Test Result	20
7.3. Transmission Time	25
7.3.1. Limit	25
7.3.2. Test Procedure	25
7.3.3. Test Result	25
7.4. 20dB Emission Bandwidth	26

7.4.1.	Limit.....	26
7.4.2.	Test Procedure.....	26
7.4.3.	Test Result.....	27
7.5.	AC Conducted Emissions Measurement.....	28
7.5.1.	Test Limit.....	28
7.5.2.	Test Setup.....	28
7.5.3.	Test Result.....	29
8.	CONCLUSION.....	30

§2.1033 General Information

Applicant:	Jiangyin SINBON Electronics Co., Ltd.
Applicant Address:	288 Chengjiang Middle Rd., Jiangyin, Jiangsu, China
Manufacturer:	Jiangyin SINBON Electronics Co., Ltd.
Manufacturer Address:	288 Chengjiang Middle Rd., Jiangyin, Jiangsu, China
Test Site:	Fangguang Inspection & Testing Co., Ltd.
LAB ID:	CN5037
Test Site Address:	G9 Building, China Sensor Network International Innovation Park No.200, Linghu Avenue Wuxi, Jiangsu 214000 China
FCC Rule Part(s):	Part 15 Subpart C (15.231)
FCC ID:	ZUA-AUTO-NACS02
Test Device Serial No.:	S/N.:/ <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	Part 15 Security/Remote Control Devices

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2. Fangguang Test Location

These measurement tests were performed at the Fangguang Inspection and testing Co.,LTD located at 200 Linghu Avenue, Xinwu District, Wuxi City. The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	NACS Charging Cable Assembly-J3400
Model Name:	NACS02
Trade Mark:	SINBON
Input Voltage Range:	DC 3-15V 10mA

2.2. Product Specification Subjective to this Report

Operating Frequency	315MHz
Channel number	1
Type of modulation	OOK
Antenna Type:	PCB Antenna
Antenna Gain:	-15 dBi
Hardware Version:	NACS02
Software Version:	/

2.3. Test Configuration

The EUT was tested per the guidance of ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. EUT Photo

The EUT external photo, internal photo and test setup photo, please refer to the plots in the S20240525011101-A1/A2/A3.

2.6. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase.

However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

2.7. Calculation with all conversion and correction factors used

For AC Line Conducted Emissions Test:

Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

For Radiated Emissions Below 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

For Radiated Emissions Above 1GHz Test:

Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance provided in Part 15 Subpart C (15.231) were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. The turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- Use a unique coupling to the intentional radiator.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	FWXGJC-2016-181	1 year	2025/03/07
Two-Line V-Network	R&S	ENV 216	FWXGJC-2016-182	1 year	2025/04/28
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-385	1 year	2025/02/25

Radiated Emission

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Loop Antenna	Schwarzbeck	FMZB 1519B	FWXGJC-2018-015	3 year	2024/08/13
Bi-Log Antenna	R&S	HL562E	FWXGJC-2016-267-06	3 year	2025/03/02
Broadband Horn Antenna	R&S	HF907	FWXGJC-2016-267-07	1 year	2025/03/01
EMI Receiver	R&S	ESR26	FWXGJC-2016-267-01	1 year	2024/11/05
Pre-Amplifier	R&S	SCU-18D	FWXGJC-2016-267-05	1 year	2024/11/05
Pre-Amplifier	R&S	EMC184055 SE	FWXGJC-2018-018	3 year	2025/04/13
Thermohygrometer	Yuhuaze	HTC-1	FWXDA-2016-387	1 year	2024/11/03
Anechoic Chamber	Aimuke	EMCCT-3	FWXGJC-2016-270	1 year	2025/06/07

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 2.05dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 30MHz-1GHz: 3.06dB 1GHz-12.75GHz: 4.13dB
Spurious Emissions, Conducted
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 30MHz-1GHz: 1.00 dB 1GHz-26.5GHz: 1.30 dB
Output Power
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.60dB
Power Spectrum Density
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.80dB
Occupied Bandwidth
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_{c(y)}$): 0.20MHz

7. TEST RESULT

7.1. Summary

FCC Part Section(s)	Test Description	Test Result	Reference
§ 15.205, §15.209, §15.231(b)	Radiated Emissions	Pass	Section 7.2
§ 15.231 (a) (1)	Transmission Time	Pass	Section 7.3
§ 15.231 (c)	20dB Emission Bandwidth	Pass	Section 7.4
§ 15.207(a)	Conducted Emissions	Not applicable (See Note)	Section 7.5

Notes:

1. The EUT is powered by DC 12V, this item only for the EUT is designed to be connected to the public utility (AC) power line.

