PCTEST

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing: 01/06/16 - 01/16/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1601040033.ZNF

FCC ID: ZNFV520

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type:Portable TabletApplication Type:CertificationFCC Rule Part(s):CFR §2.1093

Model(s): LG-V520, LGV520, V520, LG-V522, LGV522, V522

Equipment	I Band & Mode I IX Fredhency		SAR
Class	24.14 4 11.646	.xrrequency	1 gm Body W/kg
PCB	UMTS 850	826.40 - 846.60 MHz	0.52
PCB	UMTS 1750	1712.4 - 1752.6 MHz	0.43
PCB	UMTS 1900	1852.4 - 1907.6 MHz	0.83
PCB	LTE Band 12	699.7 - 715.3 MHz	0.57
PCB	LTE Band 17	706.5 - 713.5 MHz	
PCB	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.59
PCB	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.69
PCB	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.70
PCB	LTE Band 30	2307.5 - 2312.5 MHz	0.40
PCB	LTE Band 7	2502.5 - 2567.5 MHz	0.61
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.76
NII	U-NII-1	5180 - 5240 MHz	
NII	U-NII-2A	5260 - 5320 MHz	0.45
NII	U-NII-2C	5500 - 5700 MHz	0.47
NII	U-NII-3	5745 - 5825 MHz	0.89
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.13
Simultaneous	1.44		

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FC	C ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Doo	cument S/N:	Test Dates:	DUT Type:		Dogg 1 of 66
	1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 1 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	8
3	INTROD	UCTION	g
4	DOSIME	TRIC ASSESSMENT	10
5	SAR TE	STING PROCEDURES	11
6	RF EXP	OSURE LIMITS	12
7	FCC ME	ASUREMENT PROCEDURES	13
8	RF CON	DUCTED POWERS	18
9	SYSTEM	I VERIFICATION	48
10	SAR DA	TA SUMMARY	50
11	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	56
12	SAR ME	ASUREMENT VARIABILITY	61
13	EQUIPM	ENT LIST	62
14	MEASU	REMENT UNCERTAINTIES	63
15	CONCLU	JSION	64
16	REFERE	NCES	65
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	IDIX G:	SENSOR TRIGGERING DATA SUMMARY	

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 2 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 2 of 66

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
UMTS 850	Data	826.40 - 846.60 MHz
UMTS 1750	Data	1712.4 - 1752.6 MHz
UMTS 1900	Data	1852.4 - 1907.6 MHz
LTE Band 12	Data	699.7 - 715.3 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
LTE Band 30	Data	2307.5 - 2312.5 MHz
LTE Band 7	Data	2502.5 - 2567.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
U-NII-1	Data	5180 - 5240 MHz
U-NII-2A	Data	5260 - 5320 MHz
U-NII-2C	Data	5500 - 5700 MHz
U-NII-3	Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

The reduced powers for the power reduction mechanisms were confirmed via conducted power measurements at the RF port (See Section 8). Detailed descriptions of the mechanisms are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 3 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 3 01 66

© 2016 PCTEST Engineering Laboratory, Inc.

1.3.1 **Maximum Power**

Mode / Band		Modula	ted Average	e (dBm)
		3GPP	3GPP	3GPP
		WCDMA	HSDPA	HSUPA
LINATE Development	Maximum	24.7	24.7	24.7
UMTS Band 5 (850 MHz)	Nominal	24.2	24.2	24.2
	Maximum	24.7	24.7	24.7
UMTS Band 4 (1750 MHz)	Nominal	24.2	24.2	24.2
UMTS Band 2 (1900 MHz)	Maximum	24.7	24.7	24.7
OWITS Baild 2 (1900 WHZ)	Nominal	24.2	24.2	24.2

Mode / Band	j	Modulated Average (dBm)
LTE Band 12	Maximum	25.5
LTE Bariu 12	Nominal	25.0
LTE Band 17	Maximum	25.5
LIE Ballu 17	Nominal	25.0
LTE Dand E (Call)	Maximum	25.2
LTE Band 5 (Cell)	Nominal	24.7
LTE Donal 4 (A)A(C)	Maximum	24.7
LTE Band 4 (AWS)	Nominal	24.2
LTE D = 1 2 (DCC)	Maximum	24.7
LTE Band 2 (PCS)	Nominal	24.2
LTE Dand 20	Maximum	23.2
LTE Band 30	Nominal	22.7
LTC David 7	Maximum	23.7
LTE Band 7	Nominal	23.2

Mode / Band		Modulated Average (dBm)
IEEE 802.11b (2.4 GHz)	Maximum	14.5
TEEE 802.110 (2.4 GHZ)	Nominal	13.5
IEEE 802 11~ (2 4 CH-)	Maximum	13.0
IEEE 802.11g (2.4 GHz)	Nominal	12.0
IEEE 003 11 = /3 4 CH-)	Maximum	13.0
IEEE 802.11n (2.4 GHz)	Nominal	12.0
Dhuataath	Maximum	10.0
Bluetooth	Nominal	9.0
Divista eth I F	Maximum	1.0
Bluetooth LE	Nominal	0.0

Mode / Band		Modulated Average (dBm)		
		20 MHz Bandwidth	40 MHz Bandwidth	80 MHz Bandwidth
JEEE 002 44- /E CU-)	Maximum	11.5		
IEEE 802.11a (5 GHz)	Nominal	10.5		
IEEE 902 115 /E CH3\	Maximum	11.5	11.5	
IEEE 802.11n (5 GHz)	Nominal	10.5	10.5	
IEEE 802.11ac (5 GHz)	Maximum	11.5	11.5	10.5
	Nominal	10.5	10.5	9.5

FCC ID: ZNFV520	SAR EVALUATION REPORT		(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 4 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 4 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

1.3.2 Reduced Power (Body at 0.0 cm)

Mode / Band		Modulated Average (dBm)		
		3GPP	3GPP	3GPP
		WCDMA	HSDPA	HSUPA
LINATO D (O.F.O. NALL)	Maximum	20.7	20.7	20.7
UMTS Band 5 (850 MHz)	Nominal	20.2	20.2	20.2
UMTS Band 4 (1750 MHz)	Maximum	14.7	14.7	14.7
UIVITS Band 4 (1750 IVITZ)	Nominal	14.2	14.2	14.2
UMTS Band 2 (1900 MHz)	Maximum	12.7	12.7	12.7
OIVITS Ballu 2 (1900 IVITZ)	Nominal	12.2	12.2	12.2

Mode / Band	Modulated Average (dBm)	
LTE Band 12	Maximum	19.5
LIE Ballu 12	Nominal	19.0
LTE Band 17	Maximum	19.5
LIE Band 17	Nominal	19.0
LTE Dond E (Coll)	Maximum	21.2
LTE Band 5 (Cell)	Nominal	20.7
LTE Daniel 4 (AVA(C)	Maximum	14.7
LTE Band 4 (AWS)	Nominal	14.2
LTE Donal 2 (DCC)	Maximum	12.7
LTE Band 2 (PCS)	Nominal	12.2
LTE David 20	Maximum	11.2
LTE Band 30	Nominal	10.7
LTE Band 7	Maximum	11.7
LIE DdIIU /	Nominal	11.2

1.4 DUT Antenna Locations

The overall diagonal dimension of the device is > 200 mm. A diagram showing the locations of the device antennas can be found in Appendix F. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Тор	Bottom	Right	Left
UMTS 850	Yes	Yes	No	No	Yes
UMTS 1750	Yes	Yes	No	No	Yes
UMTS 1900	Yes	Yes	No	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	No	Yes
LTE Band 4 (AWS)	Yes	Yes	No	No	Yes
LTE Band 2 (PCS)	Yes	Yes	No	No	Yes
LTE Band 30	Yes	Yes	No	No	Yes
LTE Band 7	Yes	Yes	No	No	Yes
2.4 GHz WLAN	Yes	Yes	No	Yes	No
5 GHz WLAN	Yes	Yes	No	Yes	No
2.4 GHz Bluetooth	Yes	Yes	No	Yes	No

Note: Per FCC KDB 616217 D04v01, particular DUT edges were not required to be evaluated for SAR based on the SAR exclusion threshold in KDB 447498 D01v06.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 5 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 5 01 66

© 2016 PCTEST Engineering Laboratory, Inc.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-2 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Body
1	UMTS + 2.4 GHz WI-FI	Yes
2	UMTS + 5 GHz WI-FI	Yes
3	UMTS + 2.4 GHz Bluetooth	Yes
4	LTE + 2.4 GHz WI-FI	Yes
5	LTE + 5 GHz WI-FI	Yes
6	LTE + 2.4 GHz Bluetooth	Yes

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg for 1g SAR, SAR is not required for U NII-1 band according to FCC KDB 248227 D01v02r02

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth LE SAR was not required; $[(1/5)^* \sqrt{2.480}] = 0.3 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 6 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 6 01 66

© 2016 PCTEST Engineering Laboratory, Inc.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) Band gap and TDWR channels are not supported

(B) Licensed Transmitter(s)

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

This device additionally supports LTE Band 17. LTE Band 12 and LTE Band 17 share the same transmission path. LTE Band 17 was not evaluated for SAR since the supported frequency range falls within the LTE Band 12 supported frequency range and the Band 17 target power was equal to the Band 12 target power.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02 (Tablet SAR Considerations)

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Max Power	Reduced
	Body Serial	Power Body
	Number	Serial Number
UMTS 850	04236	04269
UMTS 1750	04236	04269
UMTS 1900	04236	04269
LTE Band 12	04228	04251
LTE Band 5 (Cell)	04244	04251
LTE Band 4 (AWS)	04228	04251
LTE Band 2 (PCS)	04228	04251
LTE Band 30	04228	04251
LTE Band 7	04244	04285
2.4 GHz WLAN	04210	N/A
5 GHz WLAN	04210	N/A
2.4 GHz Bluetooth	04285	N/A

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 7 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 7 01 00

	LTE Information			
FCC ID	1	ZNFV520		
Form Factor		Portable Tablet		
Frequency Range of each LTE transmission band	LTE	Band 12 (699.7 - 715.3 N	MHz)	
		Band 17 (706.5 - 713.5 N		
		and 5 (Cell) (824.7 - 848.3		
		nd 4 (AWS) (1710.7 - 1754		
		nd 2 (PCS) (1850.7 - 1909	,	
		Band 30 (2307.5 - 2312.5		
		Band 7 (2502.5 - 2567.5 N	,	
Channel Bandwidths		12: 1.4 MHz, 3 MHz, 5 MH		
		E Band 17: 5 MHz, 10 MI		
	LTE Band 5 (Cell): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz LTE Band 4 (AWS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MH			
	LTE Band 2 (PCS): 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MH LTE Band 30: 5 MHz, 10 MHz			
		7: 5 MHz, 10 MHz, 15 MH		
Channel Numbers and Frequencies (MHz)	Low	Mid	High	
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)	
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)	
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)	
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)	
LTE Band 17: 5 MHz	706.5 (23755)	710 (23790)	713.5 (23825)	
LTE Band 17: 10 MHz	709 (23780)	710 (23790)	711 (23800)	
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)	
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)	
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)	
LTE Band 5 (Cell): 10 MHz	829 (20450)	` ,	844 (20600)	
LTE Band 4 (AWS): 1.4 MHz	` ,	836.5 (20525) 1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1710.7 (19957)	,	, ,	
LTE Band 4 (AWS): 5 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 10 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 15 MHz	1715 (20000) 1717.5 (20025)	1732.5 (20175)	1750 (20350) 1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	` '	1732.5 (20175) 1732.5 (20175)		
LTE Band 2 (PCS): 1.4 MHz	1720 (20050)	, ,	1745 (20300)	
LTE Band 2 (PCS): 3 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 5 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 10 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 15 MHz	1855 (18650) 1857.5 (18675)	1880 (18900) 1880 (18900)	1905 (19150) 1902.5 (19125)	
LTE Band 2 (PCS): 10 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
LTE Band 30: 5 MHz	2307.5 (27685)	2310 (27710)	, ,	
LTE Band 30: 10 MHz	N/A	2310 (27710)	2312.5 (27735) N/A	
LTE Band 7: 5 MHz	2502.5 (20775)	2535 (21100)	2567.5 (21425)	
LTE Band 7: 10 MHz	2505 (20800)	2535 (21100)	2565 (21400)	
LTE Band 7: 15 MHz	2507.5 (20825)	2535 (21100)	2562.5 (21375)	
LTE Band 7: 10 MHz	2510 (20850)	2535 (21100)	2560 (21350)	
UE Category	2310 (20030)	6	2300 (21330)	
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS 36.101	1	,		
section 6.2.3~6.2.5? (manufacturer attestation to be		YES		
provided)				
A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Carrier Aggregation Possible Combinations	The technical descrip	tion includes all the possil combinations	ble carrier aggregation	
LTE Release 10 Additional Information	combinations This device does not support full CA features on 3GPP Release 10. It supports a maximum of 2 carriers in the downlink. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only the combinations listed in the documentation are supported. The following LTE Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, eICI, WIFI Offloading, MDH, eMBMA, Cross-Carrier Scheduling, Enhanced SC-FDMA.			

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 9 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 8 of 66

3

INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo O of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 9 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

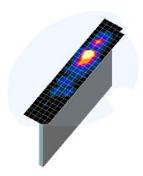


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid Graded Grid		Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 10 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 10 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

5 SAR TESTING PROCEDURES

5.1 SAR Testing for Tablet per KDB Publication 616217 D04v01

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01v05 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

5.2 **Proximity Sensor Considerations**

This device uses a proximity sensor to reduce data powers in tablet-device use conditions.

While the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum output power allowed. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level.

FCC KDB 616217 D04 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional exposure conditions. Since the sensor activation distance for the back side of the device is 20 mm, a conservative distance of 19 mm was tested for SAR on the back side at maximum power. Since the sensor activation distance for the top edge of the device is 11 mm, a conservative distance of 10 mm was tested for SAR on the top edge at maximum power. Since the sensor activation distance for the left edge of the device is 6 mm, a conservative distance of 5 mm was tested for SAR on the left edge at maximum power. Sensor triggering distance summary data is included in Appendix G. The sensor does not trigger power reduction from the front of the device.

The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antenna.

FCC II	D : ZNFV520	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Docun	nent S/N:	Test Dates:	DUT Type:		Page 11 of 66
0Y160	1040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 11 01 00

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 6-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS								
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)						
Peak Spatial Average SAR Head	1.6	8.0						
Whole Body SAR	0.08	0.4						
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20						

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 12 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 12 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

7 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

7.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.4 SAR Measurement Conditions for UMTS

7.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 12 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 13 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

7.4.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH $_{\rm n}$ configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH $_{\rm n}$, for the highest reported SAR configuration in 12.2 kbps RMC.

7.4.3 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

7.4.4 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

7.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

7.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

7.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFV520	PCTEST.	SAR EVALUATION REPORT	(the LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 14 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 14 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

7.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

7.5.5 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. For every supported combination of downlink only carrier aggregation, additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

7.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 15 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		rage 15 01 00
16 PCTEST Engineering Laboratory, In	nc.	<u> </u>		REV 17.0 M

© 2016 PCTEST Engineering Laboratory, Inc.

programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

7.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

7.6.4 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

7.6.5 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz and 5 GHz bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11a or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 16 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 16 01 66

© 2016 PCTEST Engineering Laboratory, Inc.

etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.6.6 Initial Test Configuration Procedure

For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 7.6.5).

7.6.7 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 17 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 17 of 66

8.1 UMTS Conducted Powers

Table 8-1
Average RF Output Powers Maximum Power

	Average Nr Output Fowers maximum Fower											
3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			3GPP MPR [dB]	
Version		Sublest	4132	4183	4233	1312	1412	1513	9262	9400	9538	MFK [UD]
99	WCDMA	12.2 kbps RMC	24.63	24.66	24.62	24.53	24.61	24.42	24.52	24.52	24.57	-
6		Subtest 1	24.49	24.49	24.50	24.49	24.48	24.35	24.35	24.31	24.42	0
6	HSDPA	Subtest 2	24.38	24.45	24.45	24.53	24.56	24.60	24.42	24.55	24.68	0
6	ПООРА	Subtest 3	24.10	23.96	24.18	24.08	24.05	24.18	24.11	24.08	24.10	0.5
6		Subtest 4	24.09	24.11	24.12	23.91	23.95	24.00	23.81	23.85	23.79	0.5
6		Subtest 1	24.46	24.12	23.72	24.50	24.24	24.02	24.10	24.15	24.13	0
6		Subtest 2	22.34	22.26	22.31	22.43	22.50	22.25	22.61	22.61	22.63	2
6	HSUPA	Subtest 3	23.49	23.60	23.47	23.42	23.50	23.30	23.43	23.35	23.38	1
6		Subtest 4	22.29	22.18	22.21	22.28	22.30	22.20	22.42	22.34	22.45	2
6		Subtest 5	23.75	23.75	23.92	24.42	23.80	23.80	23.95	24.16	23.97	0

Table 8-2
Average RF Output Powers Reduced Power

	Average it Output I owers reduced I ower												
3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			AWS Band [dBm]			PCS Band [dBm]			3GPP MPR [dB]	
Version		Sublest	4132	4183	4233	1312	1412	1513	9262	9400	9538	WPK [UD]	
99	WCDMA	12.2 kbps RMC	20.38	20.42	20.40	14.38	14.37	14.41	12.53	12.55	12.31	-	
6		Subtest 1	20.45	20.42	20.35	14.19	14.34	14.50	12.53	12.61	12.36	0	
6	HSDPA	Subtest 2	20.46	20.40	20.41	14.21	14.34	14.54	12.52	12.63	12.36	0	
6	TIODEA	Subtest 3	19.97	19.89	19.90	13.74	13.84	14.04	12.02	12.12	11.85	0.5	
6		Subtest 4	19.93	19.87	19.93	13.74	13.87	14.00	12.01	12.06	11.86	0.5	
6		Subtest 1	19.95	20.01	20.30	13.79	13.96	14.02	11.83	12.03	11.77	0	
6		Subtest 2	18.34	18.28	18.39	12.22	12.33	12.51	10.51	10.59	10.35	2	
6	HSUPA	Subtest 3	19.40	19.12	19.42	13.19	13.28	13.49	11.49	11.54	11.39	1	
6		Subtest 4	18.42	18.28	18.27	12.25	12.37	12.54	10.50	10.56	10.39	2	
6		Subtest 5	19.80	19.82	19.83	14.15	14.10	14.47	12.40	12.53	12.25	0	

This device does not support DC-HSDPA.

Figure 8-1
Power Measurement Setup

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 19 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 18 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

REV 17.0 M 12/1/2015

8.2 **LTE Conducted Powers**

8.2.1 LTE Band 12

Table 8-3 LTE Band 12 Conducted Powers - 10 MHz Bandwidth

LTE Band 12 10 MHz Bandwidth										
			Mid Channel							
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.98		0					
QPSK	1	25	25.50	0	0					
	1	49	25.23		0					
	25	0	24.01		1					
	25	12	24.08	0-1	1					
	25	25	24.11	0-1	1					
	50	0	24.00		1					
	1	0	23.75		1					
	1	25	24.00	0-1	1					
	1	49	23.77		1					
16QAM	25	0	23.08		2					
	25	12	23.02	0-2	2					
	25	25	22.86	0-2	2					
	50	0	22.79		2					

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-4 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

				LTE Band 12 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power [dBm]	00.1 [4.2]	
	1	0	24.95	24.99	25.20		0
	1	12	25.37	25.37	25.47	0	0
	1	24	25.04	25.01	25.27		0
QPSK	12	0	24.03	24.07	24.19		1
	12	6	24.09	24.03	24.23	0-1	1
	12	13	23.89	24.04	24.14	U-1	1
	25	0	23.96	24.07	24.19	1	1
	1	0	23.76	23.46	23.99		1
	1	12	23.79	23.87	24.03	0-1	1
	1	24	23.50	23.48	24.03		1
16QAM	12	0	22.89	22.90	22.92		2
	12	6	22.94	23.16	23.05	0-2	2
	12	13	22.71	22.87	22.87	U-Z	2
	25	0	22.80	23.05	22.66		2

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 10 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 19 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

Table 8-5 I TE Rand 12 Conducted Powers - 3 MHz Randwidth

				LTE Band 12 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation RB Size	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)			MPR [dB]
			(Conducted Power [dBm]		
	1	0	25.36	25.34	25.29		0
	1	7	25.50	25.50	25.37	0	0
1	1	14	25.50	25.11	25.18		0
QPSK	8	0	24.08	24.07	24.13		1
	8	4	24.19	24.05	24.20	0-1	1
	8	7	23.99	23.94	24.13		1
	15	0	24.08	24.06	24.12		1
	1	0	24.04	24.04	23.56		1
	1	7	24.13	23.91	23.43	0-1	1
	1	14	23.74	23.60	23.64		1
16QAM	8	0	22.80	23.06	22.92		2
	8	4	22.90	23.15	23.02	0-2	2
	8	7	22.71	23.03	22.86	0-2	2
	15	0	22.86	22.94	22.84	1	2

Table 8-6 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

				LTE Band 12 1.4 MHz Bandwidth				
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Size RB Offset	ize RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]					
	1	0	25.23	25.26	25.08		0	
	1	2	25.22	25.27	25.03		0	
	1	5	25.30	25.21	25.35	0	0	
QPSK	3	0	25.30	25.26	25.22	U	0	
	3	2	25.29	25.30	25.14		0	
	3	3	25.27	25.22	25.08		0	
	6	0	24.18	23.99	24.19	0-1	1	
	1	0	23.97	23.73	23.84		1	
	1	2	23.36	23.80	23.88		1	
	1	5	23.35	23.66	23.95	0-1	1	
16QAM	3	0	23.41	23.99	24.11	J-1	1	
	3	2	23.53	24.04	23.97		1	
	3	3	23.86	23.98	23.69		1	
	6	0	22.83	22.63	22.82	0-2	2	

FCC ID: ZNFV520	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 20 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 20 01 00

Table 8-7 LTE Band 12 Conducted Powers - 10 MHz Bandwidth - Reduced Power

			LTE Band 12 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	18.79		0
	1	25	19.24	0	0
	1	49	18.90		0
QPSK	25	0	19.00	0-1	0
	25	12	19.07		0
	25	25	18.95] 0-1	0
	50	0	18.92		0
	1	0	18.64		0
	1	25	18.79	0-1	0
	1	49	18.24	1	0
16QAM	25	0	18.97		0
	25	12	19.06	0-2	0
	25	25	18.92	0-2	0
	50	0	18.98]	0

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

LTE Band 12 Conducted Powers - 5 MHz Bandwidth - Reduced Power

				LTE Band 12 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation RB Size	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	Conducted Power [dBm]	Conducted Power [dBm]	0011 []	
	1	0	19.16	18.69	18.91		0
	1	12	19.18	19.50	19.19	0	0
	1	24	18.94	18.78	19.15		0
QPSK	QPSK 12	0	18.97	18.98	18.97	0-1	0
	12	6	19.07	19.14	19.11		0
	12	13	18.92	18.98	18.92		0
	25	0	18.96	19.00	18.96		0
	1	0	18.36	18.91	18.50		0
	1	12	18.71	19.35	18.77	0-1	0
	1	24	18.30	18.62	18.33		0
16QAM	12	0	18.79	19.06	18.86		0
	12	6	18.79	19.12	19.09	0-2	0
	12	13	18.72	18.96	18.81	0-2	0
	25	0	18.93	18.99	18.86		0

FCC ID: ZNFV520	SEGURIARE LABORATERY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 24 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 21 of 66

Table 8-9 LTE Band 12 Conducted Powers - 3 MHz Bandwidth - Reduced Power

	-	TE Bana	IL Conducted I	LTE Band 12	Juliawiath 140	duccu i owei	
				3 MHz Bandwidth			
	lodulation RB Size RI		Low Channel	Mid Channel	High Channel		
Modulation			23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	i]		
	1	0	19.06	19.01	19.01		0
	1	7	19.17	19.15	19.12	0	0
	1	14	19.08	18.86	18.93		0
QPSK	8	0	19.09	19.07	18.99		0
	8	4	19.07	19.07	18.96	0-1	0
	8	7	18.91	18.98	18.90	0-1	0
	15	0	19.05	18.96	19.01		0
	1	0	18.63	18.79	18.90		0
	1	7	18.74	19.14	19.00	0-1	0
	1	14	18.49	18.64	18.71		0
16QAM	8	0	19.04	18.91	18.77		0
	8	4	19.31	18.91	18.85	0-2	0
	8	7	19.00	18.90	18.77] 0-2	0
	15	0	18.92	19.05	18.89		0

Table 8-10 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth - Reduced Power

				LTE Band 12 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation RB Size	RB Size	ize RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	18.89	18.89	19.01		0
ĺ	1	2	18.95	19.10	18.88	0	0
	1	5	18.84	19.03	19.01		0
QPSK	3	0	19.00	19.01	18.98		0
	3	2	19.13	19.07	19.08		0
	3	3	19.12	19.02	19.07		0
	6	0	18.93	19.01	19.08	0-1	0
	1	0	18.79	18.87	18.69		0
	1	2	18.85	18.94	18.64		0
	1	5	18.77	18.90	18.91	0-1	0
16QAM	3	0	18.47	18.94	18.90	U-1	0
	3	2	18.48	18.99	19.11		0
	3	3	18.58	18.94	19.08		0
	6	0	18.83	18.67	19.12	0-2	0

FCC ID: ZNFV520	INGINEERING LASONATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 22 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Fage 22 01 66

8.2.2 LTE Band 5 (Cell)

Table 8-11 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

			LTE Band 5 (Cell)	19 - 10 WILL Dall		
			10 MHz Bandwidth			
			Mid Channel			
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power [dBm]	0011 [ub]		
	1	0	25.08		0	
	1	25	25.00	0	0	
	1	49	25.04		0	
QPSK	QPSK 25 0	23.82		1		
	25	12	23.57	0-1	1	
	25	25	23.57	0-1	1	
	50	0	23.80		1	
	1	0	23.92		1	
	1	25	23.53	0-1	1	
	1	49	23.68		1	
16QAM	25	0	22.51		2	
	25	12	22.44	0-2	2	
	25	25	22.51	0-2	2	
	50	0	22.64		2	

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-12 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]	_	
	1	0	24.70	24.88	24.66		0
	1	12	25.05	24.76	25.18	0	0
	1	24	24.97	24.50	24.92		0
QPSK	12	0	23.75	23.62	23.77		1
	12	6	23.87	23.50	23.85	0-1	1
	12	13	23.83	23.66	23.85	0-1	1
	25	0	23.73	23.66	23.88		1
	1	0	23.35	23.47	23.72		1
	1	12	23.74	23.16	24.20	0-1	1
	1	24	23.26	22.95	23.73		1
16QAM	12	0	22.63	22.22	22.83		2
	12	6	22.67	22.54	22.79	0-2	2
	12	13	22.79	22.52	22.67	0-2	2
	25	0	22.93	22.47	22.64		2

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago 22 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 23 of 66

Table 8-13 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

	LIE Band 5 (Cell) Conducted Powers - 3 MHZ Bandwidth									
				LTE Band 5 (Cell)						
				3 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]			
modulation	ND 0120	TAD GIIGGE	(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]	iiii it [ab]			
			(Conducted Power [dBm	1]					
	1	0	24.88	24.82	24.98		0			
	1	7	25.09	24.98	25.14	0	0			
	1	14	24.96	24.62	24.88	1	0			
QPSK	8	0	23.74	23.42	23.85		1			
	8	4	23.82	23.46	23.93	0-1	1			
	8	7	23.73	23.54	23.94	0-1	1			
	15	0	23.70	23.49	23.92		1			
	1	0	23.52	23.31	23.23		1			
	1	7	23.74	23.46	23.37	0-1	1			
	1	14	23.55	23.51	23.21		1			
16QAM	8	0	22.47	22.58	22.66		2			
	8	4	22.63	22.60	22.85	0-2	2			
	8	7	22.33	22.59	22.86	0-2	2			
	15	0	22.51	22.43	22.74]	2			

Table 8-14 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

			(2011)	LTE Band 5 (Cell) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.71	24.53	24.95		0
	1	2	24.96	24.57	25.05		0
	1	5	24.63	24.59	24.90	0	0
QPSK	3	0	24.79	24.64	25.06	1 "	0
	3	2	24.87	24.68	25.02	Ī	0
	3	3	24.84	24.60	24.91		0
	6	0	23.67	23.40	23.89	0-1	1
	1	0	23.54	23.27	23.55		1
	1	2	23.16	23.39	23.51	Ī	1
	1	5	23.20	22.92	23.34	0-1	1
16QAM	3	0	23.08	23.54	23.50	- U-I -	1
	3	2	23.07	23.50	23.49	1	1
	3	3	23.04	23.44	23.41	1	1
	6	0	22.37	22.20	22.49	0-2	2

	Reviewed by: Quality Manager
Document S/N: Test Dates: DUT Type:	Dogo 24 of 66
0Y1601040033.ZNF 01/06/16 - 01/16/16 Portable Tablet	Page 24 of 66

Table 8-15 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth - Reduced Power

