

A D T

FCC TEST REPORT

REPORT NO.: RF110722C13

MODEL NO.: MRO8700

FCC ID: ZTYMRO8700

RECEIVED: July 22, 2011

TESTED: Aug. 03 to 12, 2011

ISSUED: Sep. 05, 2011

APPLICANT: Hao Pin Technology Co. Ltd.

ADDRESS: 1F., No.3, Aly. 37, Ln. 108, Nanfeng Rd.,
Pingzhen City, Taoyuan County 324, Taiwan
(R.O.C.)

ISSUED BY: Bureau Veritas Consumer Products Services
(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS : No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen,
Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen,
Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen,
Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 30 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

RELEASE CONTROL RECORD	3
1 CERTIFICATION	4
2 SUMMARY OF TEST RESULTS	5
2.1 MEASUREMENT UNCERTAINTY	5
3 GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF EUT	6
3.2 DESCRIPTION OF TEST MODES	7
3.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	7
3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS	8
3.5 DESCRIPTION OF SUPPORT UNITS	9
3.6 CONFIGURATION OF SYSTEM UNDER TEST	10
4 TEST PROCEDURES AND RESULTS	11
4.1 CONDUCTED EMISSION MEASUREMENT	11
4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	11
4.1.2 TEST INSTRUMENTS	11
4.1.3 TEST PROCEDURES	12
4.1.4 TEST SETUP	12
4.1.5 EUT OPERATING CONDITIONS	13
4.1.6 TEST RESULTS	14
4.2 RADIATED EMISSION MEASUREMENT	16
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	16
4.2.2 TEST INSTRUMENTS	18
4.2.3 TEST PROCEDURES	20
4.2.4 DEVIATION FROM TEST STANDARD	21
4.2.5 TEST SETUP	22
4.2.6 EUT OPERATING CONDITIONS	22
4.2.7 TEST RESULTS	23
4.3 BANDEdge MEASUREMENT	26
4.3.1 LIMITS OF BANDEdge	26
4.3.2 TEST INSTRUMENTS	26
4.3.3 TEST PROCEDURE	26
4.3.4 DEVIATION FROM TEST STANDARD	26
4.3.5 EUT OPERATING CONDITION	26
4.3.6 TEST RESULTS	27
5 INFORMATION ON THE TESTING LABORATORIES	29
6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	30

A D T

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF110722C13	Original release	Sep. 05, 2011

A D T

1 CERTIFICATION

PRODUCT : MICROWAVE MOTION SENSOR

BRAND NAME : HAO PIN

MODEL NO. : MRO8700

TEST SAMPLE : ENGINEERING SAMPLE

APPLICANT : Hao Pin Technology Co. Ltd.

TESTED : Aug. 03 to 12, 2011

STANDARDS : FCC Part 15, Subpart C (Section 15.245)

ANSI C63.4-2003

ANSI C63.10-2009

The above equipment (Model: MRO8700) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , **DATE:** Sep. 05, 2011
(Midoli Peng, Specialist)

APPROVED BY : , **DATE:** Sep. 05, 2011
(May Chen, Deputy Manager)

A D T

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C			
Standard Paragraph	Test Type	Result	Remark
15.207	Conducted Emission Test	PASS	Minimum passing margin is -6.79dB at 0.295MHz.
15.245	Radiated Emission Test	PASS	Minimum passing margin is -0.5dB at 42127MHz
15.215 (c)	Bandedge Measurement	PASS	Meet the requirement of limit
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz-1GHz)	3.89dB
Radiated emissions (1GHz -18GHz)	2.19 dB
Radiated emissions (18GHz -40GHz)	2.56 dB

A D T

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	MICROWAVE MOTION SENSOR
MODEL NO.	MRO8700
FCC ID	ZTYMRO8700
POWER SUPPLY	DC 4.5V from power supply
MODULATION TYPE	GFSK
CARRIER FREQUENCY OF EACH CHANNEL	10.525GHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	PCB
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

1. Microwave motion sensor is a 10.525GHz device that is applying Doppler radar phenomenon to sense motion. It transmits a low power microwave and receives energy reflected by objects.
2. For radiated test : The EUT was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Z Plan
Mode B	Y-Z Plan
Mode C	X-Y Plan

From the above modes, the worst cases were found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

3. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

A D T

3.2 DESCRIPTION OF TEST MODES

One channel is provided in this EUT.