7.2. Radiated Emissions

7.2.1. Limit

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹ Linear interpolations.

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

7.2.2. Test Procedure

- 1) The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with

Maximum Hold Mode.

5) If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

7.2.3. Test Setting

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = as specified in Table 1
3. VBW = 3RBW
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize

Table 1 - RBW as a function of frequency

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz

7.2.4. Test Setup

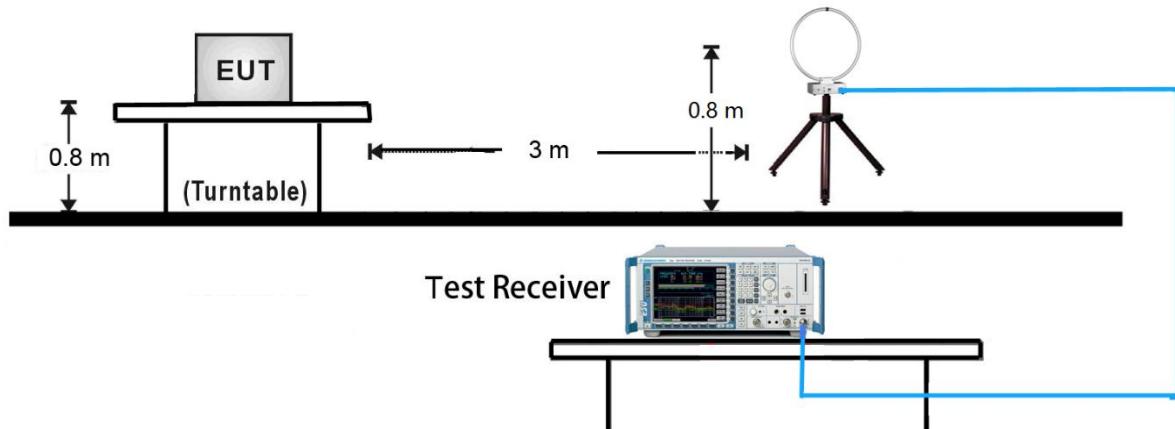


Figure 1. 9KHz to 30MHz radiated emissions test configuration

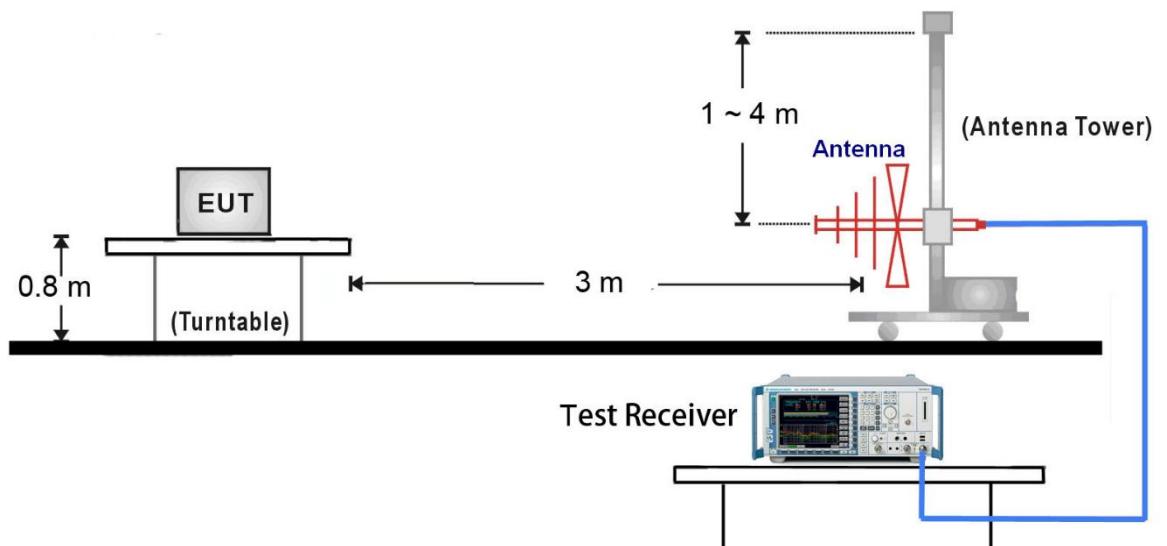


Figure 2. 30MHz to 1GHz radiated emissions test configuration

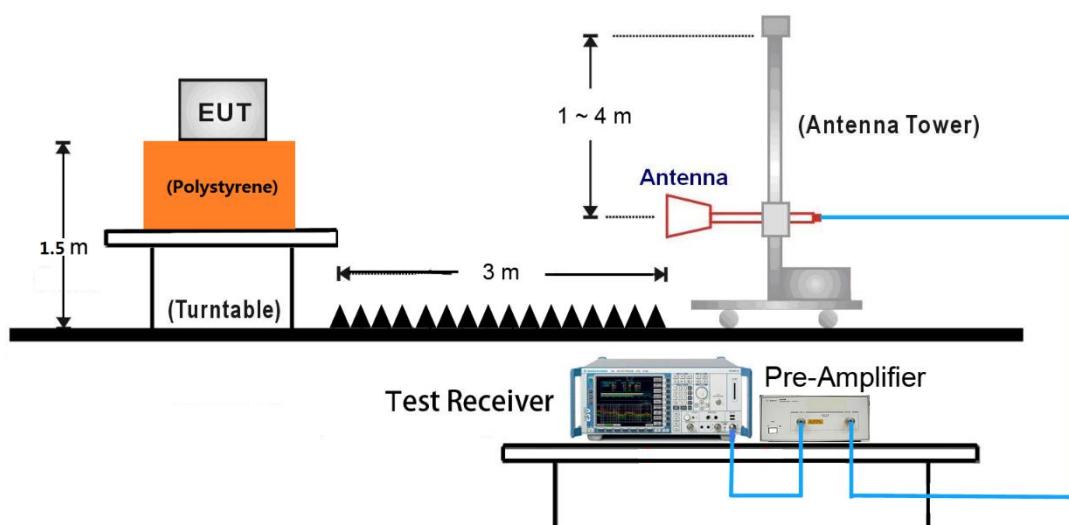


Figure 3. Above 1GHz radiated emissions test configuration

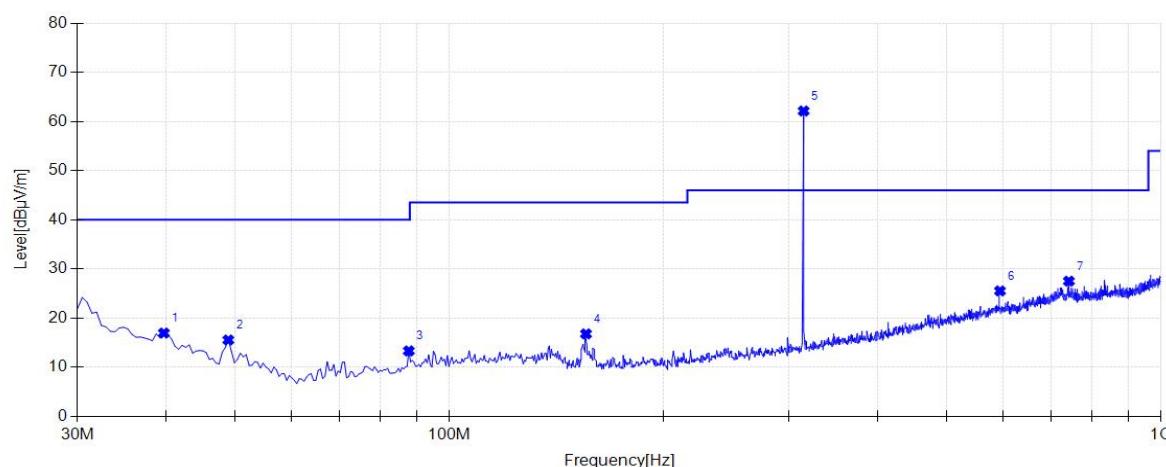
7.2.5. Test Result

Fundamental:

Frequency [MHz]	Level [dB μ V/m]	Factor [dB]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
315.000	62.13	13.32	75.62	13.49	100	176	Horizontal
315.000	51.19	12.44	75.62	24.43	100	117	Vertical

Note:

- 1) If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.

