

DFS TEST REPORT

FCC ID : ZQ6-AP6275S
Equipment : Wi-Fi/Bluetooth Module
Brand Name : AMPAK Technology Inc.
Model Name : AP6275S
Applicant : AMPAK Technology Inc.
3F, No. 1, Jen AI Road, Hsinchu Industrial Park, Hsinchu
City 30352, Taiwan (R.O.C.)
Manufacturer : BILLIONTON SYSTEMS INC.
No. 21, Sui-Lih Rd., Hsin-Chu City 300, Taiwan (R.O.C.)
Standard : 47 CFR FCC Part 15.407

The product was received on Jun. 17, 2024, and testing was started from Jul. 17, 2024 and completed on Jul. 18, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Rex Liao

Sportun International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description	5
1.1 Information.....	5
1.2 Accessories	8
1.3 Support Equipment.....	8
1.4 Applicable Standards	8
1.5 Testing Location Information.....	8
2 Test Configuration of EUT.....	9
2.1 Test Channel Frequencies Configuration.....	9
2.2 The Worst Case Measurement Configuration.....	9
3 Dynamic Frequency Selection (DFS) Test Result.....	10
3.1 General DFS Information	10
3.2 Radar Test Waveform Calibration.....	12
3.3 In-service Monitoring	18
4 Test Equipment and Calibration Data	24
5 Measurement Uncertainty	25

Appendix A. Test Photos

Photographs of EUT v01

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	-
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	-
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	-

Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen

Report Producer: Sophia Shiung

1 General Description

1.1 Information

1.1.1 RF General Information

Specification Items	Description	
Frequency Range	5250 MHz – 5350 MHz 5470 MHz – 5725 MHz	
Power Type	From host system	
Channel Bandwidth	20/40/80 MHz operating channel bandwidth	
Operating Mode	<input type="checkbox"/> Master	
	<input type="checkbox"/> Client with radar detection	
	<input checked="" type="checkbox"/> Client without radar detection	
Communication Mode	<input checked="" type="checkbox"/> IP Based (Load Based)	<input type="checkbox"/> Frame Based
TPC Function	<input type="checkbox"/> With TPC	<input checked="" type="checkbox"/> Without TPC
Weather Band (5600~5650MHz)	<input checked="" type="checkbox"/> With 5600~5650MHz	<input type="checkbox"/> Without 5600~5650MHz
Zero-Wait Function	<input type="checkbox"/> Support	<input checked="" type="checkbox"/> Not Support
Power-on cycle	NA (No Channel Availability Check Function)	
Firmware Number	1.517 RC0.0 wl0: Oct 6 2019 17:40:43 version 18.35.387.6 (wlan=r841681) FWID 01-329c9092	
<ul style="list-style-type: none">11a, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.VHT20, VHT40 and VHT80 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.HEW20, HEW40 and HEW80 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.TPC is not required since the maximum EIRP is less than 500mW (27dBm).		

Note: The above information was declared by manufacturer.

1.1.2 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	PULSE ELECTRONICS PTE LTD	TZ2412W	Dipole	Reversed-SMA	Note 1
2					

Note 1:

Ant.	Port			Gain (dBi)		
	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	WLAN 2.4GHz	WLAN 5GHz	Bluetooth
1	1	1	1	3.68	4.65	3.68
2	2	2	-	3.68	4.65	-

Note 2: The above information was declared by manufacturer.

Note 3: Directional gain information

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$
BF	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$

Ex.

Directional Gain (NSS1) formula :

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

$$NSS1(g1,1) = 10^{G1/20} ; NSS1(g1,2) = 10^{G2/20} ; NSS1(g1,3) = 10^{G3/20} ; NSS1(g1,4) = 10^{G4/20}$$

$$g_{j,k} = (Nss1(g1,1) + Nss1(g1,2) + Nss1(g1,3) + Nss1(g1,4))^2$$

$$DG = 10 \log[(Nss1(g1,1) + Nss1(g1,2) + Nss1(g1,3) + Nss1(g1,4))^2 / N_{ANT}] \Rightarrow 10$$

$$\log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / N_{ANT}]$$

Where ;

$$2.4G G1 = 3.68 \text{ dBi} ; G2 = 3.68 \text{ dBi} ;$$

$$5G UNII-1 G1 = 4.65 \text{ dBi} ; G2 = 4.65 \text{ dBi} ;$$

$$5G UNII-2A G1 = 4.65 \text{ dBi} ; G2 = 4.65 \text{ dBi} ;$$

$$5G UNII-2C G1 = 4.65 \text{ dBi} ; G2 = 4.65 \text{ dBi} ;$$

$$5G UNII-3 G1 = 4.65 \text{ dBi} ; G2 = 4.65 \text{ dBi} ;$$

$$2.4G DG = 6.69 \text{ dBi}$$

$$5G UNII-1 DG = 7.66 \text{ dBi}$$

$$5G UNII-2A DG = 7.66 \text{ dBi}$$

$$5G UNII-2C DG = 7.66 \text{ dBi}$$

$$5G UNII-3 DG = 7.66 \text{ dBi}$$

Note 4: For 2.4GHz function:**For IEEE 802.11 b/g/n/ax (2TX/2RX):**

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz function:**For IEEE 802.11 a/n/ac/ax (2TX/2RX):**

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For Bluetooth function (1TX/1RX):

Only Port 1 can be used as transmitting/receiving antenna.