Channel	Freq. (GHz)
1	10.525

3.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	PLC	RE < 1G	RE \geq 1G	BE	
1	✓	-	-	-	X-Y Plan
2	-	✓	✓	✓	X-Z Plan

Where **PLC**: Power Line Conducted Emission **RE < 1G**: Radiated Emission below 1GHz

RE \geq 1G: Radiated Emission above 1GHz **BE**: Bandedge Emission Measurement

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	GFSK

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	GFSK

A D T

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	GFSK

BANDEDGE EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
1	1	GFSK

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.245)

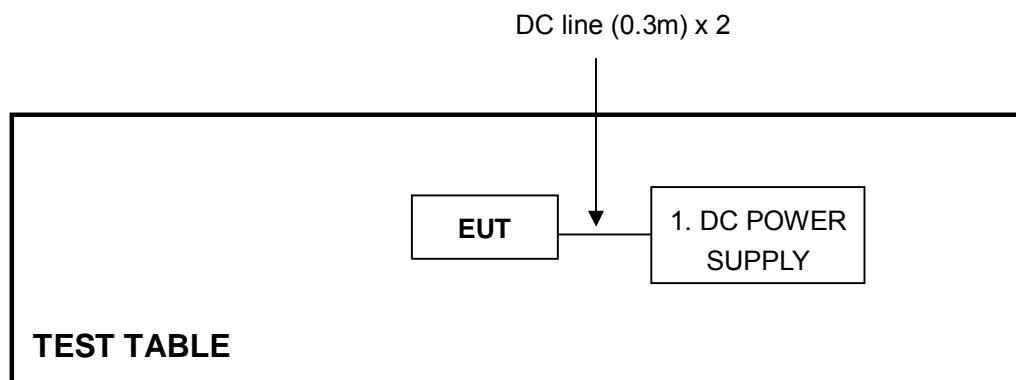
ANSI C63.4: 2003

ANSI C63.10: 2009

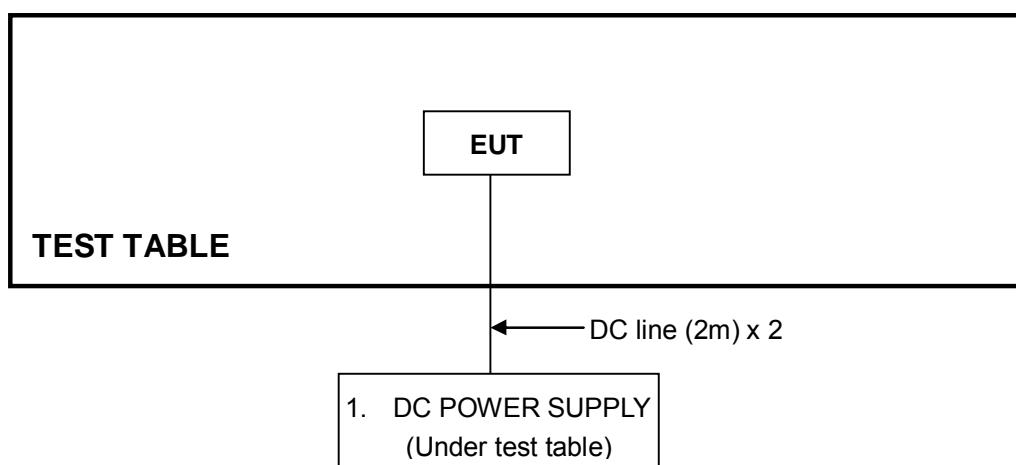
All tests have been performed and recorded as per the above standards.

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC POWER SUPPLY	Topward	6603D	795558	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC line (0.3m) / DC line (2m)


NOTE: All power cords of the above support units are non shielded (1.8m).

3.6 CONFIGURATION OF SYSTEM UNDER TEST

For conducted test:

For other test items:

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dB μ V)	
0.15-0.5 0.5-5 5-30	Quasi-peak	Average
	66 to 56	56 to 46
	56	46
	60	50