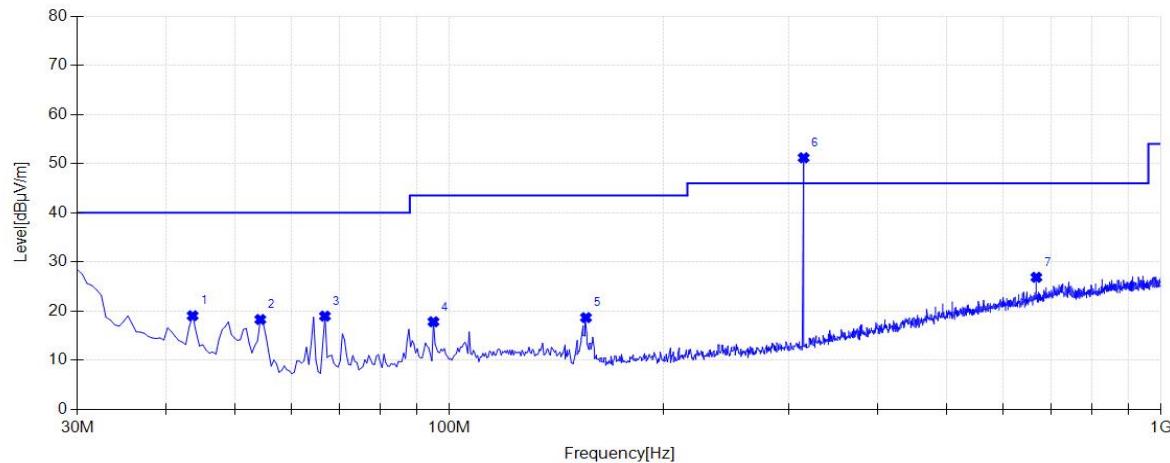

Radiated Spurious Emission:

9 kHz to 30MHz

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz – 1GHz

EUT:	NACS Charging Cable Assembly-J3400	Polarity:	Horizontal
Model:	NACS02	Voltage:	DC 12V
Environment:	Temp: 23°C; Humi:42%	Engineer:	Stone Zhang