	LTE Band 5 (Cell) 10 MHz Bandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	0011 [ub]					
	1	0	20.78		0				
	1	25	20.94	0	0				
	1	49	20.94		0				
QPSK	25	0	20.63		0				
	25	12	20.60	0-1	0				
	25	25	20.59	0-1	0				
	50	0	20.61		0				
	1	0	20.29		0				
	1	25	20.87	0-1	0				
	1	49	20.42		0				
16QAM	25	0	20.51		0				
	25	12	20.49	0-2	0				
	25	25	20.47	0-2	0				
	50	0	20.60		0				

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-16 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth - Reduced Power

				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]	•	
	1	0	20.85	20.39	20.67		0
	1	12	21.14	20.64	21.01	0	0
	1	24	20.82	20.29	20.74		0
QPSK	12	0	20.78	20.61	20.79		0
	12	6	20.92	20.50	20.87	0.4	0
	12	13	20.80	20.45	20.64	0-1	0
	25	0	20.82	20.51	20.79		0
	1	0	20.40	20.61	20.29		0
	1	12	20.78	20.90	20.70	0-1	0
	1	24	20.24	20.25	20.12		0
16QAM	12	0	20.51	20.38	20.62		0
	12	6	20.73	20.26	20.56	1 00	0
	12	13	20.60	20.24	20.38	0-2	0
	25	0	20.87	20.38	20.52		0

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(†) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 25 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 25 of 66

Table 8-17 LTF Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth - Reduced Power

		Ballu 5 (Cell) Conducted		Z Danuwiutii - i	Neduced Fower	
				LTE Band 5 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	20.92	20.68	20.90		0
	1	7	21.03	20.84	21.13	0	0
	1	14	20.82	20.70	20.76	1	0
QPSK	8	0	20.81	20.61	20.76		0
	8	4	20.80	20.51	20.72	0-1	0
	8	7	20.76	20.48	20.72	0-1	0
	15	0	20.79	20.44	20.73		0
	1	0	20.76	20.55	20.86		0
	1	7	20.82	20.60	20.88	0-1	0
	1	14	20.36	20.50	20.59		0
16QAM	8	0	20.65	20.33	20.90		0
	8	4	20.85	20.34	20.87	1	0
	8	7	20.39	20.31	20.42	0-2	0
	15	0	20.65	20.32	20.46		0

Table 8-18 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth - Reduced Power

		,		LTE Band 5 (Cell) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	20.96	20.79	20.87		0
	1	2	20.99	20.60	20.77	1	0
	1	5	20.91	20.47	20.73	0	0
QPSK	3	0	20.98	20.59	20.81	1 '	0
	3	2	21.11	20.74	20.78	1	0
	3	3	20.98	20.58	20.78	1	0
	6	0	20.82	20.41	20.74	0-1	0
	1	0	20.73	20.41	20.69		0
	1	2	21.10	20.43	20.64	1	0
	1	5	21.03	20.33	20.53	0-1	0
16QAM	3	0	20.68	20.22	20.38	0-1	0
	3	2	21.02	20.22	20.44	1	0
	3	3	20.99	20.25	20.25	1	0
ı	6	0	21.06	20.49	20.41	0-2	0

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 26 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 26 of 66

8.2.3 LTE Band 4 (AWS)

Table 8-19
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwigtn									
LTE Band 4 (AWS) 20 MHzBandwidth									
			Mid Channel						
	20175								
Modulation		MPR Allowed per 3GPP [dB]	MPR [dB]						
				JOPP (UB)					
	1	0	24.67		0				
	1	50	24.56	0	0				
	1	99	24.70	1	0				
QPSK	50	0	23.27		1				
	50	25	23.20		1				
	50	50	23.33		1				
	100	0	23.32	0-1	1				
	1	0	22.93	1	1				
	1	50	22.72	1	1				
	1	99	23.22	1	1				
16QAM	50	0	22.18		2				
	50	25	22.05	0-2	2				
	50	50	22.07	0-2	2				
	100	0	22.12		2				

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-20
LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

			, , , , , , , , , , , , , , , , , , ,	LTE Band 4 (AWS)	10 TO MILIZ DUI		
				15 MHzBandwidth			
			Low Channel Mid Channel Frequency [MH		Frequency [MHz]		
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.20	24.34	24.61		0
	1	36	24.29	24.20	24.35	0	0
	1	74	24.30	24.53	24.01		0
QPSK	36	0	23.11	23.23	23.33	0-1	1
	36	18	23.17	23.15	23.20		1
	36	37	23.18	23.09	23.09		1
	75	0	23.06	23.07	23.22		1
	1	0	22.80	23.11	23.34		1
	1	36	23.06	22.84	23.21	0-1	1
	1	74	23.10	23.08	23.18		1
16QAM	36	0	22.01	22.11	22.19		2
	36	18	21.90	22.12	22.15	0-2	2
	36	37	22.21	21.92	22.01		2
	75	0	22.03	22.18	22.13		2

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	(†) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 27 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 27 of 66

Table 8-21 LTF Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

			sand 4 (AVVS) Co		15 - 10 WILL Dall	awiatii	
				LTE Band 4 (AWS)			
	ı	T	Low Channel	10 MHzBandwidth Mid Channel	Himb Champal	1	
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	
			(Conducted Power [dBm	1]		
	1	0	24.59	24.47	24.66		0
	1	25	24.51	24.54	24.59	0	0
	1	49	24.30	24.42	24.18	1	0
QPSK	25	0	23.00	23.16	23.16	0-1	1
	25	12	23.15	23.22	23.27		1
	25	25	23.06	23.03	23.14		1
	50	0	23.05	23.05	23.17		1
	1	0	22.83	22.96	22.79		1
	1	25	23.28	22.78	22.87	0-1	1
	1	49	22.86	22.74	22.67	1	1
16QAM	25	0	21.86	22.15	22.11		2
	25	12	21.78	22.27	22.30	0-2	2
	25	25	21.85	22.08	22.16	0-2	2
1	50	0	21.94	22.03	22.05]	2

Table 8-22 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 4 (AWS)			
				, ,			
				5 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Mandalada.	DD 0!	DD 0554	19975	20175	20375	MPR Allowed per	MDD (-ID)
Modulation	RB Size	RB Offset	(1712.5 MHz)	(1732.5 MHz)	(1752.5 MHz)	3GPP [dB]	MPR [dB]
			C	onducted Power [dBm]		
	1	0	23.99	24.22	24.26		0
	1	12	24.12	24.60	24.69	0	0
	1	24	24.00	24.22	24.40		0
QPSK	12	0	22.95	23.22	23.23	0-1	1
	12	6	23.04	23.16	23.44		1
	12	13	22.86	22.99	23.28		1
	25	0	22.81	23.12	23.32		1
	1	0	22.56	22.98	23.08		1
	1	12	22.93	23.17	23.46	0-1	1
	1	24	22.47	22.77	23.09		1
16QAM	12	0	21.58	22.14	22.23		2
	12	6	21.70	22.19	22.06	0-2	2
	12	13	21.80	21.93	21.99		2
	25	0	21.93	21.99	22.25		2

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 20 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 28 of 66

Table 8-23 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

		<u> </u>	Jana + (AVVO) C	LTE Band 4 (AWS) 3 MHzBandwidth	13 - J WIIIZ Daily	uwiatii	
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]		MPR [dB]
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	
			(Conducted Power [dBm]	1	
	1	0	24.13	24.36	24.51		0
	1	7	24.12	24.42	24.70	0	0
	1	14	24.22	24.34	24.30	1	0
QPSK	8	0	22.92	23.23	23.43		1
	8	4	23.02	23.19	23.46	0-1	1
	8	7	22.98	23.01	23.44		1
	15	0	22.97	23.13	23.39		1
	1	0	23.39	23.12	23.20		1
	1	7	23.07	23.20	23.13	0-1	1
	1	14	22.64	22.96	22.94	1	1
16QAM	8	0	21.81	22.14	21.92		2
	8	4	21.75	22.19	21.94	0-2	2
	8	7	21.72	22.11	21.91	0-2	2
	15	0	21.72	22.12	22.07		2

Table 8-24 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 4 (AWS) 1.4 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.21	24.12	24.34		0
	1	2	24.38	24.36	24.40		0
	1	5	23.97	24.19	24.39	0	0
QPSK	3	0	24.21	24.31	24.43		0
	3	2	24.26	24.31	24.48		0
	3	3	24.25	24.25	24.43		0
	6	0	23.03	23.16	23.16	0-1	1
	1	0	22.83	22.72	22.90		1
	1	2	23.05	22.55	23.00		1
	1	5	22.82	22.45	22.96	0-1	1
16QAM	3	0	22.68	22.53	22.81	0-1	1
	3	2	22.67	22.69	22.89		1
	3	3	22.65	22.98	22.87		1
	6	0	22.04	21.94	22.19	0-2	2

FCC ID: ZNFV520	PCTEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 20 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 29 of 66

Table 8-25 LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth - Reduced Power

	LTE Band 4 (AWS) 20 MHzBandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	20175 t (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	0011 [05]					
	1	0	14.25		0				
	1	50	14.66	0	0				
	1	99	14.19		0				
QPSK	50	0	14.06		0				
	50	25	14.08		0				
	50	50	14.00		0				
	100	0	14.00	0-1	0				
	1	0	13.75		0				
	1	50	14.42		0				
	1	99	13.84		0				
16QAM	50	0	14.17		0				
	50	25	14.14	0-2	0				
	50	50	13.96	0-2	0				
	100	0	13.90		0				

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 8-26 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth - Reduced Power

			rre, conducted			Troudoud Forror	
				LTE Band 4 (AWS) 15 MHzBandwidth			
			1 01		F	I I	
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	20025	20175	20325	MPR Allowed per	MPR [dB]
oudidion	112 0120	IND CHOCK	(1717.5 MHz)	(1732.5 MHz)	(1747.5 MHz)	3GPP [dB]	iiii it [ub]
			(Conducted Power [dBm	1]		
	1	0	14.47	14.07	14.02		0
	1	36	14.32	14.17	14.26	0	0
	1	74	14.15	14.13	14.08]	0
QPSK	36	0	14.17	14.06	14.13	0-1	0
	36	18	14.13	14.10	14.27		0
	36	37	14.14	13.97	14.16		0
	75	0	14.04	13.94	14.12]	0
	1	0	13.71	13.84	14.33		0
	1	36	14.39	13.92	14.65	0-1	0
	1	74	13.70	13.51	14.41		0
16QAM	36	0	13.98	14.05	13.95		0
	36	18	13.88	13.90	14.01	0.2	0
	36	37	13.80	13.93	13.97	0-2	0
	75	0	13.97	13.90	13.97]	0

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 30 of 66

Table 8-27 LTF Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth - Reduced Power

		Danu + (A	vvoj Conductet		IZ Danuwiutii -	Reduced Power	
				LTE Band 4 (AWS) 10 MHzBandwidth			
			Low Channel				
Modulation	RB Size	RB Offset	20000 (1715.0 MHz)	20175 (1732.5 MHz)	20350 (1750.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	i]		
	1	0	14.37	14.05	14.38		0
	1	25	14.41	14.32	14.43	0	0
	1	49	14.21	14.12	14.33	1	0
QPSK	25	0	14.11	14.11	14.33		0
	25	12	14.21	14.04	14.25	0-1	0
	25	25	14.09	13.95	14.15		0
	50	0	14.11	14.01	14.16		0
	1	0	14.02	13.77	13.82		0
	1	25	14.38	13.86	14.13	0-1	0
	1	49	13.78	13.39	13.73	1	0
16QAM	25	0	13.98	13.94	14.17		0
	25	12	14.17	14.00	14.19	1	0
	25	25	14.05	13.83	14.09	0-2	0
	50	0	14.04	13.87	14.04	1	0

Table 8-28 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth - Reduced Power

			tro, conducto		<u></u>		
				LTE Band 4 (AWS) 5 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
					•		
Modulation	RB Size	RB Offset	19975	20175	20375	MPR Allowed per	MPR [dB]
			(1712.5 MHz)	(1732.5 MHz)	(1752.5 MHz)	3GPP [dB]	
			C	Conducted Power [dBm	1]		
	1	0	14.47	13.81	14.30	0	0
	1	12	13.89	14.16	14.44		0
	1	24	14.49	13.83	14.17		0
QPSK	12	0	14.24	14.08	14.24		0
	12	6	14.24	14.17	14.32	0-1	0
	12	13	14.12	13.94	14.21		0
	25	0	14.19	14.02	14.18		0
	1	0	13.70	13.94	13.74		0
	1	12	13.89	14.42	14.20	0-1	0
	1	24	13.55	14.15	13.91		0
16QAM	12	0	13.97	13.96	14.04		0
	12	6	13.98	13.97	14.22	0.2	0
	12	13	13.85	13.93	14.12	0-2	0
	25	0	14.06	14.02	14.00		0

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(†) LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 31 of 66	
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 31 01 66	

Table 8-29 LTF Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth - Reduced Power

		Dana + (F	(VV3) Conducted	LTE Band 4 (AWS)	iz Danuwiutii - i	teduced i owei				
	3 MHzBandwidth									
			Frequency [MHz]	Frequency [MHz]	Frequency [MHz]		MPR [dB]			
Modulation	RB Size	RB Offset	Offset 19965 20175 (1711.5 MHz) (1732.5 MHz)		20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]				
			(Conducted Power [dBm						
	1	0	14.33	13.98	14.32	0	0			
	1	7	14.31	14.33	14.36		0			
	1	14	14.43	14.24	14.24		0			
QPSK	8	0	14.23	14.11	14.27		0			
	8	4	14.14	14.09	14.37	0-1	0			
	8	7	14.18	13.96	14.34	0-1	0			
	15	0	14.18	14.02	14.32		0			
	1	0	13.86	13.74	14.32		0			
	1	7	13.94	13.98	14.45	0-1	0			
	1	14	13.91	14.04	14.31		0			
16QAM	8	0	14.19	14.02	14.00		0			
	8	4	14.07	14.10	14.27	0-2	0			
	8	7	13.95	14.14	14.15	U-Z	0			
	15	0	13.96	14.00	14.13		0			

Table 8-30 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth - Reduced Power

				LTE Band 4 (AWS) 1.4 MHzBandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	14.23	14.07	14.32		0
	1	2	14.19	14.24	14.41		0
	1	5	14.13	14.08	14.39	0	0
QPSK	3	0	14.18	14.18	14.36		0
	3	2	14.25	14.22	14.43		0
	3	3	14.22	14.08	14.41		0
	6	0	14.19	14.06	14.29	0-1	0
	1	0	14.31	13.92	14.21		0
	1	2	14.28	13.98	14.28		0
	1	5	14.24	13.93	14.30	0-1	0
16QAM	3	0	14.08	13.78	14.21	0-1	0
	3	2	14.22	13.70	14.46		0
	3	3	14.29	13.57	14.24		0
	6	0	14.26	13.83	14.23	0-2	0

FCC ID: ZNFV52	0	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Tes	st Dates:	DUT Type:		Dags 22 of 66	
0Y1601040033.Z	NF 01/0	06/16 - 01/16/16	Portable Tablet		Page 32 of 66	

8.2.4 LTE Band 2 (PCS)

Table 8-31 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.24	24.62	24.47	0	0
	1	50	24.41	24.61	24.32		0
	1	99	24.48	24.49	24.21		0
QPSK	50	0	23.36	23.40	23.39	0-1	1
	50	25	23.10	23.10	23.30		1
	50	50	23.10	23.28	23.25		1
	100	0	23.22	23.26	23.34		1
	1	0	22.50	23.11	23.07		1
	1	50	22.67	22.90	23.59	0-1	1
	1	99	22.74	23.03	23.37		1
16QAM	50	0	22.29	22.46	22.33		2
	50	25	22.00	22.19	22.33	0-2	2
	50	50	22.09	22.10	22.27	J 0-2	2
	100	0	22.25	22.26	22.44		2

Table 8-32 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

			ana 2 (1 00) 00	Transla (DCC)	3 - 10 WITTE Daile	awiatii	
				LTE Band 2 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
							MPR [dB]
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	
			(Conducted Power [dBm	1]		
	1	0	24.44	24.33	24.47	0	0
	1	36	24.53	24.19	24.44		0
	1	74	24.48	24.41	24.20		0
QPSK	36	0	23.24	23.14	23.39	- 0-1	1
	36	18	23.03	23.06	23.29		1
	36	37	23.17	23.12	23.29		1
	75	0	23.07	23.15	23.26		1
	1	0	22.64	22.44	23.55		1
	1	36	23.27	23.01	23.43	0-1	1
	1	74	23.42	22.55	23.51		1
16QAM	36	0	22.27	22.19	22.21		2
	36	18	22.04	22.14	22.25	0.2	2
	36	37	21.98	22.14	22.19	0-2	2
	75	0	22.18	22.18	22.26		2

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 33 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 33 01 66

Table 8-33 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

			, ,	LTE Band 2 (PCS) 10 MHz Bandwidth			
			Low Channel Frequency [MHz] Frequency [MHz]				
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn	n]		
	1	0	24.63	24.45	24.43		0
	1	25	24.64	24.49	24.59	0	0
	1	49	24.40	24.52	24.44		0
QPSK	25	0	23.22	23.19	23.36		1
	25	12	23.23	23.08	23.45	0-1	1
	25	25	23.05	23.00	23.35		1
	50	0	23.16	23.00	23.40	1	1
	1	0	23.43	23.03	23.19		1
	1	25	23.20	22.88	23.24	0-1	1
	1	49	23.11	23.18	23.36	1	1
16QAM	25	0	22.24	22.29	22.70		2
	25	12	22.25	22.14	22.63	1 00	2
ľ	25	25	21.90	21.98	22.43	0-2	2
	50	0	22.14	21.90	22.36	1	2

Table 8-34 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

			u (1 0 0) 0 1	LTE Band 2 (PCS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	24.20	24.09	24.40	0	0
	1	12	24.66	24.40	24.70		0
	1	24	24.20	23.96	24.48		0
QPSK	12	0	23.24	23.13	23.39		1
	12	6	23.32	23.12	23.42	0-1	1
	12	13	23.06	23.05	23.35		1
	25	0	23.16	23.06	23.35		1
	1	0	23.00	22.66	23.33		1
	1	12	23.33	23.04	23.56	0-1	1
	1	24	22.69	22.66	23.37		1
16QAM	12	0	22.23	21.88	22.37		2
	12	6	22.31	22.15	22.40	0-2	2
	12	13	22.14	21.99	22.34		2
ı	25	0	22.25	21.95	22.54	1	2

	FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 34 of 66	
	0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Faye 34 01 00	
٠.	C DOTECT Engineering Laboratory Inc.		•	DEV/17.0 M	

Table 8-35 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

			and 2 (1 00) 00	muucleu Powei	5 - 5 WILL Dalla	widtii	
				LTE Band 2 (PCS)			
1			1 011	3 MHz Bandwidth	Litab Observati		
			Low Channel	Mid Channel	High Channel	-	
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.30	24.39	24.49		0
ĺ	1	7	24.59	24.41	24.57	0	0
	1	14	24.47	24.14	24.55		0
QPSK	8	0	23.30	23.05	23.42		1
	8	4	23.30	23.02	23.36	0-1	1
ĺ	8	7	23.14	23.06	23.24		1
	15	0	23.14	23.06	23.37		1
	1	0	23.26	23.12	23.19		1
	1	7	23.44	23.04	23.54	0-1	1
ĺ	1	14	23.14	22.70	23.33		1
16QAM	8	0	22.02	22.15	22.46		2
	8	4	22.10	22.22	22.41	1 00	2
	8	7	22.04	22.15	22.38	0-2	2
ĺ	15	0	22.19	22.16	22.33		2

Table 8-36 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

LTE Band 2 (PCS) 1.4 MHz Bandwidth							
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.19	24.14	24.47	0	0
	1	2	24.43	24.25	24.47		0
	1	5	24.29	24.20	24.60		0
QPSK	3	0	24.32	24.20	24.70		0
	3	2	24.33	24.24	24.42		0
	3	3	24.36	24.36	24.65		0
	6	0	23.27	23.05	23.34	0-1	1
	1	0	23.18	22.81	23.00	0-1	1
	1	2	22.94	22.91	23.32		1
ľ	1	5	22.91	22.81	23.06		1
16QAM	3	0	22.77	23.08	23.36		1
	3	2	22.83	23.14	23.46		1
	3	3	22.97	23.10	23.40		1
	6	0	22.34	22.09	22.51	0-2	2

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 25 of 66	
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 35 of 66	
AC DOTECT Engineering Laboratory Inc.		•	DEV/ 17.0 M	

Table 8-37 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth - Reduced Power

LTE Ballu 2 (PCS) Collucted Powers - 20 MITZ Balluwidth - Reduced Power							
LTE Band 2 (PCS) 20 MHz Bandwidth							
			Low Channel Mid Channel High Channel			ı	
					•	MPR Allowed per 3GPP [dB]	
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)		MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	12.26	11.86	12.33	0	0
	1	50	12.69	12.17	12.27		0
	1	99	12.30	11.81	12.18		0
QPSK	50	0	12.33	12.13	12.21	0-1	0
	50	25	12.19	12.17	12.12		0
	50	50	12.05	12.07	12.01		0
	100	0	12.22	12.09	12.19		0
	1	0	11.79	11.78	11.60	0-1	0
	1	50	12.49	12.40	12.13		0
	1	99	11.73	11.76	11.63		0
16QAM	50	0	12.31	12.04	12.16	0-2	0
	50	25	12.16	12.17	12.09		0
	50	50	11.90	11.97	11.86		0
	100	0	12.12	12.09	12.15		0

Table 8-38 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth - Reduced Power

LTE Band 2 (PCS) 15 MHz Bandwidth							
	RB Size		Low Channel	Mid Channel	Frequency [MHz]		MPR [dB]
Modulation		RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	
			•	Conducted Power [dBm	1]		
	1	0	12.33	12.11	12.18	0	0
	1	36	12.56	12.13	12.38		0
	1	74	12.19	12.20	12.14		0
QPSK	36	0	12.26	12.16	11.98	0-1	0
	36	18	12.10	12.24	12.24		0
	36	37	12.23	12.12	12.08		0
	75	0	12.23	12.12	12.11		0
	1	0	12.08	11.86	12.68	0-1	0
	1	36	12.10	12.16	12.12		0
	1	74	12.05	11.57	11.71		0
16QAM	36	0	12.09	11.88	11.89	0-2	0
•	36	18	12.04	12.04	12.16		0
	36	37	12.10	11.91	11.89		0
	75	0	12.14	12.09	11.96		0

	FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 36 of 66	
	0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Faye 30 01 00	
٠.	C DOTECT Engineering Laboratory Inc.		•	DEV/ 17.0 M	

Table 8-39 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth - Reduced Power

		Dana Z (i c	o) conducted	LTE Band 2 (PCS)	Z Danawiatii - i	Reduced Power		
				10 MHz Bandwidth				
			Low Channel	Frequency [MHz]	Frequency [MHz]			
Modulation	RB Size	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]	1		
	1	0	12.47	12.29	12.14		0	
ĺ	1	25	12.59	12.54	12.56	0	0	
	1	49	12.36	12.30	12.23	Ι Γ	0	
QPSK	25	0	12.24	12.22	12.28		0	
	25	12	12.32	12.27	12.30	0-1	0	
ĺ	25	25	12.13	12.15	12.14	1 0-1	0	
	50	0	12.15	12.14	12.21	1	0	
	1	0	12.12	12.02	11.74		0	
	1	25	12.67	12.08	12.28	0-1	0	
ĺ	1	49	12.02	11.66	11.78	Ι Γ	0	
16QAM	25	0	12.11	12.11	12.23		0	
	25	12	12.13	12.25	12.15	0-2	0	
	25	25	12.10	12.13	12.08	0-2	0	
	50	0	12.08	12.11	12.10	7	0	

Table 8-40 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth - Reduced Power

				LTE Band 2 (PCS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	Frequency [MHz]		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	12.29	11.88	12.22		0
	1	12	12.61	12.39	12.49	0	0
	1	24	12.22	12.02	12.07	1	0
QPSK	12	0	12.37	12.22	12.34	0-1	0
	12	6	12.35	12.30	12.30		0
	12	13	12.19	12.15	12.19	0-1	0
	25	0	12.22	12.15	12.23	1	0
	1	0	11.87	12.12	12.04		0
	1	12	12.25	12.45	12.24	0-1	0
	1	24	11.72	12.07	11.53		0
16QAM	12	0	11.96	12.12	11.99		0
	12	6	12.12	11.96	12.01	0-2	0
	12	13	11.95	11.82	11.93		0
1	25	0	12.18	12.25	12.15		0

FCC ID: ZNFV5	20	PCTEST INGUILIANS LAJORATENT, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:		Test Dates:	DUT Type:		Dogo 27 of 66
0Y1601040033.Z	NF	01/06/16 - 01/16/16	Portable Tablet		Page 37 of 66

Table 8-41 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth - Reduced Power

			•	LTE Band 2 (PCS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation RB S	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	12.38	12.30	12.26		0
ĺ	1	7	12.45	12.53	12.42	0	0
	1	14	12.26	12.33	12.30		0
QPSK	8	0	12.29	12.23	12.20		0
	8	4	12.28	12.21	12.25	0-1	0
	8	7	12.21	12.16	12.27	0-1	0
	15	0	12.22	12.15	12.29		0
	1	0	12.03	12.39	12.09		0
	1	7	12.07	12.43	12.24	0-1	0
	1	14	12.03	12.00	12.00		0
16QAM	8	0	12.12	12.25	11.92		0
	8	4	11.98	12.24	11.89	0-2	0
	8	7	11.93	12.08	11.81	0-2	0
	15	0	12.11	12.04	11.94	1	0

Table 8-42 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth - Reduced Power

			,	LTE Band 2 (PCS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	n]	1	
	1	0	12.18	12.14	12.23		0
	1	2	12.41	12.21	12.30	1	0
QPSK	1	5	12.33	12.14	12.13	0	0
	3	0	12.38	12.24	12.34		0
	3	2	12.44	12.37	12.39		0
	3	3	12.40	12.33	12.35		0
	6	0	12.28	12.22	12.25	0-1	0
	1	0	12.33	12.42	12.23		0
	1	2	12.21	12.48	12.18	1	0
ľ	1	5	12.25	12.33	12.33	0-1	0
16QAM	3	0	12.10	12.18	12.39	J 0-1	0
	3	2	12.14	11.98	12.44] [0
•	3	3	12.12	12.16	12.38		0
ľ	6	0	11.94	11.67	12.20	0-2	0

	FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 38 of 66
	0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Faye 36 01 00
٠.	C DOTECT Engineering Laboratory Inc.		•	DEV 17.0 N

8.2.5 LTE Band 30

Table 8-43
LTE Band 30 Conducted Powers - 10 MHz Bandwidth

			LTE Band 30	- 10 WINZ Dalluw		
			10 MHz Bandwidth			
			Mid Channel			
				27710	MDD Allenned area	
Modulation	RB Size	RB Offset	(2310.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power	JOFF [UB]		
			[dBm]			
		0	23.15		0	
	1	25	23.19	0	0	
		49	23.17		0	
QPSK	QPSK	0	21.96		1	
	25	12	22.04		1	
		25	21.88		1	
	50	0	21.90	0-1	1	
		0	22.03		1	
	1	25	21.72		1	
		49	21.74		1	
16QAM		0	20.91		2	
	25	12	20.78	0.0	2	
		25	20.73	0-2	2	
	50	0	20.88		2	

Table 8-44 LTE Band 30 Conducted Powers - 5 MHz Bandwidth

			LTE Band 30 5 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	27710 (2310.0 MHz)	MPR Allowed per	MPR [dB]
		[dBr	Conducted Power [dBm]	3GPP [dB]	
		0	22.85		0
	1	12	23.15	0	0
		24	22.88		0
QPSK		0	22.05		1
	12	6	21.95		1
		13	21.94		1
	25	0	21.97	0-1	1
		0	21.75		1
	1	12	22.19		1
		24	21.74		1
16QAM		0	20.74		2
	12	6	20.82	0-2	2
		13	20.63	0-2	2
	25	0	20.78		2

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 20 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 39 of 66

Table 8-45 LTE Band 30 Conducted Powers - 10 MHz Bandwidth - Reduced Power

LIL Da	LTE Band 30 LTE Band 30									
			10 MHz Bandwidth							
		l								
			Mid Channel							
Modulation	RB Size	RB Offset	27710	MPR Allowed per	MPR [dB]					
Wiodulation	ND SIZE	KD Oliset	(2310.0 MHz) Conducted Power	3GPP [dB]	WIF IX [GD]					
			[dBm]							
		0	10.98		0					
	1	25	10.94	0	0					
		49	10.75		0					
QPSK		0	10.80		0					
	25	12	10.80		0					
		25	10.61		0					
	50	0	10.71	0-1	0					
		0	10.44		0					
	1	25	10.87		0					
		49	10.30		0					
16QAM		0	10.53		0					
	25	12	10.73	0-2	0					
		25	10.63		0					
	50	0	10.61		0					

Table 8-46 LTE Band 30 Conducted Powers - 5 MHz Bandwidth - Reduced Power

	LTE Band 30 5 MHz Bandwidth								
Modulation	RB Size	RB Offset	Mid Channel 27710 (2310.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]				
		0	10.29		0				
	1	12	10.65	0	0				
		24	10.09		0				
QPSK		0	10.71	0-1	0				
	12	6	10.91		0				
		13	10.70		0				
	25	0	10.72		0				
		0	10.58		0				
	1	12	11.06		0				
		24	10.59		0				
16QAM		0	10.76		0				
	12	6	10.87	0-2	0				
		13	10.66		0				
	25	0	10.70		0				

