

www.nemko.com

Compliance test report ID

177972-1TRFWL

Date of issue
October 19, 2011

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHz – Partial testing

RSS-210, Issue 8 Annex 8

Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz Bands – Partial testing

Applicant **Amyuni Technologies**
Product **DevTouch Pro / Double ii**
Model **DBLDEV1**
FCC ID **ZTVDBLDEV1**
IC Reg No. **9796A-DBLDEV1**

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Test location

Nemko Canada Inc.
303 River Road
Ottawa, ON, K1V 1H2
Canada
Test site FCC ID: 176392 (3 m Semi anechoic chamber)
Test site IC ID: 2040A-4

Telephone +1 613 737 9680
Facsimile +1 613 737 9691
Toll free +1 800 563 6336
Website www.nemko.com

Tested by Andrey Adelberg, Senior Wireless/EMC Specialist

Reviewed by

October 19, 2011

David Duchesne, Senior EMC/Wireless Specialist

Date

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of Contents

Section 1	Report summary	4
1.1	Applicant.....	4
1.2	Manufacturer	4
1.3	Test specifications.....	4
1.4	Statement of compliance.....	4
1.5	Test report revision history	4
Section 2	Summary of test results	5
2.1	FCC Part 15 Subpart C: test results.....	5
2.2	IC RSS-210, Issue 8: test results	5
Section 3	Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
Section 4	Engineering considerations	7
4.1	Modifications incorporated in the EUT	7
4.2	Technical judgment	7
4.3	Deviations from laboratory tests procedures.....	7
Section 5	Test conditions	8
5.1	Atmospheric conditions	8
5.2	Power supply range.....	8
Section 6	Measurement uncertainty	9
6.1	Uncertainty of measurement	9
Section 7	Test equipment	10
7.1	Test equipment list	10
Section 8	Testing data	11
8.1	FCC 15.207(a) and RSS-Gen Clause 7.2.4 Conducted emissions on AC lines	11
8.2	FCC 15.247(b) (3, 4) and RSS-210 A8.4 (4) Output power and EIRP	13
8.3	FCC 15.247(d) Spurious emissions and RSS-210 A8.5 Out of band emissions	15
Section 9	Block diagrams of test set-ups	17
9.1	Radiated emissions set-up	17

Section 1 Report summary

1.1 Applicant

Amyuni Technologies
5165 Sherbrooke West, Suite 200
Montreal, Quebec, H4A 1T6, Canada

1.2 Manufacturer

Amyuni Technologies
5165 Sherbrooke West, Suite 200
Montreal, Quebec, H4A 1T6, Canada

1.3 Test specifications

FCC 47 CFR Part 15, Subpart C, Chapter 15.247: Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHz – Partial testing

RSS-210, Issue 8 Annex 8: Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz Bands – Partial testing

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Original report issued

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C: test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass ¹
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(b)(4)	Maximum peak output power	Pass
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass ¹
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

Note: ¹ - For the test results please refer to test report number R0703307-247 802.11.

2.2 IC RSS-210, Issue 8: test results

Part	Test description	Verdict
A8.1	Frequency hopping systems	
A8.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
A8.1 (b)	Minimum channel spacing for frequency hopping systems	Not applicable
A8.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
A8.2	Digital modulation systems	
A8.2 (a)	Minimum 6 dB bandwidth	Pass ¹
A8.2 (b)	Maximum power spectral density	Pass ¹
A8.3	Hybrid systems	
A8.3 (1)	Digital modulation turned off	Not applicable
A8.3 (2)	Frequency hopping turned off	Not applicable
A8.4	Transmitter output power and e.i.r.p. requirements	
A8.4 (1)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.4 (2)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.4 (3)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
A8.4 (4)	Systems employing digital modulation techniques	Pass
A8.4 (5)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
A8.4 (6)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
A8.5	Out-of-band emissions	Pass
RSS-Gen 7.2.4	AC power line conducted emissions limits	Pass

Note: ¹ - For the test results please refer to test report number R0703307-247 802.11.

