

SAR TEST REPORT

HCT CO., LTD

EUT Type:	Cellular/PCS GSM/GPRS Bluetooth, WLAN/NFC	Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with Bluetooth, WLAN/NFC									
FCC ID:	ZNFP710										
Model:	LG-P710	Additional:	P710,LGP710								
Date of Issue:	Jan.31, 2013	Jan.31, 2013									
Test report No.:	HCTA1301FS06	HCTA1301FS06									
Test Laboratory:		HCT CO., LTD. 105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401									
Applicant :	LG Electronics, MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs NJ 07632										
Testing has been carried out in accordance with:	47CFR §2.1093 FCC OET Bulletin 65(Ed	FCC OET Bulletin 65(Edition 97-01), Supplement C (Edition 01-01) ANSI/ IEEE C95.1 – 1992									
Test result:	subject to the test. The	test results and s	quirements in respect of all parameters statements relate only to the items tested. Except in full, without written approval of the								
Signature	Report prepared by : Young-Soo Jang Test Engineer of SA	AR Part	Approved by : Jae-Sang So Manager of SAR Part								

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Jan.31, 2013 Report No.:

Table of Contents

1. INTRODUCTION		3
2. TEST METHODOLOGY		4
3. DESCRIPTION OF DEVICE		5
4. DESCRIPTION OF TEST EQUIPMENT		6
5. SAR MEASUREMENT PROCEDURE	1	3
6. DESCRIPTION OF TEST POSITION	1	5
7. MEASUREMENT UNCERTAINTY	1	7
8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS	1	8
9. SAR SYSTEM VALIDATION	1	9
10. SYSTEM VERIFICATION	2	0
11. RF CONDUCTED POWER MEASUREMENT	2	1
12. SAR Test configuration & Antenna Information	3	0
13. SAR TEST DATA SUMMARY	3	1
13.1 Measurement Results (GSM850 Head SAR)	3	1
13.2 Measurement Results (GSM1900 Head SAR)	3	2
13.3 Measurement Results (WCDMA1900 Head SAR)	3	3
13.4 Measurement Results (802.11b/g/n Head)	3	4
13.5 Measurement Results (GSM850 Hotspot SAR)	3	5
13.6 Measurement Results (GSM1900 Hotspot SAR)	3	6
13.7 Measurement Results (WCDMA1900 Hotspot SAR)	3	7
13.8 Measurement Results (802.11b/g/n Hotspot SAR)	3	8
14. SAR Summation Scenario	3	9
15. SAR Measurement Variability and Uncertainty	4	4
16. CONCLUSION	4	5
17. REFERENCES	4	6
Attachment 1. – SAR Test Plots	4	7
Attachment 2. – Dipole Verification Plots	0	2
Attachment 3. – Probe Calibration Data	1	5
Attachment 4. – Dipole Calibration Data	2	7

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

1. INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

 $\sigma E^2/\rho$ SAR where: conductivity of the tissue-simulant material (S/m) mass density of the tissue-simulant material (kg/m3) E

Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

HCT CO., LTD.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE Standard 1528-2003 & IEEE 1528a-2005 and the following published KDB procedures.

- -. 447498 D01 General RF Exposure Guidance v05
- -. 450824 D01 SAR Prob Cal and Ver Meas v01r01
- -. 450824 D02 Dipole SAR Validation Verification v01
- -. 648474 D04 SAR Handsets Multi Xmiter and Ant v01
- -. 865664 D01 SAR measurement 100 MHz to 6 GHz v01
- -. 865664 D02 SAR Reporting v01
- -. 941225 D01 SAR test for 3G devices v02
- -. 941225 D02 Guidance for 3GPP R6 and R7 HSPA v02v01

3. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

EUT Type	Cellular/PCS (Bluetooth, WL	GSM/GPRS/ED AN/NFC	GE F	Rx only/P0	CS \	WCDMA/HSI	DPA/HSUPA F	hone with			
FCC ID:	ZNFP710										
Model:	LG-P710	Add	dition	al:	P710	,LGP710					
Trade Name	LG Electronics	, MobileComm	U.S.A	, Inc.							
Application Type	Certification										
Mode(s) of Operation	GSM850/GSM	1900/WCDMA1	900/8	302.11b/g/	/n						
Tx Frequency		824.20 - 848.80 MHz (GSM850) /1 850.20 – 1 909.80 MHz (GSM1900) 852.4 – 1 907.6 MHz (WCDMA1900)/ 2 412- 2 462 MHz (802.11b/g/n)									
Rx Frequency		869.20 - 893.80 MHz (GSM850)/ 1 930.20 – 1 989.80 MHz (GSM1900) 1 932.4 – 1 987.6 MHz (WCDMA1900)/ 2 412- 2 462 MHz (802.11b/g/n)									
Production Unit or Identical Prototype	Prototype										
	Б	Tx Frequenc	requency	Equipment	nt	Repor	ted 1g SAR (W,	/kg)			
	Band	(MHz)	Class		Head	Body-worn	Hotspot				
	GSM850	824.20 - 848.8	80	PCE		0.501	1.106	1.106			
Max SAR	GSM1900	1 850.20 - 1 909	9.80	PCE		0.149	0.131	0.131			
	WCDMA1900	1 852.4 – 1 90	7.6	PCE		0.164	0.163	0.163			
	802.11b	2 412- 2 462	2	DTS		0.094	0.078	0.079			
	Bluetooth	2 402 - 2 480	0	DSS			-				
Sim	ultaneous SAR pe	er KDB 690783 D0	01			0.571	1.296	1.296			
Date(s) of Tests	Jan.17, 2013	~ Jan.19, 2013									
Antenna Type	Integral Anten	na									
GPRS	Multislot Class	Multislot Class: 12									
Key Feature(s)	This device su	upport Mobile H	otspo	t.							

4. DESCRIPTION OF TEST EQUIPMENT

4.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.4.1).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Pentium IV 3.0 GHz computer with Windows XP system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

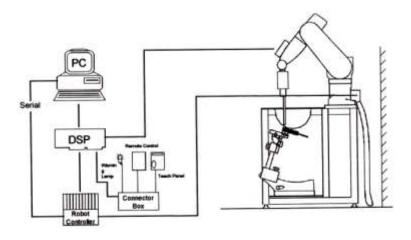


Figure 4.1 HCT SAR Lab. Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.2 DASY4 E-FIELD PROBE SYSTEM

4.2.1 ET3DV6 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air

Conversion Factors (CF) for HSL 900 and HSL 1810

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to 4 GHz; Linearity: \pm 0.2 dB (30 MHz to 4 GHz)

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Figure 4.2 Photograph of the probe and the Phantom

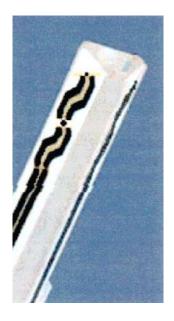


Figure 4.3 ET3DV6 E-field Probe

The SAR measurements were conducted with the dosimetric probe

ET3DV6, designed in the classical triangular configuration [5] and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical mortifier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2 nd order fitting. The approach is stopped

at reaching the maximum.

4.3 PROBE CALIBRATION PROCESS

4.3.1 E-Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with an accuracy better than \pm 10 %. The spherical isotropy was evaluated with the proper procedure and found to be better than \pm 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

p = Tissue density (1.25 g/cm³ for brain tissue)

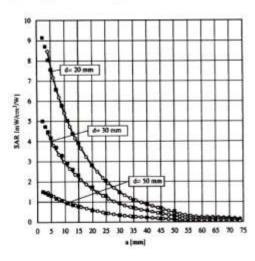


Figure 4.4 E-Field and Temperature measurements at 900 MHz

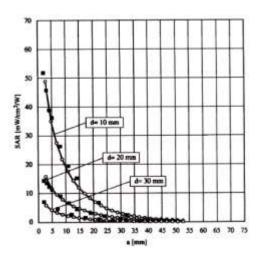


Figure 4.5 E-Field and temperature measurements at 1.8 GHz

4.3.2 Data Extrapolation

The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
 with V_i = compensated signal of channel i (i=x,y,z)
 U_i = input signal of channel i (i=x,y,z)
 C_i = crest factor of exciting field (DASY parameter)
 C_i = crest factor of exciting field (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with V_i = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

 $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$ with $SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] <math>\rho = equivalent tissue density in g/cm^3$

The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{proc} = \frac{E_{tot}^2}{3770}$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

HCT CO., LTD.

105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811
TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4.4 SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness 2.0 mm \pm 0.2 mm (6 \pm 0.2 mm at ear point)

Filling Volume about 25 L

Dimensions 810 mm x 1 000 mm x 500 mm (H x L x W) Figure 4

Figure 4.6 SAM Phantom

Triple Modular Phantom consists of tree identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. The MFP V5.1 will be delivered including wooden support only (**non**-standard SPEAG support).

Applicable for system performance check from 700 MHz to 6 GHz (MFP V5.1C) or 800 MHz - 6 GHz (MFP V5.1A) as well as dosimetric evaluations for body-worn operation.