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144.

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134, 142.

For 80MHz bandwidth systems, use Channel 58, 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5250~5350 MHz Band 2	52	5260 MHz	60	5300 MHz
	54	5270 MHz	62	5310 MHz
	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
5470~5725 MHz Band 3	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
	108	5540 MHz	134	5670 MHz
	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz	-	-

1.2 Accessories

N/A

1.3 Support Equipment

Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID
A	Notebook	DELL	E4300	N/A
B	WLAN AP	ASUS	RT-AX88U	MSQ-RTAXHP00
C	PC	AMPAK	H81-PLUS	N/A
D	Wifi Fixture	AMPAK Technology Inc.	SD_EXTD-2IN1	N/A
E	EUT Fixture	AMPAK Technology Inc.	P6276S_EVB_V01	N/A

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.407
- FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

1.5 Testing Location Information

Testing Location Information				
Test Lab. : Sporton International Inc. Hsinchu Laboratory				
Hsinchu (TAF: 3787)	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)	TEL: 886-3-656-9065	FAX: 886-3-656-9085	
		Test site Designation No. TW3787 with FCC.		
		Conformity Assessment Body Identifier (CABID) TW3787 with ISED.		

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
DFS	DF02-CB	Kevin Huang	23.9~24.5 / 61~64	Jul. 17, 2024~ Jul. 18, 2024

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration	
IEEE Std.	Test Channel Freq. (MHz)
802.11ax (HEW80)	5290 MHz

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests	
Tests Item	Dynamic Frequency Selection (DFS)
Test Condition	Conducted measurement at transmit chains The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used.
Modulation Mode	802.11ax (HEW80)

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (Note 1).
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values

Maximum Transmit Power	Value (see note)
EIRP \geq 200 mW	-64 dBm
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm
EIRP < 200 mW and PSD \geq 10dBm/MHz	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

Requirement	DFS Operational mode		
	Master	Client without radar detection	Client with radar detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

3.1.3 Applicability of DFS Requirements during Normal Operation

Requirement	DFS Operational mode		
	Master	Client without radar detection	Client with radar detection
DFS Detection Threshold	Yes	Not required	Yes
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
<p>Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.</p>		

3.1.4 Channel Loading/Data Streaming

<input type="checkbox"/>	The data file (MPEG-4) has been transmitting in a streaming mode.
<input checked="" type="checkbox"/>	Software to ping the client is permitted to simulate data transfer with random ping intervals.
<input checked="" type="checkbox"/>	Minimum channel loading of approximately 17%.
<input type="checkbox"/>	Unicast protocol has been used.

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$Roundup\left\{\left(\frac{1}{360}\right) \times \left(\frac{19 \times 10^6}{PRI}\right)\right\}$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI		60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and

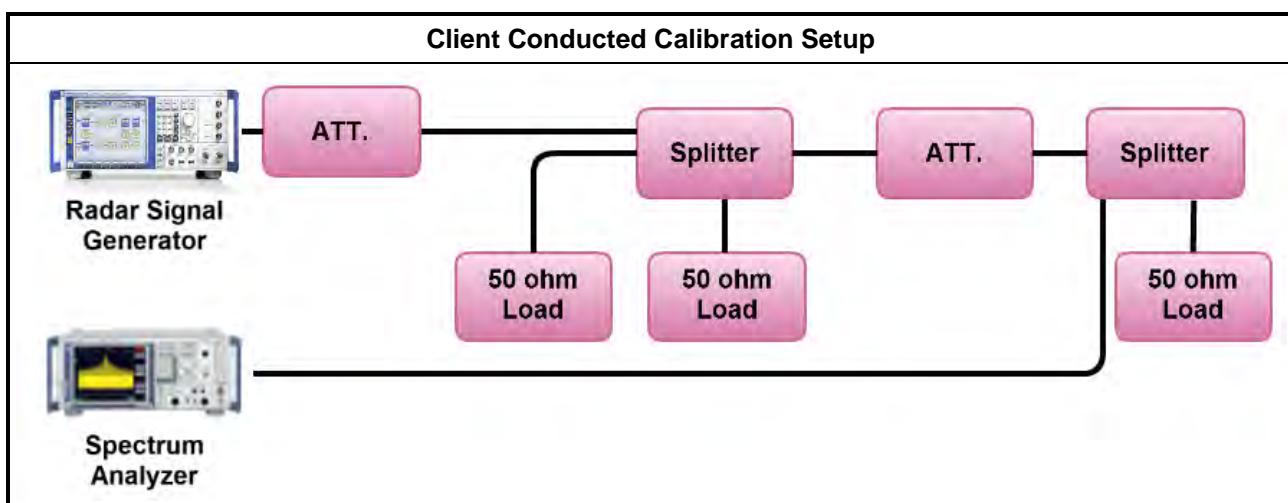
ends at 5310 MHz.

- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length $(12,000,000 / \text{Burst Count})$ microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and $[(12,000,000 / \text{Burst Count}) - (\text{Total Burst Length}) + (\text{One Random PRI Interval})]$ microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

3.2.3 Frequency Hopping Radar Test Waveform

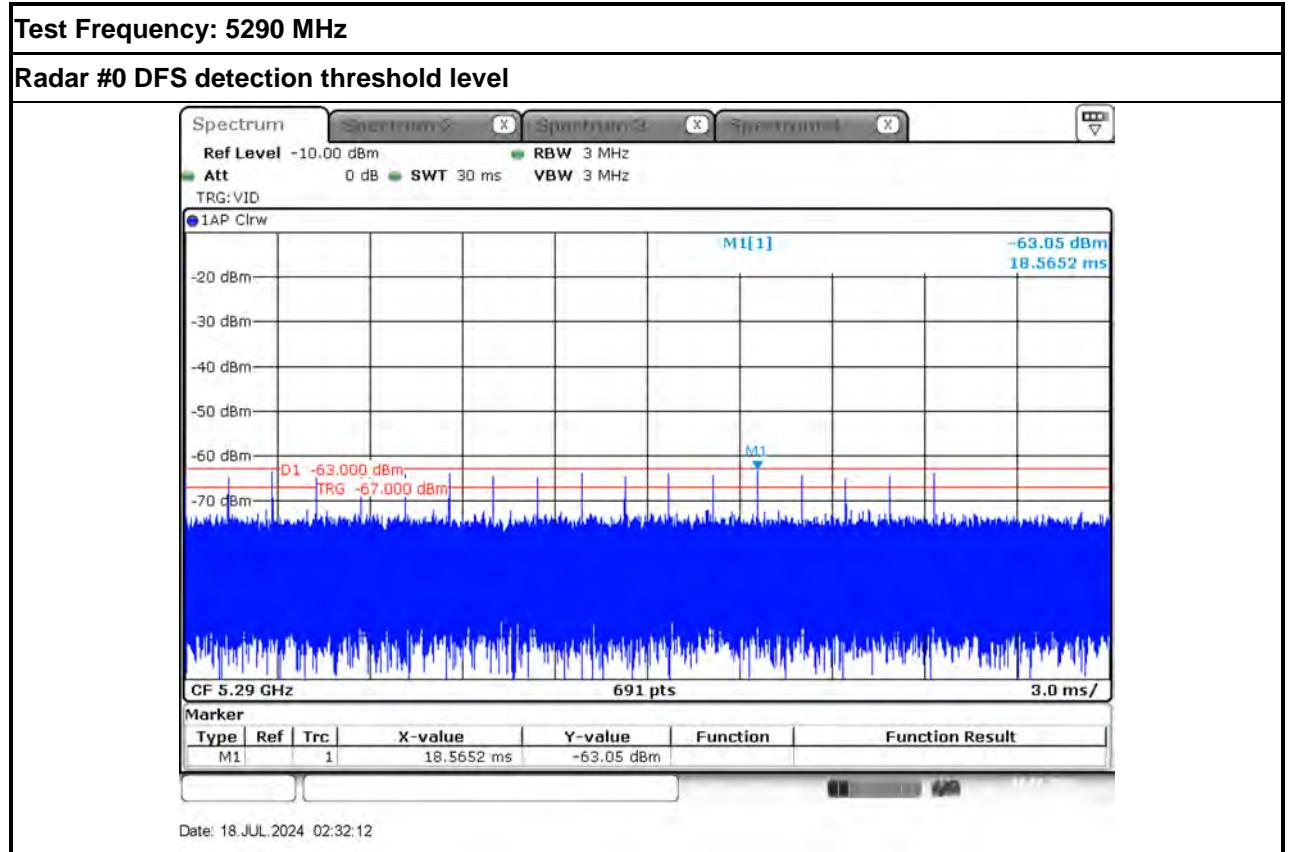
Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

