PCTEST

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 07/14/16 - 07/20/16, 10/24/16 - 10/31/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1607131261-R2.ZNF

FCC ID: ZNFW280

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Wrist Device

Application Type: Certification FCC Rule Part(s): CFR §2.1093

Model(s): LG-W280, LGW280, W280, LG-W280A, LGW280A, W280A,

LG-W280V, LGW280V, W280V

Equipment	Band & Mode	Tx Frequency	SAR	
Class	Band & Wode	TXTTEQUETES	1 gm Head (W/kg)	10 gm Extremity (W/kg)
PCT	GSWGPRS/EDGE 850	824.20 - 848.80 MHz	0.44	2.67
PCT	GSWGPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.53	2.29
PCT	UMTS 850	826.40 - 846.60 MHz	0.24	1.62
PCT	UMTS 1750	1712.4 - 1752.6 MHz	0.39	2.58
PCT	UMTS 1900	1852.4 - 1907.6 MHz	0.66	2.24
PCT	LTE Band 13	779.5 - 784.5 MHz	0.13	1.49
PCT	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.16	2.42
PCT	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.47	1.90
PCT	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.68	2.55
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.10	0.68
DSS/DTS Bluetooth 2402 - 2480 MHz			١	√A
Simultaneous	Simultaneous SAR per KDB 690783 D01v01r03:			3.35

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

Note: This revised Test Report (S/N: 0Y1607131261-R2.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFW280	PCTEST NORTHER TAXABLE INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 1 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	8
3	INTROD	JCTION	9
4	DOSIME	TRIC ASSESSMENT	10
5	TEST CO	ONFIGURATION POSITIONS FOR WRIST-WORN DEVICES	11
6	RF EXPO	OSURE LIMITS	12
7	FCC ME	ASUREMENT PROCEDURES	13
8	RF CON	DUCTED POWERS	17
9	SYSTEM	VERIFICATION	29
10	SAR DA	TA SUMMARY	31
11	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	35
12	SAR ME	ASUREMENT VARIABILITY	38
13	EQUIPM	ENT LIST	39
14	MEASUF	REMENT UNCERTAINTIES	40
15	CONCLU	ISION	41
16	REFERE	NCES	42
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 2 of 43

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSWGPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 13	Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

	Voice	Burst Aver	age GMSK	Burst Aver	age 8-PSK	
Mode / Band	(dBm)	(dE	3m)	(dE	Bm)	
		1 TX Slot	1 TX Slot	2 TX Slots	1 TX Slot	2 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	31.2	27.7	26.7
GSW/GPRS/EDGE 850	Nominal	32.7	32.7	30.7	27.2	26.2
GSM/GPRS/EDGE 1900	Maximum	29.7	29.7	28.7	26.7	25.7
GSW/GPRS/EDGE 1900	Nominal	29.2	29.2	28.2	26.2	25.2

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 3 of 43

	Modulated Average (dBm)			
Mode / Band		3GPP	3GPP	3GPP
		WCDMA	HSDPA	HSUPA
UMTS Band 5 (850 MHz)	Maximum	23.2	23.2	23.2
UIVITS Ballu 5 (850 IVIHZ)	Nominal	22.7	22.7	22.7
UMTS Band 4 (1750 MHz)	Maximum	22.4	22.4	22.4
Olvi13 Barid 4 (1750 MHz)	Nominal	21.9	21.9	21.9
UMTS Band 2 (1900 MHz)	Maximum	22.4	22.4	22.4
OWITS Ballu 2 (1900 WHZ)	Nominal	21.9	21.9	21.9

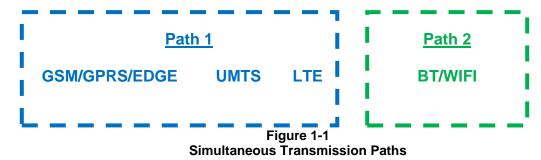
Mode / Band		Modulated Average (dBm)
LTE Band 13	Maximum	23.7
LIE Ballu 13	Nominal	23.2
LTE Donal E (Call)	Maximum	23.7
LTE Band 5 (Cell)	Nominal	23.2
LTE Dand 4 (ANS)	Maximum	22.7
LTE Band 4 (AWS)	Nominal	22.2
LTE D- 1-12 (DCC)	Maximum	22.7
LTE Band 2 (PCS)	Nominal	22.2

Mode / Band	Modulated Average (dBm)			
	Ch. 1	Ch. 2-10	Ch. 11	
JEEE 002 445 /2 4 CU-)	Maximum	19.0	19.0	19.0
IEEE 802.11b (2.4 GHz)	Nominal	18.0	18.0	18.0
IEEE 803 11 c /3 4 CH-)	Maximum	17.0	18.0	16.0
IEEE 802.11g (2.4 GHz)	Nominal	16.0	17.0	15.0
IEEE 802.11n (2.4 GHz)	Maximum	16.0	17.0	15.0
TEEE 602.1111 (2.4 GHZ)	Nominal	15.0	16.0	14.0

Mode / Band	Modulated Average (dBm)	
Divista oth (1 Mbns)	Maximum	10.0
Bluetooth (1 Mbps)	Nominal	9.0
Plustooth (2 Mbps)	Maximum	9.0
Bluetooth (2 Mbps)	Nominal	8.0
Plustooth (2 Mbps)	Maximum	9.0
Bluetooth (3 Mbps)	Nominal	8.0
Bluetooth LE	Maximum	1.0

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 4 of 43

1.4 **DUT Antenna Locations**


A diagram showing the location of the device antennas can be found in Appendix F.

1.5 **Near Field Communications (NFC) Antenna**

This DUT has NFC operations. The NFC antenna is Rx only and is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

Simultaneous Transmission Capabilities 1.6

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-1 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Head	Extremity
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes
2	GSM voice + 2.4 GHz Bluetooth	Yes	Yes
3	UMTS + 2.4 GHz WI-FI	Yes	Yes
4	UMTS + 2.4 GHz Bluetooth	Yes	Yes
5	LTE + 2.4 GHz WI-FI	Yes	Yes
6	LTE + 2.4 GHz Bluetooth	Yes	Yes
7	GPRS/EDGE + 2.4 GHz WI-FI	Yes	Yes
8	GPRS/EDGE + 2.4 GHz Bluetooth	Yes	Yes

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel IDPCCHI) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN scenario.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 5 of 43

Miscellaneous SAR Test Considerations 1.7

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, head Bluetooth SAR was not required; [(10/10)* \(\sqrt{2.480} \)] = 1.6< 3.0. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v06, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, extremity Bluetooth SAR was not required; [(10/5)* √2.480] = 3.1<7.5. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 6 of 43

Guidance Applied 1.8

- FCC KDB Publication 941225 D01v03r01, D05v02r04 (2G/3G/4G)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

1.9 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Extremity Serial Number
GSWGPRS/EDGE 850	2MP18	2MP18
GSM/GPRS/EDGE 1900	2MP18	2MP18
UMTS 850	2MP18	2MP18
UMTS 1750	2MP18	2MP18
UMTS 1900	2MP18	2MP18
LTE Band 13	2MP1R	2MP1R
LTE Band 5 (Cell)	2MP1R	2MP18
LTE Band 4 (AWS)	2MP1R	2MP1R
LTE Band 2 (PCS)	2MP1R	2MP1R
2.4 GHz WLAN	2MP1T	2MP1T

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 7 of 43

2 LTE INFORMATION

	LTE Information		
FCC ID		ZNFW280	
Form Factor		Portable Wrist Device	
Frequency Range of each LTE transmission band	LTE	E Band 13 (779.5 - 784.5 M	1Hz)
1,111,111		Band 5 (Cell) (824.7 - 848.3	/
		ind 4 (AWS) (1710.7 - 1754	
		and 2 (PCS) (1850.7 - 1909	<u> </u>
Channel Bandwidths	Ľ	TE Band 13: 5 MHz, 10 MI	Hz
	LTE Band 5	(Cell): 1.4 MHz, 3 MHz, 5 I	MHz, 10 MHz
	LTE Band 4 (AWS): 1.4	4 MHz, 3 MHz, 5 MHz, 10	MHz, 15 MHz, 20 MHz
	LTE Band 2 (PCS): 1.4	4 MHz, 3 MHz, 5 MHz, 10	MHz, 15 MHz, 20 MHz
Channel Numbers and Frequencies (MHz)	Low	Mid	High
LTE Band 13: 5 MHz	779.5 (23205)	782 (23230)	784.5 (23255)
LTE Band 13: 10 MHz	N/A	782 (23230)	N/A
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)
UE Category		3	
Modulations Supported in UL		QPSK, 16QAM	
LTE MPR Permanently implemented per 3GPP TS 36.101			
section 6.2.3~6.2.5? (manufacturer attestation to be	YES		
provided)		\/=>	
A-MPR (Additional MPR) disabled for SAR Testing?	This device dev	YES	00DD D-1 40 A!!
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. Th following LTE Release 10 Features are not supported: Carrier Aggregatio Relay, HetNet, Enhanced MIMO, eICIC, WIFI Offloading, MDH, eMBMS		se 8 Specifications. The ted: Carrier Aggregation,

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 8 of 43
16 PCTEST Engineering Laboratory, Inc.	•	•	REV 18 M

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 9 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

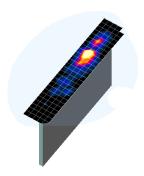


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

*Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 10 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

5 TEST CONFIGURATION POSITIONS FOR WRIST-WORN **DEVICES**

5.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 **Positioning for Head**

Devices that are designed to be worn on the wrist may operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. When next-to-mouth SAR evaluation is required, the device is positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium. The device is evaluated with wrist bands strapped together to represent normal use conditions. The 1-q head SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

5.3 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per FCC Guidance, the device was positioned with the wristband hinge of the antenna being evaluated held against the jaw of the SAM phantom, with the strap ends falling under the nose and under the ears. After positioning the DUT around the phantom, the distance between the DUT and the phantom was minimized to represent the spacing created by actual use conditions. There is a 4mm gap at the wristband hinge of DUT that reflects actual use conditions. During post-processing, the probe trajectory information and area/zoom scans were evaluated to ensure adequate probe angles were used during testing. The phantom was filled with body tissueequivalent medium for extremity use conditions.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 11 of 43

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR Head	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFW280	PCTEST INCIDENCE LADVATERY, INC.	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 12 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg for 1g SAR and \leq 3.0 W/kg for 10g SAR, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram and 10 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
TOY1607131761-R7 7NE	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 13 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

7.4.2 **Head SAR Measurements**

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

7.4.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 **SAR Measurement Conditions for LTE**

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 **Spectrum Plots for RB Configurations**

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 14 of 43	

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg for 1g SAR and >3.625 W/kg for 10g SAR, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg for 1g SAR and < 2.0 W/kg for 10g SAR.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg for 1g SAR and <3.625 W/kg for 10g SAR.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 15 of 43

7.6 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 16 of 43

8.1 GSM Conducted Powers

Maximum Burst-Averaged Output Power								
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot		
	128	33.13	33.15	30.88	27.66	26.50		
GSM 850	190	33.20	33.18	30.95	27.53	26.63		
	251	33.03	33.10	30.93	27.59	26.58		
	512	29.53	29.55	28.45	26.50	25.55		
GSM 1900	661	29.66	29.64	28.44	26.49	25.51		
	810	29.66	29.61	28.48	26.52	25.52		