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNF	/520	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/	N:	Test Dates:	DUT Type:		Dogo 40 of 66
0Y160104003	3.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 40 of 66

8.2.6 LTE Band 7

Table 8-47 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

			L Bana / Gona	ucted Fowers -	ZO WITTE BUTTON	1401	
				LTE Band 7			
	1			20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per 3GPP [dB]	MPR [dB]
Modulation	IND GIZE	TAD CHOOL	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)		iiii it [ub]
				Conducted Power [dBm	1]		
		0	23.13	23.35	23.43	0	0
	1	50	23.55	23.46	23.42		0
		99	23.48	23.48	23.35		0
QPSK	50	0	22.40	22.30	22.51	0-1	1
		25	22.55	22.35	22.39		1
		50	22.37	22.30	22.27		1
	100	0	22.48	22.35	22.33		1
		0	21.77	22.17	22.04		1
	1	50	21.85	21.93	22.23	0-1	1
		99	21.82	22.24	21.74		1
16QAM		0	21.42	21.26	21.36		2
	50	25	21.56	21.34	21.27	0-2	2
		50	21.33	21.32	21.10		2
	100	0	21.33	21.29	21.24		2

Table 8-48 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

				LTE Band 7 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
		0	23.47	23.56	23.26		0
	1	36	23.49	23.48	23.35	0	0
QPSK		74	23.51	23.47	22.97		0
	36	0	22.21	22.32	22.31	0-1	1
		18	22.48	22.33	22.41		1
		37	22.45	22.19	22.30		1
	75	0	22.37	22.21	22.36		1
		0	22.42	21.62	22.14		1
	1	36	22.41	22.04	22.30	0-1	1
		74	22.61	21.77	22.02		1
16QAM		0	21.12	21.25	21.20		2
	36	18	21.41	21.39	21.22	0-2	2
		37	21.33	21.23	21.07		2
	75	0	21.28	21.23	21.13		2

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 41 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 41 01 66

Table 8-49 LTF Band 7 Conducted Powers - 10 MHz Bandwidth

			L Balla / Colla	ucted Powers -	10 WITTE Balluw	idtii	
				LTE Band 7			
	ı			10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800	21100	21400	MPR Allowed per	MPR [dB]
			(2505.0 MHz)	(2535.0 MHz)	(2565.0 MHz)	3GPP [dB]	• •
			(Conducted Power [dBm	1]		
	1	0	23.53	23.41	23.41		0
	1	25	23.70	23.59	23.47	0	0
	1	49	23.61	23.39	23.29		0
QPSK	25	0	22.33	22.36	22.42	- 0-1	1
	25	12	22.25	22.41	22.33		1
	25	25	22.25	22.25	22.26		1
	50	0	22.32	22.22	22.31		1
	1	0	22.08	21.84	21.83		1
	1	25	22.34	21.87	21.89	0-1	1
	1	49	22.50	21.63	21.65		1
16QAM	25	0	21.14	21.31	21.34		2
	25	12	21.25	21.37	21.38	0-2	2
	25	25	21.18	21.23	21.41	0-2	2
	50	0	21.19	21.24	21.26		2

Table 8-50 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				LTE Band 7 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20775 (2502.5 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.25	23.14	23.10		0
	1	12	23.47	23.64	23.58	0	0
	1	24	22.98	23.21	23.25		0
QPSK	12	0	22.27	22.33	22.31		1
	12	6	22.36	22.30	22.33	0-1	1
	12	13	22.18	22.23	22.17		1
	25	0	22.20	22.25	22.16		1
	1	0	22.02	22.41	21.98		1
	1	12	22.11	22.62	22.41	0-1	1
	1	24	21.63	21.99	21.92		1
16QAM	12	0	21.11	21.12	21.20		2
	12	6	21.01	21.18	21.24	0-2	2
	12	13	21.12	21.01	21.11		2
i	25	0	21.16	21.24	21.20		2

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 42 of 66	
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 42 01 66	

Table 8-51 LTF Band 7 Conducted Powers - 20 MHz Bandwidth - Reduced Power

	-	TE Dana 1	Conducted 1 o	LTE Band 7	Janawiath - Ite	duced i Owei	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850 (2510.0 MHz)	21100 (2535.0 MHz)	21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm]		
		0	10.78	11.23	11.15		0
	1	50	10.99	11.52	11.32	0	0
QPSK		99	10.56	11.17	10.83		0
	50	0	11.11	11.33	11.26	0-1	0
		25	11.16	11.16	11.25		0
		50	11.02	11.08	11.15		0
	100	0	11.00	11.07	11.20		0
		0	10.65	10.55	10.79		0
	1	50	11.29	10.98	10.93	0-1	0
		99	10.44	10.53	10.74		0
16QAM		0	11.06	10.80	11.04		0
	50	25	11.12	10.97	11.02	0-2	0
		50	10.97	10.81	11.03		0
	100	0	10.98	10.98	11.10		0

Table 8-52 LTE Band 7 Conducted Powers - 15 MHz Bandwidth - Reduced Power

				LTE Band 7 15 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20825 (2507.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
		0	11.46	11.33	11.17		0
	1	36	11.51	11.31	11.20	0	0
		74	11.44	11.16	11.13		0
QPSK	36	0	11.13	11.03	11.21	0-1	0
		18	11.19	11.15	11.27		0
		37	11.08	11.09	11.15		0
	75	0	11.07	11.04	11.21		0
		0	10.79	10.73	11.46		0
	1	36	11.60	10.97	11.46	0-1	0
		74	10.97	10.51	11.34		0
16QAM		0	11.03	11.00	11.07		0
	36	18	11.11	11.05	11.23	0-2	0
		37	10.92	10.95	11.14		0
	75	0	10.92	10.89	10.99		0

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 42 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 43 of 66

Table 8-53 LTF Band 7 Conducted Powers - 10 MHz Bandwidth - Reduced Power

	<u>-</u>	TE Bana I	- Conducted 1 C	LTE Band 7	Janawiatii - Ite	ducca i owei	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20800 (2505.0 MHz)	21100 (2535.0 MHz)	21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	11.34	11.34	11.25		0
	1	25	11.39	11.55	11.43	0	0
QPSK	1	49	11.27	11.38	11.20		0
	25	0	11.15	11.19	11.22	0-1	0
	25	12	11.22	11.12	11.27		0
	25	25	11.02	11.05	11.12		0
	50	0	11.09	11.05	11.17		0
	1	0	10.97	10.88	10.90		0
	1	25	11.46	11.06	11.07	0-1	0
	1	49	10.90	10.63	10.57		0
16QAM	25	0	11.11	11.21	11.22		0
	25	12	11.19	11.29	11.39	0-2	0
	25	25	10.88	11.00	11.23	0-2	0
	50	0	11.02	10.99	11.12		0

Table 8-54 LTE Band 7 Conducted Powers - 5 MHz Bandwidth - Reduced Power

				LTE Band 7 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20775 (2502.5 MHz)	Mid Channel 21100 (2535.0 MHz) Conducted Power [dBm	High Channel 21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	11.09	10.92	11.21		0
	1	12	11.45	11.14	11.61	0	0
	1	24	11.08	10.67	11.13	1	0
QPSK	12	0	11.17	11.06	11.26	0-1	0
	12	6	11.24	11.23	11.25		0
	12	13	11.13	11.03	11.14		0
	25	0	11.06	11.06	11.16	1	0
	1	0	10.83	10.99	10.79		0
	1	12	11.27	11.48	11.17	0-1	0
	1	24	10.69	10.99	10.62	1	0
16QAM	12	0	10.87	11.04	11.00		0
	12	6	11.07	11.11	11.01	0-2	0
	12	13	10.84	10.91	11.11		0
	25	0	11.12	11.05	11.15		0

FCC	C ID: ZNFV520	PCTEST INCIDENTAL LABORATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Doc	ument S/N:	Test Dates:	DUT Type:	Dage 44 of 66
0Y16	601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 44 of 66

8.2.7 **LTE Carrier Aggregation Conducted Powers**

Table 8-55 Maximum LTE Carrier Aggregation Conducted Powers

							33-3						
			P	СС				SCC				Power	
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
LTE B2	5	19175	1907.5	1	12	1175	1987.5	LTE B12	10	5095	737.5	24.53	24.70
LTE B4	20	20175	1732.5	1	99	2175	2132.5	LTE B12	10	5095	737.5	24.66	24.70
LTE B2	5	19175	1907.5	1	12	1175	1987.5	LTE B29	10	9715	722.5	24.67	24.70
LTE B4	20	20175	1732.5	1	99	2175	2132.5	LTE B29	10	9715	722.5	24.59	24.70
LTE B2	5	19175	1907.5	1	12	1175	1987.5	LTE B5	10	2525	881.5	24.70	24.70
LTE B4	20	20175	1732.5	1	99	2175	2132.5	LTE B5	10	2525	881.5	24.70	24.70

Table 8-56 Reduced LTE Carrier Aggregation Conducted Powers

			P	cc			JJ J	SCC				Power	
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	SCC Bandwidth [MHz]	SCC (DL) Channel	SCC (DL) Frequency [MHz]	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
LTE B2	20	18700	1860	1	50	600	1930	LTE B12	10	5095	737.5	12.51	12.69
LTE B4	20	20175	1732.5	1	50	2175	2132.5	LTE B12	10	5095	737.5	14.68	14.66
LTE B2	20	18700	1860	1	50	600	1930	LTE B29	10	9715	722.5	12.70	12.69
LTE B4	20	20175	1732.5	1	50	2175	2132.5	LTE B29	10	9715	722.5	14.61	14.66
LTE B2	20	18700	1860	1	50	600	1930	LTE B5	10	2525	881.5	12.66	12.69
LTE B4	20	20175	1732.5	1	50	2175	2132.5	LTE B5	10	2525	881.5	14.58	14.66

Notes:

- 1. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. For every supported combination of downlink carrier aggregation, power measurements were performed with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.
- 2. All control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- 3. Since the supported frequency span for LTE B17 falls completely within the supported frequency span for LTE B12, both LTE bands have the same target power, and both LTE bands share the same transmission path, LTE CA SAR combinations were only assessed for LTE Band 12.

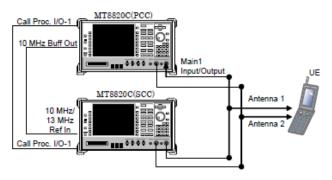


Figure 8-2 **Power Measurement Setup**

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 45 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 45 of 66

8.3 WLAN Conducted Powers

Table 8-57
2.4 GHz Average RF Output Power

		2.4GHz C	2.4GHz Conducted Power [dBm]					
Freq [MHz]	Channel	IEEE Transmission Mode						
		802.11b	802.11g	802.11n				
2412	1	14.45	12.74	12.84				
2437	6	14.05	12.16	12.40				
2462	11	14.44	12.31	12.46				

Table 8-58
5 GHz Average RF Output Power

Freq [MHz]	Channel	5GHz (40MHz) Conducted Power [dBm]				
ried [MHZ]	Chamilei	IEEE Transmission Mode				
		802.11n	802.11ac			
5190	38	10.59	10.85			
5230	46	10.79	10.95			
5270	54	10.92	11.07			
5310	62	10.95	11.25			
5510	102	10.64	10.84			
5550	110	10.67	10.83			
5670	134	10.59	10.50			
5755	151	10.55	10.60			
5795	159	10.21	10.15			

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

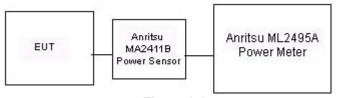


Figure 8-3
Power Measurement Setup for Bandwidths < 50 MHz

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 46 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

8.4 **Bluetooth Conducted Powers**

Table 8-59 Bluetooth RF Conducted Powers

Frequency	Data	Channel	Avg Conducted Power			
[MHz]	Rate [Mbps]	No.	[dBm]	[mW]		
2402	1.0	0	6.71	4.691		
2441	1.0	39	9.61	9.149		
2480	1.0	78	7.46	5.577		
2402	2.0	0	4.61	2.892		
2441	2.0	39	7.39	5.481		
2480	2.0	78	5.33	3.415		
2402	3.0	0	4.67	2.930		
2441	3.0	39	7.45	5.555		
2480	3.0	78	5.41	3.479		

Note: The bolded data rate and channel above was tested for SAR.

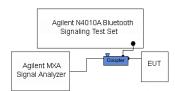


Figure 8-4 **Power Measurement Setup**

FCC ID:	ZNFV520	PCTEST INCIDENT INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Docume	ent S/N:	Test Dates:	DUT Type:		Dogo 47 of 66
0Y16010)40033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 47 of 66

9.1 Tissue Verification

Table 9-1
Measured Tissue Properties

				ieu iissue	торониос				
Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε
on:		(C°)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		
			700	0.913	54.853	0.959	55.726	-4.80%	-1.57%
			710	0.923	54.768	0.960	55.687	-3.85%	-1.65%
1/6/2016	750B	22.5	720	0.933	54.682	0.961	55.648	-2.91%	-1.74%
170/2010	7305	22.0	725	0.937	54.647	0.961	55.629	-2.50%	-1.77%
			740	0.951	54.517	0.963	55.570	-1.25%	-1.89%
			755	0.967	54.335	0.964	55.512	0.31%	-2.12%
			820	0.983	53.328	0.969	55.258	1.44%	-3.49%
1/7/2016	835B	22.4	835	0.997	53.205	0.970	55.200	2.78%	-3.61%
			850	1.013	53.034	0.988	55.154	2.53%	-3.84%
			820	0.991	53.831	0.969	55.258	2.27%	-2.58%
1/9/2016	835B	23.2	835	1.005	53.715	0.970	55.200	3.61%	-2.69%
			850	1.020	53.590	0.988	55.154	3.24%	-2.84%
			1710	1.441	51.236	1.463	53.537	-1.50%	-4.30%
1/11/2016	1750B	22.7	1750	1.486	51.093	1.488	53.432	-0.13%	-4.38%
			1790	1.529	50.949	1.514	53.326	0.99%	-4.46%
			1850	1.520	53.825	1.520	53.300	0.00%	0.98%
1/9/2016	1900B	22.6	1880	1.550	53.707	1.520	53.300	1.97%	0.76%
			1910	1.588	53.605	1.520	53.300	4.47%	0.57%
			2400	1.944	51.799	1.902	52.767	2.21%	-1.83%
1/14/2016	2450B	22.6	2450	2.014	51.593	1.950	52.700	3.28%	-2.10%
			2500	2.085	51.426	2.021	52.636	3.17%	-2.30%
			2300	1.753	51.964	1.809	52.900	-3.10%	-1.77%
			2310	1.767	51.934	1.816	52.887	-2.70%	-1.80%
			2320	1.780	51.882	1.826	52.873	-2.52%	-1.87%
4/40/0040	00000 00000	00.0	2400	1.879	51.591	1.902	52.767	-1.21%	-2.23%
1/16/2016	2300B-2600B	22.2	2450	1.944	51.411	1.950	52.700	-0.31%	-2.45%
			2500	2.006	51.212	2.021	52.636	-0.74%	-2.71%
			2550	2.082	51.063	2.092	52.573	-0.48%	-2.87%
			2600	2.150	50.867	2.163	52.509	-0.60%	-3.13%
			5300	5.455	48.493	5.416	48.879	0.72%	-0.79%
			5320	5.458	48.504	5.439	48.851	0.35%	-0.71%
			5500	5.711	48.227	5.650	48.607	1.08%	-0.78%
			5540	5.763	48.153	5.696	48.553	1.18%	-0.82%
01/12/2016	5200B-5800B	23.8	5560	5.798	48.078	5.720	48.526	1.36%	-0.92%
1			5745	6.039	47.844	5.936	48.275	1.74%	-0.89%
			5765	6.039	47.881	5.959	48.248	1.34%	-0.76%
			5785	6.089	47.786	5.982	48.220	1.79%	-0.90%
			5800	6.135	47.714	6.000	48.200	2.25%	-1.01%
l	1	1							

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 49 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 48 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

9.2 **Test System Verification**

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2 **System Verification Results**

	System vernication results											
						ystem Ve						
	TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
К	750	BODY	01/06/2016	23.5	22.5	0.200	1003	3022	1.770	8.460	8.850	4.61%
Н	835	BODY	01/07/2016	24.4	22.4	0.200	4d133	3263	1.970	9.250	9.850	6.49%
Н	835	BODY	01/09/2016	24.5	23.2	0.200	4d133	3263	2.010	9.250	10.050	8.65%
E	1750	BODY	01/11/2016	23.2	22.7	0.100	1051	3351	3.790	37.100	37.900	2.16%
- 1	1900	BODY	01/09/2016	23.1	22.6	0.100	5d149	3333	3.930	40.400	39.300	-2.72%
J	2300	BODY	01/16/2016	20.6	22.2	0.100	1064	3319	4.600	45.500	46.000	1.10%
D	2450	BODY	01/14/2016	24.2	22.6	0.100	719	3209	5.370	51.900	53.700	3.47%
J	2450	BODY	01/16/2016	20.6	22.2	0.100	719	3319	5.150	51.900	51.500	-0.77%
J	2600	BODY	01/16/2016	20.6	22.2	0.100	1004	3319	6.000	56.200	60.000	6.76%
D	5300	BODY	01/12/2016	23.8	23.6	0.050	1120	7357	3.770	75.200	75.400	0.27%
D	5500	BODY	01/12/2016	23.8	23.6	0.050	1120	7357	3.820	79.500	76.400	-3.90%
D	5800	BODY	01/12/2016	23.8	23.6	0.050	1120	7357	3.720	76.300	74.400	-2.49%

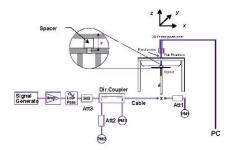


Figure 9-1 **System Verification Setup Diagram**

Figure 9-2 **System Verification Setup Photo**

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 49 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Fage 49 01 00

Standalone Body SAR Data

Table 10-1 UMTS Body SAR Data

						Doug								
					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	rower [ubin]	Di iit [ubj		Number	Cycle		(W/kg)		(W/kg)	
836.60	4183	UMTS 850	RMC	24.7	24.66	-0.03	19 mm	04236	1:1	back	0.356	1.009	0.359	
836.60	4183	UMTS 850	RMC	24.7	24.66	0.00	10 mm	04236	1:1	top	0.517	1.009	0.522	A1
836.60	4183	UMTS 850	RMC	24.7	24.66	-0.01	5 mm	04236	1:1	left	0.411	1.009	0.415	
836.60	4183	UMTS 850	RMC	20.7	20.42	-0.18	0 mm	04269	1:1	back	0.313	1.067	0.334	
836.60	4183	UMTS 850	RMC	20.7	20.42	-0.03	0 mm	04269	1:1	top	0.385	1.067	0.411	
836.60	4183	UMTS 850	RMC	20.7	20.42	-0.02	0 mm	04269	1:1	left	0.458	1.067	0.489	
1732.40	1412	UMTS 1750	RMC	24.7	24.61	0.02	19 mm	04236	1:1	back	0.130	1.021	0.133	
1732.40	1412	UMTS 1750	RMC	24.7	24.61	0.01	10 mm	04236	1:1	top	0.247	1.021	0.252	
1732.40	1412	UMTS 1750	RMC	24.7	24.61	0.02	5 mm	04236	1:1	left	0.093	1.021	0.095	
1732.40	1412	UMTS 1750	RMC	14.7	14.37	-0.15	0 mm	04269	1:1	back	0.394	1.079	0.425	A2
1732.40	1412	UMTS 1750	RMC	14.7	14.37	-0.01	0 mm	04269	1:1	top	0.312	1.079	0.337	
1732.40	1412	UMTS 1750	RMC	14.7	14.37	0.05	0 mm	04269	1:1	left	0.067	1.079	0.072	
1880.00	9400	UMTS 1900	RMC	24.7	24.52	-0.01	19 mm	04236	1:1	back	0.210	1.042	0.219	
1852.40	9262	UMTS 1900	RMC	24.7	24.52	0.03	10 mm	04236	1:1	top	0.773	1.042	0.805	
1880.00	9400	UMTS 1900	RMC	24.7	24.52	-0.03	10 mm	04236	1:1	top	0.798	1.042	0.832	A3
1907.60	9538	UMTS 1900	RMC	24.7	24.57	-0.02	10 mm	04236	1:1	top	0.412	1.030	0.424	
1880.00	9400	UMTS 1900	RMC	24.7	24.52	-0.09	5 mm	04236	1:1	left	0.418	1.042	0.436	
1880.00	9400	UMTS 1900	RMC	12.7	12.55	0.03	0 mm	04269	1:1	back	0.473	1.035	0.490	
1880.00	9400	UMTS 1900	RMC	12.7	12.55	0.07	0 mm	04269	1:1	top	0.223	1.035	0.231	
1880.00	9400	UMTS 1900	RMC	12.7	12.55	0.00	0 mm	04269	1:1	left	0.059	1.035	0.061	
			E C95.1 1992 - SA Spatial Peak Exposure/Gene								Body W/kg (mW/g ged over 1 gra	•		

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg FO of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 50 of 66

Table 10-2 LTE Band 12 Body SAR

							<u> </u>		iu iz	Боuy ·	SAN								
								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm1	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[WITZ]	Power [dBm]	Power [ubili]	Drift [GB]		Number							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.01	0	04228	QPSK	1	25	19 mm	back	1:1	0.216	1.000	0.216	
707.50	23095	Mid	LTE Band 12	10	24.5	24.11	0.08	1	04228	QPSK	25	25	19 mm	back	1:1	0.167	1.093	0.183	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.04	0	04228	QPSK	1	25	10 mm	top	1:1	0.335	1.000	0.335	
707.50	23095	Mid	LTE Band 12	10	24.5	24.11	-0.04	1	04228	QPSK	25	25	10 mm	top	1:1	0.270	1.093	0.295	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	-0.07	0	04228	QPSK	1	25	0 mm	right	1:1	0.073	1.000	0.073	
707.50	23095	Mid	LTE Band 12	10	24.5	24.11	-0.06	1	04228	QPSK	25	25	0 mm	right	1:1	0.076	1.093	0.083	
707.50	23095	Mid	LTE Band 12	10	25.5	25.50	0.05	0	04228	QPSK	1	25	5 mm	left	1:1	0.405	1.000	0.405	
707.50	23095	Mid	LTE Band 12	10	24.5	24.11	0.00	1	04228	QPSK	25	25	5 mm	left	1:1	0.323	1.093	0.353	
707.50	23095	Mid	LTE Band 12	10	19.5	19.24	0.05	0	04251	QPSK	1	25	0 mm	back	1:1	0.526	1.063	0.559	A4
707.50	23095	Mid	LTE Band 12	10	19.5	19.07	-0.02	0	04251	QPSK	25	12	0 mm	back	1:1	0.513	1.103	0.566	
707.50	23095	Mid	LTE Band 12	10	19.5	19.24	-0.12	0	04251	QPSK	1	25	0 mm	top	1:1	0.408	1.063	0.434	
707.50	23095	Mid	LTE Band 12	10	19.5	19.07	-0.12	0	04251	QPSK	25	12	0 mm	top	1:1	0.423	1.103	0.467	
707.50	23095	Mid	LTE Band 12	10	19.5	19.24	0.12	0	04251	QPSK	1	25	0 mm	left	1:1	0.319	1.063	0.339	
707.50	23095	Mid	LTE Band 12	10	19.5	19.07	0.14	0	04251	QPSK	25	12	0 mm	left	1:1	0.316	1.103	0.349	
			ANSI / IEEE C95.		ETY LIMIT									Body					
				atial Peak										//kg (mW	•				ŀ
			Uncontrolled Expo	sure/Genera	I Population			ĺ					average	ed over 1	gram				

Table 10-3 LTE Band 5 (Cell) Body SAR

								Jana	5 (56	וו) שטע	y Or	711							
								MEAS	UREMENT	RESULTS	3								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	1.		[<u>.</u>	Power [dBm]											(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	25.08	-0.02	0	04244	QPSK	1	0	19 mm	back	1:1	0.383	1.028	0.394	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.82	0.08	1	04244	QPSK	25	0	19 mm	back	1:1	0.335	1.091	0.365	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	25.08	0.07	0	04244	QPSK	1	0	10 mm	top	1:1	0.484	1.028	0.498	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.82	-0.07	1	04244	QPSK	25	0	10 mm	top	1:1	0.413	1.091	0.451	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	25.08	0.08	0	04244	QPSK	1	0	5 mm	left	1:1	0.437	1.028	0.449	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.82	0.06	1	04244	QPSK	25	0	5 mm	left	1:1	0.329	1.091	0.359	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	20.94	0.20	0	04251	QPSK	1	49	0 mm	back	1:1	0.333	1.061	0.353	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	20.63	0.19	0	04251	QPSK	25	0	0 mm	back	1:1	0.346	1.140	0.394	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	20.94	0.19	0	04251	QPSK	1	49	0 mm	top	1:1	0.402	1.061	0.427	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	20.63	0.10	0	04251	QPSK	25	0	0 mm	top	1:1	0.421	1.140	0.480	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	20.94	-0.08	0	04251	QPSK	1	49	0 mm	left	1:1	0.509	1.061	0.540	
836.50	20525	Mid	LTE Band 5 (Cell)	10	21.2	0.01	0	04251	QPSK	25	0	0 mm	left	1:1	0.516	1.140	0.588	A5	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	atial Peak									1.6 V	//kg (mW	//g)				
		- 1	Uncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg F1 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 51 of 66

Table 10-4 LTE Band 4 (AWS) Body SAR

								ana .	T (/// TV	<u>3) DU</u>	ay O	<u> </u>							
								MEAS	UREMENT	RESULTS	3								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR (dB)	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num ber							(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.70	0.09	0	04228	QPSK	1	99	19 mm	back	1:1	0.287	1.000	0.287	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.33	0.11	1	04228	QPSK	50	50	19 mm	back	1:1	0.223	1.089	0.243	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.70	0.02	0	04228	QPSK	1	99	10 mm	top	1:1	0.689	1.000	0.689	A6
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.33	-0.04	1	04228	QPSK	50	50	10 mm	top	1:1	0.536	1.089	0.584	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.7	24.70	-0.03	0	04228	QPSK	1	99	5 mm	left	1:1	0.413	1.000	0.413	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.7	23.33	-0.07	1	04228	QPSK	50	50	5 mm	left	1:1	0.362	1.089	0.394	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.66	-0.02	0	04251	QPSK	1	50	0 mm	back	1:1	0.480	1.009	0.484	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.08	-0.20	0	04251	QPSK	50	25	0 mm	back	1:1	0.474	1.152	0.546	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.66	0.05	0	04251	QPSK	1	50	0 mm	top	1:1	0.440	1.009	0.444	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.08	0.06	0	04251	QPSK	50	25	0 mm	top	1:1	0.415	1.152	0.478	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.66	0.03	0	04251	QPSK	1	50	0 mm	left	1:1	0.112	1.009	0.113	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	14.7	14.08	0.16	0	04251	QPSK	50	25	0 mm	left	1:1	0.099	1.152	0.114	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak													Body //kg (mW	•				
			Uncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 10-5 LTE Band 2 (PCS) Body SAR

								MEAS	UREMENT	RESULTS									
	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz 1880.00	18900	n. Mid	LTE Band 2 (PCS)	20	24.7	24.62	0.10	0	04228	QPSK	1	0	19 mm	back	1:1	(W/kg) 0.249	1.020	(W/kg) 0.254	
			,					Ů				-							
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.7	23.40	0.05	1	04228	QPSK	50	0	19 mm	back	1:1	0.228	1.072	0.244	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.62	-0.06	0	04228	QPSK	1	0	10 mm	top	1:1	0.675	1.020	0.689	A7
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.7	23.40	-0.02	1	04228	QPSK	50	0	10 mm	top	1:1	0.649	1.072	0.696	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.62	-0.03	0	04228	QPSK	1	0	5 mm	left	1:1	0.341	1.020	0.348	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.7	23.40	-0.08	1	04228	QPSK	50	0	5 mm	left	1:1	0.316	1.072	0.339	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	12.69	0.06	0	04251	QPSK	1	50	0 mm	back	1:1	0.522	1.002	0.523	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	12.33	0.04	0	04251	QPSK	50	0	0 mm	back	1:1	0.544	1.089	0.592	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	12.69	-0.05	0	04251	QPSK	1	50	0 mm	top	1:1	0.274	1.002	0.275	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	12.33	-0.19	0	04251	QPSK	50	0	0 mm	top	1:1	0.291	1.089	0.317	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	12.69	-0.03	0	04251	QPSK	1	50	0 mm	left	1:1	0.083	1.002	0.083	
1860.00	18700	Low	LTE Band 2 (PCS)	20	12.7	-0.04	0	04251	QPSK	50	0	0 mm	left	1:1	0.084	1.089	0.091		
		ı	ANSI / IEEE C95. Spa Uncontrolled Expo	atial Peak								Body V/kg (mW ed over 1	•						

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 52 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Fage 52 01 00
216 DCTECT Engineering Laboratory Inc.		•	DEV/ 47.0.1

