

Radio Frequency Exposure

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Bluetooth Speaker Adapter
Frequency band (Operating)	<input type="checkbox"/> WLAN: 2.412GHz ~ 2.462GHz <input type="checkbox"/> WLAN: 5.150GHz ~ 5.250GHz <input type="checkbox"/> WLAN: 5.725GHz ~ 5.850GHz <input checked="" type="checkbox"/> Bluetooth: 2.402GHz ~ 2.480 GHz
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation)
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure ($S = 5\text{mW/cm}^2$) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1\text{mW/cm}^2$)
Antenna diversity	<input type="checkbox"/> Single antenna <input checked="" type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input checked="" type="checkbox"/> Tx/Rx diversity
Max. output power	GFSK: 14.15dBm (26.00 mW) $\pi/4$ -DQPSK: 14.78dBm (30.06 mW) 8DPSK: 14.98dBm(31.48 mW)
Antenna gain (Max)	2.0 dBi
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A

Remark:

1. The maximum output power is 14.98 dBm (31.48 mW) at 2441MHz (with numeric 2.0 antenna gain.)
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

$$\text{Given } E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770 d^2}$$

Changing to units of mW and cm, using:

P (mW) = P (W) / 1000 and

d (cm) = d (m) / 100

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
GFSK	2402-2480	14.15	2.0	20	0.008	1
$\pi/4$ -DQPSK	2402-2480	14.78	2.0	20	0.009	1
8DPSK	2402-2480	14.98	2.0	20	0.010	1

NOTE:

Total (Chain0+Chain1) , the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density