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date October 3, 2011
Nemko sample ID number 1

3.2 EUT information

Product name DevTouch Pro / Double ii
Model DBLDEV1
Serial number DBLDEV2010100000B2

3.3 Technical information

Operating band 2400–2483.5 MHz
Operating frequency 2412–2462 MHz
Modulation type Wi-Fi: 802.11b and 802.11g
Occupied bandwidth 13.56 MHz (802.11b) and 16.50 MHz (802.11g)
Emission designator W7D
Power requirements Internal rechargeable battery (All tests were performed with fully charged battery.)
Antenna information Internal Broadband ceramic multilayer chip antenna 2 dBi (max) RFANT5220110A0T series

3.4 Product description and theory of operation

The EUT is a handheld device with Wi-Fi/Bluetooth module which operated within 2.4 GHz ISM band. There is a hardware limiter preventing simultaneous Wi-Fi and Bluetooth transmission.

3.5 EUT exercise details

EUT was turned on, continuous transmission was set on desired channel at the maximum power settings.

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

The manufacturer didn't change power settings since the original certification of the implemented RF module therefore only partial tests were performed on the EUT that involved new antenna measurements.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature: 15–30 °C

Relative humidity: 20–75 %

Air pressure: 86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Section 7 Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Mar. 09/12
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	—	NCR
Antenna mast	Sunol	TLT2	FA002061	—	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	April 27/12
Bilog antenna	Sunol	JB3	FA002108	1 year	Jan. 31/12
Horn antenna #2	EMCO	3115	FA000825	1 year	Feb. 04/12
1–18 GHz pre-amplifier	JCA	JCA118-503	FA002091	1 year	Aug. 15/12

Note: NCR - no calibration required

Section 8 Testing data

8.1 FCC 15.207(a) and RSS-Gen Clause 7.2.4 Conducted emissions on AC lines

8.1.1 Definitions and limits

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

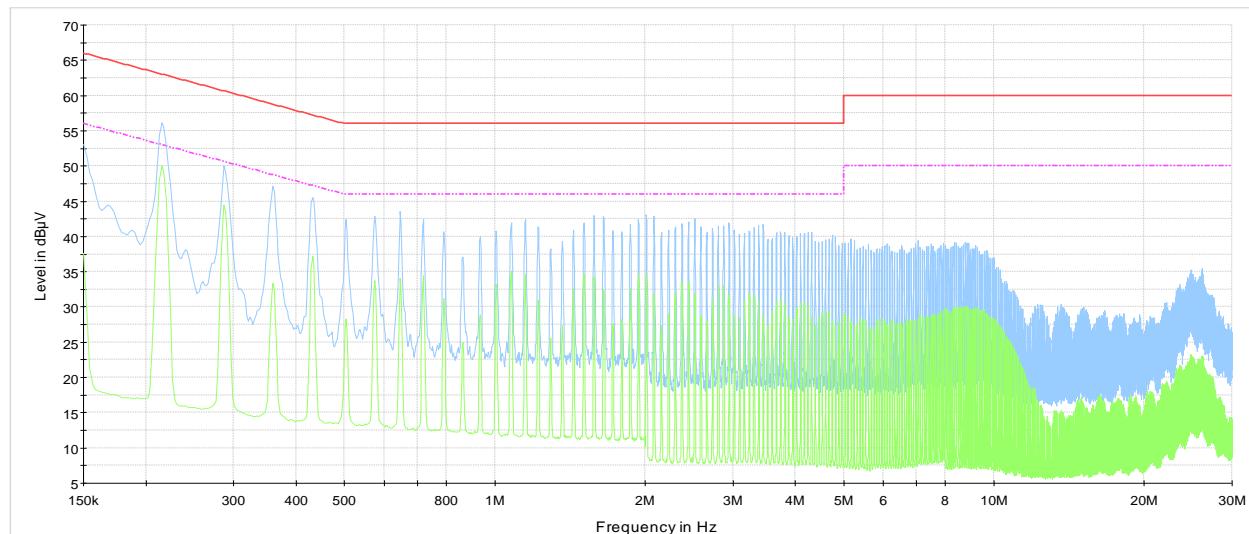
Table 8.1-1: Conducted emissions limit

Frequency of emission (MHz)	Conducted limit (dB μ V)	Average
	Quasi-peak	
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

* - Decreases with the logarithm of the frequency.