Table 10-6 LTE Band 30 Body SAR

								14 30	<u> </u>	<u> </u>								
							MEAS	UREMENT	RESULTS	3								
EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR (dB)	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number						.,,,	(W/kg)		(W/kg)	
27710	Mid	LTE Band 30	10	23.2	23.19	0.00	0	04228	QPSK	1	25	19 mm	back	1:1	0.149	1.002	0.149	
27710	Mid	LTE Band 30	10	22.2	22.04	0.02	1	04228	QPSK	25	12	19 mm	back	1:1	0.116	1.038	0.120	
27710	Mid	LTE Band 30	10	23.2	23.19	0.01	0	04228	QPSK	1	25	10 mm	top	1:1	0.139	1.002	0.139	
27710	Mid	LTE Band 30	10	22.2	22.04	0.07	1	04228	QPSK	25	12	10 mm	top	1:1	0.105	1.038	0.109	
27710	Mid	LTE Band 30	10	23.2	23.19	0.07	0	04228	QPSK	1	25	5 mm	left	1:1	0.338	1.002	0.339	
27710	Mid	LTE Band 30	10	22.2	22.04	-0.02	1	04228	QPSK	25	12	5 mm	left	1:1	0.261	1.038	0.271	
27710	Mid	LTE Band 30	10	11.2	10.98	-0.08	0	04251	QPSK	1	0	0 mm	back	1:1	0.362	1.052	0.381	A8
27710	Mid	LTE Band 30	10	11.2	10.80	0.11	0	04251	QPSK	25	12	0 mm	back	1:1	0.361	1.096	0.396	
27710	Mid	LTE Band 30	10	11.2	10.98	0.11	0	04251	QPSK	1	0	0 mm	top	1:1	0.052	1.052	0.055	
27710	Mid	LTE Band 30	10	11.2	10.80	0.18	0	04251	QPSK	25	12	0 mm	top	1:1	0.050	1.096	0.055	
27710	Mid	LTE Band 30	10	11.2	10.98	0.19	0	04251	QPSK	1	0	0 mm	left	1:1	0.066	1.052	0.069	
27710	Mid	LTE Band 30	10	11.2	10.80	0.02	0	04251	QPSK	25	12	0 mm	left	1:1	0.064	1.096	0.070	
		Spa	atial Peak										• .	•				
	27710 27710 27710 27710 27710 27710 27710 27710 27710 27710 27710	Ch. 27710 Md 27710 Md	Ch. 27710 Md LTE Band 30 ANSI / IEEE C95. Sp.	Ch. [MHz] 27710 Md LTE Band 30 10 ANSI / IEEE C95.1 1992 - SAF Spatial Peak	Mode	Mode	Mode	Mode	Bandwidth Maximum Allowed Power (dBm) Power (dBm	Mode Bandwidth Maximum Allowed Power [dBm] Pow	Mode	Mode Bandwidth Maximum Allowed Power [dBm] Power [dm] Power [dBm] Power [dBm] Power [dBm] Power [dBm] Powe	Mode Bandwidth Maximum Allowed Power [dBm] Power	Bandwidth Maximum Maximum Maximum Milowed Power [dBm] Power [dBm] Device Serial Modulation RB Size RB Offset Spacing Side	Bandwidth Mode Mek Mode Mek Mode Mek M	Bandwidth Maximum (Mike) Power	Bandwidth Maximum Maximum Maximum Millowed Power [dBm] Number Numbe	Secondary Seco

Table 10-7 LTE Band 7 Body SAR

								MEAS	UREMENT	RESULTS	3								
FRE	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Num ber							(W/kg)		(W/kg)	
2510.00	20850	Low	LTE Band 7	20	23.7	23.55	-0.10	0	04244	QPSK	1	50	19 mm	back	1:1	0.406	1.034	0.420	
2510.00	20850	Low	LTE Band 7	20	22.7	22.55	0.04	1	04244	QPSK	50	25	19 mm	back	1:1	0.326	1.036	0.338	
2510.00	20850	Low	LTE Band 7	20	23.7	23.55	0.08	0	04244	QPSK	1	50	10 mm	top	1:1	0.232	1.034	0.240	
2510.00	20850	Low	LTE Band 7	20	22.7	22.55	-0.01	1	04244	QPSK	50	25	10 mm	top	1:1	0.185	1.036	0.192	
2510.00	20850	Low	LTE Band 7	20	23.7	23.55	-0.04	0	04244	QPSK	1	50	5 mm	left	1:1	0.478	1.034	0.494	
2510.00	20850	Low	LTE Band 7	20	22.7	22.55	0.00	1	04244	QPSK	50	25	5 mm	left	1:1	0.365	1.036	0.378	
2535.00	21100	Mid	LTE Band 7	20	11.7	11.52	0.09	0	04285	QPSK	1	50	0 mm	back	1:1	0.564	1.043	0.588	A9
2535.00	21100	Mid	LTE Band 7	20	11.7	11.33	-0.03	0	04285	QPSK	50	0	0 mm	back	1:1	0.563	1.089	0.613	
2535.00	21100	Mid	LTE Band 7	20	11.7	11.52	0.14	0	04285	QPSK	1	50	0 mm	top	1:1	0.139	1.043	0.145	
2535.00	21100	Mid	LTE Band 7	20	11.7	11.33	0.08	0	04285	QPSK	50	0	0 mm	top	1:1	0.140	1.089	0.152	
2535.00	21100	Mid	LTE Band 7	20	11.7	11.52	-0.06	0	04285	QPSK	1	50	0 mm	left	1:1	0.051	1.043	0.053	
2535.00	21100	Mid	LTE Band 7	20	11.7	11.33	0.01	0	04285	QPSK	50	0	0 mm	left	1:1	0.056	1.089	0.061	
		ι	ANSI / IEEE C95. Spa Jncontrolled Expo	atial Peak										Body I/kg (mW ed over 1	•				

Table 10-8 Bluetooth Body SAR

						Diacto	<u> </u>	July C	<u> </u>						
						MEASU	REMENT	RESU	LTS						
FREQU	ENCY	Mode	Service	Maxim um Allowed	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [abm]	[dB]		Number	(Mbps)		Cycle	(W/kg)		(W/kg)	
2441	39	Bluetooth	FHSS	10.0	9.61	0.02	0 mm	04285	1	back	1:1	0.115	1.094	0.126	A12
2441	39	Bluetooth	FHSS	10.0	9.61	0.20	0 mm	04285	1	top	1:1	0.085	1.094	0.093	
2441	39	Bluetooth	FHSS	10.0	9.61	-0.01	0 mm	04285	1	right	1:1	0.041	1.094	0.045	
		ANSI / IEEE	C95.1 199	2 - SAFETY LI	MIT						E	Body			
			Spatial I	Peak							1.6 W/	kg (mW/g)			
		Uncontrolled	Exposure/	General Popu	lation						averaged	over 1 gram			

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo F2 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 53 of 66

Table 10-9 WLAN Body SAR

								JREMEN		LTS							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	mode	00.1.00	[MHz]	Power [dBm]	Power [dBm]	[dB]	opuomg	Number	(Mbps)	0.00	(%)	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	1
2412	1	802.11b	DSSS	22	14.5	14.45	0.03	0 mm	04210	1	back	99.4	0.669	1.012	1.006	0.681	
2412	1	802.11b	DSSS	22	14.5	14.45	0.19	0 mm	04210	1	top	99.4	0.746	1.012	1.006	0.760	A10
2412	1	802.11b	DSSS	22	14.5	14.45	0.11	0 mm	04210	1	right	99.4	0.323	1.012	1.006	0.329	
2412	1	802.11b	DSSS	22	14.5	14.45	0.16	19 mm	04210	1	back	99.4	0.035	1.012	1.006	0.035	
2412	1	802.11b	DSSS	22	14.5	14.45	0.02	10 mm	04210	1	top	99.4	0.071	1.012	1.006	0.072	
5310	62	802.11n	OFDM	40	11.5	10.95	0.11	0 mm	04210	13.5	back	90.7	0.147	1.135	1.102	0.184	
5310	62	802.11n	OFDM	40	11.5	10.95	-0.13	0 mm	04210	13.5	top	90.7	0.358	1.135	1.102	0.447	
5310	62	802.11n	OFDM	40	11.5	10.95	0.04	0 mm	04210	13.5	right	90.7	0.069	1.135	1.102	0.086	
5310	62	802.11n	OFDM	40	11.5	10.95	0.03	19 mm	04210	13.5	back	90.7	0.020	1.135	1.102	0.025	
5310	62	802.11n	OFDM	40	11.5	10.95	0.02	10 mm	04210	13.5	top	90.7	0.064	1.135	1.102	0.080	
5550	110	802.11n	OFDM	40	11.5	10.67	-0.04	0 mm	04210	13.5	back	90.7	0.184	1.211	1.102	0.246	
5550	110	802.11n	OFDM	40	11.5	10.67	0.00	0 mm	04210	13.5	top	90.7	0.351	1.211	1.102	0.468	
5550	110	802.11n	OFDM	40	11.5	10.67	0.03	0 mm	04210	13.5	right	90.7	0.119	1.211	1.102	0.159	
5550	110	802.11n	OFDM	40	11.5	10.67	0.10	19 mm	04210	13.5	back	90.7	0.020	1.211	1.102	0.026	
5550	110	802.11n	OFDM	40	11.5	10.67	0.03	10 mm	04210	13.5	top	90.7	0.099	1.211	1.102	0.132	
5755	151	802.11n	OFDM	40	11.5	10.55	-0.08	0 mm	04210	13.5	back	90.7	0.224	1.245	1.102	0.307	
5755	151	802.11n	OFDM	40	11.5	10.55	0.01	0 mm	04210	13.5	top	90.7	0.648	1.245	1.102	0.889	A11
5795	159	802.11n	OFDM	40	11.5	10.21	0.04	0 mm	04210	13.5	top	90.7	0.521	1.346	1.102	0.773	
5755	151	802.11n	OFDM	40	11.5	10.55	0.03	0 mm	04210	13.5	right	90.7	0.131	1.245	1.102	0.180	
5755	151	802.11n	OFDM	40	11.5	10.55	0.08	19 mm	04210	13.5	back	90.7	0.028	1.245	1.102	0.039	
5755	151	802.11n	OFDM	40	11.5	10.55	0.08	10 mm	04210	13.5	top	90.7	0.088	1.245	1.102	0.121	
		ANSI	IEEE C95	.1 1992 - SA	AFETY LIMIT								Body				
			Sp	atial Peak									1.6 W/kg (mW	I/g)			
	Uncontrolled Exposure/General Population											av	eraged over 1	gram			

10.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 616217 D04v01r02 and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Per FCC KDB Publication 865664 D01v01r04, variability SAR tests were not required since measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 12 for more information.
- 7. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v06 was applied to determine SAR test exclusion for adjacent edge configurations.

UMTS Notes:

1. UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 54 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 54 of 66

2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 7.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- 1. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.6.4 for more information.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI
 operations, the initial test configuration was selected according to the transmission mode with the highest
 maximum allowed powers. Other transmission modes were not investigated since the highest reported
 SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg.
 See Section 7.6.5 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 5. Per manufacture request, WLAN SAR was additionally tested at maximum power at 19mm for back side, and 10mm for top edge.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago EE of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 55 of 66

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 11

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-q SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

11.3 Body Simultaneous Transmission Analysis

Table 11-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.489	0.760	1.249
	UMTS 1750	0.425	0.760	1.185
	UMTS 1900	0.490	0.760	1.250
	LTE Band 12	0.566	0.760	1.326
Body SAR	LTE Band 5 (Cell)	0.588	0.760	1.348
	LTE Band 4 (AWS)	0.546	0.760	1.306
	LTE Band 2 (PCS)	0.592	0.760	1.352
	LTE Band 30	0.396	0.760	1.156
	LTE Band 7	0.613	0.760	1.373

Table 11-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 0.0 cm)

ancous in	LAN (Body at o			
Exposure Condition	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.489	0.889	1.378
	UMTS 1750	0.425	0.889	1.314
	UMTS 1900	0.490	0.889	1.379
	LTE Band 12	0.566	0.889	See Table 11-3
Body	LTE Band 5 (Cell)	0.588	0.889	See Table 11-3
	LTE Band 4 (AWS)	0.546	0.889	1.435
	LTE Band 2 (PCS)	0.592	0.889	See Table 11-3
	LTE Band 30	0.396	0.889	1.285
	LTE Band 7	0.613	0.889	See Table 11-3

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago E6 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 56 of 66

Table 11-3 Simultaneous Transmission Scenario with 5 GHz WLAN (Body at 0.0 cm)

	Cimataneous Transmission Occidento With Congression (Body at 0.0 cm)										
Simult Tx	Configuration	LTE Band 12 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
	Back	0.566	0.307	0.873		Back	0.394	0.307	0.701		
	Тор	0.467	0.889	1.356		Тор	0.480	0.889	1.369		
Body SAR	Bottom	0.400	0.400	0.800	Body SAR	Bottom	0.400	0.400	0.800		
	Right	0.083	0.180	0.263		Right	0.400	0.180	0.580		
	Left	0.349	0.400	0.749		Left	0.588	0.400	0.988		
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
	Back	0.592	0.307	0.899		Back	0.613	0.307	0.920		
	Тор	0.317	0.889	1.206		Тор	0.152	0.889	1.041		
Body SAR	Bottom	0.400	0.400	0.800	Body SAR	Bottom	0.400	0.400	0.800		
	Right	0.400	0.180	0.580		Right	0.400	0.180	0.580		
	Left	0.091	0.400	0.491		Left	0.061	0.400	0.461		

Note: When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configuration excluded per FCC KDB 447498 D01v06. Therefore, an estimated SAR of 0.4 W/kg for LTE B12, B5, B2, B7 and 5 GHz WLAN was used to evaluate the simultaneous sums.

Table 11-4 Simultaneous Transmission Scenario with Bluetooth (Body at 0.0 cm)

Exposure Condition	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	UMTS 850	0.489	0.126	0.615
	UMTS 1750	0.425	0.126	0.551
	UMTS 1900	0.490	0.126	0.616
	LTE Band 12	0.566	0.126	0.692
Body SAR	LTE Band 5 (Cell)	0.588	0.126	0.714
	LTE Band 4 (AWS)	0.546	0.126	0.672
	LTE Band 2 (PCS)	0.592	0.126	0.718
	LTE Band 30	0.396	0.126	0.522
	LTE Band 7	0.613	0.126	0.739

Table 11-5 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Back Side at 1.9 cm)

	bololi Goolialio Wit			on oldo a
Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	UMTS 850	0.359	0.035	0.394
Back Side	UMTS 1750	0.133	0.035	0.168
Back Side	UMTS 1900	0.219	0.035	0.254
Back Side	LTE Band 12	0.216	0.035	0.251
Back Side	LTE Band 5 (Cell)	0.394	0.035	0.429
Back Side	LTE Band 4 (AWS)	0.287	0.035	0.322
Back Side	LTE Band 2 (PCS)	0.254	0.035	0.289
Back Side	LTE Band 30	0.149	0.035	0.184
Back Side	LTE Band 7	0.420	0.035	0.455

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 57 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 57 of 66

Table 11-6
Simultaneous Transmission Scenario with 5 GHz WLAN (Back Side at 1.9 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	UMTS 850	0.359	0.039	0.398
Back Side	UMTS 1750	0.133	0.039	0.172
Back Side	UMTS 1900	0.219	0.039	0.258
Back Side	LTE Band 12	0.216	0.039	0.255
Back Side	LTE Band 5 (Cell)	0.394	0.039	0.433
Back Side	LTE Band 4 (AWS)	0.287	0.039	0.326
Back Side	LTE Band 2 (PCS)	0.254	0.039	0.293
Back Side	LTE Band 30	0.149	0.039	0.188
Back Side	LTE Band 7	0.420	0.039	0.459

Table 11-7
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Back Side at 1.9 cm)

Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	UMTS 850	0.359	0.126	0.485
Back Side	UMTS 1750	0.133	0.126	0.259
Back Side	UMTS 1900	0.219	0.126	0.345
Back Side	LTE Band 12	0.216	0.126	0.342
Back Side	LTE Band 5 (Cell)	0.394	0.126	0.520
Back Side	LTE Band 4 (AWS)	0.287	0.126	0.413
Back Side	LTE Band 2 (PCS)	0.254	0.126	0.380
Back Side	LTE Band 30	0.149	0.126	0.275
Back Side	LTE Band 7	0.420	0.126	0.546

For SAR summation the Bluetooth SAR value for 0 mm was used since the 0 mm test distance for Bluetooth SAR is more conservative.

Table 11-8
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Top Edge at 1.0 cm)

Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Top Edge	UMTS 850	0.522	0.072	0.594
Top Edge	UMTS 1750	0.252	0.072	0.324
Top Edge	UMTS 1900	0.832	0.072	0.904
Top Edge	LTE Band 12	0.335	0.072	0.407
Top Edge	LTE Band 5 (Cell)	0.498	0.072	0.570
Top Edge	LTE Band 4 (AWS)	0.689	0.072	0.761
Top Edge	LTE Band 2 (PCS)	0.696	0.072	0.768
Top Edge	LTE Band 30	0.139	0.072	0.211
Top Edge	LTE Band 7	0.240	0.072	0.312

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 50 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 58 of 66

Table 11-9
Simultaneous Transmission Scenario with 5 GHz WLAN (Top Edge at 1.0 cm)

todae transmission soonans trial o one tre at (top eage at					
Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
Top Edge	UMTS 850	0.522	0.132	0.654	
Top Edge	UMTS 1750	0.252	0.132	0.384	
Top Edge	UMTS 1900	0.832	0.132	0.964	
Top Edge	LTE Band 12	0.335	0.132	0.467	
Top Edge	LTE Band 5 (Cell)	0.498	0.132	0.630	
Top Edge	LTE Band 4 (AWS)	0.689	0.132	0.821	
Top Edge	LTE Band 2 (PCS)	0.696	0.132	0.828	
Top Edge	LTE Band 30	0.139	0.132	0.271	
Top Edge	LTE Band 7	0.240	0.132	0.372	

Table 11-10
Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Top Edge at 1.0 cm)

Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Top Edge	UMTS 850	0.522	0.093	0.615
Top Edge	UMTS 1750	0.252	0.093	0.345
Top Edge	UMTS 1900	0.832	0.093	0.925
Top Edge	LTE Band 12	0.335	0.093	0.428
Top Edge	LTE Band 5 (Cell)	0.498	0.093	0.591
Top Edge	LTE Band 4 (AWS)	0.689	0.093	0.782
Top Edge	LTE Band 2 (PCS)	0.696	0.093	0.789
Top Edge	LTE Band 30	0.139	0.093	0.232
Top Edge	LTE Band 7	0.240	0.093	0.333

For SAR summation the Bluetooth SAR value for 0 mm was used since the 0 mm test distance for Bluetooth SAR is more conservative.

Table 11-11
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Left Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Left Edge	UMTS 850	0.415	0.400	0.815
Left Edge	UMTS 1750	0.095	0.400	0.495
Left Edge	UMTS 1900	0.436	0.400	0.836
Left Edge	LTE Band 12	0.405	0.400	0.805
Left Edge	LTE Band 5 (Cell)	0.449	0.400	0.849
Left Edge	LTE Band 4 (AWS)	0.413	0.400	0.813
Left Edge	LTE Band 2 (PCS)	0.348	0.400	0.748
Left Edge	LTE Band 30	0.339	0.400	0.739
Left Edge	LTE Band 7	0.494	0.400	0.894

Note: When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configuration excluded per FCC KDB 447498 D01v06. Therefore, an estimated SAR of 0.4 W/kg for 2.4 GHz WLAN was used to evaluate the simultaneous sums.

FCC ID: ZNFV520	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 59 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 59 01 00

Table 11-12 Simultaneous Transmission Scenario with 5 GHz WLAN (Left Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Left Edge	UMTS 850	0.415	0.400	0.815
Left Edge	UMTS 1750	0.095	0.400	0.495
Left Edge	UMTS 1900	0.436	0.400	0.836
Left Edge	LTE Band 12	0.405	0.400	0.805
Left Edge	LTE Band 5 (Cell)	0.449	0.400	0.849
Left Edge	LTE Band 4 (AWS)	0.413	0.400	0.813
Left Edge	LTE Band 2 (PCS)	0.348	0.400	0.748
Left Edge	LTE Band 30	0.339	0.400	0.739
Left Edge	LTE Band 7	0.494	0.400	0.894

Note: When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configuration excluded per FCC KDB 447498 D01v06. Therefore, an estimated SAR of 0.4 W/kg for 5 GHz WLAN was used to evaluate the simultaneous sums.

Table 11-13 Simultaneous Transmission Scenario with 2.4 GHz Bluetooth (Left Edge at 0.5 cm)

Configuration	Mode	3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Left Edge	UMTS 850	0.415	0.400	0.815
Left Edge	UMTS 1750	0.095	0.400	0.495
Left Edge	UMTS 1900	0.436	0.400	0.836
Left Edge	LTE Band 12	0.405	0.400	0.805
Left Edge	LTE Band 5 (Cell)	0.449	0.400	0.849
Left Edge	LTE Band 4 (AWS)	0.413	0.400	0.813
Left Edge	LTE Band 2 (PCS)	0.348	0.400	0.748
Left Edge	LTE Band 30	0.339	0.400	0.739
Left Edge	LTE Band 7	0.494	0.400	0.894

Note: When the test separation distance was > 50 mm, an estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR exclusion, for configuration excluded per FCC KDB 447498 D01v06. Therefore, an estimated SAR of 0.4 W/kg for 2.4 GHz Bluetooth was used to evaluate the simultaneous sums.

11.4 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT LG	à	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 60 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 60 of 66

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was not assessed for each frequency band since all measured SAR values were less than 0.80 W/kg.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 61 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Fage 61 01 00

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
SPEAG	D750V3	750 MHz SAR Dipole	1/16/2015	Annual	1/16/2016	1003
SPEAG	D835V2	835 MHz SAR Dipole	7/23/2015	Annual	7/23/2016	4d133
SPEAG	D1750V2	1750 MHz SAR Dipole	4/15/2015	Annual	4/15/2016	1051
SPEAG	D1900V2	1900 MHz SAR Dipole	7/14/2015	Annual	7/14/2016	5d149
SPEAG	D2300V2	2300 MHz SAR Dipole	12/8/2015	Annual	12/8/2016	1064
SPEAG	D2450V2	2450 MHz SAR Dipole	8/20/2015	Annual	8/20/2016	719
SPEAG	D2600V2	2600 MHz SAR Dipole	4/14/2015	Annual	4/14/2016	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/17/2015	Annual	2/17/2016	1120
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/18/2015	Annual	2/18/2016	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/17/2015	Annual	6/17/2016	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2015	Annual	8/24/2016	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/27/2015	Annual	10/27/2016	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2015	Annual	3/13/2016	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/20/2015	Annual	4/20/2016	1407
SPEAG	ES3DV2	SAR Probe	8/26/2015	Annual	8/26/2016	3022
SPEAG	ES3DV3	SAR Probe	3/19/2015	Annual	3/19/2016	3209
SPEAG	ES3DV3	SAR Probe	5/20/2015	Annual	5/20/2016	3263
SPEAG	ES3DV3	SAR Probe	3/19/2015	Annual	3/19/2016	3319
SPEAG	ES3DV3	SAR Probe	10/29/2015	Annual	10/29/2016	3333
SPEAG	ES3DV3	SAR Probe	6/22/2015	Annual	6/22/2016	3351
SPEAG	EX3DV4	SAR Probe	4/23/2015	Annual	4/23/2016	7357
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/20/2015	Annual	10/20/2016	1091
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	N/A
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	12/2/2015	Annual	12/2/2016	833855/0010
Rohde & Schwarz	CMW500	Radio Communication Tester	4/8/2015	Annual	4/8/2016	140148
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Mitutoyo	CD-6"CSX	Digital Caliper	5/8/2014	Biennial	5/8/2016	13264162
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Control Company	4040	Digital Thermometer	3/18/2015	Biennial	3/18/2017	150195001
Control Company	4040	Digital Thermometer	3/15/2015	Biennial	3/15/2017	150195005
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053029
Control Company	4353	Long Stem Thermometer	1/22/2015	Biennial	1/22/2017	150053029
COMTech	4333 AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier			CBT	M3W1A00-1002
Anritsu			CDT			
			CBT 3/13/2015	N/A Annual		
	ML2438A	Power Meter	3/13/2015	Annual	3/13/2016	1070030
Anritsu	ML2438A ML2496A	Power Meter Power Meter	3/13/2015 3/13/2015	Annual Annual	3/13/2016 3/13/2016	1070030 1351001
Anritsu Anritsu	ML2438A ML2496A ML2495A	Power Meter Power Meter Power Meter	3/13/2015 3/13/2015 10/16/2015	Annual Annual Biennial	3/13/2016 3/13/2016 10/16/2015	1070030 1351001 1328004
Anritsu Anritsu Anritsu	ML2438A ML2496A ML2495A MA2481A	Power Meter Power Meter Power Meter Power Sensor	3/13/2015 3/13/2015 10/16/2015 3/10/2015	Annual Annual Biennial Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016	1070030 1351001 1328004 2400
Anritsu Anritsu Anritsu Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015	Annual Annual Biennial Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016	1070030 1351001 1328004 2400 1207470
Anritsu Anritsu Anritsu Anritsu Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015	Annual Annual Biennial Annual Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016	1070030 1351001 1328004 2400 1207470 6200901190
Anritsu Anritsu Anritsu Anritsu Anritsu Anritsu	ML2438A ML2496A ML2495A MA2481A MA2441B MT8820C MT8820C	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015	Annual Annual Biennial Annual Annual Annual Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731
Anritsu Anritsu Anritsu Anritsu Anritsu Anritsu Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015	Annual Annual Biennial Annual Annual Annual Annual Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016 3/11/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509
Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 3/11/2015	Annual Annual Biennial Annual Annual Annual Annual Annual Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 3/13/2016 12/4/2016 3/11/2016 3/11/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514
Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A 1551G6	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 3/11/2015 CBT	Annual Annual Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016 3/11/2016 3/11/2016 CBT	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971
Anritsu Amplifier Research	ML2438A ML2496A ML2496A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A MA24106A 155166	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier Amplifier	3/13/2015 3/13/2015 10/16/2015 10/16/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 3/11/2015 CBT	Annual Annual Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual N/A	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016 3/11/2016 3/11/2016 CBT	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971 433972
Anritsu	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A 155166 155166 E8257D	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-20GHz) Signal Generator	3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 3/11/2015 CBT CBT 3/15/2015	Annual Annual Biennial Annual	3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/10/2016 7/24/2016 12/4/2016 3/11/2016 3/11/2016 CBT CBT 3/15/2016	1070030 1351001 1328004 12007 1207470 6200901190 6201300731 1349509 1349514 433971 433972 MY45470194
Anritsu Anglifier Research Agglient Agglient	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MS2106A 155166 155166 E8257D 8594A	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor USB Power Sensor Amplifier Amplifier Amplifier (250kHz-20GHz) Signal Generator (9kHz-2-9GHz) Spectrum Analyzer	3/13/2015 3/13/2015 10/16/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 CBT CBT CBT CBT	Annual Annual Biennial Annual N/A N/A N/A	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016 3/11/2016 CBT CBT CBT CBT	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971 433972 MY45470194 3051A00187
Anritsu Anglifier Research Agilent Agilent Agilent	ML2438A ML2496A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A MA24106A 1551G6 1551G6 E8257D 8594A 8648D	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor USB Power Sensor (JSB Power Sensor Amplifier Amplifier (250kHz-20GHz) Signal Generator (9kHz-2-9GHz) Signal Generator	3/13/2015 3/13/2015 10/16/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 CBT CBT CBT 3/15/2015 CBT 3/15/2015	Annual Annual Biennial Annual Annual Annual Annual Annual Annual Annual Annual Annual N/A N/A N/A Annual N/A	3/13/2016 3/13/2016 10/16/2015 10/16/2015 3/10/2016 3/13/2016 7/24/2016 12/4/2016 3/11/2016 CBT CBT CBT 3/15/2016 CBT 3/15/2016	1070030 1351001 1328004 2400 1207470 6200301190 6201300731 1349509 1349514 433977 433977 433977 433973 3051A00187 3629U00687
Anritsu Anglifier Research Agilent Agilent Agilent Agilent	ML2438A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A MA24106A 1551G6 1551G6 E8257D 8594A 8648D E4438C	Power Meter Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-20GHz) Signal Generator (9kHz-2-9GHz) Spectrum Analyzer (9kHz-4GHz) Sjanal Generator ESG Vector Signal Generator	3/13/2015 3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 3/13/2015 12/4/2015 3/11/2015 3/11/2015 3/11/2015 CBT CBT 3/15/2015 CBT 3/15/2015 4/1/2014	Annual Biennial	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 7/24/2016 3/11/2016 3/11/2016 CBT CBT 3/15/2016 CBT 3/15/2016 4/1/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349514 433971 433972 MY45470194 3051A00187 3629U00687 MY47270002
Anritsu Anglifier Research Amplifier Research Agilent Agilent Agilent Agilent Agilent Agilent	ML2438A ML2496A ML2496A MA2481A MA2411B MT8820C MA24106A MS2106A 155166 155166 E8257D 8594A 8648D E4433C	Power Meter Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-205Hz) Signal Generator (9kHz-2-95Hz) Signal Generator ESG-Vector Signal Generator ESG-Series Signal Generator	3/13/2015 3/13/2015 10/16/2015 10/16/2015 3/10/2015 3/10/2015 3/13/2015 12/4/2015 3/11/2015 CBT CBT 3/15/2015 CBT 3/15/2015 4/1/2014 3/16/2015	Annual Biennial Annual Annual Annual Annual Annual Annual Annual Annual	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 3/13/2016 12/4/2016 3/11/2016 CBT 3/15/2016 CBT 3/15/2016 CBT 3/15/2016 3/16/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349514 433971 433972 MY45470194 3051A00187 3629U00687 MY47270002 US40053896
Anritsu Anglifier Research Amplifier Research Agilent Agilent Agilent Agilent Agilent Agilent Agilent Agilent	ML2438A ML2496A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A 155166 155166 155166 E8257D 8594A 8648D E4432B N9020A	Power Meter Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-20GHz) Signal Generator (9kHz-2-9GHz) Signal Generator ESG Vector Signal Generator ESG-D Series Signal Generator	3/13/2015 3/13/2015 3/13/2015 10/16/2015 10/16/2015 3/10/2015 3/13/2015 7/24/2015 12/4/2015 3/11/2015 CBT CBT CBT 3/15/2015 CBT 3/15/2015 4/1/2014 3/16/2015	Annual	3/13/2016 3/13/2016 10/16/2015 10/16/2015 3/10/2016 3/13/2016 7/24/2016 3/11/2016 3/11/2016 CBT 3/15/2016 CBT 3/15/2016 4/1/2016 11/5/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433972 My45470194 3051A00187 3629U00687 My47270002 U540053396 U546470561
Anritsu Anglier Research Agilent	ML2438A ML2496A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A MA24106A E8257D E8257D E8432B E4438C E4432B N9020A N5182A	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-206Hz) Signal Generator (9kHz-2-9GHz) Spectrum Analyzer (9kHz-40Hz) Signal Generator ESG Vector Signal Generator ESG-0 Series Signal Generator ESG-0 Series Signal Generator MXA Signal Analyzer MXG Vector Signal Generator	3/13/2015 3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 3/13/2015 3/11/2015 3/11/2015 3/11/2015 3/11/2015 3/11/2015 4/1/2014 3/16/2015 3/16/2015 3/16/2015	Annual	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 3/13/2016 3/11/2016 3/11/2016 3/11/2016 CBT 3/15/2016 4/1/2016 3/16/2016 3/16/2016 3/16/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971 433972 MY45470194 3051A00187 3629000687 MY472270002 U540053896 U546470561 MY47420651
Anritsu Anglifier Research Amplifier Research Agilent	ML2438A ML2496A ML2496A ML2495A MA2481A MA2411B MT8820C MS820C MA24106A MA24106A MA24106A MS5166 E8257D 8594A 8648D E4438C E4432B N9020A N5182A 8753ES	Power Meter Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-20GHz) Signal Generator (9kHz-2-9GHz) Spectrum Analyzer (9kHz-4GHz) Signal Generator ESG Vector Signal Generator ESG Vector Signal Generator ESG-D Series Signal Generator MXA Signal Analyzer MXG Vector Signal Generator	3/13/2015 3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 3/13/2015 3/13/2015 3/11/2015 3/11/2015 CBT CBT 3/15/2015 CBT 3/15/2015 CBT 3/15/2015 CBT 3/15/2015 4/1/2014 3/16/2015 3/16/2015 3/16/2015 3/20/2015	Annual N/A Annual Biennial Annual	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 3/13/2016 3/11/2016 3/11/2016 CBT CBT 3/15/2016 CBT 3/15/2016 CBT 3/15/2016 4/1/2016 3/16/2016 3/16/2016 3/16/2016 3/20/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971 433972 MY45470194 3051A00187 M947270002 US40053896 US46470561 MY40720651 MY40001472
Anritsu Anglier Research Agilent	ML2438A ML2496A ML2496A ML2495A MA2481A MA2411B MT8820C MT8820C MA24106A MA24106A MA24106A E8257D E8257D E8432B E4438C E4432B N9020A N5182A	Power Meter Power Meter Power Meter Power Sensor Pulse Power Sensor Radio Communication Analyzer Radio Communication Analyzer USB Power Sensor USB Power Sensor USB Power Sensor Amplifier Amplifier (250kHz-206Hz) Signal Generator (9kHz-2-9GHz) Spectrum Analyzer (9kHz-40Hz) Signal Generator ESG Vector Signal Generator ESG-0 Series Signal Generator ESG-0 Series Signal Generator MXA Signal Analyzer MXG Vector Signal Generator	3/13/2015 3/13/2015 3/13/2015 10/16/2015 3/10/2015 3/13/2015 3/13/2015 3/11/2015 3/11/2015 3/11/2015 3/11/2015 3/11/2015 4/1/2014 3/16/2015 3/16/2015 3/16/2015	Annual	3/13/2016 3/13/2016 3/13/2016 10/16/2015 3/10/2016 3/13/2016 3/13/2016 3/11/2016 3/11/2016 3/11/2016 CBT 3/15/2016 4/1/2016 3/16/2016 3/16/2016 3/16/2016	1070030 1351001 1328004 2400 1207470 6200901190 6201300731 1349509 1349514 433971 433972 MY45470194 3051A00187 3629000687 MY472270002 U540053896 U546470561 MY47420651