Shell Thickness 2.0 mm \pm 0.2 mm Filling Volume approx. 9.2 L

Dimensions 830 mm x 500 mm (L x W)

Figure 4.7 Triple Modular Phantom

4.5 Device Holder for Transmitters

In combination with the SAM Phantom V 4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 4.8 Device Holder

HCT CO., LTD.

4.6 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove.

Ingredients	Frequency (MHz)											
(% by weight)	75	50	83	35	91	15	1 9	000	2 4	150	5200-	5800
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.2	51.7	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	65.52	78.66
Salt (NaCl)	1.4	1.0	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.0	0.0
Sugar	57	47.2	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0	0.0
HEC	0.2	0.0	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.2	0.1	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton X-100	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	17.24	10.67
DGBE	0.00	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	0.0
Diethylene glycol hexyl ether	-	-	-	-	-	-	-	-	-	-	17.24	10.67

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table 4.1 Composition of the Tissue Equivalent Matter

4.7 SAR TEST EQUIPMENT

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
Staubli	Robot RX90L	F01/5K09A1/A/01	N/A	N/A	N/A
Staubli	Robot ControllerCS7MB	F99/5A82A1/C/01	N/A	N/A	N/A
HP	Pavilion t000_puffer	KRJ51201TV	N/A	N/A	N/A
SPEAG	Light Alignment Sensor	265	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	D221340.01	N/A	N/A	N/A
SPEAG	DAE4	869	Sep 18, 2012	Annual	Sep 18, 2013
SPEAG	E-Field Probe ET3DV6	1609	Mar 19, 2012	Annual	Mar 19, 2013
SPEAG	Verification Dipole D835V2	441	May 16, 2012	Annual	May 16, 2013
SPEAG	Verification Dipole D1900V2	5d032	July 20, 2012	Annual	July 20, 2013
SPEAG	Verification Dipole D2450V2	743	Aug. 23, 2012	Annual	Aug. 23, 2013
Agilent	Power Meter(F) E4419B	MY41291386	Nov. 02, 2012	Annual	Nov. 02, 2013
Agilent	Power Sensor(G) 8481	MY41090870	Nov. 02, 2012	Annual	Nov. 02, 2013
HP	Dielectric Probe Kit 85070C	00721521		CBT	
HP	Dual Directional Coupler 778D	16072	Nov. 02, 2012	Annual	Nov. 02, 2013
Agilent	Base Station CMU200	110740	July 23, 2012	Annual	July 23, 2013
HP	Base Station E5515C	GB44400269	Feb. 10, 2012	Annual	Feb. 10, 2013
HP	Signal Generator 8664A	3744A02069	Nov. 02, 2012	Annual	Nov. 02, 2013
Hewlett Packard	11636B/Power Divider	11377	Nov. 11. 2012	Annual	Nov. 11. 2013
Agilent	N9020A/ SIGNAL ANALYZER	MY51110020	Jul. 31.2012	Annual	Jul. 31.2013
TESCOM	TC-3000C / BLUETOOTH	3000C000276	Jul. 11, 2012	Annual	Jul. 11, 2013

NOTE:

- 1. The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.
- 2. CBT(Calibrating Before Testing). Prior to testing, the dielectric probe kit was calibrated via the network analyzer, with the specified procedure(calibrated in pure water) and calibration kit(standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed with the following procedure:

- 1. The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- 3. Around this point, a volume of 32 mm x 32 mm x 30 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR value, at the same location as procedure #1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

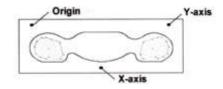


Figure 5.1 SAR Measurement Point in Area Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extend, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the hightest E-field value to determine the averaged SASR-distribution over 10g.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01 quoted below

105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 13 of 151 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

			≤ 3 GHz	> 3 GHz		
Maximum distance fron (geometric center of pro			5 ± 1 mm	½-8-ln(2) ± 0.5 mm		
Maximum probe angle t normal at the measurem		axis to phantom surface	30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spa	tial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device wi point on the test device.	, is smaller than the above, the e ≤ the corresponding x or y		
Maximum zoom scan sp	oatial resolu	tion: $\Delta x_{Z_{0000}}$, $\Delta y_{Z_{0000}}$	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm ⁴ 4 – 6 GHz: ≤ 4 mm ⁴		
	uniform	grid: ∆z _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
surrace	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{0000}}(n-1)$			
Minimum zoom scan volume	x, y, z	k	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6. DESCRIPTION OF TEST POSITION

6.1 HEAD POSITION

The device was placed in a normal operating position with the Point A on the device, as illustrated in following drawing, aligned with the location of the RE(ERP) on the phantom. With the ear-piece pressed against the head, the vertical center line of the body of the handset was aligned with an imaginary plane consisting of the RE, LE and M. While maintaining these alignments, the body of the handset was gradually moved towards the cheek until any point on the mouth-piece or keypad contacted the cheek. This is a cheek/touch position. For ear/tilt position, while maintain the device aligned with the BM and FN lines, the device was pivot against ERP back for 15° or until the device antenna touch the phantom. Please refer to IEEE 1528-2003 illustration below.

