

FCC TEST REPORT

for

Touch Mouse

Model: RF-6168

Brand: Lexking

Test Report Number:

SZ110721B09-RP

Issued for

Lexking Technology Co.,Ltd.

2F, No. 3, Baoqiang Rd., Xindian Dist., New Taipei City 231, Taiwan(R.O.C)

Issued by:

Compliance Certification Services (Shenzhen) Inc.

No.10-1, Mingkeda Logistics Park, No.18 Huanguan South RD.
Guan Ian Town, Baoan District, Shenzhen China

TEL: 86-755-28055000

FAX: 86-755-28055221

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	SZ110721B09-RP	Initial Issue	ALL	Amay Tang

TABLE OF CONTENTS

1	TEST CERTIFICATION	4
2	EUT DESCRIPTION	5
3	TEST METHODOLOGY	6
3.1.	DESCRIPTION OF TEST MODES	6
4	TEST METHODOLOGY	7
4.1.	EUT EXERCISE	7
4.2.	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
5	INSTRUMENT CALIBRATION	8
6	SETUP OF EQUIPMENT UNDER TEST	8
6.1.	DESCRIPTION OF SUPPORT UNITS	8
6.2.	CONFIGURATION OF SYSTEM UNDER TEST	8
7	FACILITIES AND ACCREDITATIONS	9
7.1.	FACILITIES	9
7.2.	ACCREDITATIONS	9
7.3.	MEASUREMENT UNCERTAINTY	9
8	FCC PART 15.249 REQUIREMENTS	10
8.1.	BAND EDGES MEASUREMENT	10
8.2.	POWER LINE CONDUCTED EMISSIONS MEASUREMENT	16
8.3.	SPURIOUS EMISSIONS MEASUREMENT	19

1 TEST CERTIFICATION

Product	Touch Mouse
Model	RF-6168
Brand	Lexking
Tested	July 21~25, 2011
Applicant	Lexking Technology Co.,Ltd. 2F, No. 3, Baoqiang Rd., Xindian Dist., New Taipei City 231, Taiwan(R.O.C)
Manufacturer	Shen zhen vander. Science & Technology Co., Ltd. 3rd Floor, D1B., Yinfeng Industrial Park, W. Hangcheng Rd., Xixiang, Bao an District, Shenzhen, Guangdong, PR China

APPLICABLE STANDARDS	
STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted
DEVIATION FROM APPLICABLE STANDARD	
None	

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4:2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.249.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Tom Gan
Supervisor of EMC Dept.
Compliance Certification Service Inc.

Reviewed by:

Aven Zhou
Supervisor of Report Dept.
Compliance Certification Service Inc.

2 EUT DESCRIPTION

Product	Touch Mouse
Trade Name	Lexking
Model Number	RF-6168
Model Discrepancy	N/A
Serial Number	SZ110721B09-RP
Power Supply	DC3V supplied by the battery(AAA*2)
Frequency Range	2403-2477MHz
Transmit Power	Peak: 84.15 dBuV/m (Max.) Average: 65.48 dBuV/m (Max.)
Modulation Technique	GFSK
Number of Channels	6 Channels
Antenna Specification	PCB Antenna with 0 dBi gain(Max)
Temperature Range	0°C ~ +40°C

The EUT has two colors, the scarlet and the dark red.

Note:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
2. This submittal(s) (test report) is intended for FCC ID: ZTGLX6168A filing to comply with Section 15.207, 15.209 and 15.249 of the FCC Part 15, Subpart C Rules.
3. The device would match a receiver to sale.

3 TEST METHODOLOGY

3.1. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

The following test mode(s) were scanned during the preliminary test below 1G:

Test Item	Test mode	Worse mode
Conducted Emission	Not applicable since the EUT supplied by the battery.	<input type="checkbox"/>
Radiated Emission	Mode 1: Normal Link	<input checked="" type="checkbox"/>

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

Channel Low (2403MHz), Channel Mid (2440MHz) and Channel High (2477MHz) were chosen for the final testing.

The field strength of spurious radiation emission was measured in the following position: EUT stand-up position (Y mode) and lie-down position (X, Z mode) The following data show only the worst case setup.

The worst case (X axis) was reported.