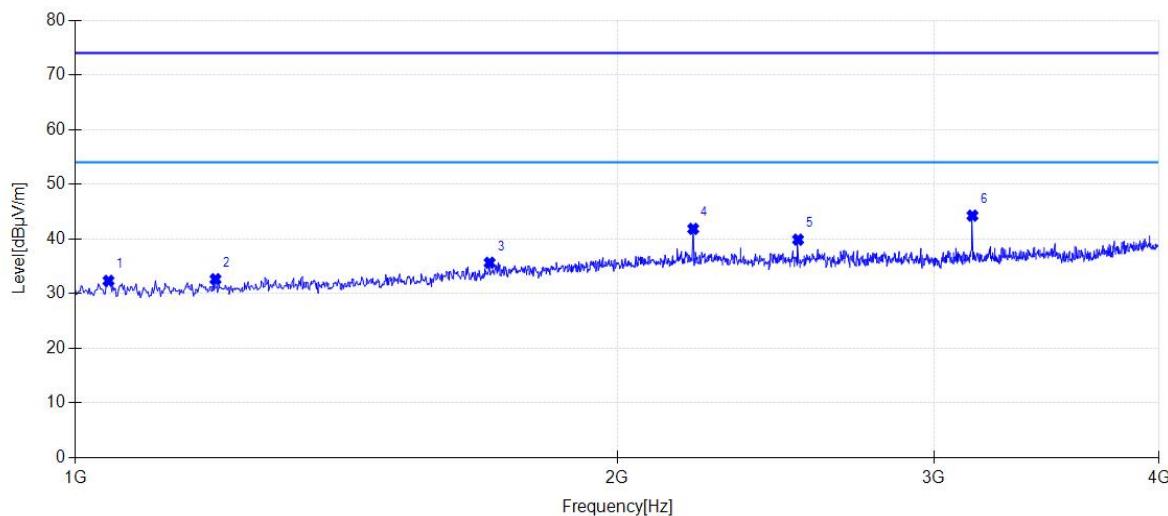


Suspected Data List									
NO.	Frequency [MHz]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	39.700	16.96	15.44	40.00	23.04	200	216	Peak	Horizontal
2	48.915	15.55	10.60	40.00	24.45	200	27	Peak	Horizontal
3	87.715	13.33	10.07	40.00	26.67	200	105	Peak	Horizontal
4	155.615	16.80	9.88	43.50	26.70	200	129	Peak	Horizontal
5	315.000	62.13	13.32	/	/	100	176	Peak	Horizontal
6	594.055	25.53	19.65	46.00	20.47	100	301	Peak	Horizontal
7	742.465	27.52	22.13	46.00	18.48	100	190	Peak	Horizontal

Note:

- 1) If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.
- 2) The Mark 5 is fundamental.

EUT:	NACS Charging Cable Assembly-J3400	Polarity:	Vertical
Model:	NACS02	Voltage:	DC 12V
Environment:	Temp: 23°C; Humi:42%	Engineer:	Stone Zhang

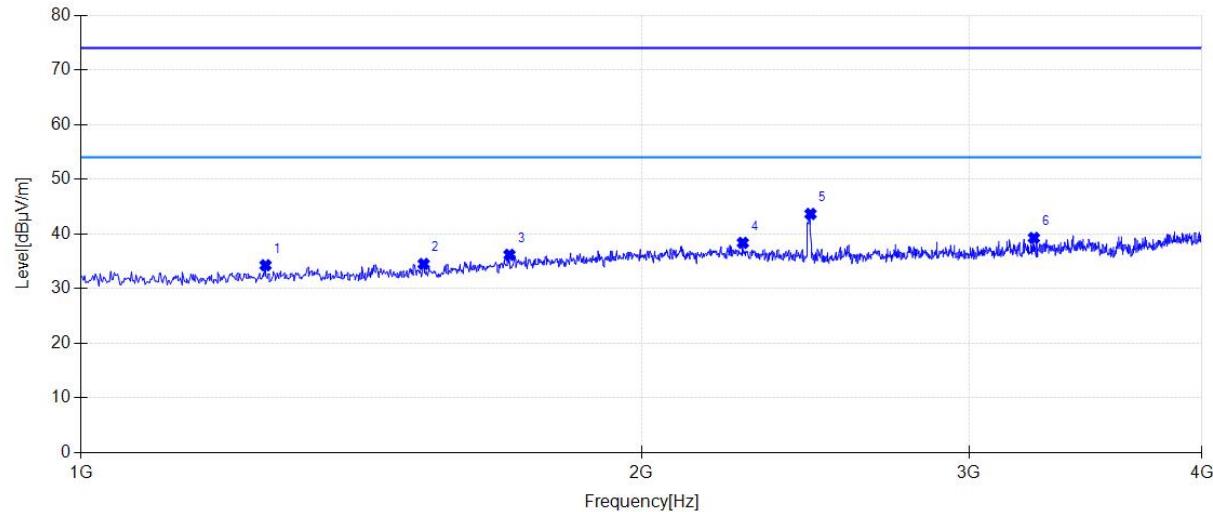

Suspected Data List									
NO.	Freq. [MHz]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	43.580	19.06	12.45	40.00	20.94	100	93	Peak	Vertical
2	54.250	18.30	8.52	40.00	21.70	200	276	Peak	Vertical
3	66.860	18.98	7.62	40.00	21.02	200	276	Peak	Vertical
4	94.990	17.83	10.06	43.50	25.67	100	2	Peak	Vertical
5	155.6150	18.68	9.58	43.50	24.82	100	89	Peak	Vertical
6	315.000	51.19	12.44	/	/	100	117	Peak	Vertical
7	668.2600	26.88	20.44	46.00	19.12	100	80	Peak	Vertical

Note:

- 1) If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.
- 2) The Mark 6 is fundamental.

Emission above 1GHz

EUT:	NACS Charging Cable Assembly-J3400	Polarity:	Horizontal
Model:	NACS02	Voltage:	DC 12V
Environment:	Temp: 23°C; Humi:42%	Engineer:	Stone Zhang



Suspected Data List									
NO.	Freq. [MHz]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	1043.5000	32.33	-4.66	54.00	21.67	150	152	Peak	Horizontal
2	1196.5000	32.63	-4.12	54.00	21.37	150	353	Peak	Horizontal
3	1699.0000	35.63	-2.01	54.00	18.37	150	195	Peak	Horizontal
4	2204.5000	41.84	-0.05	54.00	12.16	150	56	Peak	Horizontal
5	2521.0000	39.86	0.57	54.00	14.14	150	84	Peak	Horizontal
6	3151.0000	44.25	1.72	54.00	9.75	150	114	Peak	Horizontal

Note:

- 1) If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.