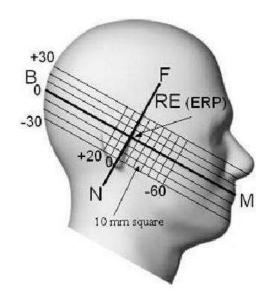


Figure 6.1 Side view of the phantom

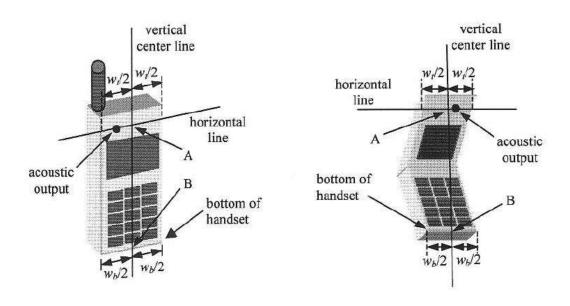


Figure 6.2 Handset vertical and horizontal reference lines

6.2 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with each accessory. If multiple accessory share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used.

Since this EUT does not supply any body worn accessory to the end user a distance of 1.0 cm from the EUT back surface to the liquid interface is configured for the generic test.

"See the Test SET-UP Photo"

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

7. MEASUREMENT UNCERTAINTY

Error	Tol	Prob.			Standard	
Description		dist.	Div.	Ci	Uncertainty	V _{eff}
	(± %)				(± %)	
1. Measurement System	•		<u> </u>			•
Probe Calibration	6.00	N	1	1	6.00	∞
Axial Isotropy	4.70	R	1.73	0.7	1.90	∞
Hemispherical Isotropy	9.60	R	1.73	0.7	3.88	∞
Boundary Effects	1.00	R	1.73	1	0.58	∞
Linearity	4.70	R	1.73	1	2.71	∞
System Detection Limits	1.00	R	1.73	1	0.58	∞
Readout Electronics	0.30	N	1.00	1	0.30	∞
Response Time	0.8	R	1.73	1	0.46	∞
Integration Time	2.6	R	1.73	1	1.50	∞
RF Ambient Conditions	3.00	R	1.73	1	1.73	∞
Probe Positioner	0.40	R	1.73	1	0.23	∞
Probe Positioning	2.90	R	1.73	1	1.67	∞
Max SAR Eval	1.00	R	1.73	1	0.58	∞
2.Test Sample Related			•			
Device Positioning	2.90	N	1.00	1	2.90	145
Device Holder	3.60	N	1.00	1	3.60	5
Power Drift	5.00	R	1.73	1	2.89	∞
3.Phantom and Setup			•			
Phantom Uncertainty	4.00	R	1.73	1	2.31	∞
Liquid Conductivity(target)	5.00	R	1.73	0.64	1.85	∞
Liquid Conductivity(meas.)	2.07	N	1	0.64	1.32	9
Liquid Permitivity(target)	5.00	R	1.73	0.6	1.73	∞
Liquid Permitivity(meas.)	5.02	N	1	0.6	3.01	9
Combind Standard Uncerta	inty				11.13	
Coverage Factor for 95 %				k=2		
Expanded STD Uncertainty					22.25	

Table 7.1 Uncertainty (800 MHz- 2450 MHz)

8. ANSI/ IEEE C95.1 - 1992 RF EXPOSURE LIMITS

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)	
SPATIAL PEAK SAR * (Brain)	1.60	8.00	
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40	
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.00	

Table 8.1 Safety Limits for Partial Body Exposure

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

9. SAR SYSTEM VALIDATION

Per FCC KCB 865664 D02v01, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System Validation Summary