4 TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CFR 15.209 and 15.249.

4.1. EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.109 under the FCC Rules Part 15 Subpart B and Section 15.209,15.249 under the FCC Rules Part 15 Subpart C.

4.2. FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

5 INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6 SETUP OF EQUIPMENT UNDER TEST

6.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

7 FACILITIES AND ACCREDITATIONS

7.1. FACILITIES

All measurement facilities used to collect the measurement data are located at **No10-1, Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan District, Shenzhen China**

The sites are constructed in conformance with the requirements of ANSI C63.4:2003, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
China	CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI
Canada	INDUSTRY CANADA
Taiwan	BSMI
Norway	Nemko

Copies of granted accreditation certificates are available for downloading from our web site, <http://www.ccsrf.com>

7.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz~30MHz	+/- 3.18dB
Radiated emissions	30MHz ~ 200MHz	+/- 3.79dB
	200MHz ~1000MHz	+/- 3.62dB
	Above 1000MHz	+/- 5.04dB
Band Edges	+/-0.182 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

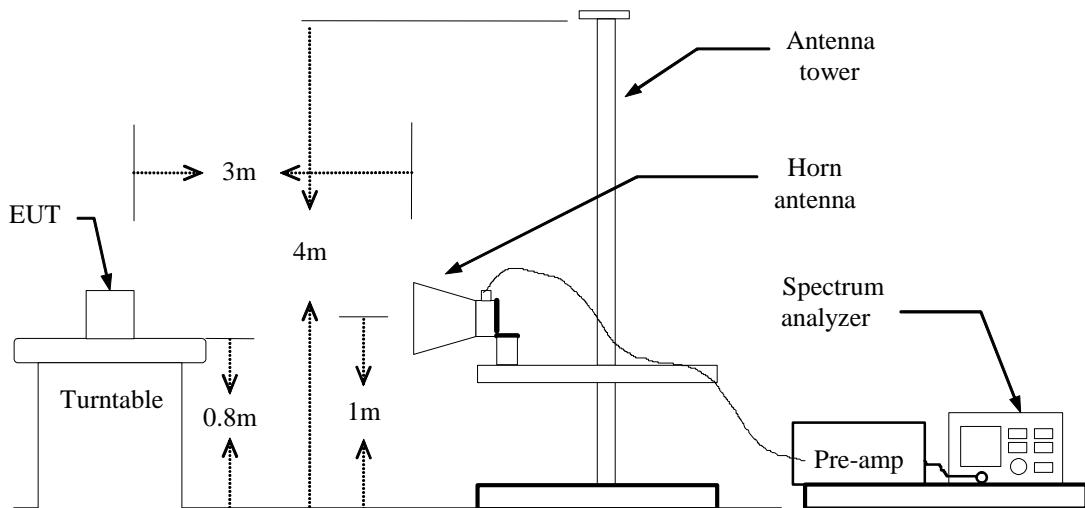
8 FCC PART 15.249 REQUIREMENTS

8.1. BAND EDGES MEASUREMENT

LIMIT

1. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μ V/m at 3-meter)	Field Strength (dB μ V/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


2. As shown in Section 15.35(b), for frequencies above 1000 MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.
3. As shown in Section 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

MEASUREMENT EQUIPMENT USED

Radiated Emission Test Site 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012
Amplifier	MITEQ	AM-1604-3000	1411843	03/18/2011	03/18/2012
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R
Controller	CT	N/A	N/A	N.C.R	N.C.R
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2011	03/18/2012
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/03/2011	06/03/2012
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2011	03/19/2012
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2011	03/31/2012
Test S/W	FARAD		LZ-RF / CCS-SZ-3A2		

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

Test Data

Band Edges (CH-Low)

Detector mode: Peak

Polarity: Vertical

* Agilent 00:30:33 Aug 5, 2011

R T

Mkr1 2.402 7 GHz
82.23 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak
Log
10
dB/

LgAv

M1 S2

Start 2.310 0 GHz

Stop 2.410 0 GHz

#Res BW 1 MHz

#VBW 1 MHz

Sweep 1 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.402 7 GHz	82.23 dB μ V
2	(1)	Freq	2.390 0 GHz	44.89 dB μ V
3	(1)	Freq	2.400 0 GHz	62.34 dB μ V

Detector mode: Average

Polarity: Vertical

* Agilent 01:09:55 Aug 5, 2011

R T

Mkr1 2.402 7 GHz
65.22 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak
Log
10
dB/