Notes:

1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

2. Each equipment item was used solely within its respective calibration period.

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	(†) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 62 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 62 of 66

© 2016 PCTEST Engineering Laboratory, Inc.

12/1/2015

14 **MEASUREMENT UNCERTAINTIES**

a	С	d	e=	f	g	h =	i =	k
·			f(d,k)		0	c x f/e	c x g/e	
	Tol.	Prob.	I(U,K)	_	_			
Uncertainty Component				C _i	Ci	1gm	10gms	
Oncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
						(± %)	(± %)	
Measurement System		1	1	1	1	•		
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	Z	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	8
Readout Electronics	0.3	Ζ	1	1.0	1.0	0.3	0.3	8
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	N	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values		R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values		R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)		RSS		•	•	11.5	11.3	60
Expanded Uncertainty k=2						23.0	22.6	
(95% CONFIDENCE LEVEL)								

FCC ID: ZNFV520	PCTEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 62 of 66
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet	Page 63 of 66

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFV520	PCTEST:	SAR EVALUATION REPORT	(the LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dogo 64 of 66		
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 64 of 66		

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dage 65 of 66	
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 65 of 66	

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFV520	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dogo 66 of 66		
0Y1601040033.ZNF	01/06/16 - 01/16/16	Portable Tablet		Page 66 of 66		

APPENDIX A: SAR TEST DATA

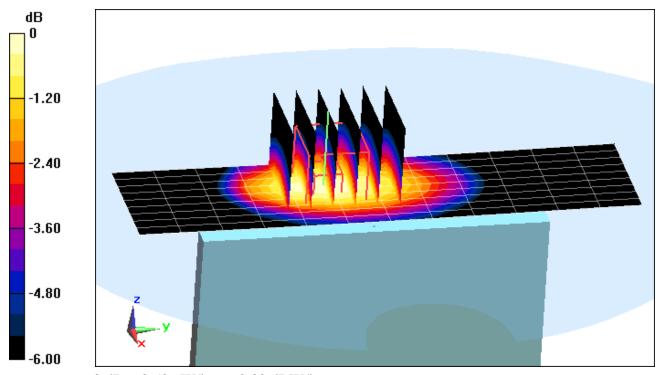
DUT: ZNFV520; Type: Portable Tablet; Serial: 04236

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r = 53.187$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-07-2016; Ambient Temp: 24.4°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Top Edge, Mid.ch


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.61 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.690 W/kg

SAR(1 g) = 0.517 W/kg

0 dB = 0.586 W/kg = -2.32 dBW/kg

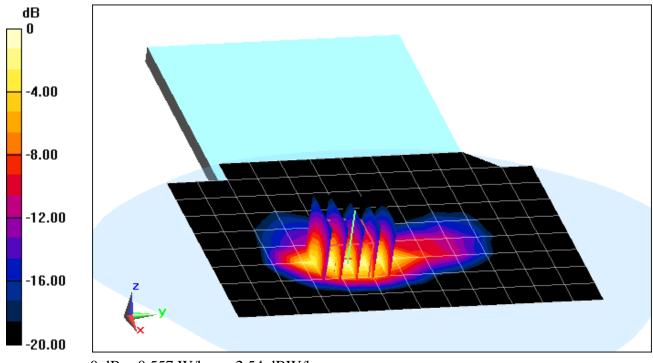
DUT: ZNFV520; Type: Portable Tablet; Serial: 04269

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.466 \text{ S/m}; \ \epsilon_r = 51.156; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-11-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3351; ConvF(4.88, 4.88, 4.88); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Body SAR, Back side, Mid.ch


Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

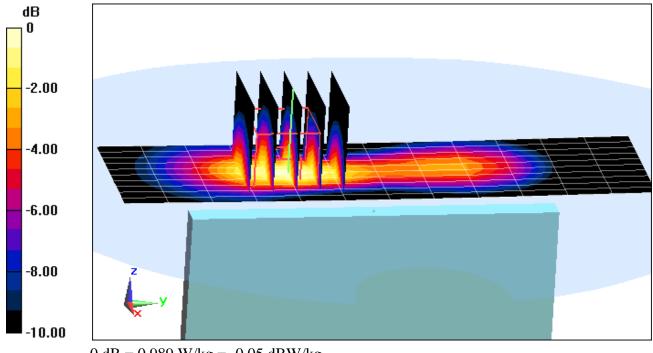
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.13 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.860 W/kg

SAR(1 g) = 0.394 W/kg

DUT: ZNFV520; Type: Portable Tablet; Serial: 04236


Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1880 MHz; σ = 1.55 S/m; ϵ_r = 53.707; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-09-2016; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 10/27/2015 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Top Edge, Mid.ch

Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.60 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.32 W/kgSAR(1 g) = 0.798 W/kg

0 dB = 0.989 W/kg = -0.05 dBW/kg

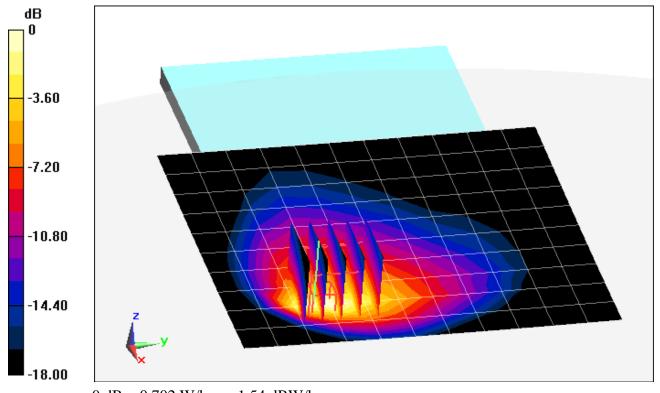
DUT: ZNFV520; Type: Portable Tablet; Serial: 04251

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.92 \text{ S/m}; \ \epsilon_r = 54.789; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-06-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV2 - SN3022; ConvF(6.16, 6.16, 6.16); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/18/2015
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (11x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.64 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 0.526 W/kg

0 dB = 0.702 W/kg = -1.54 dBW/kg

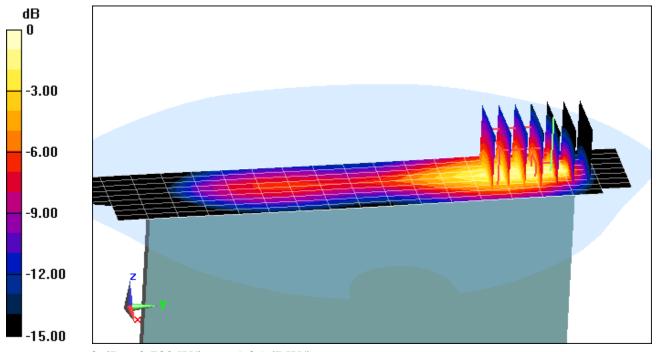
DUT: ZNFV520; Type: Portable Tablet; Serial: 04251

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 1.007$ S/m; $\varepsilon_r = 53.703$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-09-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Left Edge, Mid.ch 10 MHz Bandwidth, QPSK, 25 RB, 0 RB Offset


Area Scan (10x19x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.64 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.516 W/kg

0 dB = 0.732 W/kg = -1.35 dBW/kg

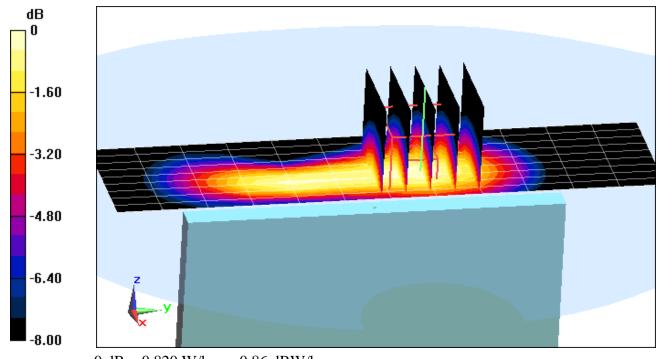
DUT: ZNFV520; Type: Portable Tablet; Serial: 04228

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.466 \text{ S/m}; \ \epsilon_r = 51.156; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-11-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3351; ConvF(4.88, 4.88, 4.88); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Top Edge, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.71 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.689 W/kg

0 dB = 0.820 W/kg = -0.86 dBW/kg

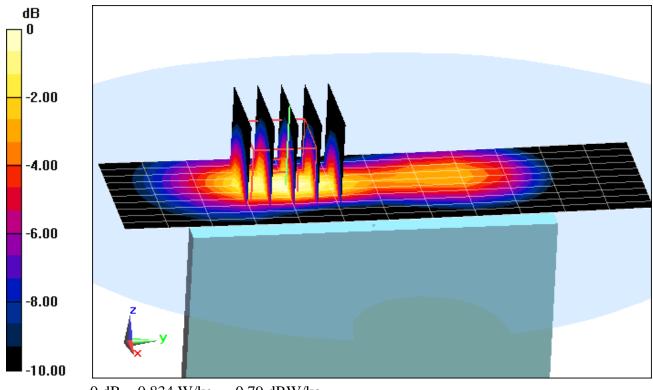
DUT: ZNFV520; Type: Portable Tablet; Serial: 04228

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.55 \text{ S/m}; \ \epsilon_r = 53.707; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-09-2016; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Top Edge, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.51 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.675 W/kg

0 dB = 0.834 W/kg = -0.79 dBW/kg

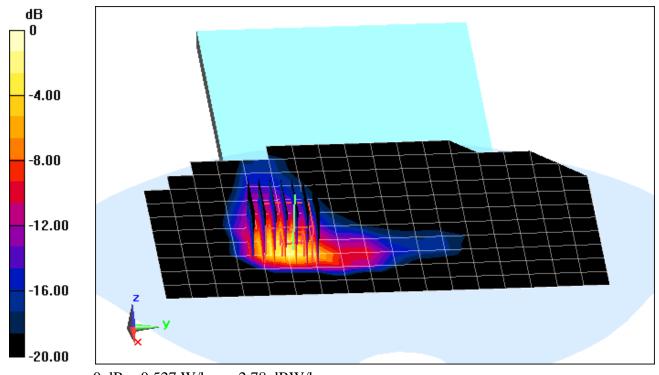
DUT: ZNFV520; Type: Portable Tablet; Serial: 04251

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2300 Body Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.767 \text{ S/m}; \ \epsilon_r = 51.934; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(4.24, 4.24, 4.24); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 30, Body SAR, Back side, Mid.ch 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (13x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.83 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.910 W/kg

SAR(1 g) = 0.362 W/kg

0 dB = 0.527 W/kg = -2.78 dBW/kg

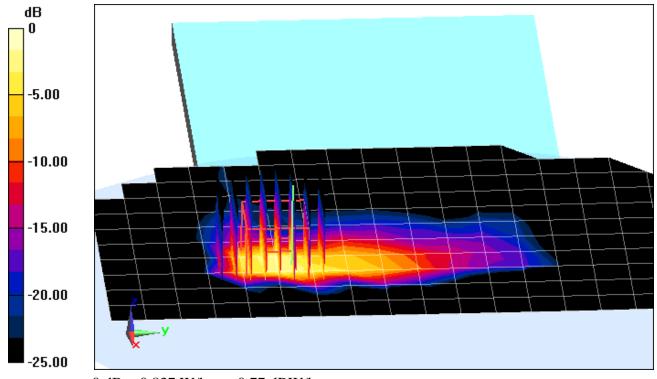
DUT: ZNFV520; Type: Portable Tablet; Serial: 04285

Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2600 Body Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 2.059 \text{ S/m}; \ \epsilon_r = 51.108; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(3.9, 3.9, 3.9); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 7, Body SAR, Back side, Mid.ch 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (13x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.84 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 0.564 W/kg

0 dB = 0.837 W/kg = -0.77 dBW/kg

DUT: ZNFV520; Type: Portable Tablet; Serial: 04210

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.961 \text{ S/m}; \ \epsilon_r = 51.75; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-14-2016; Ambient Temp: 24.2°C; Tissue Temp: 22.6°C

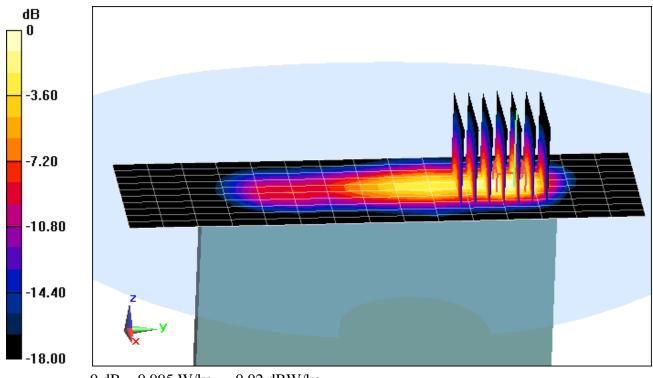
Probe: ES3DV3 - SN3209; ConvF(4.12, 4.12, 4.12); Calibrated: 3/19/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/20/2015

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Top Edge


Area Scan (11x16x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.22 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.746 W/kg

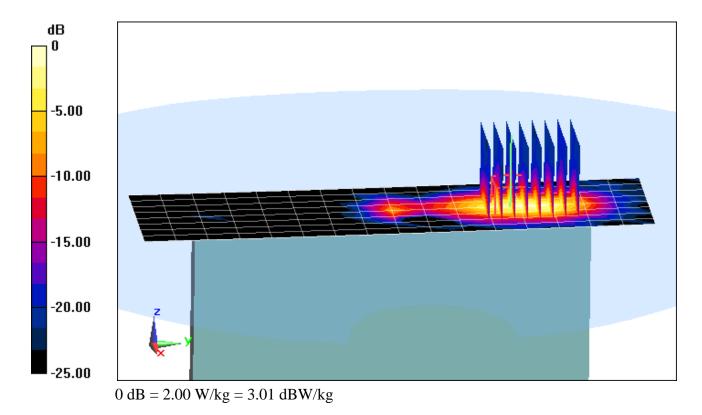
DUT: ZNFV520; Type: Portable Tablet; Serial: 04210

Communication System: UID 0, IEEE 802.11n; Frequency: 5755 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5755 \text{ MHz}; \ \sigma = 6.039 \text{ S/m}; \ \epsilon_r = 47.862; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.8°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN7357; ConvF(3.82, 3.82, 3.82); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11n, U-NII-3, 40 MHz Bandwidth, Body SAR, Ch 151, 6 Mbps, Top Edge


Area Scan (9x17x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 10.89 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 0.648 W/kg

DUT: ZNFV520; Type: Portable Tablet; Serial: 04285

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.932 \text{ S/m}; \ \epsilon_r = 51.443; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

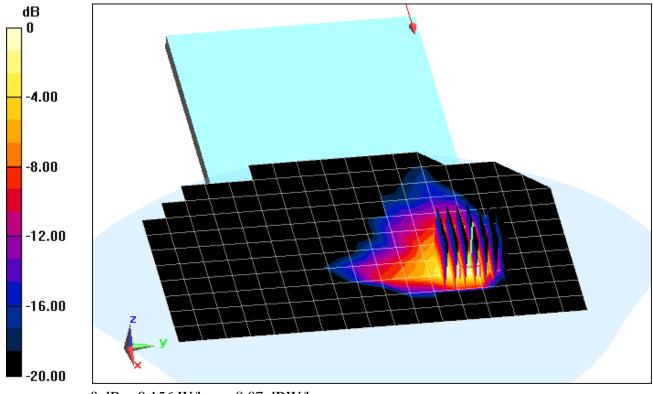
Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/13/2015

Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side


Area Scan (13x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.856 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.115 W/kg

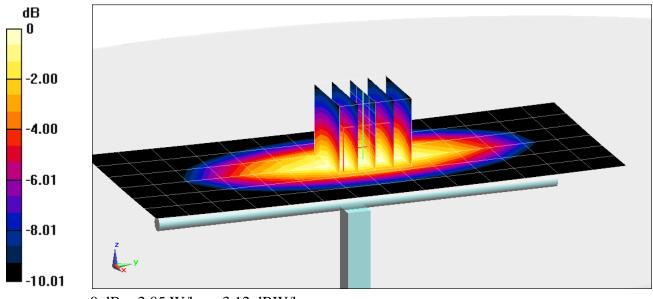
0 dB = 0.156 W/kg = -8.07 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.962$ S/m; $\epsilon_r = 54.396$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-06-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C


Probe: ES3DV2 - SN3022; ConvF(6.16, 6.16, 6.16); Calibrated: 8/26/2015;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/18/2015 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.57 W/kg SAR(1 g) = 1.77 W/kgDeviation(1 g) = 4.61%

0 dB = 2.05 W/kg = 3.12 dBW/kg

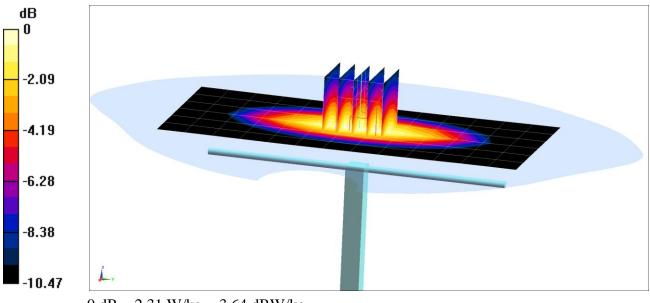
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 1.005$ S/m; $\epsilon_r = 53.715$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-09-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3263; ConvF(6.08, 6.08, 6.08); Calibrated: 5/20/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 6/17/2015
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

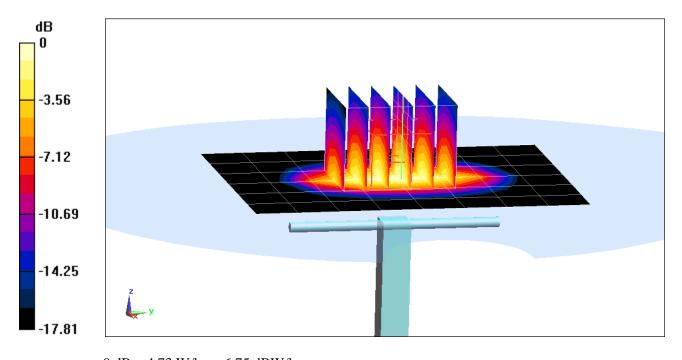
Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 2.01 W/kg

Deviation(1 g) = 8.65%

0 dB = 2.31 W/kg = 3.64 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.486$ S/m; $\varepsilon_r = 51.093$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-11-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.7°C

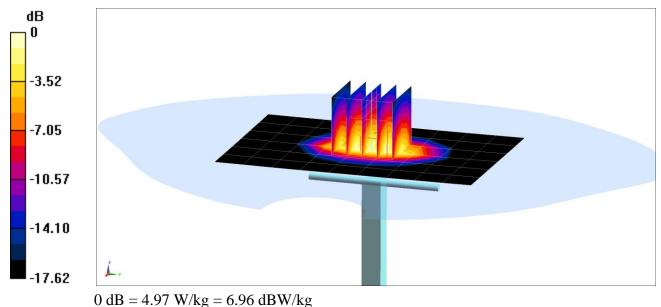
Probe: ES3DV3 - SN3351; ConvF(4.88, 4.88, 4.88); Calibrated: 6/22/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/24/2015
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.54 W/kg SAR(1 g) = 3.79 W/kg Deviation (1 g) = 2.16%

0 dB = 4.73 W/kg = 6.75 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.575$ S/m; $\varepsilon_r = 53.639$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

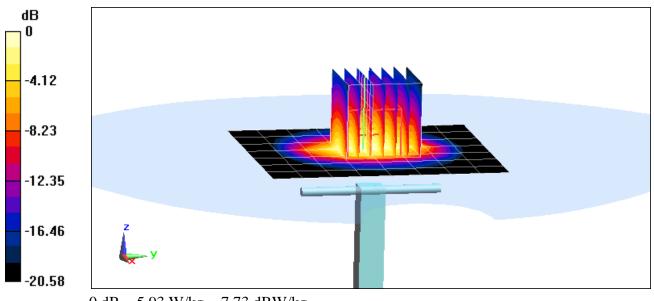
Test Date: 01-09-2016; Ambient Temp: 23.1°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 6.97 W/kgSAR(1 g) = 3.93 W/kgDeviation(1 g) = -2.72%;

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2300 Body Medium parameters used: f = 2300 MHz; $\sigma = 1.753 \text{ S/m}$; $\epsilon_r = 51.964$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(4.24, 4.24, 4.24); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 8.99 W/kg SAR(1 g) = 4.6 W/kg Deviation(1 g) = 1.10%

0 dB = 5.93 W/kg = 7.73 dBW/kg

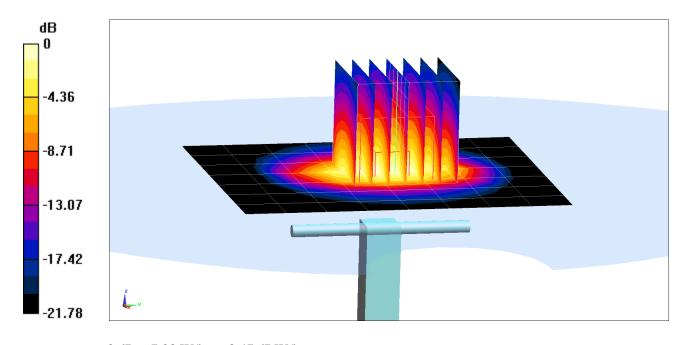
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.014$ S/m; $\varepsilon_r = 51.593$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-14-2016; Ambient Temp: 24.2°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3209; ConvF(4.12, 4.12, 4.12); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

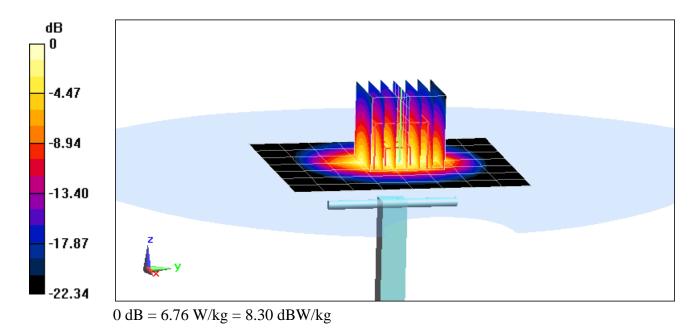
Peak SAR (extrapolated) = 11.1 W/kg

SAR(1 g) = 5.37 W/kg

Deviation = 3.47 %

 $0 \; dB = 7.03 \; W/kg = 8.47 \; dBW/kg$

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 1.944$ S/m; $\varepsilon_r = 51.411$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

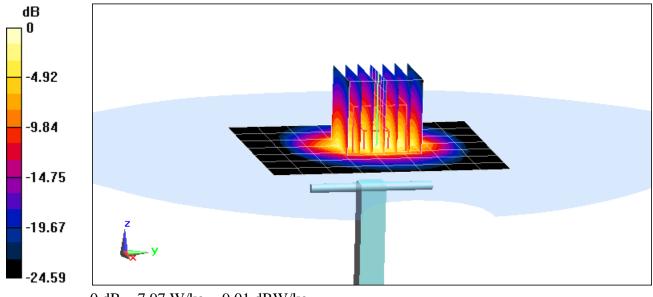
Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(4.11, 4.11, 4.11); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.15 W/kg Deviation(1 g) = -0.77%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.15 \text{ S/m}; \ \epsilon_r = 50.867; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-16-2016; Ambient Temp: 20.6°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3319; ConvF(3.9, 3.9, 3.9); Calibrated: 3/19/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/13/2015
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 13.5 W/kg SAR(1 g) = 6 W/kg Deviation(1 g) = 6.76%

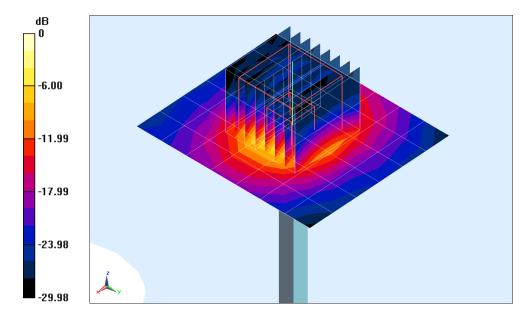
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5300 MHz; $\sigma = 5.455 \text{ S/m}$; $\epsilon_r = 48.493$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.8°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN7357; ConvF(4.11, 4.11, 4.11); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