	SAR Dasy System 2													
				CW Valida	ation			Mod	ulated Validati	ons				
Probe	Tissue	Freq.		Dielec	tric Parameters		Mod	Diele	ctric Paramete	ers				
FIODE	Туре	[MHz]	Date	Measured	Measured	Result	Data	Mod.	Measured	Measured	Beault			
				σ(S/m) ετ Result		Туре	σ(S/m)	εr	Result					
1609	Head	835	Dec.20,2012	40.4	0.92	Pass	Dec.20,2012	GMSK	40.4	0.92	Pass			
1609	Head	1900	Dec.20,2012	39.8	1.40	Pass	Dec.20,2012	GMSK	39.8	1.40	Pass			
1609	Head	2450	Dec.20,2012	38.1	1.83	Pass	Dec.20,2012	OFDM	38.1	1.83	Pass			
1609	Body	835	Dec.21,2012	56.9	0.98	Pass	Dec.21,2012	GMSK	56.9	0.98	Pass			
1609	Body	1900	Dec.21,2012	51.8	1.54	Pass	Dec.21,2012	GMSK	51.8	1.54	Pass			
1609	Body	2450	Dec.21,2012	52.9	1.96	Pass	Dec.21,2012	OFDM	52.9	1.96	Pass			

HCT CO., LTD.

105-1, Jangam-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

10. SYSTEM VERIFICATION

10.1 Tissue Verification

Freq. [MHz]	Date	Liquid	Liquid Temp.[°C]	Parameters	Target Value	Measured Value	Deviation [%]	Limit [%]		
850	lon 17, 2012	Head	21.2	εr	41.5	40.4	- 2.65	±5		
650	Jan.17, 2013	пеац	21.2	σ	0.90	0.918	+ 2.00	± 5		
850	lon 17, 2012	Pody	24.2	εr	55.2	57.1	+ 3.44	± 5		
650	850 Jan.17, 2013	Body	21.2	σ	0.97	0.984	+ 1.44	±5		
1 900	Jan.18, 2013	Head	Llood	Llood	21.3	εr	40.0	40.8	+ 2.00	±5
1 900	Jan. 16, 2013		21.3	σ	1.40	1.37	- 2.14	±5		
1 900	Jan.18, 2013	Body	21.3	εr	53.3	52	- 2.44	±5		
1 900	Jan. 10, 2013	Бойу	21.3	σ	1.52	1.55	+ 1.97	±5		
2.450	lon 10, 2012	Head	21.2	εr	39.2	38.8	- 1.02	± 5		
2 450	Jan.19, 2013	пеац	21.2	σ	1.80	1.85	+ 2.78	±5		
2.450	lon 10, 2012	Dody	24.2	εr	52.7	53.4	+ 1.33	±5		
2 450	Jan.19, 2013	Body	21.2	σ	1.95	1.93	- 1.03	± 5		

The Tissue dielectronic parameters were measured prior to the SAR evaluation using an Agilent 85070C Dielectronic Probe Kit and Agilent Network Analyzer.

10.2 Test System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz /1 900 MHz/ 2 450 MHz by using the system Verification kit. (Graphic Plots Attached)

Freq. [MHz]	Date	Probe (SN)	Dipole (SN)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1g} (SPEAG) (mW/g)	Measured SAR _{1q} (mW/g)	1 W Normalized SAR _{1g} (mW/g)	Deviation [%]	Limit [%]
835	Jan.17, 2013		441	Head	21.4	21.2	9.43	0.969	9.69	+ 2.76	± 10
835	Jan.17, 2013		441	Body	21.4	21.2	9.50	0.966	9.66	+ 1.68	± 10
1 900	Jan.18, 2013	4000	E4000	Head	21.5	21.3	39.0	3.85	38.5	- 1.28	± 10
1 900	Jan.18, 2013	1609	5d032	Body	21.5	21.3	39.9	3.95	39.5	- 1.00	± 10
2 450	Jan.19, 2013		7.10	Head	21.4	21.2	52.7	5.44	54.4	+ 3.23	± 10
2 450	Jan.19, 2013		743	Body	21.4	21.2	51.2	5.21	52.1	+ 1.76	± 10

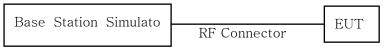
10.3 Test System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency band by using the system Verification kit. (Graphic Plots Attached)

- Cabling the system, using the Verification kit equipments.
- Generate about 100 mW Input Level from the Signal generator to the Dipole Antenna.
- Dipole Antenna was placed below the Flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

Note;

SAR Verification was performed according to the FCC KDB 450824.



11. RF CONDUCTED POWER MEASUREMENT

Power measurements were performed using a base station simulator under digital average power. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted Power deviations of more then 5 % occurred, the tests were repeated.

11.1 **GSM**

Conducted output power measurements were performed using a base station simulator under digital average power.