LgAv

M1 S2

Start 2.310 0 GHz

Stop 2.410 0 GHz

#Res BW 1 MHz

#VBW 390 Hz

Sweep 200 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.402 7 GHz	65.22 dB μ V
2	(1)	Freq	2.390 0 GHz	26.54 dB μ V
3	(1)	Freq	2.400 0 GHz	29.90 dB μ V

Detector mode: Peak

Polarity: Horizontal

* Agilent 00:18:32 Aug 5, 2011

R T

Mkr1 2.403 3 GHz
84.15 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak
Log
10
dB/

LgAv

M1 S2

Start 2.310 0 GHz

Stop 2.410 0 GHz

#Res BW 1 MHz

*VBW 1 MHz

Sweep 1 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.403 3 GHz	84.15 dB μ V
2	(1)	Freq	2.390 0 GHz	47.09 dB μ V
3	(1)	Freq	2.400 0 GHz	64.22 dB μ V

Detector mode: Average

Polarity: Horizontal

* Agilent 01:06:30 Aug 5, 2011

R T

Mkr1 2.402 8 GHz
65.48 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak
Log
10
dB/

LgAv

M1 S2

Start 2.310 0 GHz

Stop 2.410 0 GHz

#Res BW 1 MHz

*VBW 390 Hz

Sweep 200 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.402 8 GHz	65.48 dB μ V
2	(1)	Freq	2.390 0 GHz	25.12 dB μ V
3	(1)	Freq	2.400 0 GHz	28.73 dB μ V

Band Edges (CH-High)

Detector mode: Peak

Polarity: Vertical

* Agilent 00:42:24 Aug 5, 2011

R T

Mkr2 2.483 50 GHz

54.46 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak

Log

10

dB/

LgAv

M1 S2

Start 2.470 00 GHz

Stop 2.500 00 GHz

#Res BW 1 MHz

VBW 1 MHz

Sweep 1 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.477 15 GHz	83.04 dB μ V
2	(1)	Freq	2.483 50 GHz	54.46 dB μ V