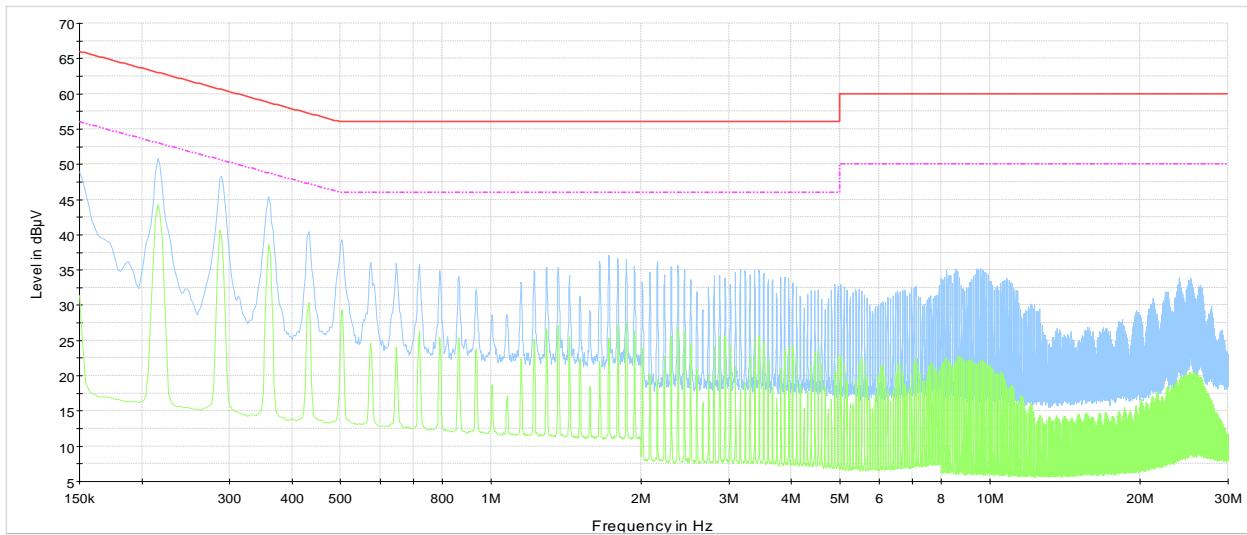
8.1.2 Test summary

Test date	October 18, 2011	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	24 °C	Air pressure	995 mbar	Relative humidity	33 %


8.1.3 Observations/special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.


Receiver/spectrum analyzer settings	Preview measurements – Receiver: Peak and Average detector (Max hold), RBW = 9 kHz, VBW = 30 kHz, Measurement time = 100 ms Final measurements – Receiver: Q-Peak and Average detector, RBW = 9 kHz, VBW = 30 kHz, Measurement time = 100 ms
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

8.1.4 Test data

Conducted emissions on phase line
CISPR 22 Mains QP Class B LimitLine
CISPR 22 Mains AV Class B LimitLine
Preview Result1-PK
Preview Result2-AVG

Plot 8.1-1: Conducted emissions on phase line

Conducted emissions on neutral line
CISPR 22 Mains QP Class B LimitLine
CISPR 22 Mains AV Class B LimitLine
Preview Result1-PK
Preview Result2-AVG

Plot 8.1-2: Conducted emissions on neutral line

8.2 FCC 15.247(b) (3, 4) and RSS-210 A8.4 (4) Output power and EIRP

8.2.1 Definitions and limits

FCC § 15.247 Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz.