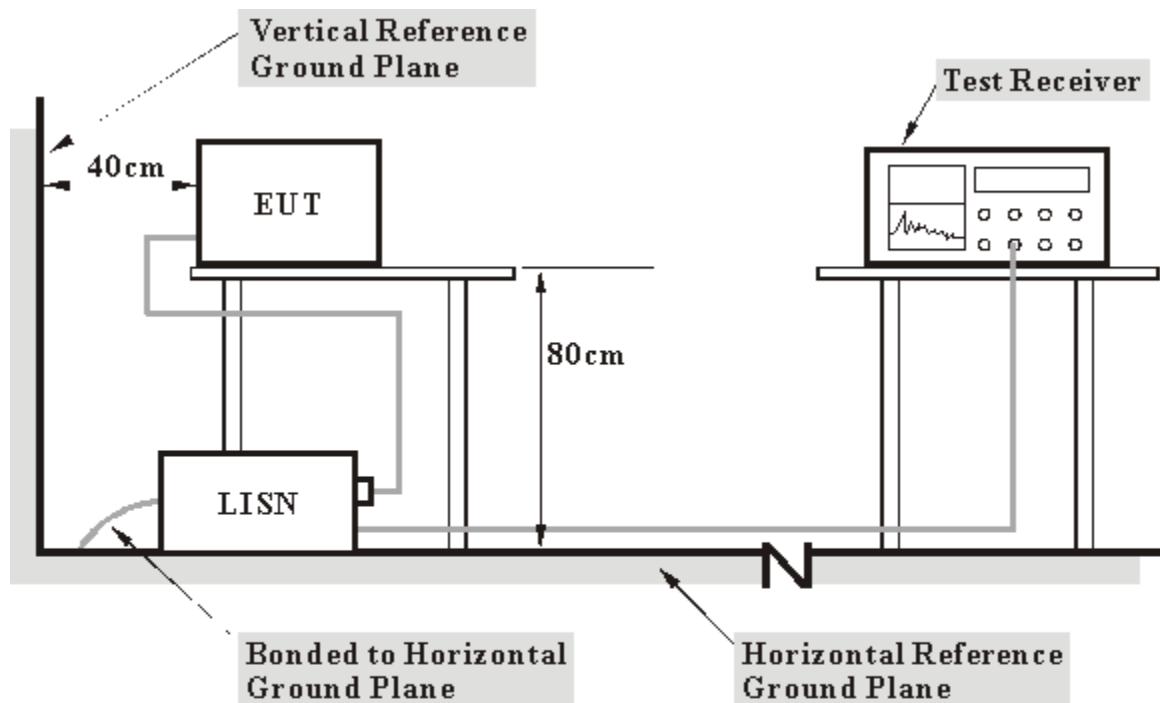
NOTE:

1. The lower limit shall apply at the transition frequencies.
2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

Test date: Aug. 12, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100287	Mar. 02, 2011	Mar. 01, 2012
Line-Impedance Stabilization Network (for EUT)	NSLK 8127	8127-523	Sep. 17, 2010	Sep. 16, 2011
Line-Impedance Stabilization Network (for Peripheral)	ENV-216	100072	June 10, 2011	June 09, 2012
RF Cable (JYEBAO)	5DFB	CONCAB-003	Aug. 05, 2011	Aug. 04, 2012
50 ohms Terminator	50	3	Nov. 03, 2010	Nov. 02, 2011
Software	BV ADT_Cond_V7.3.7	NA	NA	NA


Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in Shielded Room No. A.
3. The VCCI Con A Registration No. is C-817.

4.1.3 TEST PROCEDURES

- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported

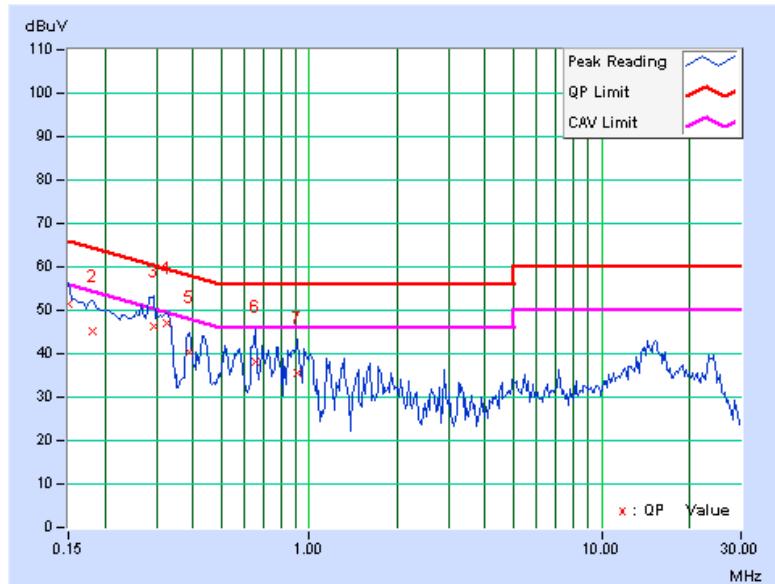
4.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

A D T

4.1.5 EUT OPERATING CONDITIONS


Set the EUT under transmission / receiver condition continuously at specific channel frequency.