5300 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 3.77 W/kg

Deviation = 0.27%

0 dB = 8.94 W/kg = 9.51 dBW/kg

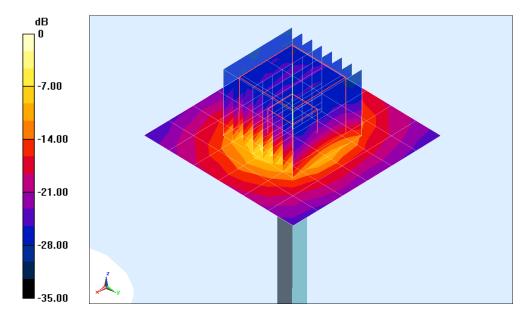
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5500 MHz; $\sigma = 5.711$ S/m; $\varepsilon_r = 48.227$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.8°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN7357; ConvF(3.83, 3.83, 3.83); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5500 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 3.82 W/kg

Deviation = -3.90%

0 dB = 9.39 W/kg = 9.73 dBW/kg

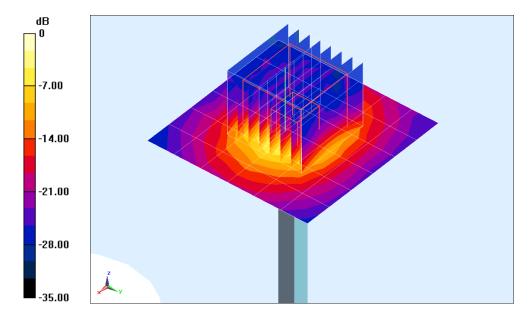
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1120

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5800 MHz; $\sigma = 6.135 \text{ S/m}$; $\epsilon_r = 47.714$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-12-2016; Ambient Temp: 23.8°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN7357; ConvF(3.82, 3.82, 3.82); Calibrated: 4/23/2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/20/2015
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

5800 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 3.72 W/kg

Deviation = -2.49%

0 dB = 9.02 W/kg = 9.55 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage C

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: ES3-3022_Aug15

CALIBRATION CERTIFICATE

Object

ES3DV2 - SN:3022

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

August 26, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	C-b-1110 W
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Scheduled Calibration
Power sensor E4412A	MY41498087		Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02128)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02132)	Mar-16
Reference Probe ES3DV2	SN: 3013	01-Apr-15 (No. 217-02133)	Mar-16
DAE4	<u></u>	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	C-b-d-1-10
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	Scheduled Check
Network Analyzer HP 8753E	US37390585		In house check: Apr-16
	000,03000	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Calibrated by: Michael Weber Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: August 27, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3022_Aug15

Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx, y, z diode compression point

CF A, B, C, D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization or

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3022_Aug15 Page 2 of 13

Probe ES3DV2

SN:3022

Manufactured: April 15, 2003 Calibrated:

August 26, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.00	1.03	0.95	± 10.1 %
DCP (mV) ^B	99.9	99.7	100.9	10.1 /6

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	T 1/5	T E
0	CW	ļ	đВ	dB√μV		dB	VR mV	Unc ^E (k=2)
ļ -	CVV	X_	0.0	0.0	1.0	0.00	179.6	±3.3 %
		Y	0.0	0.0	1.0		183.9	*
10010-	SAP Validation (Cause 400	Z	0.0	0.0	1.0		179.0	
CAA	SAR Validation (Square, 100ms, 10ms)	X	3.60	65.9	14.2	10.00	43.5	±2.2 %
		Y	2.84	63.5	13.0		43.3	
10011-	UMTS-FDD (WCDMA)	Z	2.76	63.7	12.7		41.7	
CAB	OWIS-FDD (WCDMA)	X	3.32	67.0	18.7	2.91	144.4	±0.7 %
		Y	3.24	66.3	18.0		147.3	
10012-	IEEE 902 44b WEE; O 4 OU (DODG)	Z	3.19	66.3	18.0		143.5	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	3.15	69.9	19.5	1.87	146.1	±0.7 %
		Y	2.88	67.7	18.0		147.9	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	2.78	67.4	17.8		145.6	
CAB	OFDM, 6 Mbps)	X	11.40	71.3	23.8	9.46	144.9	±3.3 %
		Y	11,15	70.5	23.1		146.9	
10021-	GSM-FDD (TDMA, GMSK)	Z	10.95	70.5	23.3		140.3	
DAB	CONFI DD (TDIVIA, GIVISK)	X	20.66	99.8	29.2	9.39	132.6	±2.2 %
		Y	14.36	93.3	26.6		145.3	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	17.17	97.2	27.8		145.4	N:
DAB	GING-PDD (TDMA, GMSK, TN U)	Х	17.22	96.5	28.2	9.57	125.4	±1.9 %
		Υ	11.06	88.6	25.0		136.0	
10024-	CPRS FDD (TDMA CMS)(THA ()	Z	8.71	84.6	23.4		130.7	
DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	31.05	99.5	25.9	6.56	135.2	±2.2 %
		Y	25.28	97.4	25.0		132.5	
10027-	CDDS CDD /TDMA CMCK TWO	Z	21.58	95.7	24.5		144.4	
DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	42.88	99.9	24.0	4.80	129.5	±1.9 %
		Y	40.80	99.6	23.7		124.9	· · · · · · · · · · · · · · · · · · ·
10028-	CDDC CDD (TDM)	Z	38.42	99.7	23.7		137.8	
DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	44.48	100.0	23.2	3.55	138.2	±1.9 %
		Υ	44.03	99.7	22.8		133.0	
40000		Z	41.36	99.8	22.8	*	147.5	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	16.08	99.5	23.3	1.16	127.5	±1.4 %
		Υ	79.69	99.6	19.3		146.2	
40400		Ζ	45.81	99.9	20.4		138.2	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.43	67.4	19.8	5.67	138.7	±1.4 %
	-	Υ	6.27	66.8	19.2		134.9	
-		Z	6.16	66.6	19.2		127.6	

Certificate No: ES3-3022_Aug15

10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.13	75.0	25.9	9.29	129.4	±3.3 %
		Y	9.46	73.0	24.5		121.0	
		Z	9.52	74.0	25.4		131.8 137.0	<u> </u>
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.27	66.9	19.7	5.80	137.0	±1.7 %
***		İΥ	6.24	66.7	19.3		140.0	<u> </u>
		Z	6.06	66.3	19.2		127.1	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.16	68.7	21.3	8.07	127.7	±2.2 %
		Υ	9.99	68.2	20.9		131.5	
10454		Z	10.22	69.1	21.4		141.6	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.34	73.4	25.2	9.28	125.0	±3.3 %
		Y	8.92	72.2	24.3		127.2	
10154-	LITE EDD (CC FDMA FOR FD 10 M)	Z	8.95	73.1	25.1		131.9	·
CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	5.95	66.4	19.4	5.75	134.4	±1.4 %
		Y	5.92	66.2	19.1		137.0	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z	5.98	66.7	19.5		146.8	
CAB	QPSK)	X	6.39	66.9	19.6	5.82	139.9	±1.7 %
		Y	6.35	66.7	19.3		141.9	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	6.15	66.2	19.2		128.4	
CAB	QPSK)	X	4.96	66.6	19.8	5.73	137.3	±1.4 %
		Y	4.85	66.1	19.3		139.8	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	4.85	66.6	19.7		146.7	
CAB	QPSK)	X	8.75	78.7	28.3	9.21	138.9	±3.0 %
		Y 7	7.69	75.1	26.1		140.1	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	7.80 4.88	76.6 66.2	27.2 19.6	5.72	144.0 132.0	±1.4 %
		Y	4.77	65.8	10.1		132.6	
		z	4.83	66.5	19.1		146.0	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.91	66.3	19.6 19.7	5.72	131.7	±1.4 %
		Y	4.82	66.0	19.2		138.4	
		Z	4.86	66.7	19.7		145.7	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	10.04	69.1	21.7	8.10	140.9	±2.2 %
		Υ	9.62	67.9	20.8	***	125.2	····
10225-		Z	9.74	68.6	21.3		133.3	
CAB	UMTS-FDD (HSPA+)	Х	7.01	67.1	19.6	5.97	143.7	±1.4 %
		Υ	6.78	66.2	19.0		129.3	
10237-	LITE TOD (CO FOMA 4 DD 40 H)	Z	6.80	66.7	19.3		136.5	***
CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	8.55	78.0	27.9	9.21	134.6	±3.0 %
***************************************		Y	7.79	75.6	26.3		141.6	
10252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z	7.89	76.9	27.4		145.2	
CAB	QPSK)	X	9.30	74.8	26.1	9.24	134.8	±3.3 %
		Y	8.65	72.5	24.5		136.4	
10267-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	8.33	72.3	24.8		126.6	
CAB	MHz, QPSK)	X	10.20	76.2	26.8	9.30	144.8	±3.3 %
		Y	9.41	73.7	25.1		145.9	
	<u> </u>	<u> </u>	9.18	73.9	25.6		138.6	

ES3DV2-SN:3022 August 26, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4.45	66.7	18.9	3.96	147.0	±0.9 %
		Y	4.21	65.5	17.9		126.5	
40004		Z	4.36	66.5	18.5		148.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.57	66.3	18.5	3.46	134.3	±0.7 %
		Y	3.48	65.6	17.8		136.8	
40000		Z	3.51	66.2	18.3		136.4	1
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.53	66.4	18.6	3.39	135.8	±0.7 %
		Y	3.45	65.8	17.9		140.4	
4000=		Z	3.50	66.5	18.5		137.0	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.18	66.5	19.5	5.81	129.4	±1.4 %
**		Y	6.15	66.3	19.1		133.6	1
40044		Z	6.13	66.5	19.3		131.2	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.77	67.2	19.9	6.06	134.8	±1.7 %
······································		Y	6.81	67.3	19.7		144.8	
40400		Z	6.68	67.1	19.7		136.7	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	10.30	69.4	22.0	8.37	142.0	±2.5 %
		Υ	9.90	68.2	21.1		126.8	
40400		Z	10.15	69.3	21.9		142.6	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.72	68.1	18.9	3.76	147.8	±0.7 %
		Υ	4.56	67.5	18.2		133.6	
40404		Z	4.61	68.2	18.7		147.4	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.57	67.8	18.8	3.77	144.3	±0.7 %
		Υ	4.43	67.3	18.1		131.3	***************************************
40445		Z	4.57	68.3	18.8	-	145.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.64	67.9	18.7	1.54	142.1	±0.5 %
		Υ	2.36	65.4	16.8		130.3	····
40440		Z	2.50	66.7	17.7		145.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	10.04	69.0	21.7	8.23	138.8	±2.2 %
		Υ	9.71	68.0	20.9		125.6	
		Z	9.94	69.0	21.6		140.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	7	Depth ^G	Unc
		3,,,,,,	OUIIVI X	CONVE	CONVP Z	Alpha ^G	(mm)	(k=2)
750	41.9	0.89	6.33	6.33	6.33	0.46	1.43	± 12.0 %
835	41.5	0.90	6.11	6.11	6.11	0.24	2.08	± 12.0 %
1750	40.1	1.37	5.08	5.08	5.08	0.45	1.47	± 12.0 %
1900	40.0	1.40	4.93	4.93	4.93	0.59	1.25	± 12.0 %
2300	39.5	1.67	4.63	4.63	4.63	0.55	1.39	± 12.0 %
2450	39.2	1.80	4.30	4.30	4.30	0.51	1,47	± 12.0 %
2600	39.0	1.96	4.12	4.12	4.12	0.57	1.46	± 12.0 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity validity can be extended to \pm 110 MHz.

validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

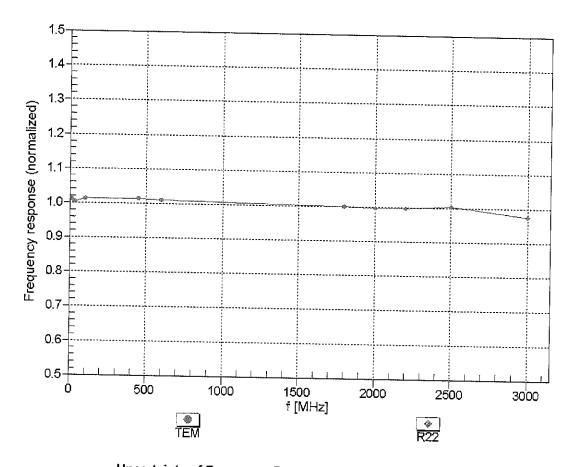
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Calibration Parameter Determined in Body Tissue Simulating Media

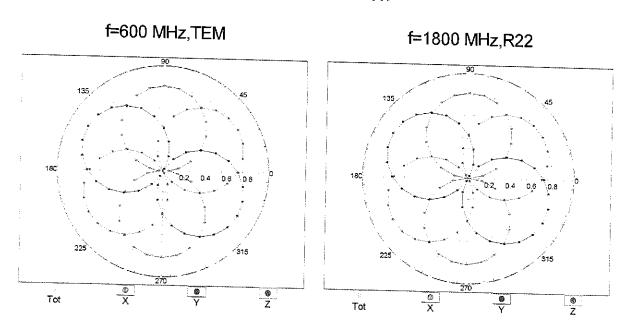
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k≃2)
750	55.5	0.96	6.16	6.16	6.16	0.50	1.34	± 12.0 %
835	55.2	0.97	6.13	6.13	6.13	0.25	2.16	± 12.0 %
1750	53.4	1.49	4.79	4.79	4.79	0.61	1.33	± 12.0 %
1900	53.3	1.52	4.56	4.56	4.56	0.31	2.02	± 12.0 %
2300	52.9	1.81	4.32	4.32	4.32	0.79	1.19	± 12.0 %
2450	52.7	1.95	4.08	4.08	4.08	0.80	1.12	± 12.0 %
2600	52.5	2.16	3.96	3.96	3.96	0.80	1.10	± 12.0 %

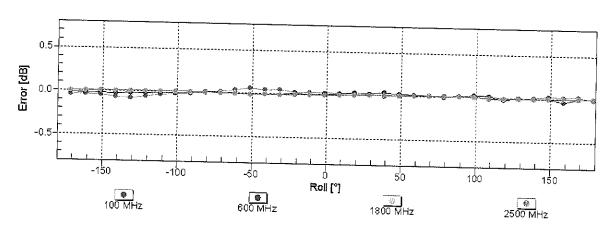
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

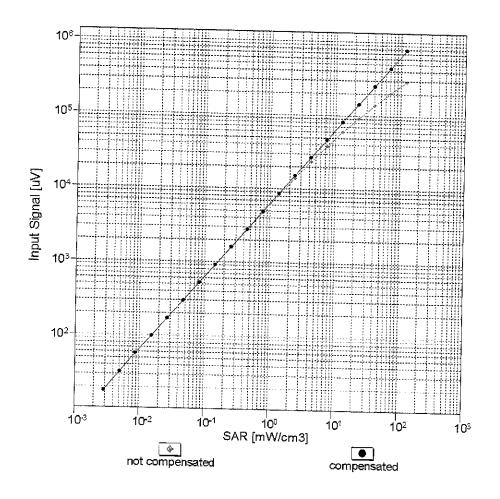
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

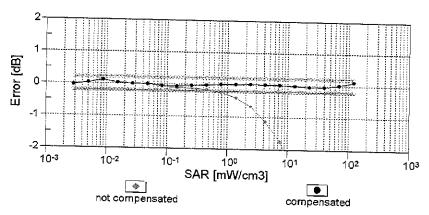
always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field

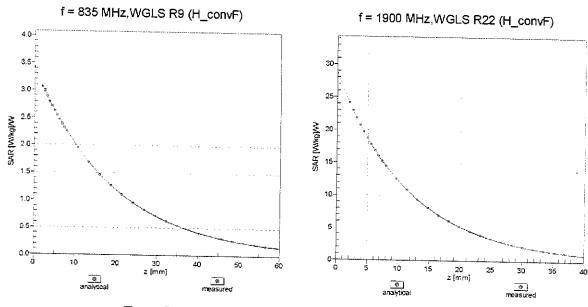

(TEM-Cell:ifi110 EXX, Waveguide: R22)

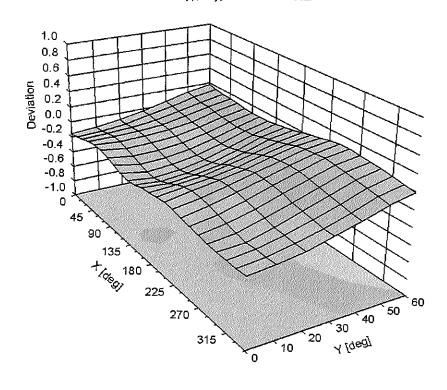
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

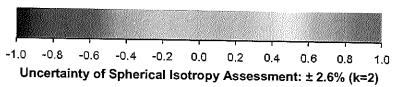

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\text{9}\$), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	98.5
Mechanical Surface Detection Mode	
Optical Surface Detection Mode	enabled
Probe Overall Length	disabled
Probe Body Diameter	337 mm
Tip Length	10 mm
	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3263_May15

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3263

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

May 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Signature

Leif Klysner Laboratory Technician Signature

Approved by: Katja Pokovic Technical Manager

Issued: May 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3263_May15

Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization ω

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3263_May15

ES3DV3 - SN:3263 May 20, 2015

Probe ES3DV3

SN:3263

Manufactured: January 25, 2010 Calibrated: May 20, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.21	1.25	1.13	± 10.1 %
DCP (mV) ^B	106.1	103.6	108.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	205.3	±3.3 %
		Y	0.0	0.0	1.0		207.3	
	·	Z	0.0	0.0	1.0		199.5	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	1.83	58.4	9.4	10.00	41.2	±1.4 %
		Υ	3.88	63.3	12.9		47.5	İ
		Z	1.42	56.8	8.7		39.5	
10011- CAB	UMTS-FDD (WCDMA)	X	3.27	67.4	18.6	2.91	140.1	±0.7 %
		Y	3.39	67.5	18.7		142.7	
10010		Z	3.32	67.6	18.6		136.9	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	2.85	68.8	18.8	1.87	142.2	±0.7 %
		Y	3.38	70.7	19.5		144.8	
10040	IEEE 000 44 - MEE 0 4 OU 47000	Z	3.07	70.0	19.1		138.1	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	10.99	70.8	23.4	9.46	135.9	±2.5 %
		Υ	11.36	70.3	22.8		124.7	
10021-	COM EDD (TDMA, CMC)	Z	10.57	70.0	22.9	ļ	129.4	
DAB	GSM-FDD (TDMA, GMSK)	X	9.38	84.7	22.1	9.39	139.8	±1.9 %
		Y	27.79	100.0	28.7	<u> </u>	129.4	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	Z	9.29	86.8	23.8		134.5	
DAB	GFRS-FDD (TDIVIA, GIVISK, TN U)	X	9.63	84.9	22.1	9.57	134.1	±2.5 %
		Y	25.29	98.2	28.2		124.0	
10024-	CRPS EDD (TDMA CMSK TN 0.4)	Z	9.65	87.7	24.3		128.2	
DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	16.20	88.9	21.0	6.56	145.2	±1.4 %
		Y	41.82	99.7	25.6		128.5	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z	24.57	96.8	24.1		142.0	
DAB	GFRS-FDD (TDIVIA, GIVISK, TN 0-1-2)	X	55.77	99.6	22.1	4.80	138.5	±2.2 %
		Y	53.39	99.7	23.9		140.5	me anno
10028-	CPPS EDD /TDMA CMSV TN 0.4.0.0)	Z	40.28	99.6	23.2	<u> </u>	134.3	
DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	81.43	99.8	20.7	3.55	148.6	±1.7 %
		Y	60.49	99.7	22.9		146.0	
10032-	IEEE 202 15 1 Physics att (OFOX DUE)	Z	62.69	99.6	21.2		145.0	
CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	96.06	93.7	16.0	1.16	140.3	±1.9 %
		Y	77.08	99.9	20.1		149.0	
10100-	LTE EDD (SC EDMA 4000) ED 00	Z	99.64	99.9	18.6		138.0	
CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.24	67.2	19.6	5.67	131.7	±1.4 %
		Υ	6.39	67.3	19.5		133.8	
	- The state of the	Z	6.19	67.2	19.6		126.8	

10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.13	76.3	26.6	9.29	142.6	±2.7 %
0.15	William Service	Y	12.07	77.9	26.6		138.9	
		Z	9.41	74.3	25.6		134.1	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.13	66.9	19.5	5.80	129.6	±1.4 %
		Υ	6.35	67.1	19.5		133.7	
		Z	6.39	68.0	20.1		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.34	69.6	21.7	8.07	147.0	±1.9 %
		Υ	10.05	68.3	20.9		123.4	
		Z	10.08	69.1	21.3	1000	138.2	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.44	75.3	26.3	9.28	137.0	±3.5 %
· · · · · · · · · · · · · · · · · · ·		Y	11.36	76.9	26.3		134.5	
40454	LTE EDD (OO ED) (A TOO)	<u> </u>	8.85	73.5	25.3		130.3	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	5.79	66.2	19.2	5.75	126.9	±1.2 %
		Y	6.05	66.5	19.3		130.9	
10160-	LTE EDD (CO EDMA CON DD 4515)	Z	5.92	66.9	19.5		145.5	
CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.25	66.9	19.5	5.82	131.8	±1.4 %
		Y	6.47	67.0	19.5		135.4	
10169-	LTE FOR /OO FOMA A DR COMMI	Z	6.09	66.5	19.3		127.5	
CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.78	66.7	19.7	5.73	130.0	±1.2 %
		Y	5.14	66.7	19.5		135.0	
10172-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz,	Z	4.83	67.1	19.9		147.9	
CAB	QPSK)	X	8.63	80.4	29.1	9.21	147.7	±2.7 %
		Υ	9.72	78.5	27.2		123.9	
10175-	LTE-FDD (SC-FDMA, 1 RB, 10 MHz,	Z	7.63	76.7	27.2		142.5	
CAC	QPSK)	X	4.75	66.6	19.6	5.72	128.2	±1.2 %
		Y 7	5.12	66.6	19.5		134.3	
10181-	LTE-FDD (SC-FDMA, 1 RB, 15 MHz,	Z X	4.87	67.1	19.9	F 70	148.0	14.00/
CAB	QPSK)	Y	4.76	66.6	19.6	5.72	127.9	±1.2 %
		Y Z	5.12	66.6	19.5		134.5	
10196-	IEEE 802.11n (HT Mixed, 6.5 Mbps,	X	4.87	67.3	20.0	0.10	147.0	.000
CAB	BPSK)	^ ^	9.87	69.1	21.6	8.10	135.8	±2.2 %
		Z	10.19	69.1	21.4		145.3	
10225-	UMTS-FDD (HSPA+)	X	9.65 6.90	68.8	21.3	5.97	130.5	14 7 07
CAB	Children (1017)	ļ		67.2	19.5	5.97	139.2	±1.7 %
		Y 7	7.22	67.3	19.6		148.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z X	6.75	67.0	19.4	0.01	134.1	
CAB	QPSK)		8.68	80.6	29.2	9.21	148.0	±3.0 %
		Y	9.82	78.8	27.3		125.0	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	7.85 8.56	77.6 73.7	27.7 25.6	9.24	143.5 126.6	±3.5 %
		Υ	10.58	76.0	25.9		126.3	
		z	8.84	74.8	26.1		146.7	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.24	74.6	25.9	9.30	133.6	±3.3 %
		Y	11.38	76.9	26.2		134.3	
	No.	Z	8.79	73.2	25.1		128.6	

ES3DV3-SN:3263 May 20, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.39	67.0	18.9	3.96	143.8	±0.9 %
		Y	4.55	67.1	18.8		147.3	
		Z	4.42	67.4	19.0		139.9	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.59	67.2	18.9	3.46	132.2	±0.5 %
		Υ	3.68	66.7	18.5		136.0	<u> </u>
		Z	3.57	67.1	18.6		128.5	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.50	67.0	18.7	3.39	134.0	±0.7 %
		Y	3.62	66.6	18.4		138.6	
		Z	3.50	67.2	18.7		129.8	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.11	66.8	19.4	5.81	127.7	±1.4 %
		Υ	6.33	67.0	19.5		132.1	
		Z	6.28	67.6	19.9		146.6	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.71	67.5	19.9	6.06	134.2	±1.7 %
		Y	6.93	67.7	19.9		138.0	
		Z	6.57	67.2	19.6	188011	128.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	10.17	69.5	21.9	8.37	138.5	±2.5 %
		Υ	10.55	69.5	21.8		148.0	
		Z	9.92	69.0	21.6		132.5	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.79	69.2	19.1	3.76	144.1	±0.7 %
		Υ	4.71	67.0	18.2		129.2	
····		Z	4.72	69.3	19.2		139.3	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	4.69	69.2	19.2	3.77	142.1	±0.7 %
***************************************		Υ	4.71	67.5	18.5		126.7	
		Z	4.51	68.6	18.8		137.3	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.55	68.0	18.5	1.54	141.7	±0.7 %
		Υ	2.67	68.4	18.6		144.0	
		Z	2.98	70.8	19.5		138.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	10.01	69.3	21.8	8.23	137.3	±2.5 %
		Υ	10.31	69.3	21.6		146.0	
		Z	9.69	68.8	21.4		129.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.27	6.27	6.27	0.29	1.87	± 12.0 %
835	41.5	0.90	6.18	6.18	6.18	0.49	1.42	± 12.0 %
1750	40.1	1.37	5.27	5.27	5.27	0.49	1.46	± 12.0 %
1900	40.0	1.40	4.96	4.96	4.96	0.66	1.28	± 12.0 %
2300	39.5	1.67	4.63	4.63	4.63	0.58	1.41	± 12.0 %
2450	39.2	1.80	4.40	4.40	4.40	0.71	1.34	± 12.0 %
2600	39.0	1.96	4.25	4.25	4.25	0.80	1.25	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

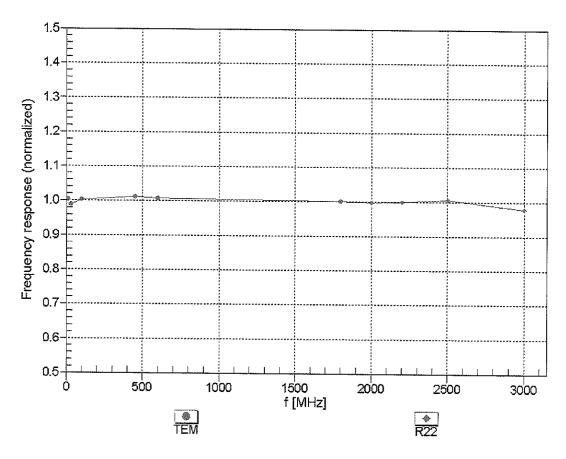
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

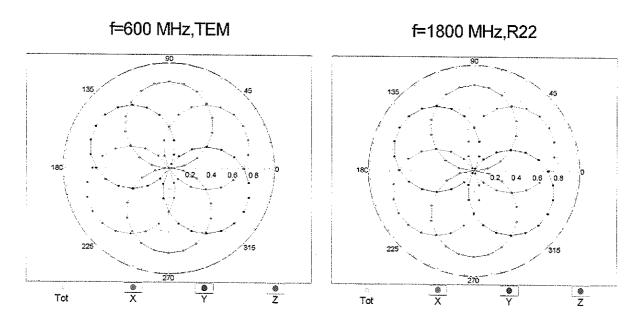
Calibration Parameter Determined in Body Tissue Simulating Media

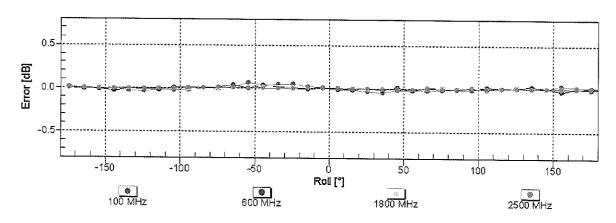
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.07	6.07	6.07	0.53	1.42	± 12.0 %
835	55.2	0.97	6.08	6.08	6.08	0.57	1.36	± 12.0 %
1750	53.4	1.49	4.88	4.88	4.88	0.54	1.50	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.56	1.51	± 12.0 %
2300	52.9	1.81	4.42	4.42	4.42	0.69	1.33	± 12.0 %
2450	52.7	1.95	4.28	4.28	4.28	0.80	1.08	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.80	1.09	± 12.0 %


^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

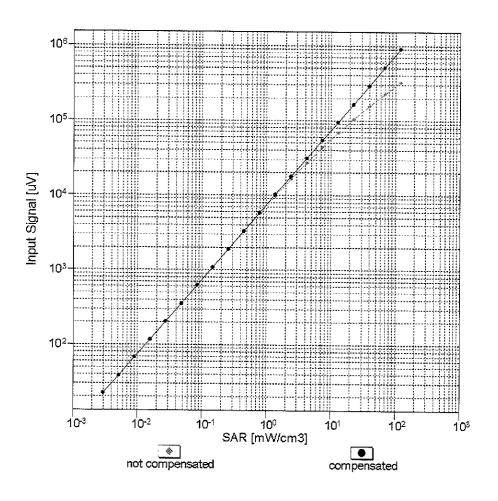
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