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation, as used in paragraphs (b)(3)(i) and (b)(3)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

RSS-210 Clause A8.4 (4) Transmitter Output Power and e.i.r.p. Requirements for systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands:

For systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz, the maximum peak conducted output power shall not exceed 1 W. Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W. As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen).

8.2.2 Test summary

Test date	October 5, 2011	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	21 °C	Air pressure	1001 mbar	Relative humidity	37 %

8.2.3 Observations/special notes

The test was performed according to FCC DTS test guidance (March 23, 2005) using Method #1 of Power Option 2.

8.2.4 Test data

Table 8.2-1: Conducted output power results for 802.11b

Frequency (MHz)	Conducted output power (dBm)	Limit (dBm)	Margin (dB)
2412	14.91	30.0	15.09
2437	15.11	30.0	14.89
2462	15.24	30.0	14.76

Table 8.2-2: Conducted output power results for 802.11g

Frequency (MHz)	Conducted output power (dBm)	Limit (dBm)	Margin (dB)
2412	12.62	30.0	17.38
2437	12.59	30.0	17.41
2462	12.85	30.0	17.15

Table 8.2-3: EIRP calculation results for 802.11b

Frequency (MHz)	Conducted output power (dBm)	Antenna gain, (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2412	14.91	2.0	16.91	36.0	19.09
2437	15.11	2.0	17.11	36.0	18.89
2462	15.24	2.0	17.24	36.0	18.76

EIRP = Conducted output power [dBm] + antenna gain [dBi]

Antenna gain = 2 dBi

Table 8.2-4: EIRP calculation results for 802.11g

Frequency (MHz)	Conducted output power (dBm)	Antenna gain, (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
2412	12.62	2.0	14.62	36.0	21.38
2437	12.59	2.0	14.59	36.0	21.41
2462	12.85	2.0	14.85	36.0	21.15

EIRP = Conducted output power [dBm] + antenna gain [dBi]

Antenna gain = 2 dBi

8.3 FCC 15.247(d) Spurious emissions and RSS-210 A8.5 Out of band emissions

8.3.1 Definitions and limits

FCC 15.247 Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz.

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

8.3.2 Test summary

Test date	October 6, 2011	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	25 °C	Air pressure	1002 mbar	Relative humidity	39 %

8.3.3 Observations/special notes

Table 8.3-1: Radiated emission limits (FCC §15.209 and RSS-Gen)

Frequency (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009–0.490	2400/F	67.6–20×log ₁₀ (F)	300
0.490–1.705	24000/F	87.6–20×log ₁₀ (F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

- The spectrum was searched from 30 MHz to the 10th harmonic.
- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
 - within 30–1000 MHz range: using a peak detector with 100 kHz/300 kHz RBW/VBW,
 - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
 - and using peak detector with 1 MHz/10 Hz RBW/VBW for average results.
- Transmit output power was measured while supply voltage was varied from 102 VAC to 138 VAC (85 % to 115 % of the nominal rated supply voltage). No change in transmit output power was observed.

8.3.4 Test data

Table 8.3-2: FCC Restricted bands of operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

Table 8.3-3: IC Restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	12.51975–12.52025	399.9–410	5.35–5.46
2.1735–2.1905	12.57675–12.57725	608–614	7.25–7.75
3.020–3.026	13.36–13.41	960–1427	8.025–8.5
4.125–4.128	16.42–16.423	1435–1626.5	9.0–9.2
4.17725–4.17775	16.69475–16.69525	1645.5–1646.5	9.3–9.5
4.20725–4.20775	16.80425–16.80475	1660–1710	10.6–12.7
5.677–5.683	25.5–25.67	1718.8–1722.2	13.25–13.4
6.215–6.218	37.5–38.25	2200–2300	14.47–14.5
6.26775–6.26825	73–74.6	2310–2390	15.35–16.2
6.31175–6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291–8.294	108–138	3260–3267	22.01–23.12
8.362–8.366	156.52475–156.52525	3332–3339	23.6–24.0
8.37625–8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425–8.41475	240–285	3500–4400	36.43–36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