4.1.6 TEST RESULTS

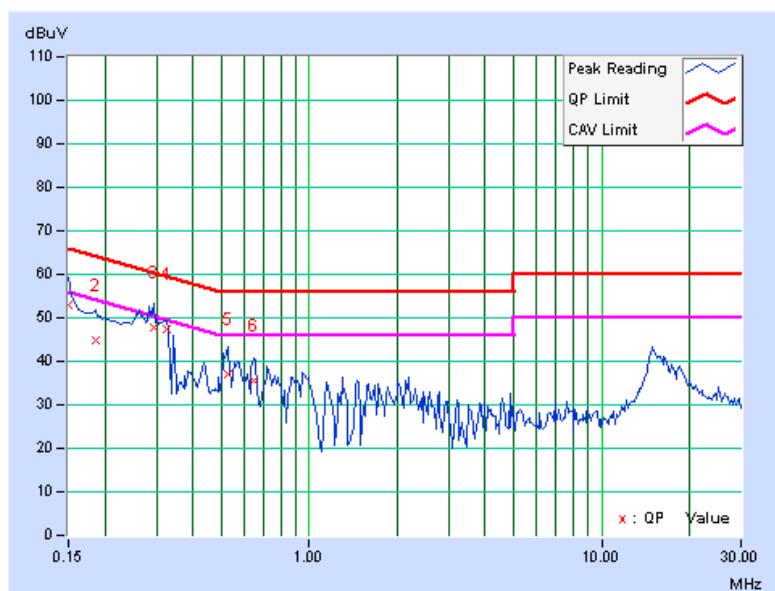
PHASE	Line (L)	6dB BANDWIDTH	9 kHz
-------	----------	---------------	-------

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
			Factor [MHz]	(dB)	[dB (uV)]	[dB (uV)]	[dB (uV)]	(dB)	Q.P.	AV.
1	0.150	0.36	50.99	46.02	51.35	46.38	66.00	56.00	-14.65	-9.62
2	0.181	0.35	44.85	20.30	45.20	20.65	64.43	54.43	-19.22	-33.77
3	0.295	0.35	46.03	43.25	46.38	43.60	60.40	50.40	-14.01	-6.79
4	0.326	0.36	46.57	35.64	46.93	36.00	59.56	49.56	-12.63	-13.56
5	0.388	0.36	40.09	23.34	40.45	23.70	58.10	48.10	-17.65	-24.40
6	0.654	0.36	37.94	26.09	38.30	26.45	56.00	46.00	-17.70	-19.55
7	0.916	0.37	35.31	23.00	35.68	23.37	56.00	46.00	-20.32	-22.63

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value.

PHASE	Neutral (N)	6dB BANDWIDTH	9 kHz
-------	-------------	---------------	-------

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
	[MHz]	Factor (dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.150	0.09	52.87	47.23	52.96	47.32	66.00	56.00	-13.04	-8.68
2	0.185	0.10	44.62	20.24	44.72	20.34	64.25	54.25	-19.53	-33.91
3	0.295	0.10	47.63	41.04	47.73	41.14	60.40	50.40	-12.66	-9.25
4	0.326	0.11	47.14	39.94	47.25	40.05	59.56	49.56	-12.31	-9.51
5	0.525	0.11	37.09	25.66	37.20	25.77	56.00	46.00	-18.80	-20.23
6	0.650	0.12	35.37	24.91	35.49	25.03	56.00	46.00	-20.51	-20.97


REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.245 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBuV/m)	
	Peak	Average
10500 ~ 10550	148	128
Field Strength of Harmonics (dBuV/m)		
	108	88

- (1) Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in 15.205, shall not exceed the field strength limits shown in 15.209. Harmonic emissions in the restricted bands at and above 17.7 GHz shall not exceed the following field strength limits:
 - (ii) For all other field disturbance sensors, 7.5 mV/m.
 - (iii) Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands, other than the second and third harmonics from devices operating in the 24075–24175 MHz band, fully comply with the limits given in 15.209. Continuous operation of field disturbance sensors designed to be used in farm equipment, vehicles such as fork lifts that are intended primarily for use indoors or for very specialized operations, or railroad locomotives, railroad cars and other equipment which travels on fixed tracks is permitted. A field disturbance sensor will be considered not to be operating in a continuous mode if its operation is limited to specific activities of limited duration (e.g., putting a vehicle into reverse gear, activating a turn signal, etc.).
- (2) Field strength limits are specified at a distance of 3 meters.
- (3) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

A D T

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
2. Section 15.205 restricted bands of operation shall compliance with the limits in Section 15.209.