SAR Test for WWAN were performed with a base station simulator Agilent E5515C. Communication between the device and the emulator was established by air link. Set base station emulator to allow DUT to radiate maximum output power during all tests. Please refer to the below worst case SAR operation setup.

GSM voice: Head SAR

GPRS Multi-slots: Body SAR with GPRS Multi-slot Class12 with CS 1 (GMSK)

Note;

CS1/MCS7 coding scheme was used in GPRS/EDGE output power measurements and SAR Testing, as a condition where GMSK/8PSK modulation was ensured. Investigation has shown that CS1 - CS4/ MCS5 – MCS9 settings do not have any impact on the output levels in the GPRS/EDGE modes.

GSM850 GSM1900

Target Power : 33.2 dBm Target Power : 29.7 dBm

GSM Conducted output powers (Burst-Average)

		Voice	GPRS(GMSK) Data – CS1						
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)			
COM	128	33.67	33.66	31.01	29.52	28.00			
GSM 850	190	33.57	33.57	30.87	29.38	27.89			
650	251	33.45	33.45	30.79	29.30	27.79			
0014	512	30.18	30.18	27.60	26.16	24.65			
GSM 1900	661	29.98	29.97	27.15	25.72	24.20			
	810	29.72	29.72	26.87	25.41	23.91			

105-1, Jangam-ri, Majang-myeon, Icheon-si,Gyeonggi-do,Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

GSM Conducted output powers (Frame-Average)

		Voice	GPRS(GMSK) Data – CS1						
Band	Channel	GSM (dBm)	GPRS 1 TX Slot (dBm)	GPRS 2 TX Slot (dBm)	GPRS 3 TX Slot (dBm)	GPRS 4 TX Slot (dBm)			
COM	128	24.64	24.63	24.99	25.26	24.99			
GSM 850	190	24.54	24.54	24.85	25.12	24.88			
050	251	24.42	24.42	24.77	25.04	24.78			
COM	512	21.15	21.15	21.58	21.9	21.64			
GSM 1900	661	20.95	20.94	21.13	21.46	21.19			
1900	810	20.69	20.69	20.85	21.15	20.9			

Note:

Time slot average factor is as follows:

- 1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power 9.03 dB
- 2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power 6.02 dB
- 3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power 4.26 dB
- 4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power 3.01 dB

11.2 WCDMA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

10.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3 GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s".

10.2.2 Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

11.2.3 Body SAR Measurement

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

11.2.4 Handsets with Release 5 HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Otherwise, SAR is Measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

Sub-Test 1 Setup for Release 5 HSDPA

Sub-test	βς	β_d	β _d (SF)	β_c/β_d	β _{hs} ^(I)	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15 ⁽³⁾	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

11.2.5 Handsets with Release 6 HSPA (HSDPA/HSUPA)

Body SAR is not required for handsets with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than ¼ dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75 % of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.1 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than ¼ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurement should be used to test for head exposure.

Sub- test	βς	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	- 2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

WCDMA1900

Target Power: 22.5 dBm

Tune-up Tolerance: -1.5dB/ +0.5dB

WCDMA Average Conducted output powers

		3GPP 34.121			PCS Bar	nd [dBm]			
3GPP Release Version	Mode	Subtest	UL 9262 (1852.4)	Power reduction (dB)	UL 9400 (1880.0)	Power reduction (dB)	UL 9538 (1907.6)	Power reduction (dB)	MPR Target
			DL 9662		DL 9800		DL 9938		
99	WCDMA	12.2 kbps RMC	22.98		22.99		22.90		-
99	WCDMA	12.2 kbps AMR	22.99		22.95		22.88		ı
5		Subtest 1	22.88		22.89		22.79		0
5	HSDPA	Subtest 2	22.81	0.07	22.80	0.09	22.78	0.01	0
5	ПОДРА	Subtest 3	22.44	0.44	22.45	0.44	22.37	0.42	-0.5
5		Subtest 4	22.39	0.49	22.39	0.5	22.34	0.45	-0.5
6		Subtest 1	22.68		22.74		22.44		0
6	LICLIDA	Subtest 2	20.66	2.02	20.63	2.11	21.10	1.34	-2
6	HSUPA	Subtest 3	21.18	1.5	21.19	1.55	21.43	1.01	-1
6		Subtest 4	21.18	1.5	21.20	1.54	21.11	1.33	-2
6		Subtest 5	22.71	-0.03	22.77	-0.03	22.50	-0.06	0

11.3 WiFi

11.3.1 SAR Testing for 802.11b/g/n modes

General Device Setup

Normal Network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

Frequency Channel Configurations

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11.802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; Channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz § 15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11,15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels.