Detector mode: Average

Polarity: Vertical

* Agilent 00:52:57 Aug 5, 2011

R T

Mkr1 2.477 10 GHz

64.22 dB μ V

Ref 96.99 dB μ V

#Atten 0 dB

#Peak

Log

10

dB/

LgAv

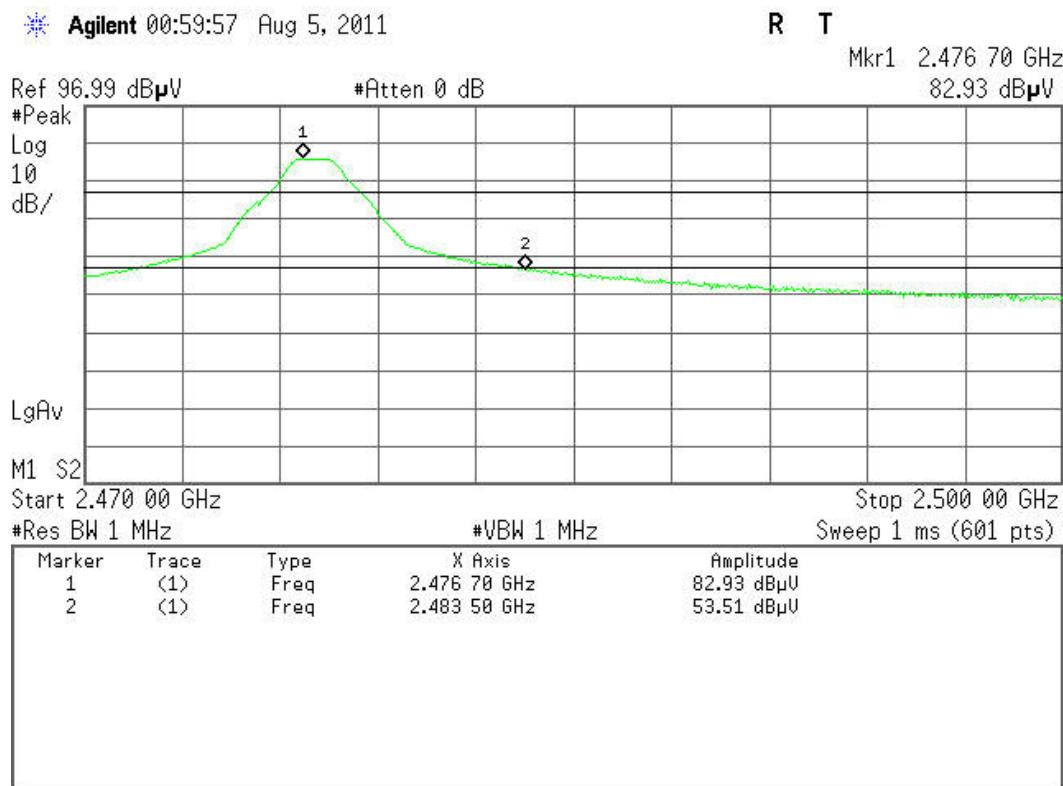
M1 S2

Start 2.470 00 GHz

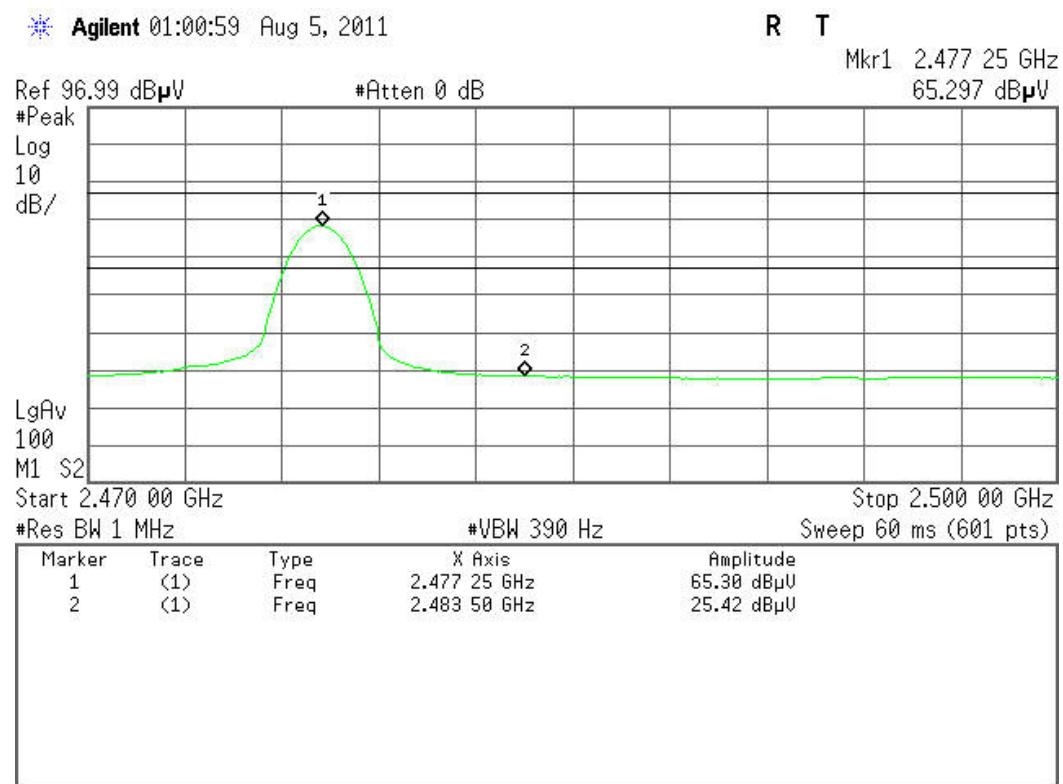
Stop 2.500 00 GHz

#Res BW 1 MHz

#VBW 390 Hz


Sweep 60 ms (601 pts)

Marker	Trace	Type	X Axis	Amplitude
1	(1)	Freq	2.477 10 GHz	64.22 dB μ V
2	(1)	Freq	2.483 50 GHz	25.34 dB μ V