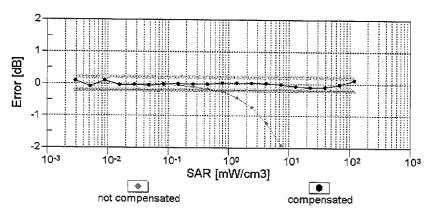
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is


always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

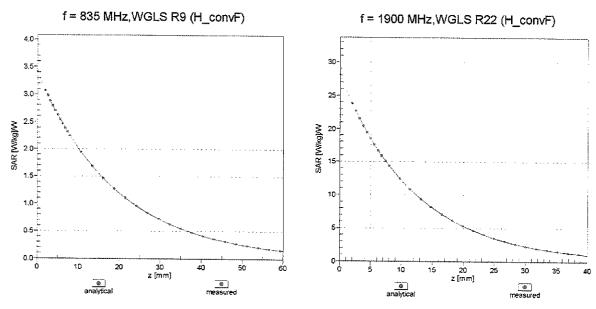

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

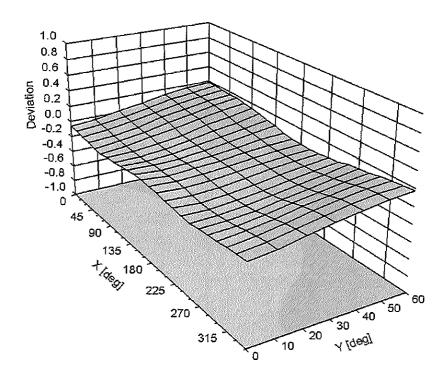
Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

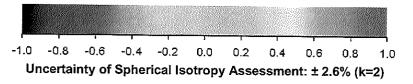

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3263

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	65.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

BN 15/15

Client

PC Test

Certificate No: ES3-3351_Jun15

I	A A L	IDDATI	RTIFICA	TE
ı	LAL	IBRAIII	RIIILA	k I E

Object

ES3DV3 - SN:3351

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

Calibration date:

June 22, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15 (
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Signature

Calibrated by: Leif Klysner Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: June 22, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 2 of 13

June 22, 2015 ES3DV3 - SN:3351

Probe ES3DV3

SN:3351

Manufactured: May 22, 2012

June 22, 2015 Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

E\$3DV3- \$N:3351 June 22, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3351

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.99	1.17	1.19	± 10.1 %
DCP (mV) ^B	113.6	105.2	104.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	х	0.0	0.0	1.0	0.00	188.8	±3.8 %
		Υ	0.0	0.0	1.0		196.2	
		Z	0.0	0.0	1.0		151.3	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	2.73	65.7	12.7	10.00	35.9	±1.2 %
		Υ	1.18	58.1	9.8		37.4	
		Z	2.44	61.9	12.5		42.0	_
10011- CAB	UMTS-FDD (WCDMA)	X	3.43	68.2	18.9	2.91	148.5	±0.5 %
		Υ	3.14	66.5	18.1	<u>_</u>	114.3	
		Z	3.26	66.5	18.1		119.3	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	3.13	70.5	19.4	1.87	149.0	±0.5 %
		Υ	2.46	65.9	17.0		115.2	
		Z	3.02	68.7	18.5		120.9	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	10.59	69.9	22.6	9.46	139.1	±2.5 %
		Υ	10.11	68.9	22.4		103.4	
		Z	10.74	69.4	22.4		114.3	
10021- DAB	GSM-FDD (TDMA, GMSK)	×	4.33	75.1	18.5	9.39	125.5	±1.4 %
		Y	5.13	77.6	20.0	ļ .	144.5	_
10000		Z	17.70	96.1	27.5		123.5	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	X	4.56	75.8	18.9	9.57	147.7	±2.2 %
		Υ	5.75	78.8	20.2		140.4	
		Z	18.60	97.9	28.5		117.3	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	3.42	71.8	15.3	6.56	119.6	±1.4 %
		Y	14.95	90.8	22.0		132.7	
		Z	29.34	98.9	25.6		106.6	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	28.96	99.9	23.5	4.80	135.7	±1.9 %
		Y	55.26	99.9	21.9		107.5	
		Z	35.15	99.9	24.6		120.0	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	36.32	96.2	20.3	3.55	147.5	±1.9 %
		Y	73.22	99.9	20.7		117.0	
10000	<u> </u>	Z	52.78	99.6	22.4		128.3	<u> </u>
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	×	31.23	99.5	20.1	1.16	122.8	±1.4 %
	<u> </u>	Y	0.74	62.4	7.0	ļ. <u> </u>	135.2	
		Z	56.68	99.6	20.2		141.5	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	6.01	66.4	18.9	5.67	112.7	±1.2 %
		Y	6.14	66.9	19.3		124.6	
		Z	6.37	67.2	19.4		129.3	

Page 4 of 13

Certificate No: ES3-3351_Jun15

10103-	LTE-TDD (SC-FDMA, 100% RB, 20			-, -	_,			June 22, 20
CAB	MHz, QPSK)	X	8.50	71.4	23.6	9.29	137.9	±2.7 %
	- 	Y	8.12	70.6	23.6		105.2	
10108-	LTE EDD (SC EDMA 4000) ED 40	Z	9.68	73.4	24.7		118.6	
CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	5.88	66.0	18.8	5.80	111.2	±1.2 %
		Y	5.99	66.5	19.2		122.8	
10117-	IEEE 200 41- (UTAE) 40 5 10	Z	6.28	66.9	19.4		128.7	
CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.19	69.3	21.2	8.07	149.1	±2.2 %
	· 	Y	9.73	68.2	20.9		111.5	
10151-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	9.97	68.3	20.8		117.7	
CAB	QPSK)	X	8.07	71.0	23.5	9.28	132.7	±2.5 %
		Y	8.82	74.2	25.9	<u> </u>	147.0	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z	9.11	72.5	24.4	<u> </u>	115.3	
CAC	QPSK)	X	5.55	65.4	18.6	5.75	107.9	±0.9 %
		Y	5.67	66.0	19.0		120.3	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z X	5.96	66.3	19.1	 	126.2	
CAB	QPSK)	ļ	5.96	65.9	18.7	5.82	111.9	±1.2 %
		Y	6.12	66.6	19.3	<u> </u>	125.0	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	6.38	66.8	19.3	 	131.2	
CAB	QPSK)	X	4.68	66.6	19.4	5.73	130.7	±0.9 %
		Z	4.81	67.2	20.0	<u> </u>	144.7	<u> </u>
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.74 6.59	65.5 73.2	18.9 25.1	9.21	109.9 143.9	±2.5 %
		Ý	6.42	72.7	25.3	 	113.3	
		Z	7.92	75.5	26.2	 	127.2	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.68	66.5	19.4	5.72	128.6	±0.9 %
		Y	4.80	67.2	20.0		144.2	
10101		Z	4.73	65.5	18.9		109.1	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	Х	4.71	66.7	19.5	5.72	128.9	±1.2 %
		Υ	4.78	67.1	19.9		143.9	
10196-	IEEE 000 44. (UE NO.	Z	5.12	67.3	19.9		149.9	
CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.72	68.8	21.1	8.10	138.3	±1.9 %
		Y	9.32	67.9	20.9		105.9	
10225-	UMTS-FDD (HSPA+)	Z	9.58	67.8	20.6		111.2	
CAB	OWIS-FDD (HSPA+)	Х	6.60	66.5	18.9	5.97	117.6	±1.2 %
<u>-</u>	 	Y	6.69	66.9	19.3		132.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	_Z	7.08	67.2	19.5		139.9	
CAB	QPSK)	X	6.57	73.1	25.0	9.21	144.5	±2.2 %
	·	Y	6.59	73.6	25.8		114.3	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Z X	7.44	76.0 70.0	26.4 23.2	9.24	127.7 122.9	±2.5 %
		Ŷ	8.16	73.3			400 0	
		$\frac{1}{z}$	8.43		25.5		138.8	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.01	71.6	24.1	9.30	108.3 130.5	±2.7 %
		Y	8.86	74.4	26.1	 -	146.7	
		Ż	9.12	72.6	24.5		114.0	

June 22, 2015 ES3DV3-SN:3351

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.49	67.5	18.8	3.96	146.9	±0.7 %
•		Υ_	4.13	65.9	18.1		117.5	
		Z	4.36	66.2	18.2		121.1	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.66	67.7	18.9	3.46	133.9	±0.5 %
		Υ	3.37	66.1	18.1		109.3	
		Z	3.54	66.0	18.0		112.1	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.55	67.5	18.7	3.39	136.7	±0.7 %
		Υ	3.35	66.4	18.2		110.1	
		Z	3.44	65.7	17.9		112.9	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	5.86	65.9	18.8	5.81	109.3	±1.2 %
		Υ	6.00	66.5	19.3		122.6	
	-	Z	6.23	66.7	19.3		126.8	
103 1 1- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.42	66.5	19.1	6.06	114.1	±1.2 %
		Υ	6.60	67.2	19.7		127.9	
		Z	6.85	67.4	19.7		132.6	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	10.03	69.2	21.5	8.37	141.2	±1.9 %
		Υ	9.51	68.0	21.1		106.9	
		Z	9.90	68.2	21.1		114.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	5.00	70.6	19.6	3.76	146.5	±0.5 %
		Y	4.32	67.9	18.3		115.0	
		Z	4.63	67.5	18.3		121.9	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.99	71.0	19.8	3.77	143.8	±0.5 %
		Y	4.37	68.5	18.7		113.5	
		Z	4.56	67.5	18.2		120.2	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	3.07	71.2	19.9	1.54	145.7	±0.5 %
		Y	2.43	66.6	17.4		116.6	
		Z	2.59	67.1	17.8		124.3	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	9.84	69.0	21.3	8.23	139.6	±1.9 %
		Υ	9.37	67.9	21.0		106.5	
		Z	9.84	68.4	21.1		117.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3351 June 22, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3351

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.43	6.43	6.43	0.31	1.96	± 12.0 %
835	41.5	0.90	6.17	6.17	6.17	0.21	2.59	± 12.0 %
1750	40.1	1.37	5.24	5.24	5.24	0.55	1.35	± 12.0 %
1900	40.0	1.40	5.07	5.07	5.07	0.54_	1.42	± 12.0 %
2300	39.5	1.67	4.74	4.74	4.74	0.69	1.31	± 12.0 %
2450	39.2	1.80	4.46	4.46_	4.46	0.80	1.26	± 12.0 %
2600	39.0	1.96	4.35	4.35	4.35	0.80	1.26	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

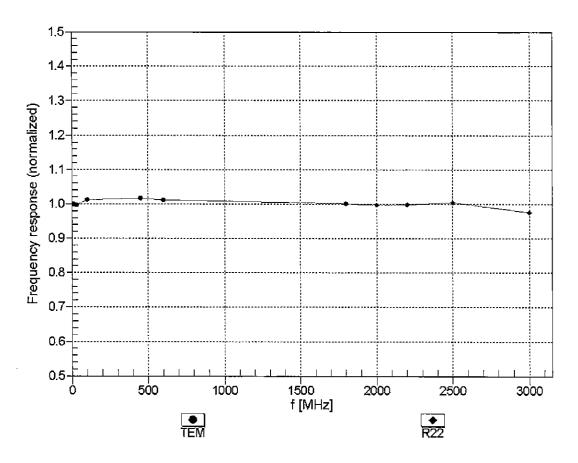
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- SN:3351 June 22, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3351

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.21	6.21	6.21	0.29_	1.98	± 12.0 %
835	55.2	0.97	6.11	6.11	6.11	0.77	1.20	± 12.0 %
1750	53.4	1.49	4.88	4.88	4.88	0.68	1.30	± 12.0 %
1900	53.3	1.52	4.68	4.68	4.68	0.61_	1.46	± 12.0 %
2300	52.9	1.81	4.47	4.47	4.47	0.80	1.16	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30 _	0.80	1.16	± 12.0 %
2600	52.5	2.16	4.16	4.16	4.16	0.80	1.20	± 12.0 %

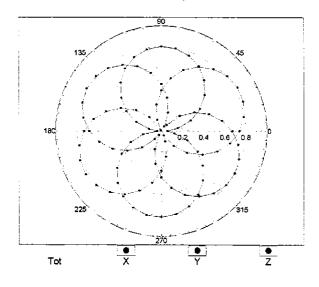

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

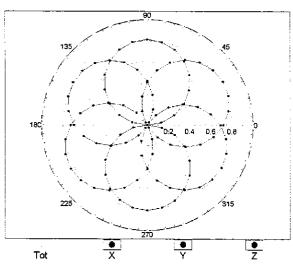
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters.

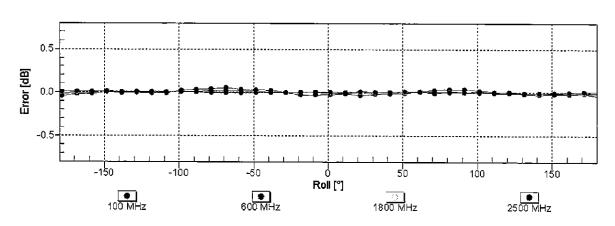
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

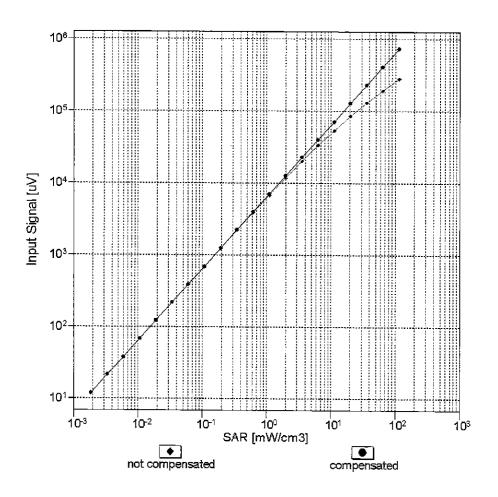


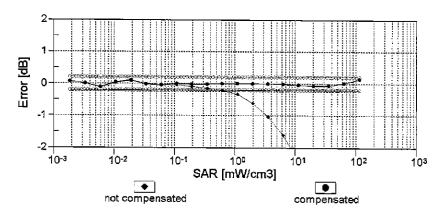

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

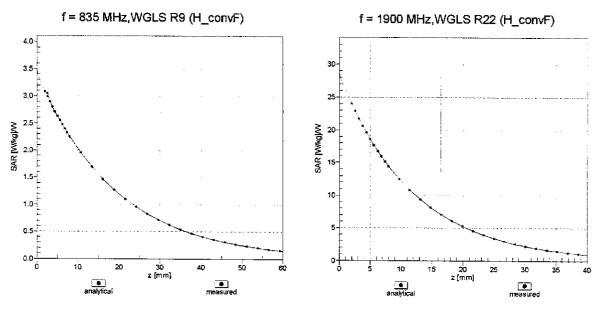
f=600 MHz,TEM

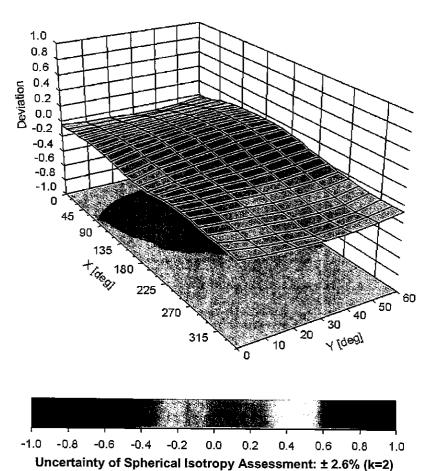
f=1800 MHz,R22





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , ϑ), f = 900 MHz

ES3DV3-SN:3351

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3351

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	21.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizertscher Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taretura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multitaleral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: ES3-3333_Oct15

IDDAI	CI/NA!	CEDT		=
IDKAI		CERT	IFIÇATE	=

Object (ES3DV3 - SN:3333

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: October 29, 2015

This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Catibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mer-16
Reference 20 dB Altenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-680_Jan15)	Jan-16
Secondary Standards	1D	Check Dale (in house)	Scheduled Check
RF generator HP 8648C	US3842D01700	4-Aug-99 (In house check Apr-13)	In house check: Apr-16
Natwork Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:	Name Lelf Kly sner	Function Laboratory Technicish	Signature Sef Thy
Approved by:	Katja Pokovic	Technical Manager	R.M.

Issued: October 29, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3333_Oci15 Page 1 of 13

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdtenst S Service suisse d'étalonnane C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

tissue simulating liquid T\$L NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z. ConvF

diode compression point DCP

crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D.

φ rotation around probe axis Polarization φ

8 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORMx_{r}y_{r}z_{r}^{2}$ Assessed for E-field polarization 9 = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(I)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax_{x}y_{x}z_{x}^{*}Bx_{x}y_{x}z_{z}^{*}Cx_{x}y_{x}z_{z}^{*}Dx_{x}y_{x}z_{z}^{*}VRx_{x}y_{x}z_{z}^{*}A$, $B_{x}C_{x}D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Certificate No: ES3-3333_Oct15 Page 2 of 13 ES3DV3 - SN:3333 October 29, 2015

Probe ES3DV3

SN:3333

Manufactured:

January 24, 2012

Calibrated:

October 29, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)²) ^A	1.07	0.90	0.88	± 10.1 %
DCP (mV) ^B	106.8	108.5	106,8	

Modulation Calibration Parameters

UID	Communication System Name		A	В	С	D	VR	Unc
	0111		_dB	dB√μV		dB	m۷	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	201.0	±3.5 %
	<u> </u>	Υ	Û.D	0.0	1.0		187.1	
10510	2484444	Z	0.0	0.0	1.0		184.8	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	х	2.43	60.7	11.4	10.00	41.6	±2.2 %
		Υ	4.35	67.4	13,2		35.6	
40044		Z	1.46	57.0	8.7		36.2	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.35	67.9	19.1	2.91	138.2	±0.5 %
	-	Υ	3.48	68.8	19.2		127.5	
40040	IEEE 000 AM INVENTO A CALL CONTROL	Z	3.37	67.6	18.6		149.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	3.60	72.8	20.8	1.87	141.0	±0.7 %
		Y	3.68	73.3	20.8		128.0	
40040	IEEE OOD A (- MIEE O A ON A POOR	Z	3.01	69.3	18.8	_	128.2	
10013- GAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	11.52	71.7	23.9	9.46	139.3	±3.0 %
		Υ	10.94	70.4	22.9		147.1	
40004	ORNIEDO (TRAMA ALICIA)	Z	10.95	70.8	23.4		144.5	
10021- DAB	GSM-FDD (TDMA, GMSK)	Х	21.45	95.2	26.5	9.39	139,9	±2.5 %
		Υ	9.12	82.9	21,9		142.0	
		Z	11.47	88.1	23.9		127.6	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	20.81	95.6	27.0	9.57	135,8	±2.2 %
		Υ	9.78	84.4	22.7		135.3	
		Z	9.12	83.5	22.1		144.6	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	39.84	99.6	25.2	6.56	140.9	±1.9 %
		Υ	35.07	100.0	25.0		128.4	
		Z	35.20	99.8	24.7		131.9	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	х	47.16	99.8	23.9	4.80	124.9	±2.5 %
		Υ	49.75	99.6	22.8		145.4	
		Z	45.37	99.9	23.1		148.5	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	56.24	99.6	22.6	3.55	140.4	±2.7 %
		Υ	56.95	99.7	21.9		129.1	
		Z	48.45	99.6	22.1		133.2	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	х	18.03	99.1	22.8	1.16	127.5	±1.9 %
	ļ .	Y	35.17	99.6	20.7		141.1	
		Z	21.08	99.9	21.9		127.5	
10100- CAB	LTE-FOD (SC-FDMA, 100% RB, 20 MHz, QPSK)	х	6.36	67.6	19.8	5.67	137.5	±1.2 %
		Υ	6.29	67.4	19.6		129.9	
		Z	6.35	67.5	19.7		139.5	

10103- CAB	LTE-TOD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	10.85	76.6	26.4	9.29	130.6	±2.7 %
		Υ	9.58	73.7	24.8		143.0	·
		Z	9.94	75.6	26.2	_	149.3	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.21	67.0	19.7	5.80	126.9	±1.2 %
	<u> </u>	Υ	6.16	66.9	19.5		129.2	
		Z	6.22	67.2	19.7		138.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.05	68.7	21.2	8.07	126.1	±2.5 %
	<u> </u>	ΙY	10.13	69.0	21.3		146.1	
40454	LTE TOP (DO EDITA MAN DE CONTRE	Z	9.97	68.7	21,1		126.2	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	10.11	75.5	26.0	9.28	125.8	±3.3 %
		Y	9.08	73.2	24.7	<u> </u>	138.2	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z	9.32	74.8	26.0	5.35	143.1	14 O B/
CAC	QPSK)	X	5.97	66.8	19.6	5.75	133.4	±1.2 %
	-	Y	5.92	66.7	19.5	-	127.0	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z X	5.91	66.7	19.5	5.82	134.2 137.8	±1.2 %
ÇAB	QPSK)		6.40	67.3	19.9	0.62	137.8	±1.2 %
	 	Y	6.31	67.1	19.6		139.8	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z	6.32	67.1	19.6	5 72		14.0.07
CAB	QPSK)	Х.	5.05	67.3	20.1	5.73	136.8 131.1	±1.2 %
	·	Z	4.89 4.93	67.0	19.9		137.4	
10172-	LTE-TOD (\$C-FDMA, 1 RB, 20 MHz,	X	10.74	67.2	20.0	9.21	136.8	±2.7 %
CAB	QPSK)	Y	7.34	83.9 74.3	30,3 25,5	9.21	125.9	12.7 70
		Z	7.74	76.6	27.1		131.2	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.97	66.9	19.9	5.72	130.8	±1.2 %
		Υ	4.66	66.9	19.8		128.5	
		Z	4.97	67.3	20.1		137.0	
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	×	4.99	67.0	19.9	5.72	130.1	±1.2 %
		Υ	4.88	67.0	19.9		127.6	
		Z	4.95	67.2	20.0		136,2	
10196- CAB	JEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	10.00	69.2	21.7	8.10	137.9	±2.2 %
		Υ '	9.75	68.7	21.2		137.5	
		Z	9.94	69.4	21.7		145.3	
10225- CAB	UMTS-FDD (H\$PA+)	х	7.08	67.5	19.8	5.97	147,1	±1.4 %
		Y	7.06	67.7	19.8		142.3	
1000	LEG TOP (OR SOLUTION	Z	7.04	67.7	19.9		148.8	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X.	10.66	83.5	30.1	9.21	144.0	±3.0 %
		Y	7.43	74.7	25.7		127.6	
10060	LYE TOO ICC COMA SOU DO AGAIL	Z	7.86	77.1	27.4	0.04	132,3	10.00
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X .	10.81	78.7	27.9	9.24	139.7	±3.0 %
	+	Y	8.48	72.4	24.4		130.1	
10267	LTG TDD (QC-EDMA 4000 DD 40	Z	8.71	74.1	25.8	B 75	135.2	+3.0.04
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	11,73	79,9	28.3	9.30	148.6	±3.3 %
	+	Y	9.11	73.2	24.8		139.0	
		Z	9.38	74.9	26.1		142.7	

ES3DV3-- SN:3333 October 29, 2015

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Ref8.4)	X	4.52	67.6	19.3	3.96	144.5	±0.7 %
		Υ	4.67	68.3	19.6		146.0	
		Z	4.41	67.0	18.9		130.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.66	67.2	19.0	3.46	134.5	±0.5 %
		Υ	3.91	68.9	19.9		133.2	
		Z	3.86	66.5	19.6		146.9	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.63	67.5	19.1	3.39	134.9	±0.5 %
		Υ	3.93	69.3	20.0		136.0	
		Z	3.81	68.5	19.6		148.6	
10297- AAA	LTE-FDD (SC-FDMA, 50% R8, 20 MHz, QPSK)	Х	6.20	67.1	19.7	5.81	129.0	±1.2 %
		Υ	6.20	67.0	19.6		128.0	
		Z	6.32	67.5	19.9		142.7	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.76	67.6	20.0	6.08	134.7	±1.4 %
		Υ	6.75	67.5	19.9		133.5	
		Z	6.90	68.1	20.3		149.2	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	10.30	69.7	22.1	8.37	140.1	±2.5 %
		Υ	10.05	69.0	21.5		141.2	
		Ζ	9.94	69.0	21.7		126.3	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	4.80	68.5	19.0	3.76	129.3	±0.5 %
		Υ	5.30	71.1	20.2		148,4	
		Z	5,10	70.4	19.9		135.2	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	4.77	68.8	19.2	3.77	127.3	±0.7 %
		Y	5.35	71.7	20.5		145.4	
		Z	5.03	70.6	20.1		133.3	
10415- AAA	IEEE 802.11b WiFi 2,4 GHz (DSSS, 1 Mbps, 99pc duly cycle)	×	2.77	69.7	19.7	1.54	147 .D	±0.7 %
		Υ	3.73	75.4	22.2		143.7	
		Z	3.25	72.2	20.7		133.9	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	10.11	69.4	21.8	8.23	144.7	±2.5 %
		Y	9.86	8.86	21.4		139.3	
		Z	9.72	66.6	21.3		126.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-liefd uncertainty inside TSL (see Pages 7 and 8).

E Uncertainties of Roma, r, 2 do not also the E-host of Romany and required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3333 October 29, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
750	41.9	0.89	6.46	6.46	6.46	0.75	1.22	± 12.0 %
835	41.5	0.90	6.16	6.16	6,16	0.36	1.67	± 12.0 %
1750	40.1	1.37	5.21	5.21	5.21	0.80	1.19	± 12.0 <u>%</u>
1900	40.0	1.40	5.03	5.03	5.03_	0.73	1.25	± 12.0 %
2300	39.5	1.67	4.73	4.73	4.73	0.60	1.43	± 12.0 %
2450	39.2	1.80	4.53	4.53	4.53	08.0	1.28	± 12.0 %
2600	39.0	1.96	4.39	4.39	4.39	0.80	1.29	± 12.0 %

⁶ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No: ES3-3333_Oct15 Page 7 of 13

validity can be extended to ± 110 MHz.

Fixed At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated larget tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- \$N:3333 October 29, 2015

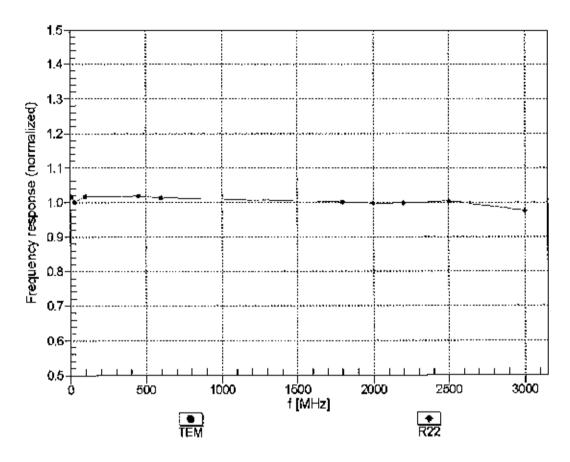
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Calibration Parameter Determined in Body Tissue Simulating Media

			-		•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ⁶ (mm)	Unc (k=2)
750	65.5	0.96	6,31	6.31	6.31	0.70	1.26	± 12.0 %
835	55.2	0.97	6.25	6.25	6.25	0.47	1.54	±12.0 %
1750	53.4	1,49	4.90	4.90	4.90	0.49	1.63	± 12.0 %
1900	53.3	1.52	4.70	4.70	4.70	0.54	1.49	± 12.0 %
2300	52.9	1.81	4.51	4.51	4.51	0.80	1.15	± 12.0 %
2450	52.7	1.95	4.34	4.34	4.34	0.80	1.15	± 12.0 %
2600	52.5	2.16	4.23	4.23	4.23	0.80	1.03	± 12.0 %

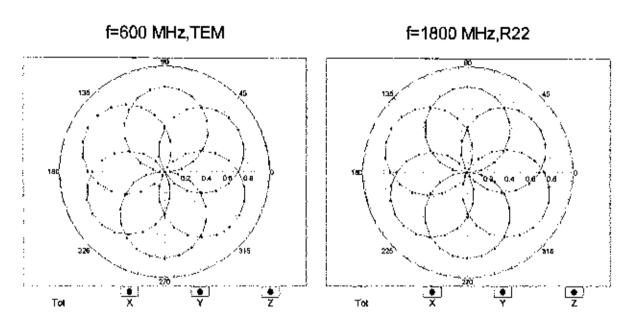
⁶ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

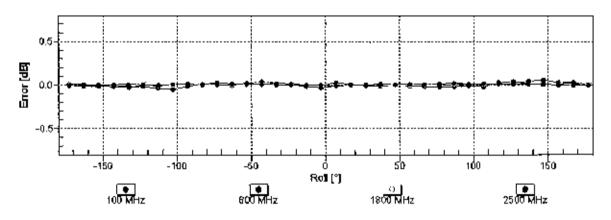
Certificate No: ES3-3333_Oct15 Page 8 of 13


validity can be extended to ± 110 MHz.

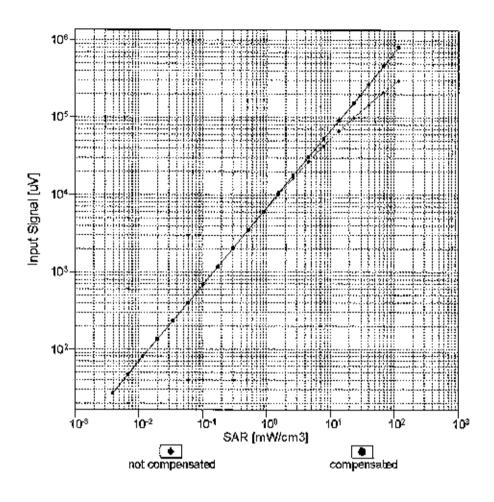
At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the Copy Exprediciply for indicated terral tissue parameters.