4.2.2 TEST INSTRUMENTS

FOR BELOW 1GHz TEST:

Test date: Aug. 03, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250253	Aug. 23, 2010	Aug. 22, 2011
Agilent Pre-Selector	N9039A	MY46520310	Aug. 23, 2010	Aug. 22, 2011
Agilent Signal Generator	N5181A	MY49060347	July 25, 2011	July 24, 2012
LIG NEX1 Test Receiver	ER-265	L09068005	Oct. 25, 2010	Oct. 24, 2011
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-04	Nov. 16, 2010	Nov. 15, 2011
Agilent Pre-Amplifier	8449B	3008A02465	Feb. 28, 2011	Feb. 27, 2012
Miteq Pre-Amplifier	AFS33-1800265 0-30-8P-44	881786	NA	NA
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-361	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000220091110	Nov. 22, 2010	Nov. 21, 2011
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 08, 2010	Oct. 07, 2011
RF CABLE	NA	RF104-205 RF104-207 RF104-202	Dec. 28, 2010	Dec. 27, 2011
RF Cable	NA	CHHCAB_001	NA	NA
Software	ADT_Radiated_V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in 966 Chamber No. H.
4. The FCC Site Registration No. is 797305.
5. The CANADA Site Registration No. is IC 7450H-3.

A D T

FOR ABOVE 1GHz TEST:

Test date: Aug. 10, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 16, 2010	Nov. 15, 2011
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
Miteq Pre-Amplifier	AFS33-1800265 0-30-8P-44	881786	NA	NA
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 12, 2010	Nov. 11, 2011
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 08, 2010	Oct. 07, 2011
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 27, 2010	Dec. 26, 2011
RF Cable	NA	CHGCAB_001	NA	NA
Software	ADT_Radiated_V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA
OML Harmonic Mixer (33~55GHz)	M22HWD	110215-1	Feb. 16, 2011	Feb. 15, 2012
OML Horn Antenna (33~55GHz)	M22RH	110215-1	Feb. 16, 2011	Feb. 15, 2012
Diplexer	DPL26	110215-1	Feb. 16, 2011	Feb. 15, 2012

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in 966 Chamber No. G.
4. The FCC Site Registration No. is 966073.
5. The VCCI Site Registration No. is G-137.
6. The CANADA Site Registration No. is IC 7450H-2.

A D T

4.2.3 TEST PROCEDURES

PROCEDURE FOR BELOW 40 GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The spectrum analyzer system was set to peak detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

PROCEDURE FOR ABOVE 40 GHz

External harmonic mixers are utilized.

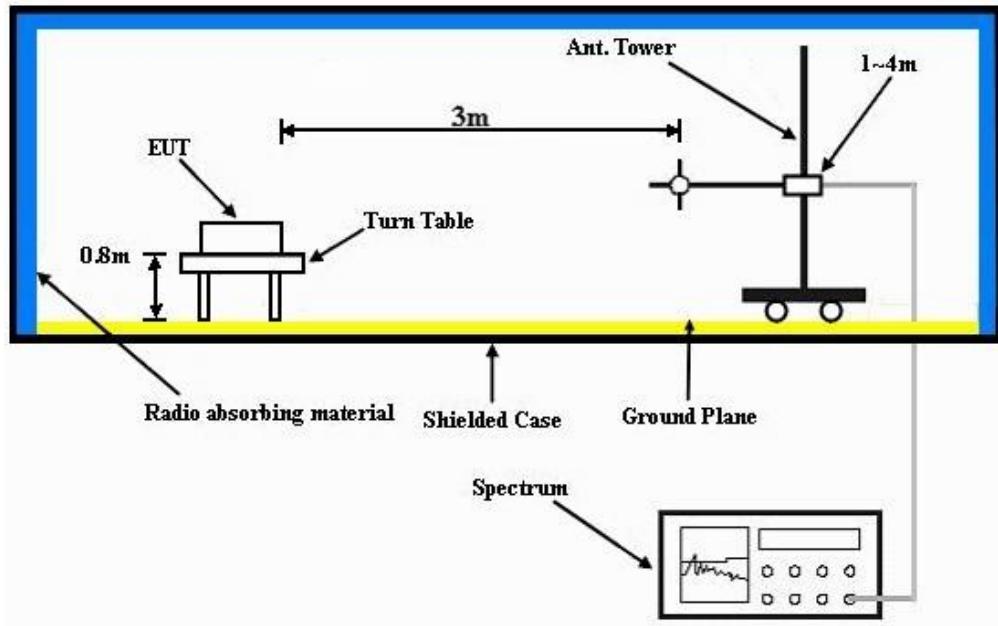
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized.
- c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the EUT.
- d. Repeat (b) with the horn in a vertically polarized position.
- e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.
- f. Note the maximum level indicated on the Spectrum Analyzer.
- g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits
- h. Repeat (a) - (f) for every emission that must be measured, up through the required frequency range of investigation