Detector mode: Peak

Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

8.2. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

8.2.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

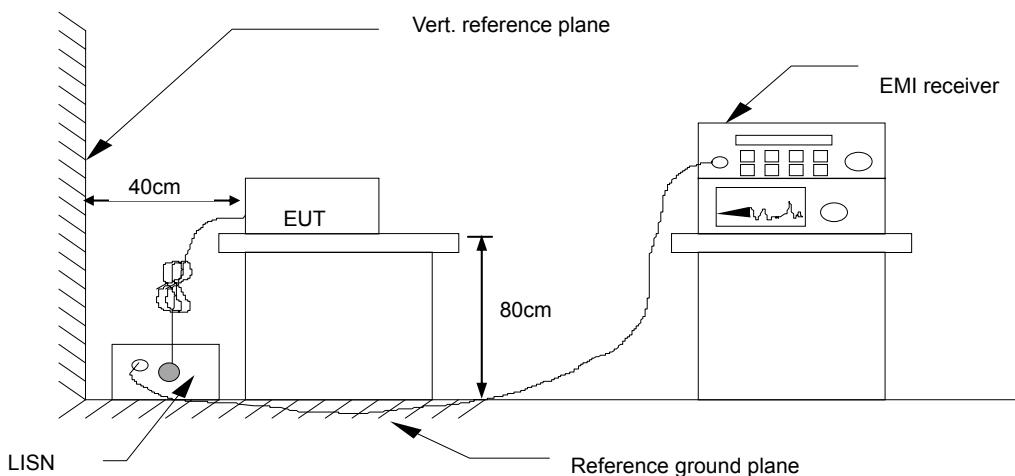
Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

8.2.2. TEST INSTRUMENTS

Conducted Emission Test Site					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
ESCI EMI TEST RECEIVE.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/19/2011	03/19/2012
LISN	SCHAFFNER	NNB42	2001/001	05/26/2011	05/26/2012
LISN	EMCO	3825/2	8901-1459	03/19/2011	03/19/2012
Current Probe	STODDART AIRCRAFT	91550-1	345-73	03/21/2011	03/21/2012
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2011	03/31/2012
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE			


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. N.C.R = No Calibration Request.

8.2.3. TEST PROCEDURES (please refer to measurement standard)

- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

8.2.4. TEST SETUP

- For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.2.5. Data Sample:

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss
Result = Quasi-peak Reading/ Average Reading + Factor
Limit = Limit stated in standard
Margin = Result (dBuV) – Limit (dBuV)

8.2.6. TEST RESULTS

Not applicable since the EUT supplied by the battery.

8.3. SPURIOUS EMISSIONS MEASUREMENT

8.3.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

1. In the section 15.249(a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental Field Strength (mV/m)	Field Strength of Harmonics (μV/m)
902-928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

2. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

3. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBμV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

8.3.2. TEST INSTRUMENTS

Radiated Emission Test Site 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/19/2011	03/19/2012
Amplifier	MITEQ	AM-1604-3000	1411843	03/18/2011	03/18/2012
Turn Table	EMCO	2081-1.21	N/A	N.C.R	N.C.R
Controller	CT	N/A	N/A	N.C.R	N.C.R
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2011	03/18/2012
Bilog Antenna	SCHAFFNER	CBL6143	5082	06/03/2011	06/03/2012
Horn Antenna	SCHWARZBECK	BBHA9120D	D286	03/19/2011	03/19/2012
Loop Antenna	A.R.A	PLA-1030/B	1029	03/19/2011	03/19/2012
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/31/2011	03/31/2012
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2			

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The FCC Site Registration number is 101879.