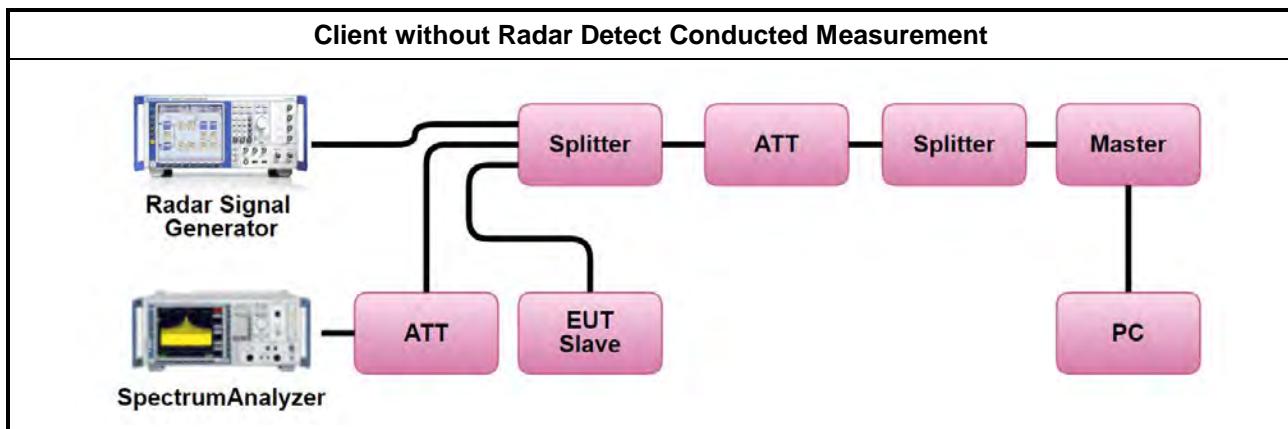

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group.

3.2.4 DFS Threshold Level

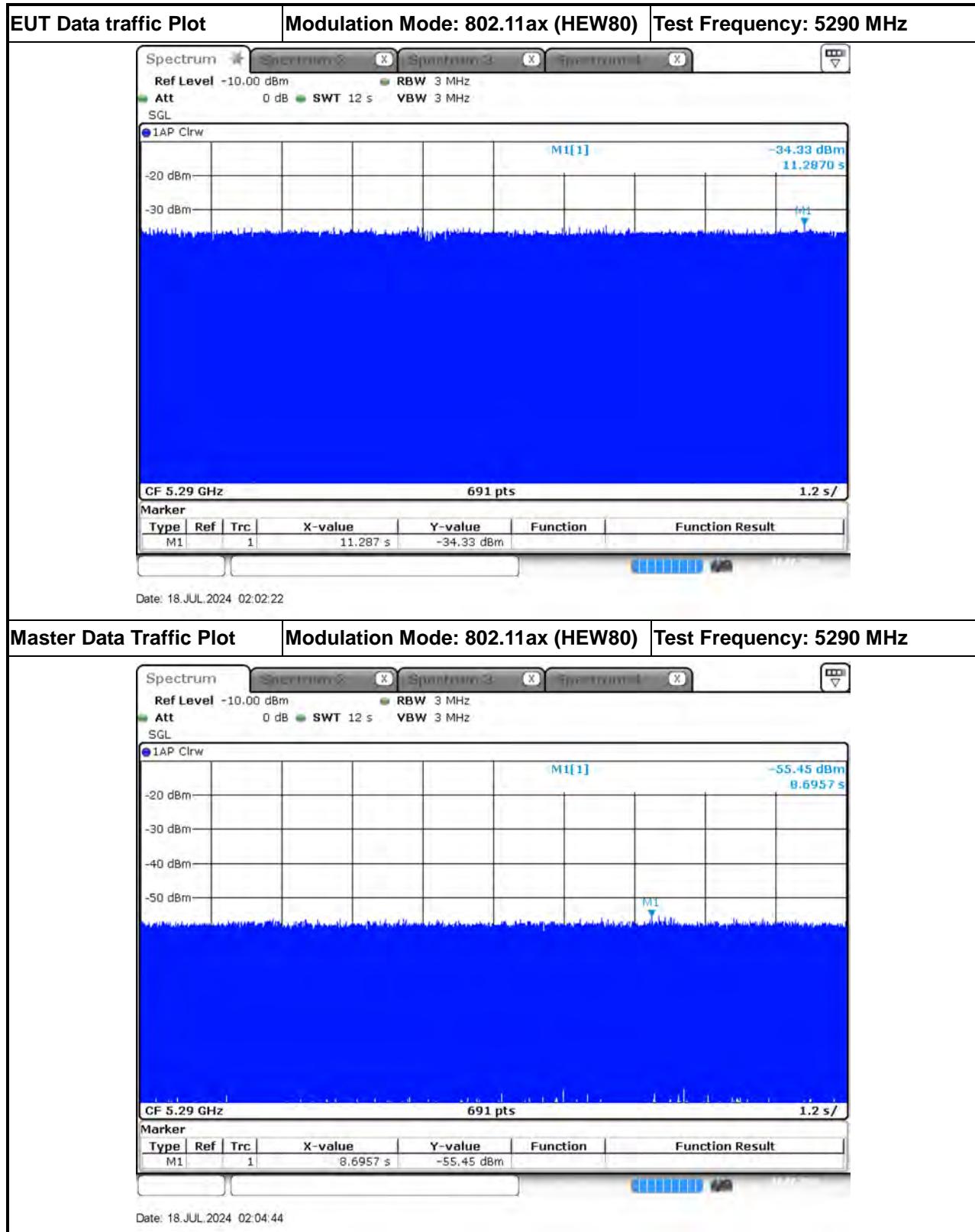
DFS Threshold Level		
DFS Threshold level: -63 dBm	<input checked="" type="checkbox"/> at the antenna connector	
	<input type="checkbox"/> in front of the antenna	