These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

			January St.	Turbo	"De	fault Test (hanne	ds"
Me	ode	GHz	Channel	Channel	§15 802 11b	247 802.11g	U?	III
		2.412	- 1		V	V		
802.1	1 b/g	2.437	6	6	4	V		
		2.462	11		V	v		
		5.18	36			100	V	
		5.20	40	42 (5.21 GHz)				
		5.22	44	42 (3:21 GHZ)				
		5.24	48	50 (5.25 GHz)			V	
		5.26	52	20 (2022 (034)			4	
		5.28	56	58 (5.29 GHz)				-
		5.30	60	36 (3.13 Offit)				
		5.32	64		T.		-V	
	prestin.	5.500	100					
	UNII	5.520	104				V	
		5.540	108					
882.11a		5.560	112					
002.118		5.580	116				V	
		5.600	120	Unknown			510	
		5,620	124				N	
		5,640	128					
		5.660	132				-	
		5,680	136				4	
		5.700	140					
	UNH	5.745	149		N.		V	
	OF.	5.765	153	152 (5.76 GHz)				-
	\$15,247	5,785	157		V			-
		5.805	161	160 (5.80 GHz)	15		V.	
	815.247	5.825	165		N.			

802.11 Test Channels per FCC Requirements

2.4GHz

802.11b : 16 dBm 802.11g : 13 dBm 802.11n : 12 dBm

Tune-up Tolerance : -1.5dB/ +1.5dB

■ TEST RESULTS-Average

Conducted Output Power Measurements (802.11b Mode)

802.11b	Mode	Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
		1 Mbps	16.32	30
2412	4	2 Mbps	16.24	30
2412	1	5.5 Mbps	16.31	30
		11 Mbps	16.11	30
		1 Mbps	17.05	30
2437	•	2 Mbps	16.90	30
2437	6	5.5 Mbps	17.04	30
		11 Mbps	16.84	30
		1 Mbps	16.47	30
2462	44	2 Mbps	16.41	30
2462	11	5.5 Mbps	16.44	30
		11 Mbps	16.23	30

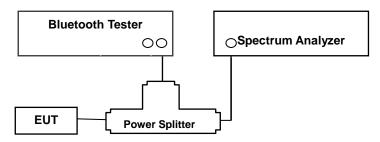
HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

Conducted Output Power Measurements (802.11g Mode)

802.11g	Mode	Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
		6 Mbps	13.24	30
		9 Mbps	13.05	30
		12 Mbps	13.02	30
2412	1	18 Mbps	12.91	30
2412	1	24 Mbps	12.58	30
		36 Mbps	12.21	30
		48 Mbps	11.98	30
		54 Mbps	11.70	30
	6	6 Mbps	13.05	30
		9 Mbps	12.84	30
		12 Mbps	12.82	30
2437		18 Mbps	12.54	30
2437		24 Mbps	12.52	30
		36 Mbps	12.30	30
		48 Mbps	11.86	30
		54 Mbps	11.80	30
		6 Mbps	13.12	30
		9 Mbps	12.93	30
		12 Mbps	12.77	30
2462	44	18 Mbps	12.78	30
2462	11	24 Mbps	12.55	30
		36 Mbps	12.16	30
		48 Mbps	11.95	30
		54 Mbps	11.90	30

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

Conducted Output Power Measurements (802.11n Mode)


802.11n	Mode	Rate	Measured	Limit
Frequency[MHz]	Channel No.	(Mbps)	Power(dBm)	(dBm)
		6.5 Mbps	12.24	30
		13 Mbps	12.11	30
		19.5 Mbps	12.01	30
2412	1	26 Mbps	11.63	30
2412	1	39 Mbps	11.65	30
		52 Mbps	11.15	30
		58.5 Mbps	10.85	30
		65 Mbps	11.04	30
		6.5 Mbps	13.20	30
	6	13 Mbps	12.99	30
		19.5 Mbps	12.88	30
2437		26 Mbps	12.62	30
2437		39 Mbps	12.35	30
		52 Mbps	12.21	30
		58.5 Mbps	11.67	30
		65 Mbps	11.63	30
		6.5 Mbps	11.14	30
		13 Mbps	10.85	30
		19.5 Mbps	10.54	30
2462	44	26 Mbps	10.55	30
2462	11	39 Mbps	10.33	30
		52 Mbps	9.92	30
		58.5 Mbps	9.82	30
		65 Mbps	9.87	30

SAR testing was performed according to the FCC KDB 248227.