4. N.C.R = No Calibration Required.

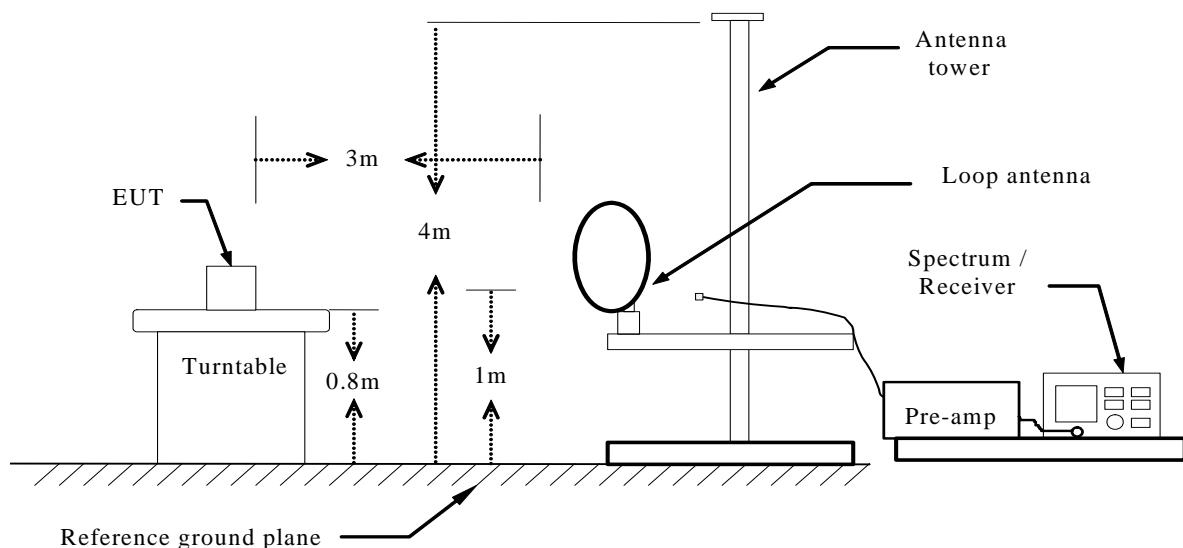
8.3.3 TEST PROCEDURE (please refer to measurement standard)

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

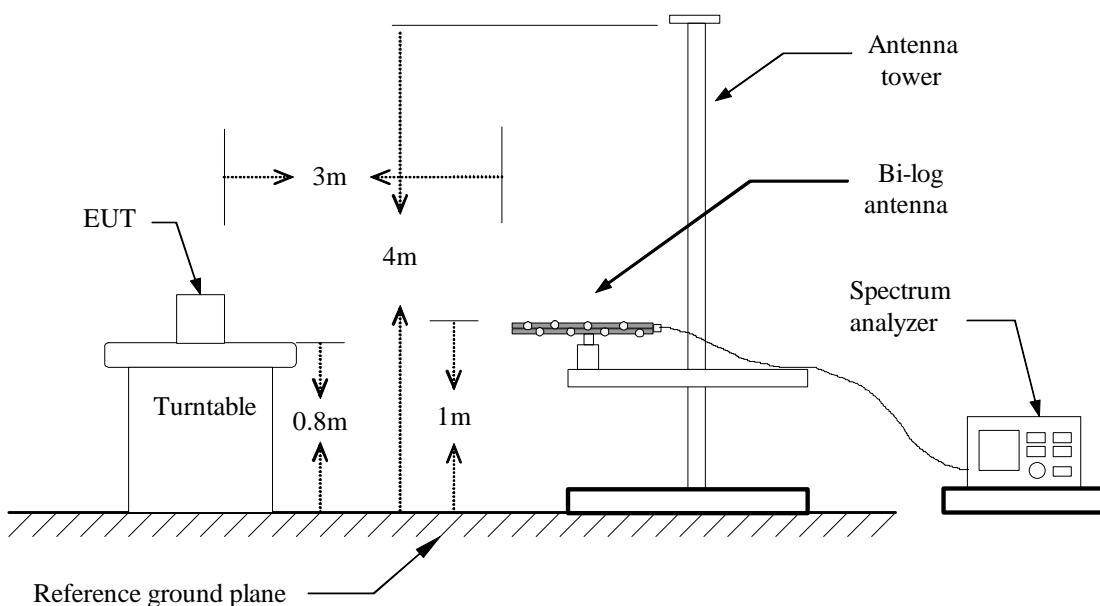
Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