EUT:	NACS Charging Cable Assembly-J3400	Polarity:	Vertical
Model:	NACS02	Voltage:	DC 12V
Environment:	Temp: 23°C; Humi:42%	Engineer:	Stone Zhang

Suspected Data List									
NO.	Freq. [MHz]	Level [dBμV/m]	Factor [dB]	Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	1256.5000	34.26	-2.91	54.00	19.74	150	59	Peak	Vertical
2	1528.0000	34.50	-2.10	54.00	19.50	150	338	Peak	Vertical
3	1699.0000	36.17	-1.29	54.00	17.83	150	44	Peak	Vertical
4	2267.5000	38.36	0.19	54.00	15.64	150	1	Peak	Vertical
5	2465.5000	43.65	0.22	54.00	10.35	150	131	Peak	Vertical
6	3250.0000	39.26	2.28	54.00	14.74	150	338	Peak	Vertical

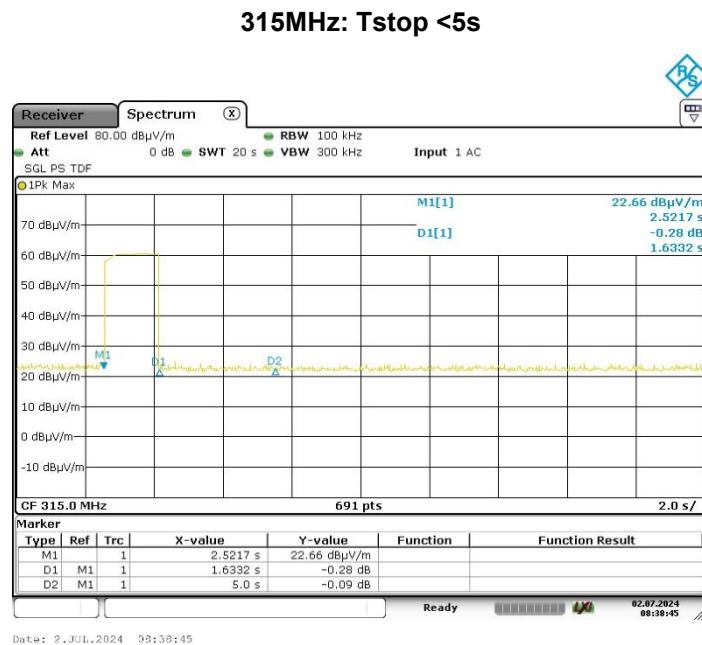
Note:

- 1) If the spurious emissions maximized peak measured value complies with the QP/Average limit, it is unnecessary to perform QP/Average measurement.

7.3. Transmission Time

7.3.1. Limit

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


7.3.2. Test Procedure

1. With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer.
2. Set center frequency of spectrum analyzer=operating frequency.
3. Set the spectrum analyzer as RBW=100k VBW=300k Span=0Hz.
4. Repeat above procedures until all frequency measured was complete.

7.3.3. Test Result

Frequency (MHz)	Transmission Time (s)	Limit (s)	Result
315	1.6332	5	Pass

Test Plot:

7.4. 20dB Emission Bandwidth

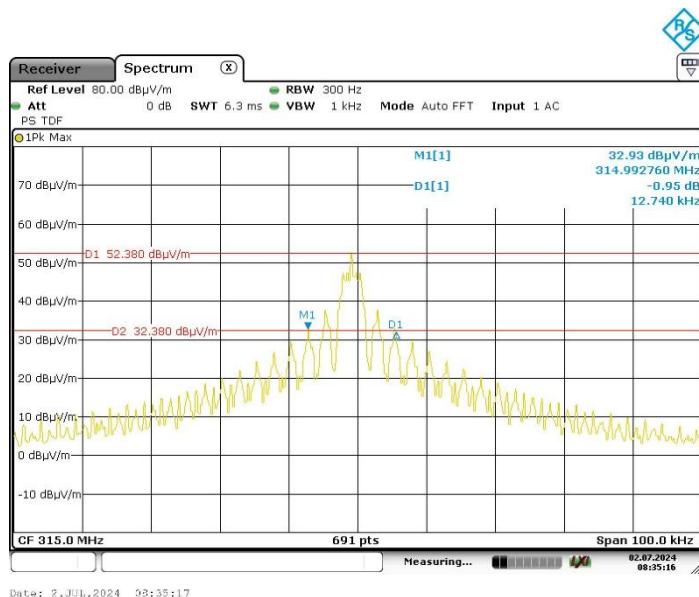
7.4.1. Limit

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

7.4.2. Test Procedure

1. With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20dB bandwidth.
2. Set center frequency of spectrum analyzer=operating frequency.
3. Set the RBW to 1% to 5% of the OBW.
4. Set the VBW $\geq [3 \times \text{RBW}]$.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.

7.4.3. Test Result


Frequency (MHz)	20dB Bandwidth (kHz)	Limit (kHz)	Result
315	12.740	787.50	Pass

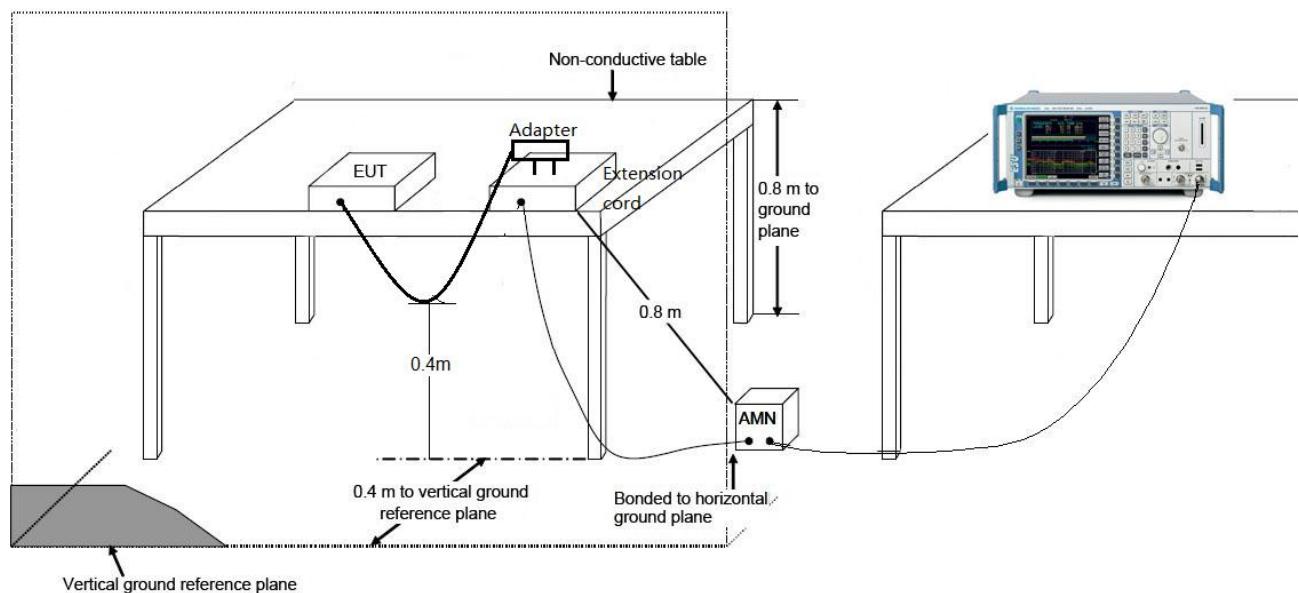
Note:

1. 315 MHz Limit = 0.25% * Center Frequency = 0.25% * 315 MHz = 787.50 kHz

Test Plot:

315 MHz:20 dB Emission Bandwidth

7.5. AC Conducted Emissions Measurement


7.5.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits		
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 – 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.5.2. Test Setup

7.5.3. Test Result

The EUT is DC supply, this item only for the EUT is designed to be connected to the public utility (AC) power line. Not applicable.

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **NACS Charging Cable Assembly-J3400** is compliance with Part 15C of the FCC Rules.

The End