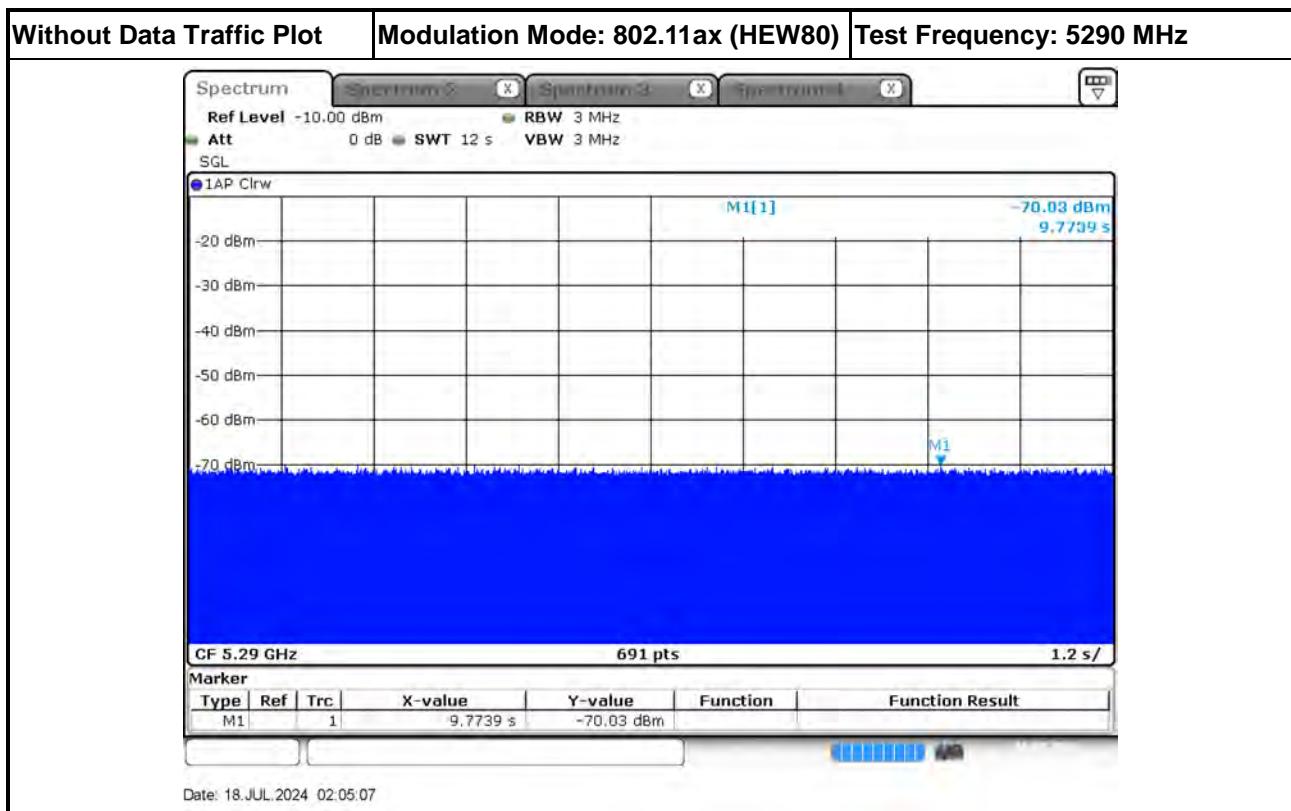

The Interference Radar Detection Threshold Level is $-64 \text{ dBm} + 0 \text{ [dBi]} + 1 \text{ dB} = -63 \text{ dBm}$. That had been taken into account the output power range and antenna gain.