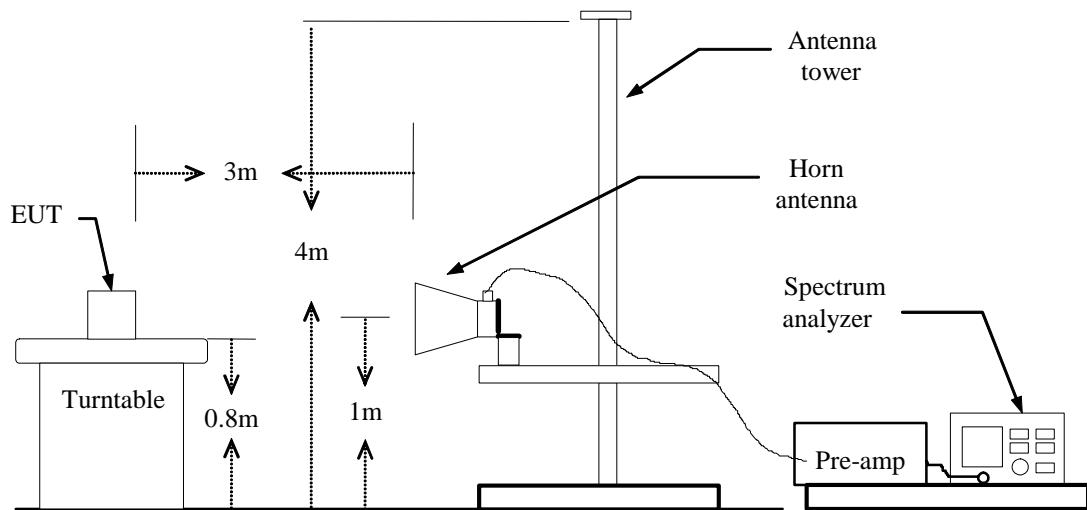
Above 1GHz:


(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO


7. Repeat above procedures until the measurements for all frequencies are complete.

8.3.2.1. TEST SETUP


Below 30MHz

Below 1 GHz

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

8.3.2.2. Data Sample:**Below 1GHz**

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXX.XXXX	36.37	-12.20	24.17	40.00	-15.83	V	Peak

Frequency (MHz) = Emission frequency in MHz
 Reading (dBuV) = Uncorrected Analyzer / Receiver reading
 Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
 Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
 Limit (dBuV/m) = Limit stated in standard
 Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)
 Peak = Peak Reading
 Q.P. = Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	V	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	V	AVG

Frequency (MHz) = Emission frequency in MHz
 Reading (dBuV) = Uncorrected Analyzer / Receiver reading
 Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
 Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)
 Limit (dBuV/m) = Limit stated in standard
 Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)
 Peak = Peak Reading
 AVG = Average Reading

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m)

Result (dBuV/m) = Reading (dBuV) + Correction Factor (

8.3.2.3. TEST RESULTS

Below 1 GHz

Operation Mode: Normal Link **Test Date:** July 22, 2011
Temperature: 24°C **Tested by:** Sunday Hu
Humidity: 52 % RH **Polarity:** Ver. / Hor.

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
31.6167	36.37	-12.20	24.17	40.00	-15.83	V	Peak
115.6833	37.29	-20.66	16.63	43.50	-26.87	V	Peak
227.2333	34.66	-20.56	14.10	46.00	-31.90	V	Peak
498.8333	31.92	-13.94	17.98	46.00	-28.02	V	Peak
620.0833	31.92	-12.16	19.76	46.00	-26.24	V	Peak
852.8833	31.61	-9.42	22.19	46.00	-23.81	V	Peak
34.8500	45.72	-13.92	31.80	40.00	-8.20	H	Peak
122.1500	38.38	-20.42	17.96	43.50	-25.54	H	Peak
317.7667	31.23	-18.01	13.22	46.00	-32.78	H	Peak
445.4833	31.45	-14.87	16.58	46.00	-29.42	H	Peak
641.1000	32.32	-12.12	20.20	46.00	-25.80	H	Peak
831.8667	32.89	-9.69	23.20	46.00	-22.80	H	Peak

****Remark:** No emission found between lowest internal used/generated frequency to 30MHz.

Notes:

1. Measuring frequencies from 9kHz to the 1GHz.
2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
3. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: TX / CH Low

Test Date: July 22, 2011

Temperature: 24°C

Tested by: Sunday Hu

Humidity: 52 % RH

Polarity: Ver. / Hor.