Calculated Maximum Frame-Averaged Output Power								
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot		
	128	24.10	24.12	24.86	18.63	20.48		
GSM 850	190	24.17	24.15	24.93	18.50	20.61		
	251	24.00	24.07	24.91	18.56	20.56		
	512	20.50	20.52	22.43	17.47	19.53		
GSM 1900	661	20.63	20.61	22.42	17.46	19.49		
	810	20.63	20.58	22.46	17.49	19.50		
GSM 850	Frame	23.67	23.67	24.68	18.17	20.18		
GSM 1900	Avg. Targets:	20.17	20.17	22.18	17.17	19.18		

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots)

DTM Multislot Class: N/A

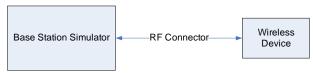


Figure 8-1 Power Measurement Setup

FCC ID: ZNFW280	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 17 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

8.2 UMTS Conducted Powers

3GPP Release	3GPP 34.121		Cellular Band [dBm]		AWS Band [dBm]		PCS Band [dBm]			3GPP MPR [dB]		
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	MFK [GD]
99	WCDMA	12.2 kbps RMC	22.99	23.00	23.04	22.22	22.35	22.31	22.28	22.30	22.23	-
99	WCDIVIA	12.2 kbps AMR	22.98	23.05	23.02	22.25	22.36	22.24	22.30	22.25	22.22	-
6		Subtest 1	23.11	23.11	23.17	22.23	22.20	22.23	22.25	22.21	22.27	0
6	HSDPA	Subtest 2	23.15	23.14	23.17	22.23	22.26	22.26	22.26	22.23	22.30	0
6	ПЭДРА	Subtest 3	22.56	22.53	22.52	21.77	21.78	21.73	21.75	21.79	21.77	0.5
6		Subtest 4	22.55	22.57	22.58	21.71	21.71	21.64	21.79	21.76	21.67	0.5
6		Subtest 1	23.11	23.05	23.08	22.36	22.25	22.28	22.36	22.33	22.21	0
6		Subtest 2	21.47	21.44	21.45	20.70	20.65	20.68	20.40	20.41	20.45	2
6	HSUPA	Subtest 3	22.57	22.59	22.46	21.77	21.78	21.68	21.56	21.48	21.60	1
6		Subtest 4	21.70	21.64	21.65	20.90	20.88	20.78	20.90	20.88	20.76	2
6		Subtest 5	23.12	23.14	23.15	22.26	22.35	22.38	22.23	22.26	22.31	0

This device does not support DC-HSDPA.

Figure 8-2
Power Measurement Setup

FCC ID: ZNFW280	PCTEST WORKLAND LAND A THE	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 18 of 43	

8.3 **LTE Conducted Powers**

8.3.1 LTE Band 13

Table 8-1 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

	LIE Band 13 Conducted Powers - 10 MHz Bandwidth								
	LTE Band 13								
10 MHzBandwidth									
			Mid Channel						
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	0011 [05]					
	1	0	23.61		0				
	1	25	23.66	0	0				
	1	49	23.62		0				
QPSK	25	0	22.51	0-1	1				
	25	12	22.43		1				
	25	25	22.28	0-1	1				
	50	0	22.35		1				
	1	0	22.40		1				
	1	25	22.34	0-1	1				
	1	49	22.54		1				
16QAM	25	0	21.50		2				
	25	12	21.50	0-2	2				
	25	25	21.44	0-2	2				
	50	0	21.48		2				

Table 8-2 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

			LTE Band 13 5 MHzBandwidth			
Modulation	RB Size	RR ()TTSQT		MPR Allowed per 3GPP [dB]	MPR [dB]	
	1	0	23.64		0	
	1	12	23.64	0	0	
	1	24	23.62		0	
QPSK	12	0	22.57	0-1	1	
	12	6	22.40		1	
	12	13	22.28	0-1	1	
	25	0	22.28		1	
	1	0	22.47		1	
	1	12	22.38	0-1	1	
	1	24	22.59		1	
16QAM	12	0	21.50		2	
	12	6	21.49	0-2	2	
	12	13	21.47	0-2	2	
	25	0	21.48		2	

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 19 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

8.3.2 LTE Band 5 (Cell)

Table 8-3
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

	LTE Band 5 (Cell) 10 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	23.61		0					
	1	25	23.58	0	0					
	1	49	23.54		0					
QPSK	25	0	22.46		1					
	25	12	22.41	0-1	1					
	25	25	22.29	0-1	1					
	50	0	22.31		1					
	1	0	22.48		1					
	1	25	22.29	0-1	1					
	1	49	22.56		1					
16QAM	25	0	21.52		2					
	25	12	21.58	0-2	2					
	25	25	21.48	0-2	2					
	50	0	21.46		2					

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-4
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

				LTE Band 5 (Cell)	713 0 WII IZ Da		
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.66	23.53	23.59		0
	1	12	23.60	23.66	23.70	0	0
	1	24	23.57	23.63	23.67		0
QPSK	12	0	22.55	22.50	22.58		1
	12	6	22.34	22.37	22.50] 01	1
	12	13	22.30	22.32	22.27	0-1	1
	25	0	22.37	22.37	22.45] [1
	1	0	22.38	22.40	22.33		1
	1	12	22.32	22.27	22.31	0-1	1
	1	24	22.60	22.53	22.48] [1
16QAM	12	0	21.40	21.56	21.53		2
	12	6	21.49	21.54	21.51	T [2
	12	13	21.44	21.55	21.45	0-2	2
	25	0	21.45	21.45	21.54	1	2

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by Quality Manage	
Document S/N:	Test Dates:	DUT Type:		-
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 20 of 43	3

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-5 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

			Band 5 (Cen) C	onducted Powe	13 - 5 WILL Dall	awiatii	
				LTE Band 5 (Cell)			
				3 MHz Bandwidth		<u> </u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]
			(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]	• •
			C	Conducted Power [dBm]		
·	1	0	23.51	23.61	23.58		0
	1	7	23.70	23.65	23.59	0	0
	1	14	23.64	23.61	23.53		0
QPSK	8	0	22.57	22.59	22.42		1
	8	4	22.44	22.45	22.41	0-1	1
	8	7	22.20	22.20	22.27	0-1	1
	15	0	22.32	22.34	22.34		1
	1	0	22.44	22.40	22.41		1
	1	7	22.36	22.36	22.38	0-1	1
	1	14	22.61	22.57	22.61		1
16QAM	8	0	21.46	21.44	21.49		2
	8	4	21.40	21.55	21.58	0-2	2
	8	7	21.45	21.53	21.43	U-2	2
	15	0	21.53	21.49	21.44		2

Table 8-6 LTE Band 5 (Cell) Conducted Powers - 1.4 MHz Bandwidth

			Janus (Jon, Jo	LTE Dand 5 (Call)			
				LTE Band 5 (Cell) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.61	23.59	23.62		0
	1	2	23.67	23.67	23.57	0	0
QPSK	1	5	23.67	23.66	23.56		0
	3	0	23.49	23.55	23.46		0
	3	2	23.44	23.43	23.39		0
	3	3	23.25	23.23	23.36		0
	6	0	22.30	22.33	22.31	0-1	1
	1	0	22.32	22.40	22.39		1
	1	2	22.38	22.32	22.36		1
	1	5	22.49	22.47	22.63	0-1	1
16QAM	3	0	22.56	22.52	22.62] 0-1	1
	3	2	22.48	22.51	22.41		1
	3	3	22.50	22.45	22.49		1
	6	0	21.51	21.54	21.49	0-2	2

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 21 of 43

8.3.3 LTE Band 4 (AWS)

Table 8-7 LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

			LTE Band 4 (AWS) 20 MHzBandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	3011 [ub]	
	1	0	22.50		0
	1	50	22.57	0	0
	1	99	22.49		0
QPSK	50	0	21.45		1
	50	25	21.50	0-1	1
	50	50	21.41	0-1	1
	100	0	21.43		1
	1	0	21.50		1
	1	50	21.31	0-1	1
	1	99	21.31		1
16QAM	50	0	20.41		2
	50	25	20.39	0-2	2
	50	50	20.57	0-2	2
	100	0	20.46		2

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

> Table 8-8 LTF Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

			Saliu 4 (AVVS) C	onducted Fowe	15 - 15 WILL Dai	iawiatii	
				LTE Band 4 (AWS)			
		1		15 MHzBandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.54	22.57	22.48		0
	1	36	22.49	22.50	22.50	0	0
	1	74	22.59	22.57	22.59		0
QPSK	36	0	21.55	21.45	21.55		1
	36	18	21.41	21.49	21.39	0.4	1
	36	37	21.44	21.41	21.46	0-1	1
	75	0	21.44	21.37	21.52		1
	1	0	21.44	21.47	21.50		1
	1	36	21.35	21.31	21.39	0-1	1
	1	74	21.46	21.41	21.40		1
16QAM	36	0	20.35	20.37	20.41		2
	36	18	20.46	20.39	20.50	0.2	2
	36	37	20.55	20.47	20.53	0-2	2
	75	0	20.49	20.47	20.43]	2

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 22 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-9 LTF Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

		LILE	Ballu 4 (AWS) C	onducted Powe	15 - 10 WITZ Dai	iawiatii	
				LTE Band 4 (AWS)			
				10 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	
			(Conducted Power [dBm	1		
	1	0	22.45	22.59	22.53		0
	1	25	22.48	22.49	22.49	0	0
	1	49	22.58	22.56	22.49		0
QPSK	25	0	21.49	21.44	21.65		1
	25	12	21.46	21.41	21.42	0-1	1
	25	25	21.37	21.46	21.52	0-1	1
	50	0	21.39	21.41	21.53		1
	1	0	21.35	21.45	21.52		1
	1	25	21.41	21.27	21.44	0-1	1
	1	49	21.52	21.44	21.44		1
16QAM	25	0	20.35	20.33	20.45		2
	25	12	20.55	20.40	20.55	0-2	2
	25	25	20.62	20.47	20.46] 0-2	2
	50	0	20.41	20.48	20.35	1	2

Table 8-10 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	LTE Band 4 (AWS) 5 MHzBandwidth									
Modulation	RB Size RB Offset	Low Channel 19975	Mid Channel 20175	High Channel 20375	MPR Allowed per	MPR [dB]				
Modulation	ND 0120	NB Ollact	(1712.5 MHz)	(1732.5 MHz) Conducted Power [dBm	(1752.5 MHz)	3GPP [dB]	iii i (ab)			
	1	0	22.59	22.66	22.53		0			
	1	12	22.49	22.51	22.57	0	0			
	1	24	22.66	22.55	22.59		0			
QPSK	12	0	21.56	21.46	21.53	0-1	1			
	12	6	21.43	21.56	21.41		1			
	12	13	21.44	21.39	21.41		1			
	25	0	21.46	21.35	21.46		1			
	1	0	21.46	21.53	21.49		1			
	1	12	21.32	21.30	21.37	0-1	1			
	1	24	21.54	21.43	21.37		1			
16QAM	12	0	20.43	20.36	20.52		2			
	12	6	20.44	20.38	20.50	0-2	2			
	12	13	20.52	20.46	20.48	0-2	2			
	25	0	20.51	20.52	20.40		2			

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/13/1261-R2.ZNF 07/14/16 - 07/20/16, 10/24/16 - 10/31/16 Portable Wrist Device		Page 23 of 43