A D T

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz.
3. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 10Hz for Peak detection at frequency above 1GHz.
4. Shorter measurement distances may be used to improve the measurement system's noise floor. As 15.245 description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was compared to the calculate limit for 1-m distance:

Limit at 1-meter distance (dBuV)


= Limit at 3 meter distance (dBuV) - 20log(1/3)(dB)

= Limit at 3 meter distance (dBuV) + 9.5(dB).

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Set the EUT under transmission / receiver condition continuously at specific channel frequency.

A D T

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL		1		FREQUENCY RANGE Below 1000MHz
INPUT POWER		DC 4.5V from power supply		DETECTOR FUNCTION Quasi-Peak
ENVIRONMENTAL CONDITIONS		20deg. C, 65%RH		TESTED BY Nelson Teng

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	143.92	14.6 QP	43.5	-28.9	1.00 H	300	0.34	14.24
2	257.85	16.9 QP	46.0	-29.1	1.75 H	151	3.55	13.37
3	315.04	16.5 QP	46.0	-29.5	1.50 H	255	0.96	15.50
4	486.87	18.8 QP	46.0	-27.2	1.75 H	28	-0.41	19.25
5	574.27	19.4 QP	46.0	-26.6	1.50 H	0	-1.67	21.09
6	830.54	26.6 QP	46.0	-19.5	2.00 H	26	1.66	24.89
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	47.53	19.2 QP	40.0	-20.8	1.75 V	291	5.03	14.20
2	257.85	14.7 QP	46.0	-31.3	1.25 V	0	1.36	13.37
3	474.91	17.9 QP	46.0	-28.1	1.00 V	62	-1.08	19.00
4	825.09	22.9 QP	46.0	-23.2	1.00 V	110	-1.96	24.81
5	924.09	24.6 QP	46.0	-21.4	2.00 V	146	-1.51	26.07
6	957.13	24.7 QP	46.0	-21.3	1.25 V	211	-1.76	26.46

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.

A D T

1~ 40 GHz

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL		FREQUENCY RANGE		1 ~ 40GHz
INPUT POWER		DETECTOR FUNCTION		Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS		TESTED BY		Frank Liu

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	10500.00	61.4 PK	74.0	-12.6	1.05 H	101	14.49	46.91
2	10500.00	51.2 AV	54.0	-2.8	1.05 H	101	4.29	46.91
3	*10531.00	96.8 PK			1.05 H	101	49.71	47.09
4	*10531.00	96.5 AV			1.05 H	101	49.41	47.09
5	10550.00	61.2 PK	74.0	-12.8	1.05 H	101	14.00	47.20
6	10550.00	51.0 AV	54.0	-3.0	1.05 H	101	3.80	47.20
7	21062.00	87.4 PK	108.0	-20.6	1.00 H	240	35.38	52.02
8	21062.00	87.3 AV	88.0	-0.7	1.00 H	240	35.28	52.02
9	31593.00	87.2 PK	108.0	-20.8	1.12 H	231	27.22	59.98
10	31593.00	87.1 AV	88.0	-0.9	1.12 H	231	27.12	59.98