3.2.5 Calibration Setup



3.2.6 Radar Waveform calibration Plot


3.2.7 Test Setup


A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.

3.2.8 Data traffic Plot

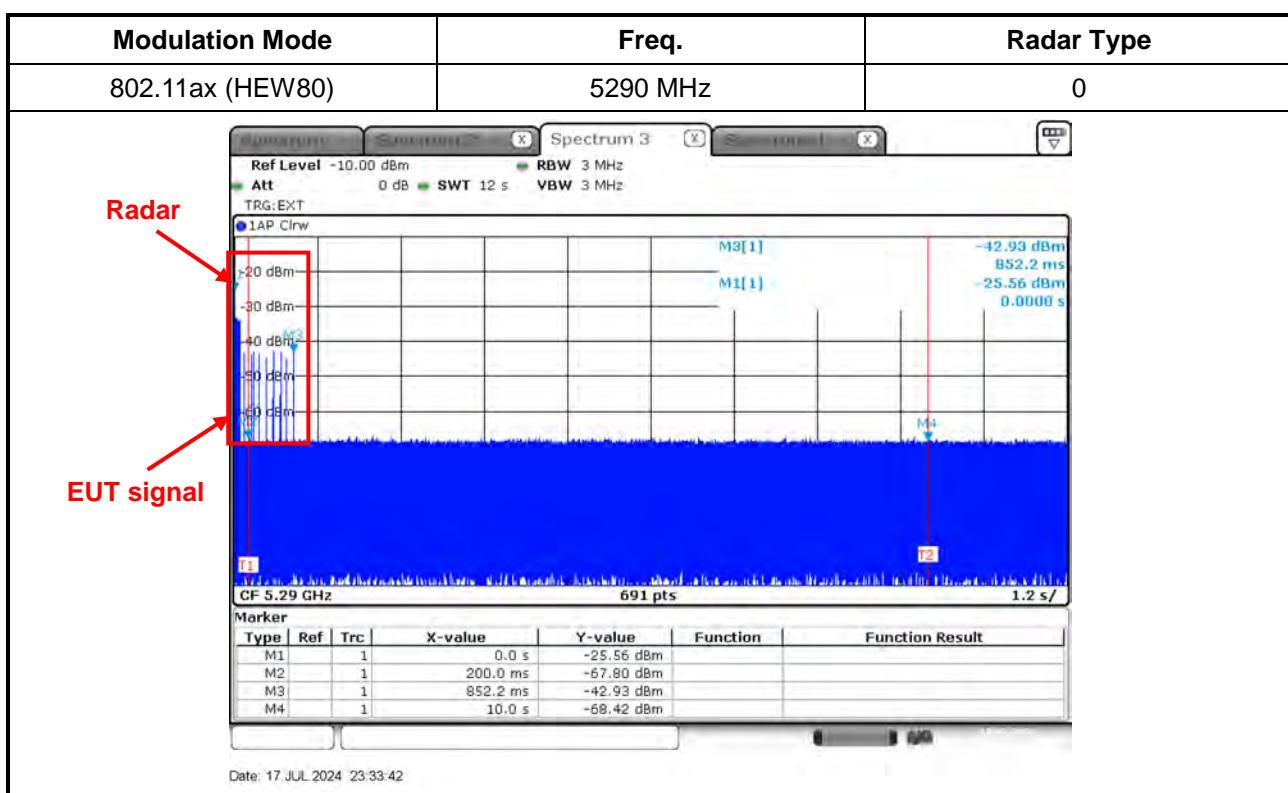
3.3 In-service Monitoring

3.3.1 In-service Monitoring Limit

In-service Monitoring Limit	
Channel Move Time	10 sec
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.
Non-occupancy period	Minimum 30 minutes