Table 8-11 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

			Bana + (ATTO)	conducted Fowe	73 - 5 WILLS Dall	awiatii	
				LTE Band 4 (AWS)			
				3 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19965	20175	20385	MPR Allowed per	MPR [dB]
Modulation	NB 0120	IND Offset	(1711.5 MHz)	(1732.5 MHz)	(1753.5 MHz)	3GPP [dB]	iiii it [ab]
			C	Conducted Power [dBm]		
	1	0	22.57	22.56	22.38		0
	1	7	22.42	22.57	22.42	0	0
	1	14	22.55	22.55	22.57		0
QPSK	8	0	21.52	21.54	21.62	0-1	1
	8	4	21.46	21.52	21.36		1
	8	7	21.38	21.41	21.39		1
	15	0	21.45	21.31	21.54		1
	1	0	21.55	21.49	21.44		1
	1	7	21.29	21.28	21.38	0-1	1
	1	14	21.49	21.44	21.41		1
16QAM	8	0	20.32	20.35	20.41		2
	8	4	20.47	20.41	20.46	1	2
	8	7	20.55	20.46	20.56	0-2	2
	15	0	20.53	20.43	20.48	1	2

Table 8-12 LTE Band 4 (AWS) Conducted Powers - 1.4 MHz Bandwidth

				LTE Band 4 (AWS)			
				1.4 MHzBandwidth			
			Low Channel	Mid Channel		MPR Allowed per 3GPP [dB]	
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)		MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	22.61	22.56	22.54		0
	1	2	22.48	22.46	22.54	0	0
	1	5	22.61	22.63	22.66		0
QPSK	3	0	22.51	22.56	22.55		0
	3	2	22.36	22.52	22.41		0
	3	3	22.42	22.46	22.48		0
	6	0	21.50	21.36	21.58	0-1	1
	1	0	21.35	21.46	21.43		1
	1	2	21.33	21.25	21.46	1	1
	1	5	21.46	21.49	21.38	0-1	1
16QAM	3	0	21.43	21.31	21.52	0-1	1
	3	2	21.48	21.49	21.47		1
	3	3	21.58	21.44	21.48		1
	6	0	20.58	20.53	20.44	0-2	2

FCC ID: ZNFW280	PCTEST INCIDENCE LADVATERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 24 of 43

LTE Band 2 (PCS) 8.3.4

Table 8-13 LTF Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

			and 2 (1 00) 00	nauctea Power	3 - 20 Miliz Ball	awiatii	
				LTE Band 2 (PCS)			
		1		20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			,	, ,	, ,	- 00:1 [05]	
				Conducted Power [dBm			
	1	0	22.63	22.53	22.48]	0
	1	50	22.43	22.48	22.41	0	0
	1	99	22.57	22.52	22.58		0
QPSK	50	0	21.56	21.49	21.47	0-1	1
	50	25	21.39	21.51	21.31		1
	50	50	21.46	21.43	21.50		1
	100	0	21.39	21.38	21.42		1
	1	0	21.43	21.49	21.57		1
	1	50	21.33	21.41	21.45	0-1	1
	1	99	21.49	21.45	21.40		1
16QAM	50	0	20.35	20.41	20.42		2
	50	25	20.43	20.38	20.50	0.2	2
	50	50	20.58	20.54	20.50	0-2	2
	100	0	20.45	20.48	20.43		2

Table 8-14 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

			ana 2 (1 00) 00	nauctea rower	o To Mille Ball	<u> </u>	
				LTE Band 2 (PCS)			
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675	18900	19125 2) (1902.5 MHz)	MPR Allowed per	MPR [dB]
Modulation	ND 0120	IND Offset	(1857.5 MHz)	(1880.0 MHz)		3GPP [dB]	iiii it [ub]
			(Conducted Power [dBm]		
	1	0	22.55	22.64	22.57		0
	1	36	22.52	22.48	22.50	0	0
	1	74	22.59	22.59	22.55		0
QPSK	36	0	21.57	21.40	21.50	0-1	1
	36	18	21.32	21.43	21.42		1
	36	37	21.43	21.44	21.55		1
	75	0	21.38	21.36	21.52		1
	1	0	21.43	21.41	21.42		1
	1	36	21.41	21.30	21.43	0-1	1
	1	74	21.48	21.42	21.34		1
16QAM	36	0	20.35	20.41	20.45		2
	36	18	20.44	20.45	20.52	0-2	2
	36	37	20.48	20.41	20.42		2
	75	0	20.49	20.50	20.49		2

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 25 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-15 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

			ana 2 (1 00) 00	nducted Powers	5 TO WITTE Ball	awiatii	
				LTE Band 2 (PCS)			
				10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			O	Conducted Power [dBm	1		
	1	0	22.47	22.65	22.48		0
	1	25	22.49	22.50	22.52	0	0
	1	49	22.65	22.56	22.60		0
QPSK	25	0	21.51	21.50	21.52	- - 0-1	1
	25	12	21.33	21.54	21.38		1
	25	25	21.45	21.34	21.50		1
	50	0	21.40	21.33	21.52	1	1
	1	0	21.46	21.47	21.49		1
	1	25	21.35	21.30	21.38	0-1	1
	1	49	21.37	21.34	21.40		1
16QAM	25	0	20.36	20.36	20.45		2
	25	12	20.43	20.37	20.56		2
	25	25	20.50	20.45	20.56	0-2	2
	50	0	20.52	20.50	20.44	1	2

Table 8-16 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 2 (PCS)	<u> </u>		
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.64	22.55	22.53		0
	1	12	22.50	22.40	22.51	0	0
	1	24	22.58	22.53	22.62		0
QPSK	12	0	21.52	21.46	21.57	0-1	1
	12	6	21.39	21.42	21.40		1
	12	13	21.49	21.44	21.42		1
	25	0	21.42	21.38	21.42		1
	1	0	21.40	21.59	21.48		1
	1	12	21.38	21.36	21.46	0-1	1
	1	24	21.44	21.44	21.31		1
16QAM	12	0	20.34	20.31	20.45		2
	12	6	20.50	20.44	20.40	0-2	2
	12	13	20.61	20.57	20.48		2
	25	0	20.50	20.42	20.49		2

FCC ID: ZNFW280	PCTEST INCIDENCE LADVATERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 26 of 43

Table 8-17 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

			- (1 0 0) 0 1	LTE Band 2 (PCS)	<u> </u>		
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			0	Conducted Power [dBm]		
	1	0	22.54	22.58	22.42		0
	1	7	22.48	22.51	22.54	0	0
	1	14	22.51	22.54	22.61		0
QPSK	8	0	21.63	21.37	21.52	- - 0-1	1
	8	4	21.41	21.39	21.43		1
	8	7	21.38	21.38	21.46		1
	15	0	21.42	21.42	21.56		1
	1	0	21.47	21.55	21.54		1
	1	7	21.25	21.29	21.30	0-1	1
	1	14	21.38	21.44	21.32		1
16QAM	8	0	20.41	20.28	20.42		2
	8	4	20.44	20.43	20.51] ,,	2
	8	7	20.55	20.40	20.50	0-2	2
	15	0	20.41	20.50	20.52		2

Table 8-18 LTE Band 2 (PCS) Conducted Powers - 1.4 MHz Bandwidth

			a.i.a. = (i. 55) 55				
				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
		1	Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607	18900	19193	MPR Allowed per	MPR [dB]
Modulation	ND SIZE	KB Oliset	(1850.7 MHz)	(1880.0 MHz)	(1909.3 MHz)	3GPP [dB]	IVIPK [UD]
			(Conducted Power [dBm]		
	1	0	22.67	22.64	22.65	0	0
	1	2	22.40	22.50	22.47		0
	1	5	22.61	22.70	22.66		0
QPSK	3	0	22.57	22.57	22.63		0
	3	2	22.31	22.48	22.45		0
	3	3	22.50	22.40	22.52		0
	6	0	21.45	21.41	21.55	0-1	1
	1	0	21.28	21.52	21.52		1
	1	2	21.25	21.30	21.37		1
	1	5	21.48	21.56	21.38	0-1	1
16QAM	3	0	21.43	21.27	21.52] 0-1	1
	3	2	21.39	21.46	21.53		1
	3	3	21.50	21.46	21.44		1
	6	0	20.61	20.58	20.45	0-2	2

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 27 of 43

8.4 WLAN Conducted Powers

Table 8-19
2.4 GHz WLAN Average RF Power

		2.4GHz Conduct	ed Power [dBm]
Freq [MHz]	Channel	IEEE Transm	nission Mode
		802.11b	802.11g
2412	1	18.31	16.05
2437	6	18.69	17.39
2462	11	18.62	15.15

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

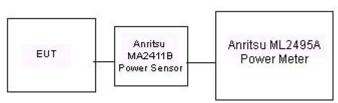


Figure 8-3
Power Measurement Setup

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 28 of 43

9.1 **Tissue Verification**

Table 9-1 **Measured Tissue Properties**

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε
			740	0.886	41.315	0.893	41.994	-0.78%	-1.62%
7/14/2016	750H	22.3	755	0.898	41.114	0.894	41.916	0.45%	-1.91%
7/14/2010	73011	22.3	770	0.912	40.908	0.895	41.838	1.90%	-2.22%
			785	0.926	40.710	0.896	41.760	3.35%	-2.51%
			820	0.877	40.742	0.899	41.578	-2.45%	-2.01%
7/18/2016	835H	21.7	835	0.892	40.560	0.900	41.500	-0.89%	-2.27%
			850	0.906	40.357	0.916	41.500	-1.09%	-2.75%
			1710	1.341	39.466	1.348	40.142	-0.52%	-1.68%
7/19/2016	1750H	22.0	1750	1.382	39.267	1.371	40.079	0.80%	-2.03%
			1790	1.421	39.094	1.394	40.016	1.94%	-2.30%
			1850	1.398	39.479	1.400	40.000	-0.14%	-1.30%
7/20/2016	1900H	21.7	1880	1.430	39.352	1.400	40.000	2.14%	-1.62%
			1910	1.463	39.238	1.400	40.000	4.50%	-1.91%
			2400	1.823	39.109	1.756	39.289	3.82%	-0.46%
7/18/2016	2450H	21.9	2450	1.879	38.923	1.800	39.200	4.39%	-0.71%
			2500	1.937	38.724	1.855	39.136	4.42%	-1.05%
			740	0.954	54.808	0.963	55.570	-0.93%	-1.37%
40/04/0040	7500	00.0	755	0.968	54.635	0.964	55.512	0.41%	-1.58%
10/31/2016	750B	23.0	770	0.981	54.479	0.965	55.453	1.66%	-1.76%
			785	0.995	54.344	0.966	55.395	3.00%	-1.90%
			820	0.987	54.408	0.969	55.258	1.86%	-1.54%
10/26/2016	835B	22.1	835	1.003	54.301	0.970	55.200	3.40%	-1.63%
			850	1.018	54.152	0.988	55.154	3.04%	-1.82%
			1710	1.470	51.835	1.463	53.537	0.48%	-3.18%
10/25/2016	1750B	21.0	1750	1.512	51.659	1.488	53.432	1.61%	-3.32%
			1790	1.553	51.468	1.514	53.326	2.58%	-3.48%
			1850	1.520	51.868	1.520	53.300	0.00%	-2.69%
10/24/2016	1900B	21.4	1880	1.553	51.760	1.520	53.300	2.17%	-2.89%
			1910	1.587	51.660	1.520	53.300	4.41%	-3.08%
			1850	1.519	51.906	1.520	53.300	-0.07%	-2.62%
10/27/2016	1900B	22.6	1880	1.553	51.798	1.520	53.300	2.17%	-2.82%
			1910	1.588	51.685	1.520	53.300	4.47%	-3.03%
			2400	1.953	51.157	1.902	52.767	2.68%	-3.05%
10/24/2016	2450B	23.1	2450	2.023	50.948	1.950	52.700	3.74%	-3.32%
			2500	2.091	50.737	2.021	52.636	3.46%	-3.61%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 29 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