Fundamental

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2403	91.95	-9.72	82.23	114	-31.77	V	Peak
2403	74.94	-9.72	65.22	94	-28.78	V	AVG
2403	93.87	-9.72	84.15	114	-29.85	H	Peak
2403	75.2	-9.72	65.48	94	-28.52	H	AVG

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1711.6667	53.36	-10.21	43.15	74.00	-30.85	V	Peak
2563.3333	58.62	-9.05	49.57	74.00	-24.43	V	Peak
4371.6667	45.19	-2.35	42.84	74.00	-31.16	V	Peak
4803.3333	56.59	-0.64	55.95	74.00	-18.05	V	Peak
4803.3333	36.15	-0.64	35.51	54.00	-18.49	V	AVG
6145.0000	44.06	3.58	47.64	74.00	-26.36	V	Peak
7206.6667	46.24	4.99	51.23	74.00	-22.77	V	Peak
1711.6667	60.19	-10.21	49.98	74.00	-24.02	H	Peak
2563.3333	56.40	-9.05	47.35	74.00	-26.65	H	Peak
3765.0000	45.60	-3.87	41.73	74.00	-32.27	H	Peak
4803.3333	52.53	-0.64	51.89	74.00	-22.11	H	Peak
4803.3333	27.79	-0.64	27.15	54.00	-26.85	H	AVG
6250.0000	45.07	3.79	48.86	74.00	-25.14	H	Peak
6938.3333	45.17	4.37	49.54	74.00	-24.46	H	Peak

Operation Mode: TX / CH Mid**Test Date:** July 22, 2011**Temperature:** 22°C**Tested by:** Sunday Hu**Humidity:** 65 % RH**Polarity:** Ver. / Hor.**Fundamental**

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2440	91.66	-9.77	81.89	114	-32.11	V	Peak
2440	75.08	-9.77	65.31	94	-28.69	V	AVG
2440	91.78	-9.77	82.01	114	-31.99	H	Peak
2440	72.91	-9.77	63.14	94	-30.86	H	AVG

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1723.3333	56.14	-10.21	45.93	74.00	-28.07	V	Peak
2598.3332	57.44	-8.63	48.81	74.00	-25.19	V	Peak
4885.0000	59.28	-0.38	58.90	74.00	-15.10	V	Peak
4885.0000	34.54	-0.38	34.16	54.00	-19.84	V	AVG
6343.3333	44.88	3.72	48.60	74.00	-25.40	V	Peak
6915.0000	45.22	4.36	49.58	74.00	-24.42	V	Peak
7603.3333	46.32	5.80	52.12	74.00	-21.88	V	Peak
2598.3332	56.40	-8.63	47.77	74.00	-26.23	H	Peak
3391.6667	46.92	-5.09	41.83	74.00	-32.17	H	Peak
4885.0000	54.57	-0.38	54.19	74.00	-19.81	H	Peak
4885.0000	34.11	-0.38	33.73	54.00	-20.27	H	AVG
6133.3333	43.79	3.52	47.31	74.00	-26.69	H	Peak
6495.0000	44.78	3.92	48.70	74.00	-25.30	H	Peak
7533.3333	44.59	5.69	50.28	74.00	-23.72	H	Peak

Operation Mode: TX / CH High

Test Date: July 22, 2011

Temperature: 24°C

Tested by: Sunday Hu

Humidity: 52% RH

Polarity: Ver. / Hor.

Fundamental

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
2477	92.82	-9.78	83.04	114	-30.96	V	Peak
2477	74	-9.78	64.22	94	-29.78	V	AVG
2477	92.71	-9.78	82.93	114	-31.07	H	Peak
2477	75.16	-9.78	65.38	94	-28.62	H	AVG

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1723.3333	52.28	-10.21	42.07	74.00	-31.93	V	Peak
2645.0000	57.91	-8.32	49.59	74.00	-24.41	V	Peak
4955.0000	62.31	-0.15	62.16	74.00	-11.84	V	Peak
4955.0000	35.19	-0.15	35.04	54.00	-18.96	V	AVG
6156.6667	44.04	3.63	47.67	74.00	-26.33	V	Peak
6588.3333	44.47	4.16	48.63	74.00	-25.37	V	Peak
6973.3333	45.80	4.39	50.19	74.00	-23.81	V	Peak
<hr/>							
1723.3333	52.90	-10.21	42.69	74.00	-31.31	H	Peak
2645.0000	51.00	-8.32	42.68	74.00	-31.32	H	Peak
3683.3333	45.57	-3.83	41.74	74.00	-32.26	H	Peak
4955.0000	55.44	-0.15	55.29	74.00	-18.71	H	Peak
4955.0000	32.30	-0.15	32.15	54.00	-21.85	H	AVG
5923.3333	43.92	2.80	46.72	74.00	-27.28	H	Peak
6938.3333	45.05	4.37	49.42	74.00	-24.58	H	Peak