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

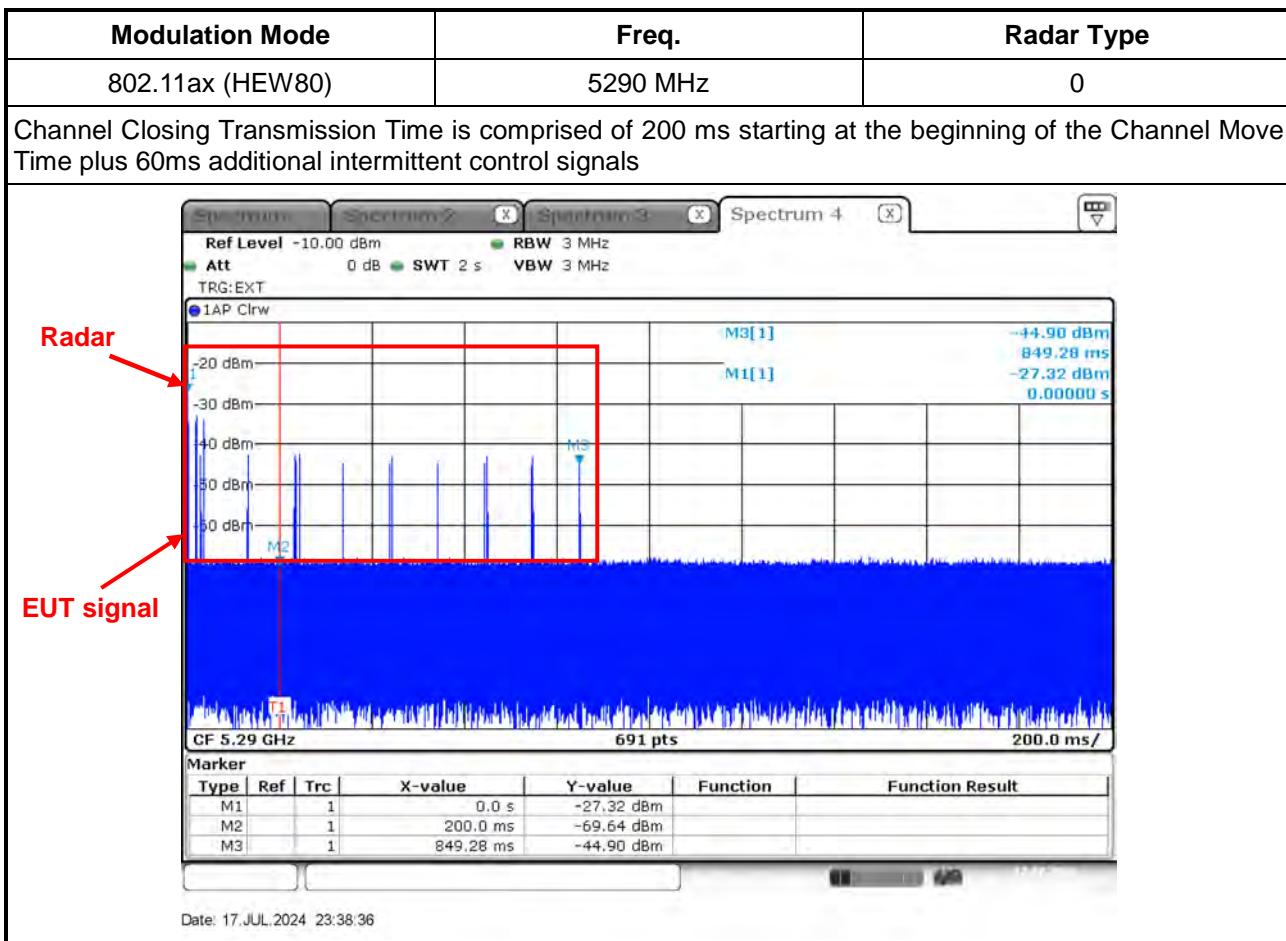

3.3.3 Test Procedures

Test Method
<input checked="" type="checkbox"/> Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
<input checked="" type="checkbox"/> Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
<input checked="" type="checkbox"/> Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

3.3.4 Test Result of Channel Move Time

Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit
	Type 0	
Test Channel (MHz)	5290 MHz	-
Channel Move Time (sec.)	0.852	< 10s



3.3.5 Test Result of Channel Closing Transmission Time

Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit
	Type 0	
Test Channel (MHz)	5290 MHz	-
Channel Closing Transmission Time (ms) (Note)	34.782	< 60ms