Test System Verification 9.2

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

> Table 9-2 System Verification Results - 1a

	Gystem vermounds 19													
	System Verification TARGET & MEASURED													
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g}		
F	750	HEAD	07/14/2016	22.0	22.3	0.200	1046	3209	1.560	8.200	7.800	-4.88%		
G	835	HEAD	07/18/2016	21.6	21.7	0.200	4d119	3334	1.910	9.140	9.550	4.49%		
G	1750	HEAD	07/19/2016	23.5	22.0	0.100	1051	3334	3.810	36.100	38.100	5.54%		
К	1900	HEAD	07/20/2016	23.2	22.1	0.100	5d141	7409	4.140	38.500	41.400	7.53%		
K	2450	HEAD	07/18/2016	23.0	21.9	0.100	719	7409	5.720	54.200	57.200	5.54%		

Table 9-3 System Verification Results - 10g

	System Verification TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{10 g} (W/kg)	1 W Target SAR10 g (W/kg)	1 W Normalized SAR _{10 g} (W/kg)	Deviation _{10g} (%)			
К	750	BODY	10/31/2016	23.5	21.6	0.200	1054	7409	1.170	5.680	5.850	2.99%			
J	835	BODY	10/26/2016	20.0	22.1	0.200	4d133	3318	1.310	6.200	6.550	5.65%			
Н	1750	BODY	10/25/2016	20.3	20.8	0.100	1008	3319	2.060	19.800	20.600	4.04%			
G	1900	BODY	10/24/2016	22.8	21.4	0.100	5d149	3287	2.150	21.100	21.500	1.90%			
G	1900	BODY	10/27/2016	23.9	22.4	0.100	5d149	3287	2.160	21.100	21.600	2.37%			
Е	2450	BODY	10/24/2016	21.7	22.3	0.100	981	7406	2.230	23.800	22.300	-6.30%			

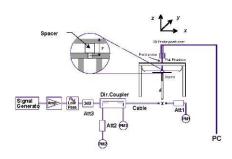


Figure 9-1 **System Verification Setup Diagram**

Figure 9-2 **System Verification Setup Photo**

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device		Page 30 of 43

10.1 Standalone Head SAR Data

Table 10-1 GSM/UMTS Head SAR

					МІ	EASURE	MENT R	ESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allowed	Conducted	Power	Spacing	Device Serial		Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Num be r	Slots	Cycle		(W/kg)		(W/kg)	
836.60	190	GSM 850	GSM	33.2	33.20	-0.16	10 mm	2MP18	1	1:8.3	front	0.278	1.000	0.278	
836.60	190	GSM 850	GPRS	31.2	30.95	-0.09	10 mm	2MP18	2	1:4.15	front	0.417	1.059	0.442	A1
1880.00	661	GSM 1900	GSM	29.7	29.66	-0.11	10 mm	2MP18	1	1:8.3	front	0.363	1.009	0.366	
1880.00	661	GSM 1900	GPRS	28.7	28.44	0.05	10 mm	2MP18	2	1:4.15	front	0.495	1.062	0.526	A2
836.60	4183	UMTS 850	RMC	23.2	23.00	0.16	10 mm	2MP18	N/A	1:1	front	0.228	1.047	0.239	A3
1732.40	1412	UMTS 1750	RMC	22.4	22.35	0.10	10 mm	2MP18	N/A	1:1	front	0.387	1.012	0.392	A4
1880.00 9400 UMTS 1900 RMC 22.4 22.30 0.11								2MP18	N/A	1:1	front	0.641	1.023	0.656	A5
		ANSI / IEE		Head SAR 1.6 W/kg (mW/g) averaged over 1 gram											

Table 10-2 LTE Head SAR

	=======================================																		
	MEASUREMENT RESULTS																		
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHZ]	Power [dBm]	Power [abm]	Dritt [aB]		Number						Cycle	(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	23.7	23.66	-0.08	0	2MP1R	QPSK	1	25	10 mm	front	1:1	0.127	1.009	0.128	A6
782.00	23230	Mid	LTE Band 13	10	22.7	22.51	0.13	1	2MP1R	QPSK	25	0	10 mm	front	1:1	0.093	1.045	0.097	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.61	-0.01	0	2MP1R	QPSK	1	0	10 mm	front	1:1	0.159	1.021	0.162	A7
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.46	-0.11	1	2MP1R	QPSK	25	0	10 mm	front	1:1	0.146	1.057	0.154	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.7	22.57	0.13	0	2MP1R	QPSK	1	50	10 mm	front	1:1	0.457	1.030	0.471	A8
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.7	21.50	0.18	1	2MP1R	QPSK	50	25	10 mm	front	1:1	0.353	1.047	0.370	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.63	-0.06	0	2MP1R	QPSK	1	0	10 mm	front	1:1	0.666	1.016	0.677	A9
1860.00 18700 Low LTE Band 2 (PCS) 20 21.7 21.56 -0.07 1								1	2MP1R	QPSK	50	0	10 mm	front	1:1	0.482	1.033	0.498	
			ANSI / IEEE	C95.1 1992 -	SAFETY LIMI	Т			Head SAR										
				Spatial Pea	ak									1.6 W/kg	(mW/g)				
	Uncontrolled Exposure/General Population												а	veraged o	ver 1 gram	1			

Table 10-3 2.4 GHz WLAN Head SAR

	MEASUREMENT RESULTS																	
FREQU												Plot #						
MHz	Ch.			[MHZ]	Power [dBm]	Power [abm]	[aB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	19.0	18.69	-0.06	10 mm	2MP1T	1	front	99.0	0.143	0.096	1.074	1.010	0.104	A10
		ANSI	IEEE C95	.1 1992 - SA	FETY LIMIT								Hea	adSAR				
			Sp				1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												averaged	over 1 gram				

FCC ID: ZNFW280	PCTEST NORTHER TAXABLE INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 31 of 43

10.2 Standalone Extremity SAR Data

Table 10-4 GPRS/UMTS Extremity SAR

								Cillity	J, (1 (
					MI	EASURE	MENT	RESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	Power [abm]	Drift [aB]		Number	Siots	Cycle		(W/kg)		(W/kg)	
824.20	128	GSM 850	GPRS	31.2	30.88	-0.15	0 mm	2MP18	2	1:4.15	back	2.260	1.076	2.432	
836.60	190	GSM 850	GPRS	31.2	30.95	-0.16	0 mm	2MP18	2	1:4.15	back	2.520	1.059	2.669	A11
848.80	251	GSM 850	GPRS	31.2	30.93	0.04	0 mm	2MP18	2	1:4.15	back	2.420	1.064	2.575	
836.60	190	GSM 850	GPRS	31.2	30.95	-0.10	0 mm	2MP18	2	1:4.15	back	2.230	1.059	2.362	
1850.20	512	GSM 1900	GPRS	28.7	28.45	-0.18	0 mm	2MP18	2	1:4.15	back	2.140	1.059	2.266	
1880.00	661	GSM 1900	GPRS	28.7	28.44	-0.11	0 mm	2MP18	2	1:4.15	back	2.160	1.062	2.294	A12
1909.80	810	GSM 1900	GPRS	28.7	28.48	-0.08	0 mm	2MP18	2	1:4.15	back	2.060	1.052	2.167	
836.60	4183	UMTS 850	RMC	23.2	23.00	-0.06	0 mm	2MP18	N/A	1:1	back	1.550	1.047	1.623	A13
1712.40	1312	UMTS 1750	RMC	22.4	22.22	-0.04	0 mm	2MP18	N/A	1:1	back	2.480	1.042	2.584	
1732.40	1412	UMTS 1750	RMC	22.4	22.35	-0.02	0 mm	2MP18	N/A	1:1	back	2.520	1.012	2.550	A14
1752.60	1513	UMTS 1750	RMC	22.4	22.31	0.01	0 mm	2MP18	N/A	1:1	back	2.510	1.021	2.563	
1732.40	1412	UMTS 1750	RMC	22.4	22.35	-0.05	0 mm	2MP18	N/A	1:1	back	2.430	1.012	2.459	
1852.40	9262	UMTS 1900	RMC	22.4	22.28	-0.04	0 mm	2MP18	N/A	1:1	back	2.180	1.028	2.241	A15
1880.00	9400	UMTS 1900	RMC	22.4	22.30	-0.05	0 mm	2MP18	N/A	1:1	back	2.140	1.023	2.189	
1907.60	1907.60 9538 UMTS 1900 RMC 22.4 22.23 0.09						0 mm	2MP18	N/A	1:1	back	2.070	1.040	2.153	
		ANSI / IEEI	E C95.1 1992 - SA	FETY LIMIT			Extremity								
	Spatial Peak						4.0 W/kg (mW/g) averaged over 10 grams								
	Uncontrolled Exposure/General Population									a	veraged o	vei 10 grams			

Blue entry represents variability measurement

Table 10-5 LTE Extremity SAR

								MEASU	REMENT	RESULTS									
FI	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	(Ch.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	23.7	23.66	-0.08	0	2MP1R	QPSK	1	25	0 mm	back	1:1	1.480	1.009	1.493	A16
782.00	23230	Mid	LTE Band 13	10	22.7	22.51	0.16	1	2MP1R	QPSK	25	0	0 mm	back	1:1	1.140	1.045	1.191	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.61	-0.16	0	2MP18	QPSK	1	0	0 mm	back	1:1	2.370	1.021	2.420	A17
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.46	-0.12	1	2MP18	QPSK	25	0	0 mm	back	1:1	1.810	1.057	1.913	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.31	-0.04	1	2MP18	QPSK	50	0	0 mm	back	1:1	1.680	1.094	1.838	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.7	22.57	-0.14	0	2MP1R	QPSK	1	50	0 mm	back	1:1	1.840	1.030	1.895	A18
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.7	21.50	-0.11	1	2MP1R	QPSK	50	25	0 mm	back	1:1	1.600	1.047	1.675	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.7	22.63	-0.12	0	2MP1R	QPSK	1	0	0 mm	back	1:1	2.390	1.016	2.428	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.7	22.53	-0.17	0	2MP1R	QPSK	1	0	0 mm	back	1:1	2.090	1.040	2.174	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.7	22.58	0.17	0	2MP1R	QPSK	1	99	0 mm	back	1:1	2.150	1.028	2.210	
1860.00	18700	Low	LTE Band 2 (PCS)	20	21.7	21.56	0.04	1	2MP1R	QPSK	50	0	0 mm	back	1:1	1.750	1.033	1.808	
1900.00	19100	High	LTE Band 2 (PCS)	20	21.7	21.42	0.17	1	2MP1R	QPSK	100	0	0 mm	back	1:1	1.820	1.067	1.942	
1860.00 18700 Low LTE Band 2 (PCS) 20 22.7 22.63 0.12					0.12	0	2MP1R	QPSK	1	0	0 mm	back	1:1	2.510	1.016	2.550	A19		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Extremity													
				ial Peak				4.0 W/kg (mW/g)											
	Uncontrolled Exposure/General Population					averaged over 10 grams													

Blue entry represents variability measurement

	,	, ,			
FCC ID: ZNFW280	@\ PCTEST	SAR EVALUATION REPORT	(1) LG	Reviewed by:	
. 33 15. 2.11 11200	SNO INSERTED LABORATORY, INC.	SAN ETALOATION NEI ONT	Lu	Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device		Page 32 of 43	

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M

Table 10-6 2.4 GHz WLAN Extremity SAR

	MEASUREMENT RESULTS																	
FREQU	IENCY	Mode Service		Bandwidth	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor		Reported SAR (10g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]	Number (Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)			
2437	6	802.11b	DSSS	22	19.0	18.69	0.08	0 mm	2MP1T	1	back	99.0	2.339	0.624	1.074	1.010	0.677	A20
		ANS	I / IEEE C9	5.1 1992 - SAF	ETY LIMIT			Extremity										
	Spatial Peak						4.0 W/kg (mW/g)											
		Uncont	rolled Exp	osure/Genera	al Population								averaged o	ver 10 grams				

10.3 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg for 1g SAR and 2.0 W/kg for 10g SAR. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 12 for variability analysis.
- 7. Per FCC Guidance, the device was positioned with the wristband hinge of the antenna being evaluated held against the jaw of the SAM phantom, with the strap ends falling under the nose and under the ears for extremity SAR. After positioning the DUT around the phantom, the distance between the DUT and the phantom was minimized to represent the spacing created by actual use conditions. The probe trajectory information and area/zoom scans were evaluated to ensure adequate probe angles were used during testing.
- 8. There is a 4mm gap at the wristband hinge of DUT that reflects actual use conditions.