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	10500.00	61.0 PK	74.0	-13.0	1.00 V	182	14.09	46.91
2	10500.00	51.1 AV	54.0	-2.9	1.00 V	182	4.19	46.91
3	*10531.00	113.1 PK			1.00 V	178	66.01	47.09
4	*10531.00	113.0 AV			1.00 V	178	65.91	47.09
5	10550.00	61.6 PK	74.0	-12.4	1.00 V	182	14.40	47.20
6	10550.00	51.0 AV	54.0	-3.0	1.00 V	182	3.80	47.20
7	21062.00	86.3 PK	108.0	-21.7	1.00 V	133	34.28	52.02
8	21062.00	86.1 AV	88.0	-1.9	1.00 V	133	34.08	52.02
9	31593.00	81.8 PK	108.0	-26.2	1.00 V	241	21.82	59.98
10	31593.00	80.6 AV	88.0	-7.4	1.00 V	241	20.62	59.98

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. “*”: Fundamental frequency

A D T

ABOVE 40 GHz

EUT TEST CONDITION		MEASUREMENT DETAIL	
CHANNEL	1	FREQUENCY RANGE	40~53GHz
INPUT POWER	DC 4.5V from power supply	DETECTOR FUNCTION	Peak (PK) Average (AV)
ENVIRONMENTAL CONDITIONS	26deg. C, 66%RH	TESTED BY	Wen Yu

NO.	FREQ. (MHz)	Antenna Polarity	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)
1	42127.00 (PK)	HORIZONTAL	99.8	117.5	-17.7
2	42127.00 (AV)	HORIZONTAL	97	97.5	-0.5
NO.	FREQ. (MHz)	Antenna Polarity	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)
1	42127.00 (PK)	VERTICAL	94.1	117.5	-23.4
2	42127.00 (AV)	VERTICAL	91.2	97.5	-6.3

REMARKS:

1. The measurement distance of above 40 GHz is 1meter.
2. The limit of 1meter distance = 3 meter distance limit + 9.5 dB.
3. There is no spurious emission were detected between 40 to 53 GHz
4. Margin value = Emission level – Limit value.

A D T

4.3 BANDEDGE MEASUREMENT

4.3.1 LIMITS OF BANDEDGE

According to 15.215(c), the requirement is to ensure the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.3.2 TEST INSTRUMENTS

Test date: Aug. 10, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 08, 2010	Dec. 07, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

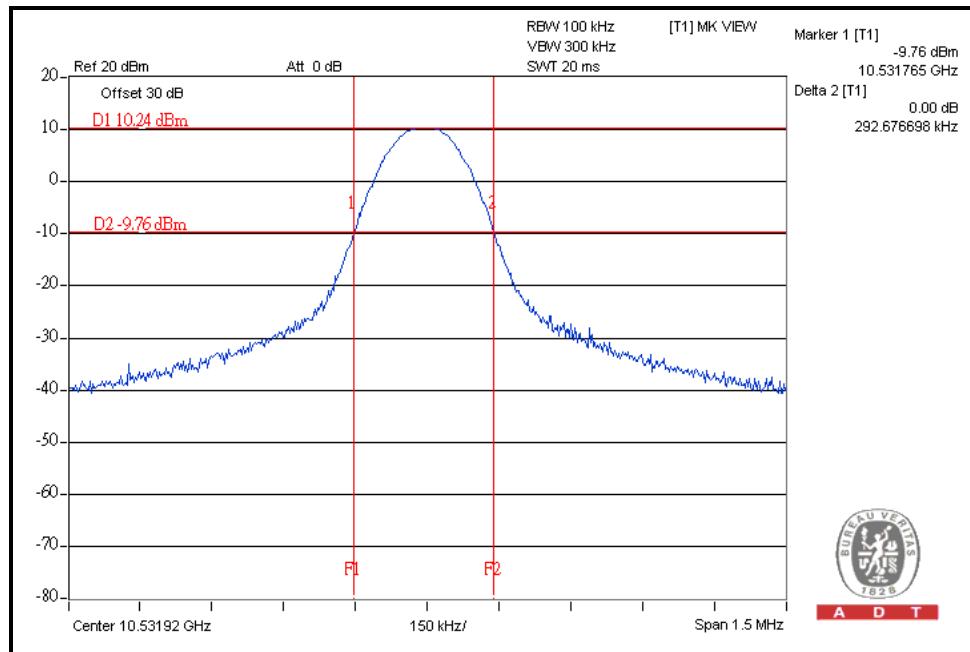
4.3.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span from band edge. The band edges was measured and recorded.