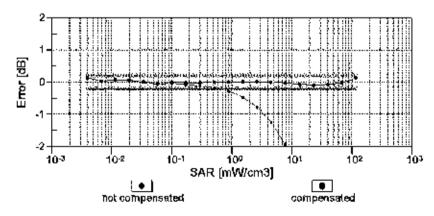
the ConvF uncertainty for indicated larget tissue parameters that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


ES3DV3-SN:3333 October 29, 2015

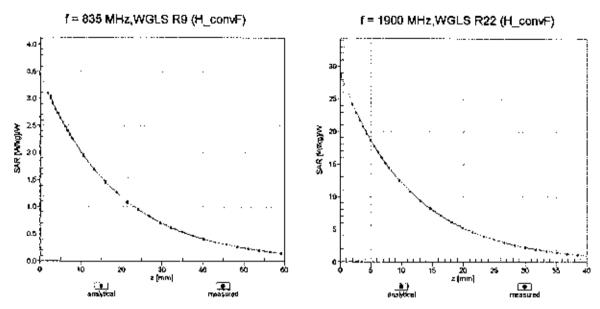

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

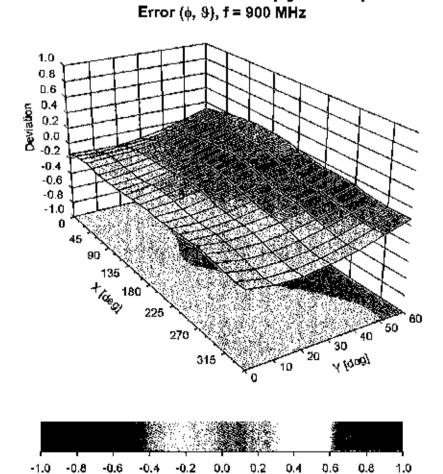
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial (sotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

ES3DV3- SN:3333 October 29, 2015

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3333

Other Probe Parameters

Triangular
-32.8
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
3 mm

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3319_Mar15

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3319

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

March 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN; S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Арг-15
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	, ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Function Name Laboratory Technician Israe Elnaouq Calibrated by: Technical Manager Katja Pokovic Approved by:

Page 1 of 13

Issued: March 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Certificate No: ES3-3319_Mar15

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

ES3DV3 - SN:3319 March 19, 2015

Probe ES3DV3

SN:3319

Manufactured: Calibrated:

January 10, 2012 March 19, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.12	1.08	1.15	± 10.1 %
DCP (mV) ^B	104.4	106.0	104.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	c	D dB	VR mV	Unc ^Ŀ (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	176.1	±3.3 %
		Υ	0.0	0.0	1.0		192.7	
		Z	0.0	0.0	1.0		174.6	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	3.26	64.8	13.4	10.00	41.7	±1.9 %
		Υ	2.66	62.2	11.7		39.5	
		Z	3.51	64.8	13.2		42.1	
10011- CAB	UMTS-FDD (WCDMA)	X	3.47	68.1	19.1	2.91	142.9	±0.5 %
		Υ	3.37	67.9	19.1		133.0	
		Z	3.57	68.7	19.4		138.6	. 0 7 0/
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	3.48	71.8	20.2	1.87	143.9	±0.7 %
		Υ	3.23	70.9	19.9		134.6	
		Z	3.68	72.8	20.6	0.10	140.5	.0.0.0/
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	11.18	70.5	23.1	9.46	143.4	±3.3 %
		Υ	10.98	70.5	23.2		129.9	
		Z	11.19	70.6	23.1		138.8	.4 7 0/
10021- DAB	GSM-FDD (TDMA, GMSK)	X	15.55	92.7	26.1	9.39	126.5	±1.7 %
		Υ	21.21	98.0	27.2		142.0	
		Z	19.50	96.1	27.0		125.4	.0.0.04
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	×	23.54	100.0	28.4	9.57	142.6	±2.2 %
		Y	23,24	99.9	28.0		137.4	
		Z	23.57	99.6	28.2	0.50	139.7	10.00
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	17.00	90.2	22.7	6.56	128.9	±2.2 %
		Υ	35.20	99.7	24.9		148.2	
		Z	33.12	99.6	25.4		123.8	14.0.0/
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	44.20	99.6	23.6	4.80	146.0	±1.9 %
		Y	49.99	99.9	23.0		136.6	
		Z	41.43	99.6	23.9		141.4	10.000
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	46.56	99.7	22.7	3.55	127.7	±2.2 %
		Y	58.11	99.8	21.9			
		Z	55.65	99.6	22.2	1.40	124.3	14 7 9/
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	34.25	99.4	21.1	1.16	140.3	±1.7 %
		Y	40.72	100.0	20.6		136.4	-
		Z	45.39	100.0	20.8	E 07		±4 / 0/
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	6.30	67.1	19.5	5.67	127.4	±1.4 %
		Υ	6.58	68.4	20.3		149.0	
	}	Z	6.55	68.0	19.9		146.3	1

10103-	LTE-TDD (SC-FDMA, 100% RB, 20	Х	10.47	75.6	25.8	9.29	146.6	±3.0 %
CAB	MHz, QPSK)	Υ	10.18	75.8	26.3		136.2	
		z	10.38	75.3	25.6		140.8	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	6.18	66.6	19.4	5.80	126.9	±1.4 %
ONO	WITE, GUOTY	Υ	6.40	67.8	20.1		147.0	
		Z	6.44	67.6	19.9		145.7	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.24	69.0	21.3	8.07	142.7	±2.5 %
		Υ	10.25	69.2	21.5		136.7	
		Z	10.16	68.8	21.2		136.6	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	9.85	74.8	25.6	9.28	140.8	±3.0 %
		Υ	9.49	74.7	25.9		130.5	
		Z	9.90	74.8	25.6		136.8	14 4 0/
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	6.13	67.1	19.7	5.75	146.6	±1.4 %
		Y	6.11	67.4	19.9		142.3	
		Z	6.12	67.1	19.7	5.82	128.9	±1.4 %
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.33	66.7	19.4	0.02	128.7	±1.4 /0
		Y	6.33	67.1	19.7		147.4	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	Z X	6.57 4.89	67.6 66.4	19.9 19.5	5.73	127.5	±1.2 %
CAB	QPSK)	Y	4.99	67.5	20.2		149.3	
		Z	5.09	67.3	20.0		145.1	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	7.99	75.8	26.3	9.21	127.6	±2.7 %
		Y	9.29	81.7	29.6		149.8	
		Z	8.04	75.8	26.3		123.6	
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	5.08	67.3	20.0	5.72	149.3	±1.4 %
		Y	5.00	67.6	20.3		145.0	
		Z	5.09	67.3	20.0	<u> </u>	145.0	14.4.9/
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	5.08	67.3	20.0	5.72	148.5	±1.4 %
		Y	5.06	67.9	20.4	-	147.1 144.8	
		Z	5.11	67.4	20.0	0.40		+2.2.0/
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.89	68.7	21.2	8.10	134.6	±2.2 %
		Y	9.84	68.9	21.4		130.4	
10225-	UMTS-FDD (HSPA+)	Z X	9.82 7.02	68.5 67.1	21.1 19.5	5.97	138.0	±1.4 %
CAB		Y	6.88	67.0	19.5		133.2	
		Z	7.01	67.1	19.5		134.6	
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	8.01	75.9	26.4	9.21	128.0	±2.7 %
U, (D	¬, ¬, ¬	Y	9.39	82.1	29.9		149.7	
		Z	8.34	76.9	26.9		129.1	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	9.05	73.6	25.1	9.24	130.6	±3.0 %
		Y	8.76	73.7	25.5		123.6	1
		Z	9.10	73.6	25.1		127.8	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	9.81	74.7	25.6	9.30	139.3	±3.0 %
		Υ	9.50	74.8	25.9		130.7	
		Z	9.81	74.6	25.5		135.0	

March 19, 2015 ES3DV3-SN:3319

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.49	67.1	18.9	3.96	140.1	±0.7 %
<u> </u>		Υ	4.46	67.2	19.0		137.6	
		Z	4.52	67.1	18.9		137.1	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.68	67.0	18.8	3.46	129.3	±0.7 %
7010		Υ	3.64	67.3	19.0		130.3	
		Z	3.84	67.9	19.2		148.6	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.64	67.2	18.8	3.39	131.8	±0.5 %
7010		Υ	3.60	67.4	19.1		128.2	
		Z	3.71	67.5	19.0		128.0	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.43	67.5	19.9	5.81	147.2	±1.7 %
		Υ	6.39	67.7	20.0		145.4	
		Z	6.42	67.5	19.8		143.2	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.73	67.1	19.7	6.06	129.7	±1.4 %
,,,,,		Υ	6.75	67.5	19.9		130.8	
		Z	6.75	67.3	19.7		126.2	
10400- AAB	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	10.14	68.9	21.5	8.37	136.7	±2.5 %
		Υ	10.23	69.5	22.0		136.5	
		Z	10.13	68.9	21.5		132.8	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.97	69.2	19.3	3.76	143.5	±0.5 %
		Υ	4.87	69.3	19.4		141.0	
		Z	5.02	69.2	19.3		139.6	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.91	69.3	19.4	3.77	139.8	±0.7 %
		Υ	4.67	68.9	19.1		138.9	
		Z	4.89	69.1	19.3		137.1	
10415- AAA	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	2.93	70.1	19.6	1.54	137.8	±0.7 %
		Y	2.84	69.8	19.6		138.2	
		Z	3.04	70.8	19.9		134.2	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	9.94	68.7	21.3	8.23	134.6	±2.2 %
		Υ	10.00	69.1	21.7		134.1	
		Z	9.89	68.5	21.2		130.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3319_Mar15

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.69	6.69	6.69	0.40	1.70	± 12.0 %
835	41.5	0.90	6.41	6.41	6.41	0.43	1.62	± 12.0 %
1750	40.1	1.37	5.29	5.29	5.29	0.80	1.16	± 12.0 %
1900	40.0	1.40	5.10	5.10	5.10	0.80	1.24	± 12.0 %
2300	39.5	1.67	4.77	4.77	4.77	0.64	1.38	± 12.0 %
2450	39.2	1.80	4.55	4.55	4.55	0.80	1.29	± 12.0 %
2600	39.0	1.96	4.39	4.39	4.39	0.80	1.31	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to \pm 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3319_Mar15

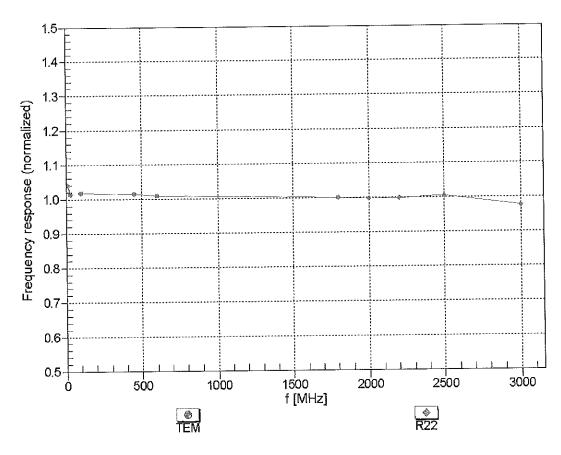
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
1 (111112)	, 01111111111							
750	55.5	0.96	6.10	6.10	6.10	0.34	1.80	± 12.0 %
835	55.2	0.97	6.07	6.07	6.07	0.47	1.56	± 12.0 %
1750	53.4	1.49	4.83	4.83	4.83	0.70	1.36	± 12.0 %
1900	53.3	1.52	4.53	4.53	4.53	0.71	1.39	± 12.0 %
2300	52.9	1.81	4.24	4.24	4.24	0.80	1.26	± 12.0 %
2450	52.7	1.95	4.11	4.11	4.11	0.80	1.10	± 12.0 %
2600	52.5	2.16	3.90	3.90	3.90	0.80	1.11	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

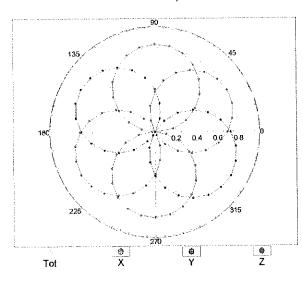

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

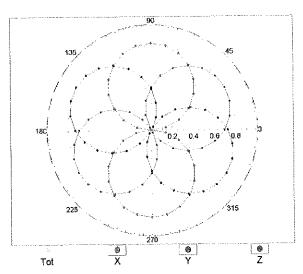
S Alpha/Depth are determined during colliberation.

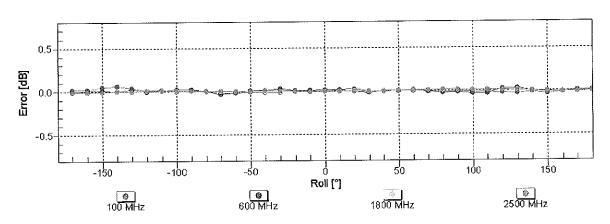
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3319_Mar15

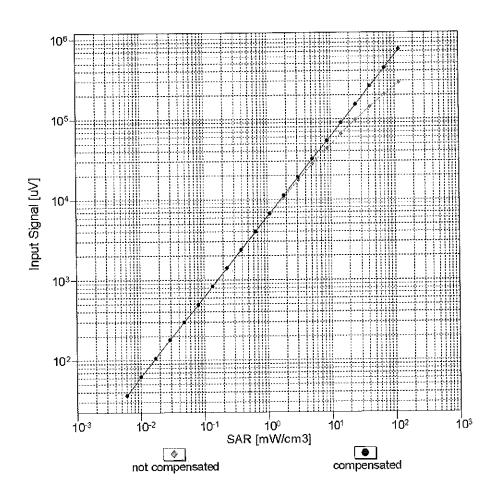
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

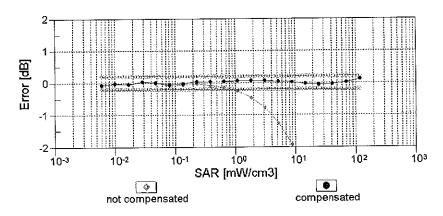



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

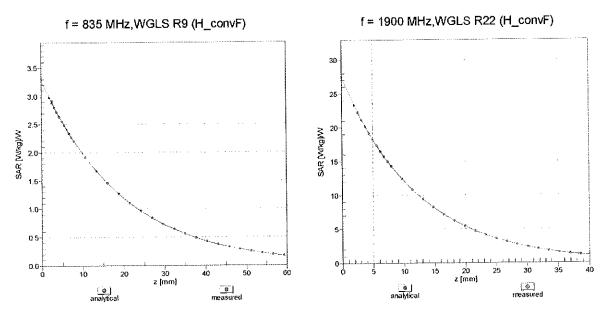
f=1800 MHz,R22

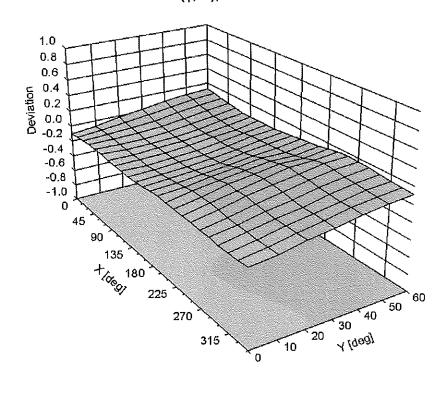


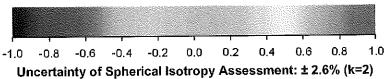


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ES3DV3-- SN:3319 March 19, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3319

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-120.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ES3-3209_Mar15

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3209

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes 3/2G

Calibration date:

March 19, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3209_Mar15

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Notwork Applyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Israe Elnaouq

Approved by:

Katja Pokovic

Function

Function

Signature

Aboratory Technician

Signature

Aboratory Technician

Issued: March 19, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

March 19, 2015 ES3DV3 - SN:3209

Probe ES3DV3

SN:3209

Calibrated:

Manufactured: October 14, 2008 March 19, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.35	1.33	1.14	± 10.1 %
DCP (mV) ^B	102.0	100.9	103.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	х	0.0	0.0	1.0	0.00	214.5	±3.5 %
		Y	0.0	0.0	1.0		192.6	
		Z	0.0	0.0	1.0		199.1	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	2.61	65.1	12.2	10.00	42.3	±1.7 %
0701		Y	1.39	57.8	8.9		42.7	
		Z	4,57	70.3	14.0		38.3	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.12	66.3	18.1	2.91	130.3	±0.7 %
		Υ	3.08	65.6	17.5		132.2	
		Z	3.32	67.7	19.0		137.6	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	2.54	66.8	17.8	1.87	131.1	±0.7 %
		Υ	2.67	67.1	17.7		131.6	
		Z	2.85	69.2	19.1		138.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	Х	10.78	70.5	23.4	9.46	146.9	±2.7 %
		Y	10.39	69.2	22.5		123.5	
		Ζ	10.50	69.9	23.1		128.4	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	3.65	74.2	17.7	9.39	130.0	±1.9 %
		Υ	6.62	83.5	22.0		149.4	
		Z	4.25	76.8	19.2		136.2	
10023- DAB	GPRS-FDD (TDMA, GMSK, TN 0)	Х	3.95	75.3	18.4	9.57	138.8	±2.5 %
		Υ	4.99	78.2	19.8		143.3	
		Z	4.11	75.8	18.9		129.3	4 = 24
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	6.44	80.3	17.7	6.56	135.0	±1.7 %
		Υ	3.76	73.7	16.0	<u> </u>	144.2	
		Z	11.61	88.5	20.7		148.0	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	43.77	99.9	21.8	4.80	131.8	±1.7 %
		Y	13.95	87.5	19.0		142.7	
		Z	39.96	99.9	22.1		145.6	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Х	62.88	99.8	20.4	3.55	144.5	±2.2 %
		Υ	2.45	70.4	12.9		130.3	
		Z	80.83	99.9	19.9		135.1	1.2.24
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	0.32	58.4	4.3	1.16	144.1	±1.9 %
		Y	16.25	79.9	12.1		129.5	
		Z	95.90	91.1	14.4		134.6	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.32	67.4	19.8	5.67	138.3	±1.4 %
		Υ	6.35	67.3	19.5		144.4	
		Z	6.20	67.1	19.6		127.7	

10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	8.72	73.1	25.3	9.29	138.6	±2.7 %
<u>^</u>	in it, or ord	Y	8.88	72.9	24.9		147.9	
		Z	8.48	72.3	24.9		127.4	
10108- CAC	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	Х	6.14	66.9	19.6	5.80	136.2	±1.7 %
0,10	(H) 12, (C) 41	Υ	6.20	66.8	19.4		142.8	
		Z	6.10	66.8	19.6		126.2	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	Х	10.05	68.9	21.4	8.07	126.8	±2.2 %
		Υ	9.98	68.5	21.1		132.4	
		Z	10.23	69.4	21.7		140.4	
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	8.16	72.2	25.0	9.28	133.6	±2.7 %
		Υ	8.33	72.0	24.5		142.6	
		Z	8.40	73.1	25.6		147.5	
10154- CAC	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	5.83	66.5	19.4	5.75	133.1	±1.4 %
		Υ	5.89	66.3	19.2		139.3	***
		Z	6.00	67.2	19.9		146.5	14 7 0/
10160- CAB	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.26	66.9	19.6	5.82	138.8 145.1	±1.7 %
		Υ	6.34	67.0	19.5	ļ		
		Z	6.22	66.9	19.7	F 70	128.8	14.4.0/
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.77	66.7	19.8	5.73	135.9	±1.4 %
		Υ	4.89	66.6	19.5		128.3	
		Z	4.85	66.8	19.9	0.04		±2.5 %
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	6.77	75.0	26.9	9.21	144.2	±2.5 %
		Y	6.56	72.6	25.2		137.1	
		Z	6.68	74.0	26.4	5.72	137.1	±1.4 %
10175- CAC	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.80	66.9	19.9	5.72	140.6	11.770
		Y_	4.87	66.5	19.5	ļ	149.4	
		Z	5.03	67.7	20.4	5.72	134.7	±1.2 %
10181- CAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.77	66.7	19.8	5.72	140.6	21.2 70
		Y	4.88	66.5	-1		127.8	
		Z	4.84	66.8	19.9	8.10	145.2	±2.2 %
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	9.97	69.5	21.9	0.10	125.1	12.2 70
		Y	9.60	68.2	21.7		133.9	
10225-	UMTS-FDD (HSPA+)	Z X	9.80 6.95	69.1 67.5	19.8	5.97	147.3	±1.4 %
CAB		Y	6.73	66.4	19.1		128.7	
		Z	6.89	67.4	19.8		137.2	T .
10237- CAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	6.85	75.4	27.2	9.21	146.0	±2.5 %
UND QFOR)	<u> </u>	Y	6.54	72.5	25.1		131.6	
		Z	6.76	74.4	26.6		138.2	
10252- CAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	7.58	71.3	24.6	9.24	126.6	±2.5 %
~,		Υ	7.73	71.1	24.2		133.3	
		Z	7.82	72.4	25.3		139.0	
10267- CAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.18	72.2	25.1	9.30	133.6	±2.7 %
		Y	8.35	72.0	24.6		141.1	
		Z	8.42	73.2	25.6		147.0	

10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	4.22	66.1	18.4	3.96	128.8	±0.9 %
<u> </u>		Υ	4.24	65.9	18.1		133.8	
		Z	4.39	67.1	19.0		141.7	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	Х	3.51	66.7	18.6	3.46	140.9	±0.7 %
, , , ,		Υ	3.52	66.2	18.1		143.4	
		Z	3.58	67.2	19.0		131.7	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	Х	3.45	66.7	18.5	3.39	142.0	±0.7 %
		Υ	3.50	66.4	18.2		146.9	
		Z	3.61	67.8	19.3		132.2	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.15	66.9	19.6	5.81	136.3	±1.4 %
		Υ	6.20	66.8	19.4		140.3	
		Z	6.11	66.8	19.6		126.6	
10311- AAA	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	Х	6.80	67.8	20.1	6.06	143.2	±1.7 %
		Υ	6.80	67.5	19.9		147.4	
		Z	6.71	67.6	20.1		131.9	
10400- AAB	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	Х	10.31	70.0	22.4	8.37	147.9	±3.0 %
,		Υ	9.88	68.5	21.3		127.2	
		Z	10.13	69.5	22.1		135.8	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.60	68.6	18.9	3.76	128.2	±0.5 %
		Υ	4.58	67.9	18.4		134.2	
		Z	4.86	69.6	19.5		142.6	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	Х	4.57	68.9	19.1	3.77	149.7	±0.5 %
		Y	4.51	68.0	18.5		132.3	
		Z	4.78	69.6	19.5		140.3	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	2.47	67.0	17.9	1.54	128.1	±0.7 %
		Y	2.46	66.4	17.4		132.5	
		Z	2.72	69.1	19.2		140.6	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	10.12	69.7	22.1	8.23	146.8	±2.7 %
		Υ	9.66	68.2	21.1		125.0	
		Z	9.91	69.2	21.8		134.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 7 and 8).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.34	6.34	6.34	0.29	2.02	± 12.0 %
835	41.5	0.90	6.04	6.04	6.04	0.23	2.57	± 12.0 %
1750	40.1	1.37	5.23	5.23	5.23	0.80	1.08	± 12.0 %
1900	40.0	1.40	5.05	5.05	5.05	0.10	2.40	± 12.0 %
2300	39.5	1.67	4.76	4.76	4.76	0.70	1.27	± 12.0 %
2450	39.2	1.80	4.53	4.53	4.53	0.80	1.22	± 12.0 %
2600	39.0	1.96	4.36	4.36	4.36	0.75	1.31	± 12.0 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

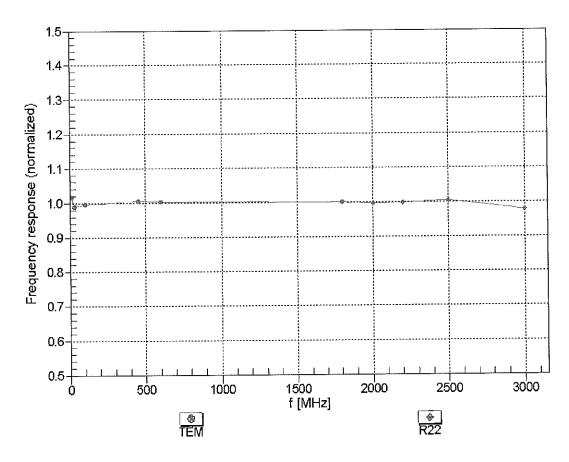
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ES3-3209_Mar15

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.12	6.12	6.12	0.34	1.81	± 12.0 %
835	55.2	0.97	6.07	6.07	6.07	0.37	1.79	± 12.0 %
1750	53.4	1.49	4.86	4.86	4.86	0.67	1.43	± 12.0 %
1900	53.3	1.52	4.57	4.57	4.57	0.57	1.53	± 12.0 %
2300	52.9	1.81	4.28	4.28	4.28	0.80	1.19	± 12.0 %
2450	52.7	1.95	4.12	4.12	4.12	0.72	1.15	± 12.0 %
2600	52.5	2.16	3.92	3.92	3.92	0.80	1.10	± 12.0 %

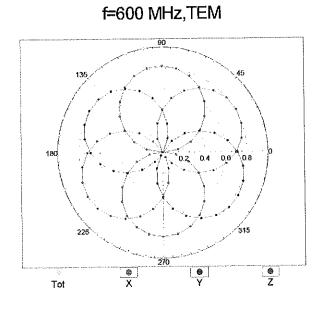

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated tarnet tissue parameters.

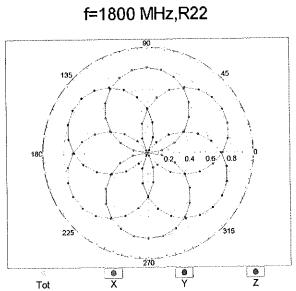
the ConvF uncertainty for indicated target tissue parameters.

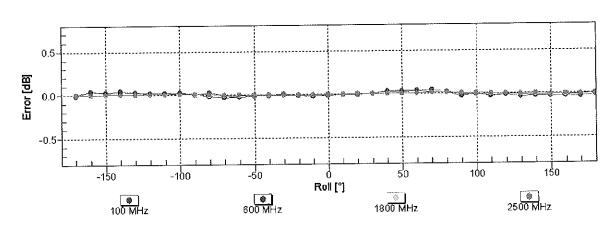
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

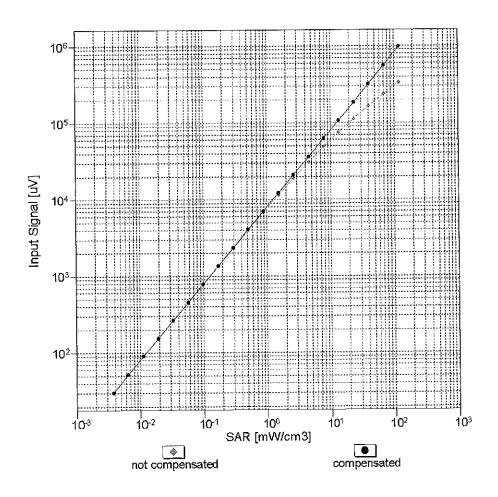
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

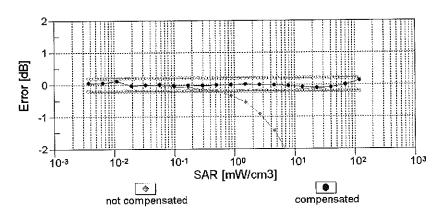


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


March 19, 2015 ES3DV3-SN:3209

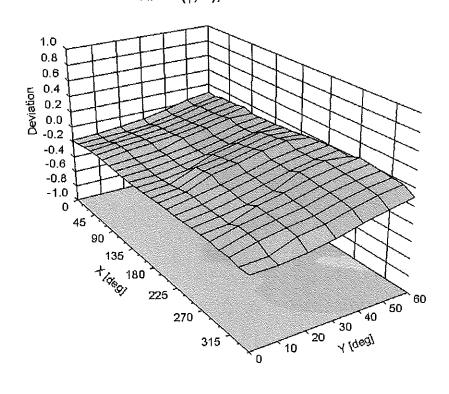

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

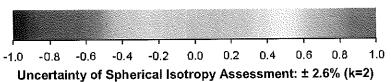

Certificate No: ES3-3209_Mar15



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3209

Other Probe Parameters

Sensor Arrangement	Triangular			
Connector Angle (°)	-40.3			
Mechanical Surface Detection Mode	enabled			
Optical Surface Detection Mode	disabled			
Probe Overall Length	337 mm			
Probe Body Diameter	10 mm			
Tip Length	10 mm			
Tip Diameter	4 mm			
Probe Tip to Sensor X Calibration Point	2 mm			
Probe Tip to Sensor Y Calibration Point	2 mm			
Probe Tip to Sensor Z Calibration Point	2 mm			
Recommended Measurement Distance from Surface	3 mm			