GSM Test Notes:

- Justification for reduced test configurations per KDB Publication 941225 D03v01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for extremity SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 3. GPRS was additionally evaluated for head exposure condition to address possible VoIP scenarios.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 33 of 43	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device		

UMTS Notes:

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.2 for more information.
- 2. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 3. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 34 of 43

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g or 10-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg or ≤4.0 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equations must be used to estimate the standalone 1g and 10g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$
Estimated SAR= $\frac{\sqrt{f(GHz)}}{18.75} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$

Table 11-1
Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Head)	Separation Distance (Extremity)	Estimated SAR (Extremity)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2480	10.00	10	0.210	5	0.168

Note: Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation. A separation distance of 5 mm is used for distances < 5mm.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 35 of 43	

© 2016 PCTEST Engineering Laboratory, Inc.

11.3 Head SAR Simultaneous Transmission Analysis

Table 11-2
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Head at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.442	0.104	0.546
	GSM/GPRS 1900	0.526	0.104	0.630
	UMTS 850	0.239	0.104	0.343
	UMTS 1750	0.392	0.104	0.496
Head SAR	UMTS 1900	0.656	0.104	0.760
	LTE Band 13	0.128	0.104	0.232
	LTE Band 5 (Cell)	0.162	0.104	0.266
	LTE Band 4 (AWS)	0.471	0.104	0.575
	LTE Band 2 (PCS)	0.677	0.104	0.781

Table 11-3
Simultaneous Transmission Scenario with Bluetooth (Head at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.442	0.210	0.652
	GSM/GPRS 1900	0.526	0.210	0.736
	UMTS 850	0.239	0.210	0.449
	UMTS 1750	0.392	0.210	0.602
Head SAR	UMTS 1900	0.656	0.210	0.866
	LTE Band 13	0.128	0.210	0.338
	LTE Band 5 (Cell)	0.162	0.210	0.372
	LTE Band 4 (AWS)	0.471	0.210	0.681
	LTE Band 2 (PCS)	0.677	0.210	0.887

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 36 of 43

11.4 Extremity Simultaneous Transmission Analysis

Table 11-4 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Extremity at 0.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	2.669	0.677	3.346
	GPRS 1900	2.294	0.677	2.971
	UMTS 850	1.623	0.677	2.300
Cytromity	UMTS 1750	2.584	0.677	3.261
Extremity SAR	UMTS 1900	2.241	0.677	2.918
07410	LTE Band 13	1.493	0.677	2.170
	LTE Band 5 (Cell)	2.420	0.677	3.097
	LTE Band 4 (AWS)	1.895	0.677	2.572
	LTE Band 2 (PCS)	2.550	0.677	3.227

Table 11-5 Simultaneous Transmission Scenario with Bluetooth (Extremity at 0.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	2.669	0.168	2.837
	GPRS 1900	2.294	0.168	2.462
	UMTS 850	1.623	0.168	1.791
Cytromity	UMTS 1750	2.584	0.168	2.752
Extremity SAR	UMTS 1900	2.241	0.168	2.409
O/ II C	LTE Band 13	1.493	0.168	1.661
	LTE Band 5 (Cell)	2.420	0.168	2.588
	LTE Band 4 (AWS)	1.895	0.168	2.063
	LTE Band 2 (PCS)	2.550	0.168	2.718

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

11.5 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFW280	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 37 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 12-1
Extremity SAR Measurement Variability Results

	EXTREMITY VARIABILITY RESULTS												
Band	FREQUE	NCY	Mode	Service	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio
	MHz	Ch.				(W/kg)	(W/kg)		(W/kg)		(W/kg)		
835	836.60	190	GSM 850	GPRS	back	0 mm	2.520	2.230	1.13	N/A	N/A	N/A	N/A
1750	1732.40	1412	UMTS 1750	RMC	back	0 mm	2.520	2.430	1.04	N/A	N/A	N/A	N/A
1900	1860.00	18700	LTE Band 2 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	back	0 mm	2.390	2.510	1.05	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Extremity							
	Spatial Peak								4.0 W/kg	(mW/g)			
		Uncon	trolled Exposure/General Populati	ion				ave	eraged over	er 10 grams			

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g SAR and <3.75 W/kg for 10g SAR for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFW280	PCTEST INCIDENCE LADVATERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 38 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/2/2016	Annual	3/2/2017	JP38020182
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
SPEAG	D750V3	750 MHz SAR Dipole	2/16/2016	Annual	2/16/2017	1046
SPEAG	D750V3	750 MHz SAR Dipole	3/16/2016	Annual	3/16/2017	1054
SPEAG	D835V2	835 MHz SAR Dipole	4/14/2016	Annual	4/14/2017	4d119
SPEAG	D835V2	835 MHz SAR Dipole	7/14/2016	Annual	7/14/2017	4d133
SPEAG	D1750V2	1750 MHz SAR Dipole	4/13/2016	Annual	4/13/2017	1051
SPEAG	D1765V2	1765 MHz SAR Dipole	5/11/2016	Annual	5/11/2017	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	4/12/2016	Annual	4/12/2017	5d141
SPEAG	D1900V2	1900 MHz SAR Dipole	7/15/2016	Annual	7/15/2017	5d149
SPEAG	D2450V2	2450 MHz SAR Dipole	8/20/2015	Annual	8/20/2016	719
SPEAG	D2450V2	2450 MHz SAR Dipole	7/25/2016	Annual	7/25/2017	981
SPEAG	ES3DV3	SAR Probe	3/18/2016	Annual	3/18/2017	3209
SPEAG	ES3DV3	SAR Probe	11/17/2015	Annual	11/17/2016	3334
SPEAG	EX3DV4	SAR Probe	5/17/2016	Annual	5/17/2017	7409
SPEAG	ES3DV3	SAR Probe	2/19/2016	Annual	2/19/2017	3318
SPEAG	ES3DV3	SAR Probe	3/18/2016	Annual	3/18/2017	3319
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	EX3DV4	SAR Probe	4/19/2016	Annual	4/19/2017	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/11/2015	Annual	11/11/2016	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	11/11/2015	Annual	11/11/2016	1415
SPEAG	DAE4				5/11/2017	859
SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	5/11/2016 2/19/2016	Annual Annual		665
	DAE4	Dasy Data Acquisition Electronics			2/19/2017	1368
SPEAG		Dasy Data Acquisition Electronics	3/14/2016	Annual	3/14/2017	
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/14/2016	Annual	4/14/2017	1407
Rohde & Schwarz	CMU200	Base Station Simulator	3/29/2016	Annual	3/29/2017	836371/0079
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2016	Annual	5/10/2017	1070
Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264165
Control Company	4040	Digital Thermometer	3/15/2015	Biennial	3/15/2017	150194929
Control Company	4040	Digital Thermometer	3/15/2015	Biennial	3/15/2017	150195005
Agilent	E4438C	ESG Vector Signal Generator	2/27/2016	Annual	2/27/2017	MY45091346
Agilent	E4438C	ESG Vector Signal Generator	3/2/2016	Annual	3/2/2017	MY47270002
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053081
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053059
Agilent	N5182A	MXG Vector Signal Generator	2/27/2016	Annual	2/27/2017	MY47420651
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	1039008
Anritsu	MA2411B	Pulse Power Sensor	12/7/2015	Annual	12/7/2016	1207364
Anritsu	MA24106A	USB Power Sensor	2/27/2016	Annual	2/27/2017	1344559
Anritsu	MT8820C	Radio Communication Analyzer	4/14/2016	Annual	4/14/2017	6201240328
Anritsu	MT8820C	Radio Communication Analyzer	12/4/2015	Annual	12/4/2016	6201300731
Rohde & Schwarz	CMW500	Radio Communication Tester	6/3/2016	Annual	6/3/2017	108843
Rohde & Schwarz	CMW500	Radio Communication Tester	6/28/2016	Annual	6/28/2017	106578
Agilent	8753ES	S-Parameter Network Analyzer	6/28/2016	Annual	6/28/2017	MY40000670
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Agilent	E5515C	Wireless Communications Test Set	3/7/2016	Biennial	3/7/2018	GB46110872
Agilent	E5515C	Wireless Communications Test Set	11/20/2014	Biennial	11/20/2016	GB43163447
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
			CBT	N/A	CBT	R8979500903
MiniCircuits	SLP-2400+	LOW Pass Filter			L CBI	
MiniCircuits Mini-Circuits	SLP-2400+ NLP-1200+	Low Pass Filter Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A

Note:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 39 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M