4.3.4 DEVIATION FROM TEST STANDARD

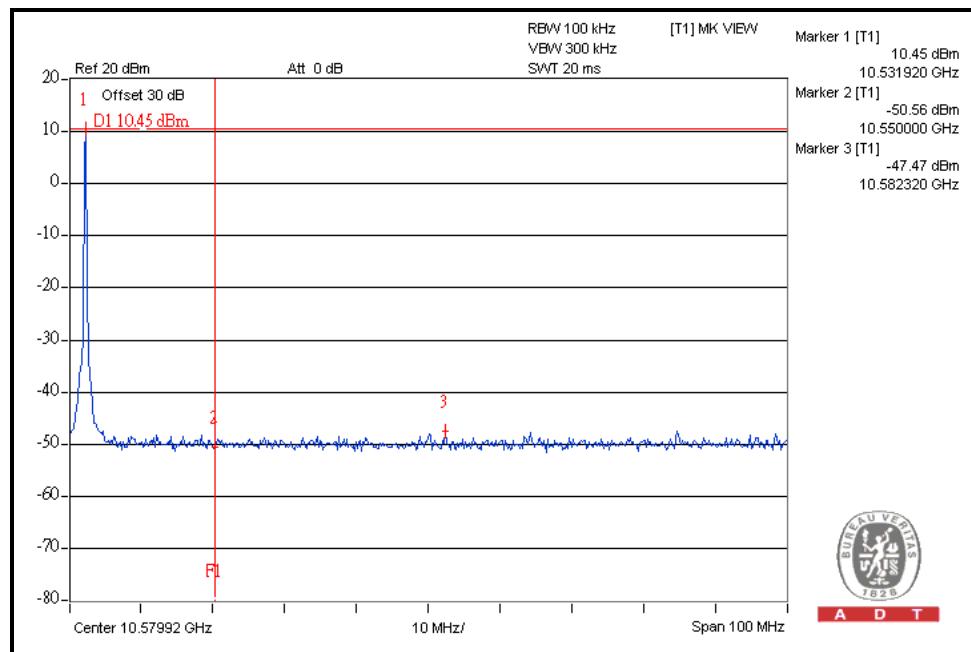
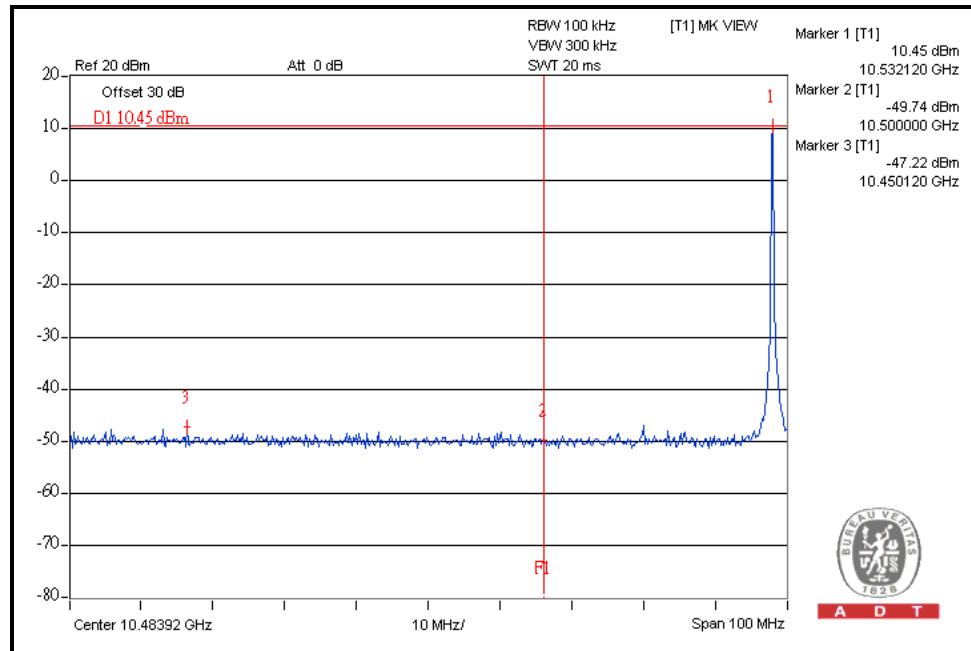
No deviation

4.3.5 EUT OPERATING CONDITION


Set the EUT under transmission / receiver condition continuously at specific channel frequency.

A D T

4.3.6 TEST RESULTS



FOR 20dB BANDWIDTH

A D T

FOR BANEDGE

A D T

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26052943

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

A D T

6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--- END ---