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins

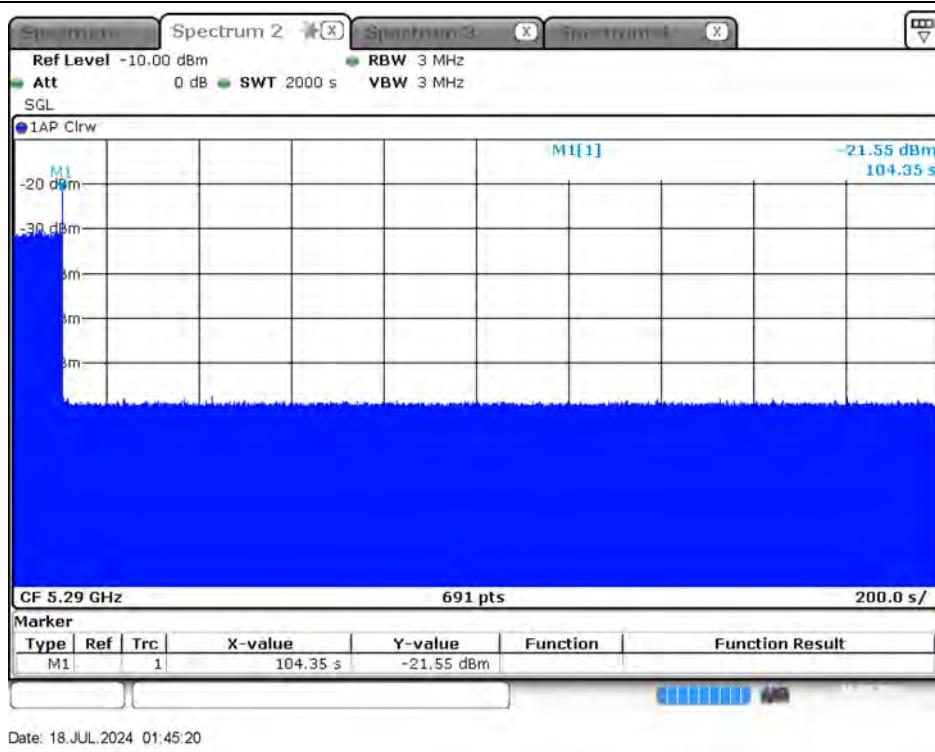
C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (2.899 ms) = S (2000 ms) / B (690)

C (34.782 ms) = N (12) X Dwell (2.899 ms)

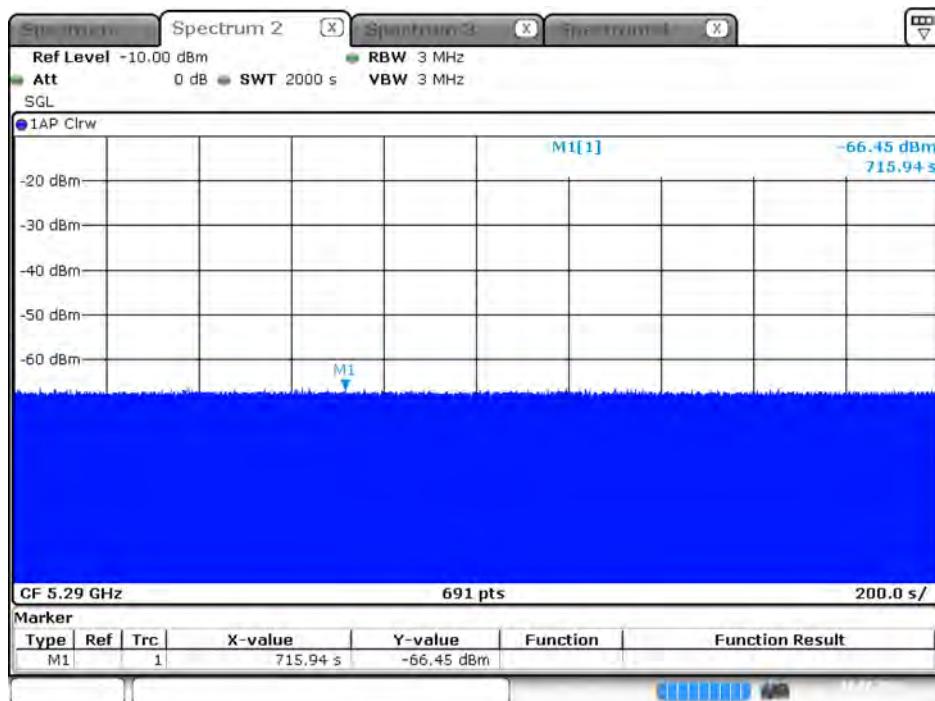
3.3.6 Test Result of Non-Occupancy Period


Modulation Mode: 802.11ax (HEW80)

Parameter	Test Result	Limit
	Type 0	
Test Channel (MHz)	5290 MHz	-
Non-Occupancy Period (min.)	≥30	≥ 30 min

Modulation Mode	Freq.
802.11ax (HEW80)	5290 MHz

Non-Occupancy Period


During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

Non-associated test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

Date: 18.JUL.2024 00:48:26

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101025	9kHz ~ 40GHz	Nov. 07, 2023	Nov. 06, 2024	Conducted (DF02-CB)
Vector Signal Generator	R&S	SMM100A	101894	100kHz ~ 7.5GHz	Oct. 24, 2023	Oct. 23, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -05	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -06	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -07	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	STI	2 Way	DV-8G -08	1 ~ 8GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV02	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV04	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Power Divider	Woken	4 Way	DF02-DV05	1 ~ 6GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-60	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-61	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)
RF Cable-high	Woken	RG402	Cable-63	1~18 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (DF02-CB)

Note: Calibration Interval of instruments listed above is one year.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission	3.0 dB	Confidence levels of 95%