14 **MEASUREMENT UNCERTAINTIES**

Tol. Prob. Cr. Cr. Cr. 1gm 10gms V. V. Cr. Cr. 1gm 10gms V. V. V. V. V. V. V. V	a	С	d	e=	f	g	h =	i =	k
Measurement System Prob. Combined Prob. Combined Standard Uncertainty Component Prob. Combined Standard Uncertainty Component Prob. Combined Standard Uncertainty Prob. Combined Standard Uncertainty Prob. Combined Standard Uncertainty Prob.				f(d k)			c v f/e	c v ale	
Measurement System Probe Calibration		T-1	Deel	I(U,K)	_	_			
Measurement System Call State (a) Call State (b) Cal	Un containte Communit						_	_	
Measurement System Probe Calibration 6.55 N 1 1.0 1.0 6.6 6.6 ∞ Axial Isotropy 0.25 N 1 0.7 0.7 0.2 0.2 ∞ Hemishperical Isotropy 1.3 N 1 0.7 0.7 0.9 0.9 ∞ Boundary Effect 2.0 R 1.73 1.0 1.0 1.0 1.2 1.2 ∞ Inearity 0.3 N 1 1.0 1.0 1.0 0.3 0.3 ∞ System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 0.0 ∞ System Detectionics 0.3 N 1 1.0 1.0 0.1 0.1 0.0 0.3 0.3 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.5 0.5 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.1 0.1 <td< td=""><td>Uncertainty Component</td><td>(± %)</td><td>Dist.</td><td>Div.</td><td>1gm</td><td>10 gms</td><td>-</td><td></td><td>v_i</td></td<>	Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	-		v _i
Probe Calibration 6.55 N 1 1 .0 1.0 6.6 6.6							(± %)	(± %)	
Axial Isotropy O.25 N 1 0.7 0.7 0.2 0.2 ∞ Hemishperical Isotropy 1.3 N 1 0.7 0.7 0.7 0.9 0.9 ∞ Boundary Effect 2.0 R 1.73 1.0 1.0 1.2 1.2 ∞ Linearity O.3 N 1 1 1.0 1.0 0.3 0.3 ∞ System Detection Limits O.25 R 1.73 1.0 1.0 0.1 0.1 0.1 0.3 ∞ Readout Electronics O.3 N 1 1 1.0 1.0 0.3 0.3 ∞ Response Time O.8 R 1.73 1.0 1.0 0.3 0.3 ∞ Response Time O.8 R 1.73 1.0 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ RE Ambient Conditions - Reflections Response Time 0.4 R 1.73 1.0 1.0 1.0 1.7 1.7 1.7 ∞ Response Time Response Time 8.2 R 1.73 1.0 1.0 1.0 1.0 1.7 1.7 1.7 ∞ Response Time Response	Measurement System								
Hemishperical Isotropy	Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Boundary Effect 2.0 R 1.73 1.0 1.0 1.2 1.2 ∞	Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Linearity 0.3 N 1 1.0 1.0 0.3 0.3 ∞	Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
System Detection Limits 0.25 R 1.73 1.0 1.0 0.1 0.1 ∞ Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioning Mechanical Tolerance 0.4 R 1.73 1.0 1.0 1.0 0.2 0.2 ∞ Probe Positioning Wrespect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 <td< td=""><td>Boundary Effect</td><td>2.0</td><td>R</td><td>1.73</td><td>1.0</td><td>1.0</td><td>1.2</td><td>1.2</td><td>∞</td></td<>	Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Readout Electronics 0.3 N 1 1.0 1.0 0.3 0.3 ∞ Response Time 0.8 R 1.73 1.0 1.0 0.5 0.5 ∞ Integration Time 2.6 R 1.73 1.0 1.0 1.5 1.5 ∞ RF Ambient Conditions - Noise 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 0.2 0.2 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning Positioning Positioning Positioning Positioning Positioning Positioning	Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Integration Time	Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
RF Ambient Conditions - Noise RF Ambient Conditions - Noise RF Ambient Conditions - Reflections RF 1.73 1.0 1.0 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
RF Ambient Conditions - Reflections 3.0 R 1.73 1.0 1.7 1.7 ∞ Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning W/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4	Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
Probe Positioner Mechanical Tolerance 0.4 R 1.73 1.0 1.0 0.2 0.2 ∞ Probe Positioning W/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 1.0 0.0 ∞ Phantom Extrapolation (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty	RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1. <i>7</i>	∞
Probe Positioning w/ respect to Phantom 6.7 R 1.73 1.0 1.0 3.9 3.9 ∞ Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation 4.0 R 1.73 1.0 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Li	RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1. <i>7</i>	1. <i>7</i>	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.0 2.7 2.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) Phantom Uncertainty (Shape & Thickness tolerances) 1.68 R 1.79 1.0 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Permittivity - Temperature Uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Permittivity - Temperature Uncertainty 1.0 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Conductivity - Temperature Uncertainty 1.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Liquid Permittivity - deviation from target values 1.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) Expanded Uncertainty RSS 11.5 11.3 60	Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Max. SAR Evaluation 4.0 R 1.73 1.0 2.3 2.3 ∞ Test Sample Related Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.28 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Permittivity - Tempe	Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Test Sample Positioning 2.7 N 1 1.0 1.0 2.7 2.7 35 Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty		4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Device Holder Uncertainty 1.67 N 1 1.0 1.0 1.7 1.7 5 Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Permitti	Test Sample Related								
Output Power Variation - SAR drift measurement 5.0 R 1.73 1.0 1.0 2.9 2.9 ∞ SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ </td <td>Test Sample Positioning</td> <td>2.7</td> <td>Ν</td> <td>1</td> <td>1.0</td> <td>1.0</td> <td>2.7</td> <td>2.7</td> <td>35</td>	Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
SAR Scaling 0.0 R 1.73 1.0 1.0 0.0 0.0 ∞ Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4	Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Phantom & Tissue Parameters Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty k=2 23.0 22.6 22.6	Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom Uncertainty (Shape & Thickness tolerances) 7.6 R 1.73 1.0 1.0 4.4 4.4 ∞ Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Liquid Conductivity - measurement uncertainty 4.2 N 1 0.78 0.71 3.3 3.0 10 Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Phantom & Tissue Parameters								
Liquid Permittivity - measurement uncertainty 4.1 N 1 0.23 0.26 1.0 1.1 10 Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6	Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	80
Liquid Conductivity - Temperature Uncertainty 3.4 R 1.73 0.78 0.71 1.5 1.4 ∞ Liquid Permittivity - Temperature Uncertainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty	Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard UncertaintyRSS 11.5 11.3 60 Expanded Uncertainty $k=2$ 23.0 22.6	Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Permittivity - Temperature Unceritainty 0.6 R 1.73 0.23 0.26 0.1 0.1 ∞ Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard UncertaintyRSS 11.5 11.3 60 Expanded Uncertainty $k=2$ 23.0 22.6	Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Conductivity - deviation from target values 5.0 R 1.73 0.64 0.43 1.8 1.2 ∞ Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty $k=2$ 23.0 22.6		0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Permittivity - deviation from target values 5.0 R 1.73 0.60 0.49 1.7 1.4 ∞ Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6									∞
Combined Standard Uncertainty (k=1) RSS 11.5 11.3 60 Expanded Uncertainty k=2 23.0 22.6			R						∞
		I	RSS		I	ı	11.5	11.3	60
			k=2				23.0	22.6	
	, ,								

FCC ID: ZNFW280	PCTEST STREET, NE	SAR EVALUATION REPORT LG		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 40 of 43	

© 2016 PCTEST Engineering Laboratory, Inc.

REV 18 M

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 41 of 43

16 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFW280	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 42 of 43

© 2016 PCTEST Engineering Laboratory, Inc.

05/16/2016

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFW280	PCTEST INCIDENCE LADVATERY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1607131261-R2.ZNF	07/14/16 - 07/20/16, 10/24/16 - 10/31/16	Portable Wrist Device	Page 43 of 43

APPENDIX A: SAR TEST DATA

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.538; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

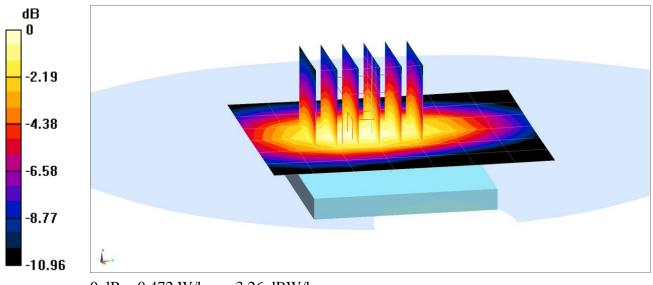
Test Date: 07-18-2016; Ambient Temp: 21.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, 2Tx Slots, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.52 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.417 W/kg

0 dB = 0.472 W/kg = -3.26 dBW/kg

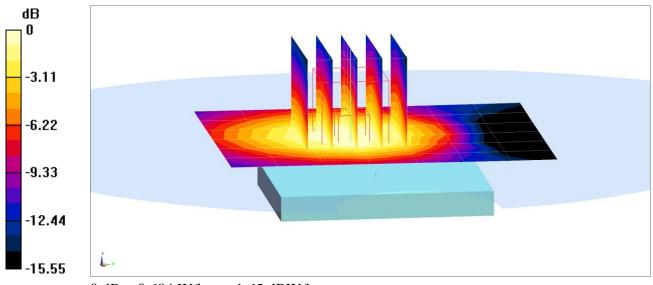
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.43 \text{ S/m}; \ \epsilon_r = 39.352; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, 2Tx Slots, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.91 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.802 W/kg

SAR(1 g) = 0.495 W/kg

0 dB = 0.684 W/kg = -1.65 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.893$ S/m; $\varepsilon_r = 40.538$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

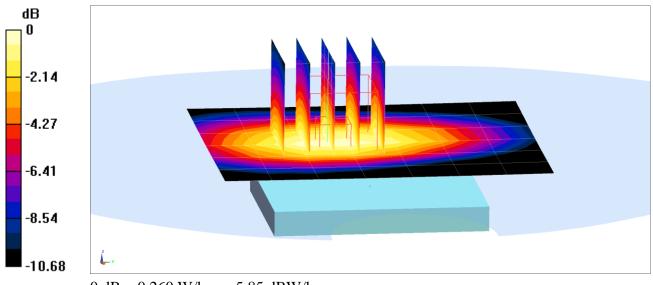
Test Date: 07-18-2016; Ambient Temp: 21.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.59 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.228 W/kg

0 dB = 0.260 W/kg = -5.85 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.364 \text{ S/m}; \ \epsilon_r = 39.355; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

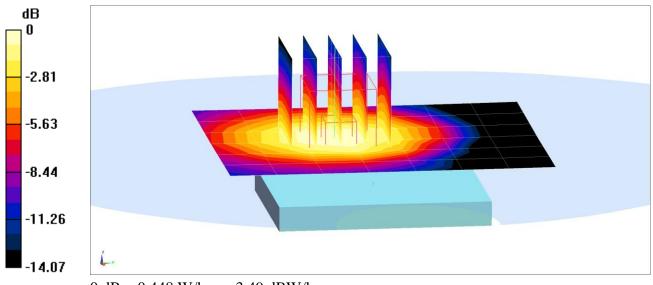
Test Date: 07-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.47 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.387 W/kg

0 dB = 0.448 W/kg = -3.49 dBW/kg

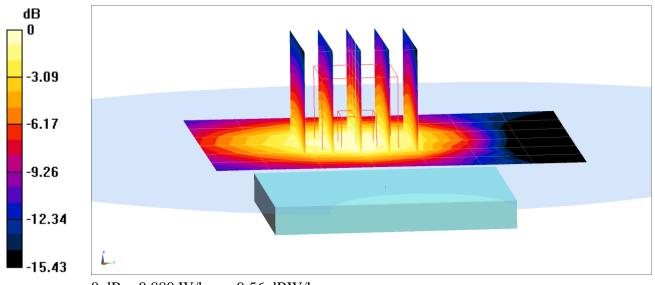
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ S/m; $\epsilon_r = 39.352$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Head SAR, Front side, Mid.ch


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.48 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.641 W/kg

0 dB = 0.880 W/kg = -0.56 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

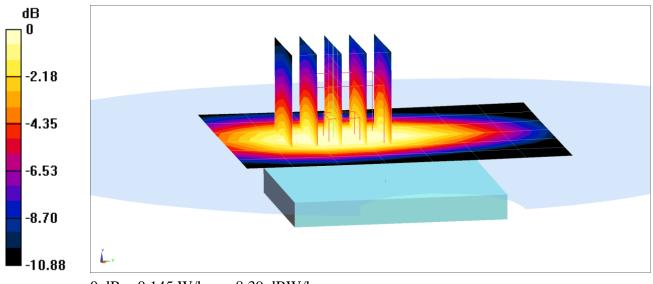
Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.923 \text{ S/m}; \ \epsilon_r = 40.75; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-14-2016; Ambient Temp: 22.0°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3209; ConvF(6.6, 6.6, 6.6); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 11/11/2015
Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Head SAR, Front side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.21 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.127 W/kg