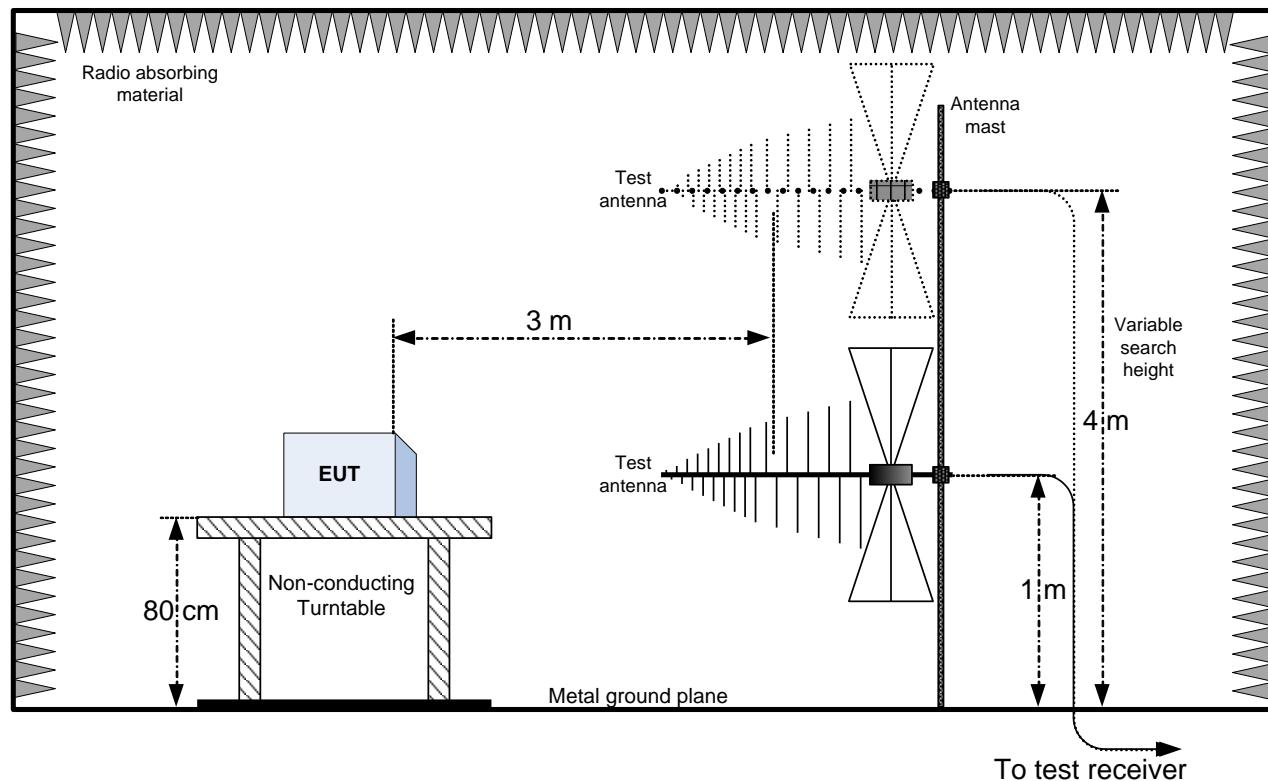

Note: Certain frequency bands listed in Table 8.3-3 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

Table 8.3-4: Radiated spurious emissions results

Channel	Frequency (MHz)	Peak field strength (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Average fields strength (dBμV/m)	Average limit (dBμV/m)	Margin (dB)
Low	4824.00	50.12	74.00	23.88	46.76	54.00	7.24
Mid	4874.00	49.78	74.00	24.22	45.53	54.00	8.47
High	4924.00	50.32	74.00	23.68	47.09	54.00	6.91

Section 9 Block diagrams of test set-ups

9.1 Radiated emissions set-up