0 dB = 0.145 W/kg = -8.39 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

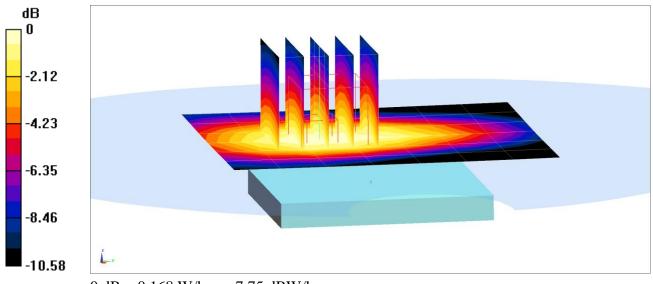
Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.54; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2016; Ambient Temp: 21.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Head SAR, Front Side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.56 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.159 W/kg

0 dB = 0.168 W/kg = -7.75 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.364$ S/m; $\varepsilon_r = 39.354$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

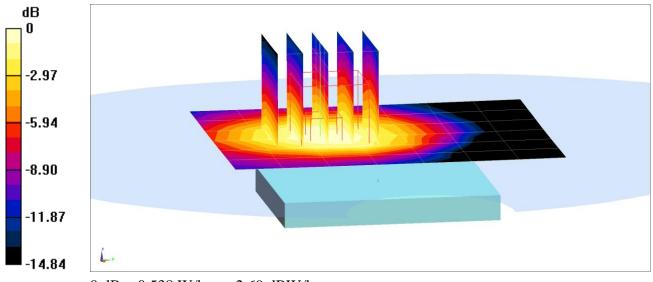
Test Date: 07-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 11/11/2015

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Head SAR, Front side, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.55 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.728 W/kg

SAR(1 g) = 0.457 W/kg

0 dB = 0.538 W/kg = -2.69 dBW/kg

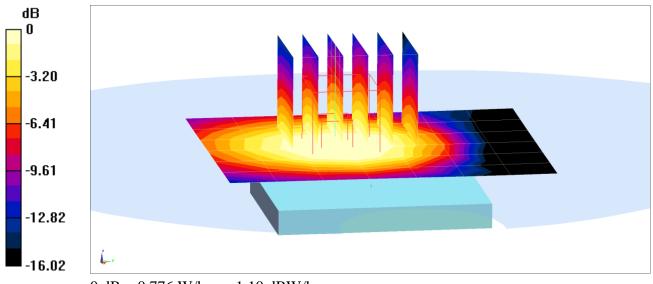
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.409 \text{ S/m}; \ \epsilon_r = 39.437; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Head SAR, Front Side, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.60 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.666 W/kg

0 dB = 0.776 W/kg = -1.10 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1T

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.864 \text{ S/m}; \ \epsilon_r = 38.971; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2016; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

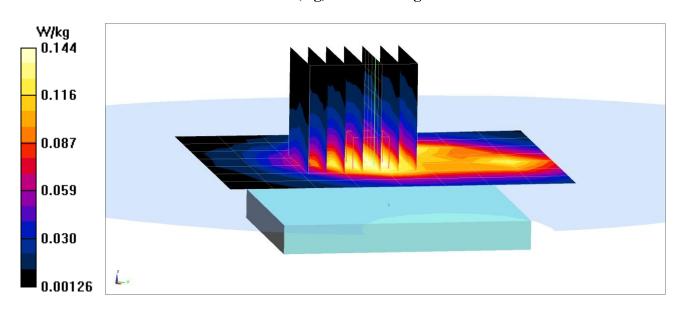
Probe: EX3DV4 - SN7409; ConvF(6.9, 6.9, 6.9); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Head SAR, Ch 06, 1 Mbps, Front Side


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.382 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.096 W/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

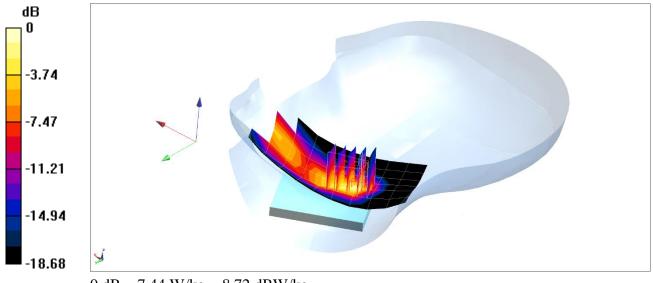
Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 1.005 \text{ S/m}; \ \epsilon_r = 54.285; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-26-2016; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Extremity SAR, Back side, Mid.ch, 2 Tx slots


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 71.00 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 18.2 W/kg

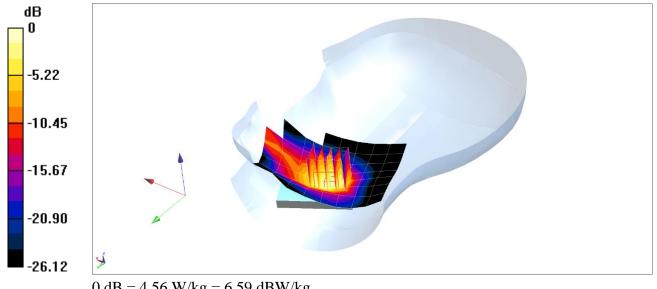
SAR(10 g) = 2.52 W/kg

0 dB = 7.44 W/kg = 8.72 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body Medium parameters used: f = 1880 MHz; $\sigma = 1.553 \text{ S/m}$; $\varepsilon_r = 51.76$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-24-2016; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C


Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Extremity SAR, Back side, Mid.ch, 2 Tx slots

Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.67 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 6.25 W/kgSAR(10 g) = 2.16 W/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

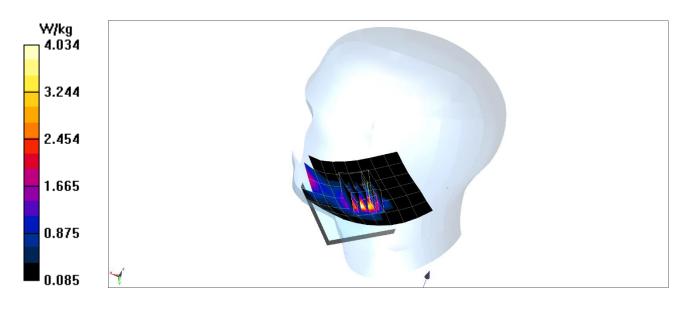
Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.005$ S/m; $\varepsilon_r = 54.285$; $\rho = 1000$ kg/m³ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-26-2016; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: OD000P40CD; Serial: TP:1800

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Extremity SAR, Back side, Mid.ch


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.79 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 9.48 W/kg

SAR(10 g) = 1.55 W/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

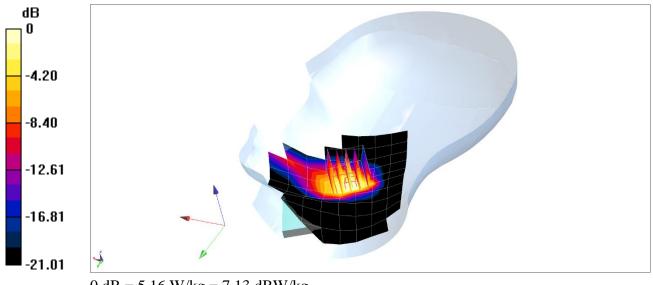
Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.494 \text{ S/m}; \ \epsilon_r = 51.736; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-25-2016; Ambient Temp: 20.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(4.91, 4.91, 4.91); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Extremity SAR, Back Side, Mid.ch


Area Scan (11x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.62 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 7.18 W/kg

SAR(10 g) = 2.52 W/kg

0 dB = 5.16 W/kg = 7.13 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.523 \text{ S/m}; \ \epsilon_r = 51.859; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

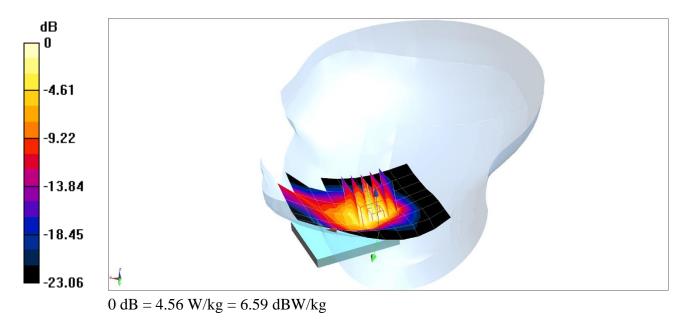
Test Date: 10-24-2016; Ambient Temp: 22.8°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Extremity SAR, Back side, Low.ch


Area Scan (8x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.22 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 6.78 W/kg

SAR(10 g) = 2.18 W/kg

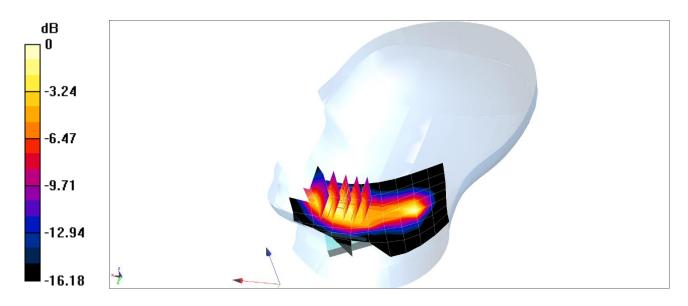
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.992 \text{ S/m}; \ \epsilon_r = 54.371; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-31-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Extremity SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 46.29 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.94 W/kg

SAR(10 g) = 1.48 W/kg

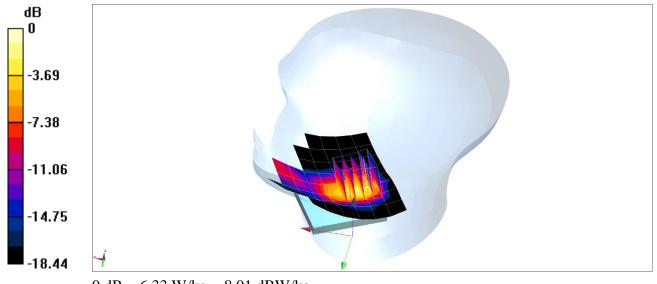
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP18

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 1.004 \text{ S/m}; \ \epsilon_r = 54.286; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-26-2016; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Extremity SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 74.20 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 13.8 W/kg

SAR(10 g) = 2.37 W/kg

0 dB = 6.33 W/kg = 8.01 dBW/kg

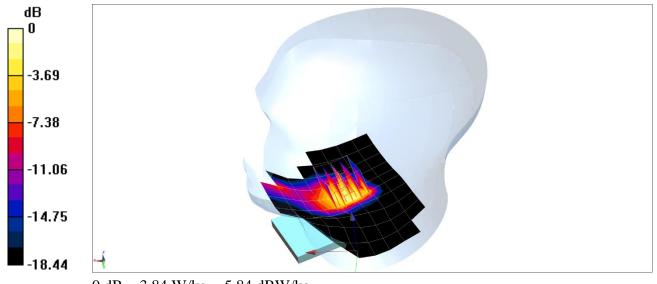
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.494 \text{ S/m}; \ \epsilon_r = 51.736; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-25-2016; Ambient Temp: 20.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(4.91, 4.91, 4.91); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Extremity SAR, Back Side, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.52 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 5.19 W/kg

SAR(10 g) = 1.84 W/kg

0 dB = 3.84 W/kg = 5.84 dBW/kg

DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1R

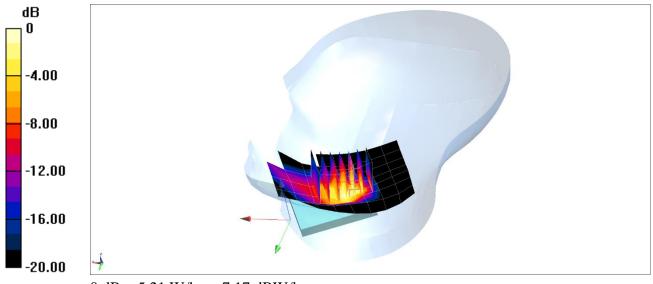
Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.53 \text{ S/m}; \ \epsilon_r = 51.87; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-27-2016; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Extremity SAR, Back side, Low.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.44 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 7.64 W/kg

SAR(10 g) = 2.51 W/kg

0 dB = 5.21 W/kg = 7.17 dBW/kg

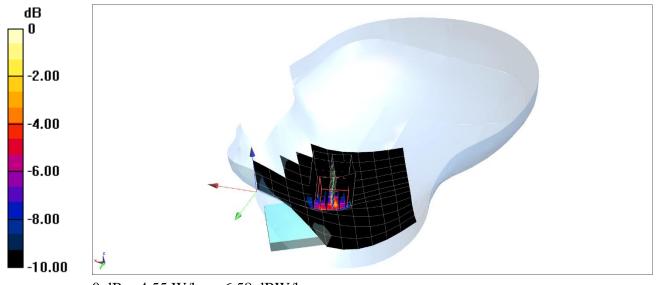
DUT: ZNFW280; Type: Portable Wrist Device; Serial: 2MP1T

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.005 \text{ S/m}; \ \epsilon_r = 51.002; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section; Space: 0.0 cm

Test Date: 10-24-2016; Ambient Temp: 21.7°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Extremity SAR, Ch 06, 1 Mbps, Back Side


Area Scan (13x11x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (10x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.06 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 5.93 W/kg

SAR(10 g) = 0.624 W/kg

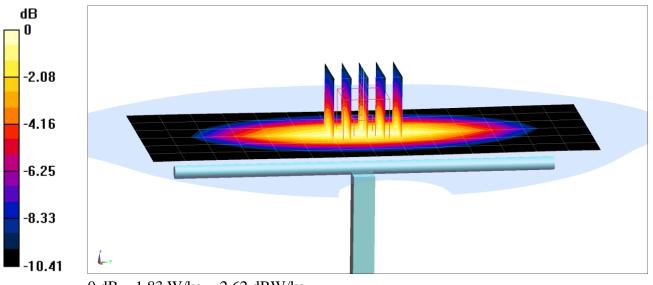
0 dB = 4.55 W/kg = 6.58 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1046

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.894 \text{ S/m}$; $\varepsilon_r = 41.181$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 07-14-2016; Ambient Temp: 22.0°C; Tissue Temp: 22.3°C


Probe: ES3DV3 - SN3209; ConvF(6.6, 6.6, 6.6); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 11/11/2015

Phantom: SAM Left; Type: SAM; Serial: 1688

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.29 W/kgSAR(1 g) = 1.56 W/kgDeviation(1 g) = -4.88%

0 dB = 1.83 W/kg = 2.62 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.892 \text{ S/m}; \ \epsilon_r = 40.56; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

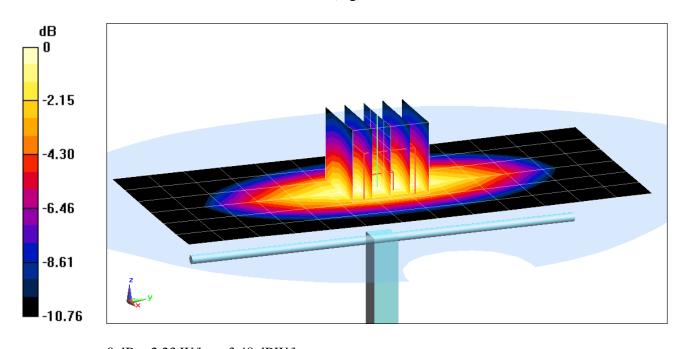
Test Date: 07-18-2016; Ambient Temp: 21.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.84 W/kg

SAR(1 g) = 1.91 W/kg

Deviation(1 g) = 4.49%

0 dB = 2.23 W/kg = 3.48 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.382 \text{ S/m}; \ \epsilon_r = 39.267; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

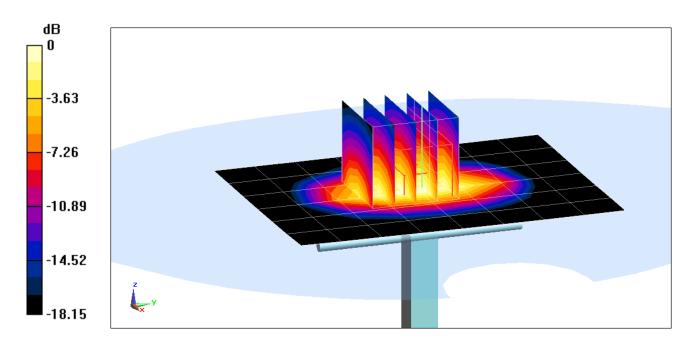
Test Date: 07-19-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3334; ConvF(5.39, 5.39, 5.39); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 11/11/2015 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.81 W/kg

Deviation(1 g) = 5.54%

0 dB = 4.74 W/kg = 6.76 dBW/kg

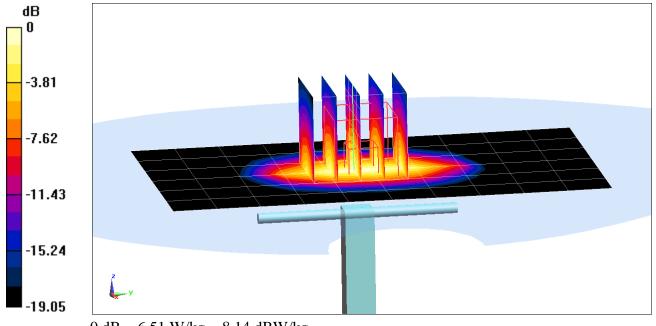
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d141

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.452 \text{ S/m}; \ \epsilon_r = 39.276; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-20-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7409; ConvF(7.69, 7.69, 7.69); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.88 W/kg

SAR(1 g) = 4.14 W/kg

Deviation(1 g) = 7.53%

0 dB = 6.51 W/kg = 8.14 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.879 \text{ S/m}; \ \epsilon_r = 38.923; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-18-2016; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7409; ConvF(6.9, 6.9, 6.9); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 12.3 W/kg

SAR(1 g) = 5.72 W/kg

Deviation(1 g) = 5.54%

0 dB = 9.83 W/kg = 9.93 dBW/kg

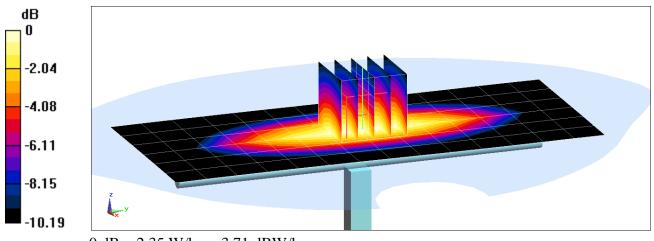
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.963 \text{ S/m}$; $\epsilon_r = 54.693$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-31-2016; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.67 W/kg

SAR(10 g) = 1.17 W/kg

Deviation(10 g) = 2.99%

0 dB = 2.35 W/kg = 3.71 dBW/kg

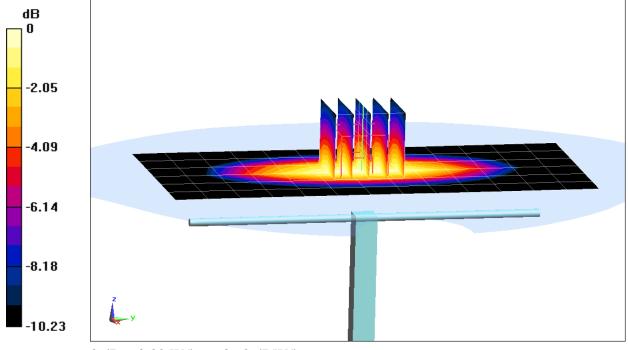
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.003$ S/m; $\epsilon_r = 54.301$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-26-2016; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.85 W/kg

SAR(10 g) = 1.31 W/kg

Deviation(10 g) = 5.65%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

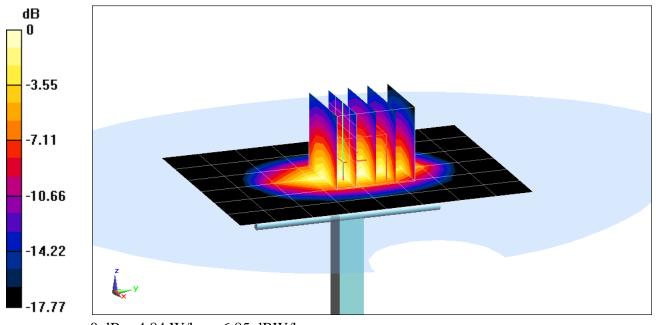
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.512 \text{ S/m}; \ \epsilon_r = 51.659; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-25-2016; Ambient Temp: 20.3°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(4.91, 4.91, 4.91); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.82 W/kg

SAR(10 g) = 2.06 W/kg

Deviation(10 g) = 4.04%

0 dB = 4.84 W/kg = 6.85 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

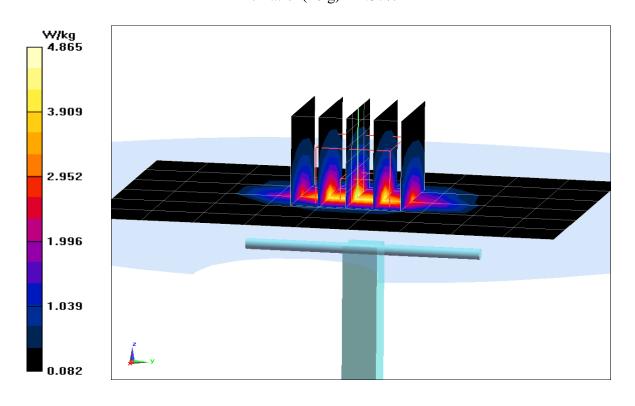
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.576 \text{ S/m}; \ \epsilon_r = 51.723; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-27-2016; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3287; ConvF(4.94, 4.94, 4.94); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

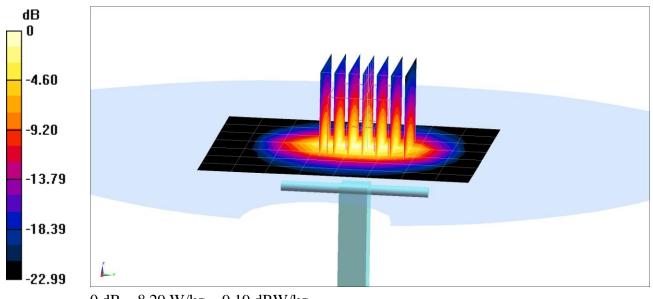
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.70 W/kg

SAR(10 g) = 2.16 W/kg

Deviation(10 g) = 2.37%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.023 \text{ S/m}; \ \epsilon_r = 50.948; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-24-2016; Ambient Temp: 21.7°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.3 W/kg SAR(10 g) = 2.23 W/kg Deviation(10 g) = -6.30%

0 dB = 8.29 W/kg = 9.19 dBW/kg