11.4 Bluetooth Average Power

Test Configuration

TEST PROCEDURE

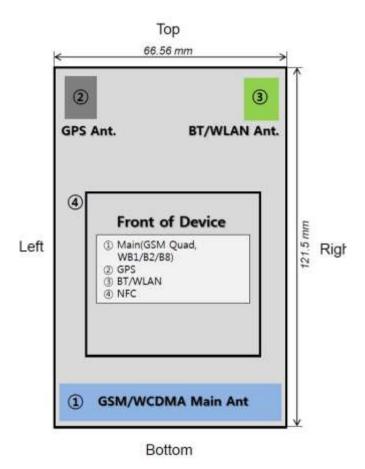
The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the average detector mode. This test is performed with hopping off.

- 1. Span = 2 MHz (GFSK) / 5 MHz (π /4DQPSK and 8DPSK)
- 2. RBW = auto (GFSK) / auto (π /4DQPSK and 8DPSK)
- 3. VBW = auto (GFSK) / auto (π /4DQPSK and 8DPSK)
- 4. Sweep = 1 s
- 5. Packet type= DH5 (GFSK) / 2-DH5 (π/4DQPSK) / 3-DH5 (8DPSK)

GFSK: 8 dBm 8DPSK: 6.5 dBm π/4DQPSK: 6.5 dBm

Power Tolerance: + 1.5dB/ - 1.5dB

Model	Channel	Frequency	Conducted Average Power (dBm)				
Model	Charmer	(MHz)	GFSK	8DPSK	π/4DQPSK		
	0	2402	7.38	6.02	5.97		
LG-P710	39	2440	8.47	6.92	6.94		
	78	2480	7.59	6.41	6.14		



12. SAR Test configuration & Antenna Information

12.1 SAR Test configurations

Mode	Back	Front	Left	Right	Bottom	Тор
850 GPRS	Yes	Yes	Yes	Yes	Yes	No
1900 GPRS	Yes	Yes	Yes	Yes	Yes	No
WCDMA1900	Yes	Yes	Yes	Yes	Yes	No
2.4 GHz WLAN	Yes	Yes	No	Yes	No	Yes

12.2 Antenna and Device Information

[Front side View]

Note;

Per FCC KDB Publication 941225 D06, we performed the SAR testing at 1 cm from the top & bottom surfaces and also from side edges with a transmitting antenna ≤ 2.5 cm from an edge.

13. SAR TEST DATA SUMMARY

13.1 Measurement Results (GSM850 Head SAR)

Fre MHz	quency	Modulation	Conducted Power (dBm)	Power Drift (dB)	Battery	Phantom Position	Measured SAR(mW/g)	Scaled SAR(mW/g)	Plot No.
			33.57	-0.02	Standard	Left Ear	0.338	0.348	1
			33.57	-0.108	Standard	Left Tilt 15°	0.224	0.231	2
836.6	336.6 190 (Mid) GSM850		33.57	0.072	Standard	Right Ear	0.408	0.420	3
			33.57	-0.118	Standard	Right Tilt 15°	0.251	0.259	4
			33.57	-0.07	Standard	Left Ear	0.355	0.409	5
926.6	100 (M:4)	Voip	33.57	-0.116	Standard	Left Tilt 15°	0.260	0.300	6
836.6	190 (Mid)	GPRS3Tx	33.57	-0.096	Standard	Right Ear	0.434	0.501	7
			33.57	-0.044	Standard	Right Tilt 15°	0.304	0.351	8
Ur		EE C95.1 - Spatia d Exposur	l Peak		Head 1.6 W/kg (I	mW/g)			

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 7 According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- For body SAR testing, the EUT was set in GPRS multi-slot class12 with 3uplink slots for GSM850 due to maximum source-based time-averaged output power. According to the KDB 941225 D03 SAR test reduction GSM/GPRS/EDGE, the maximum output power configuration were chosen for Body SAR testing.

HCT CO., LTD.

13.2 Measurement Results (GSM1900 Head SAR)

	uency	Modulation	Conducted	Power Drift	Battery	Phantom Position	Measured SAR(mW/g)	Scaled SAR(mW/g)	Plot No.
MHz	Channel		(dBm)	(dB)					
			29.98	0.004	Standard	Left Ear	0.111	0.117	9
1 000 0	1 880.0 661 (Mid) GSM190	CSM4000	29.98	0.033	Standard	Left Tilt 15°	0.042	0.044	10
1 000.0		GSW1900	29.98	0.024	Standard	Right Ear	0.055	0.058	11
			29.98	-0.023	Standard	Right Tilt 15°	0.044	0.046	12
			29.98	-0.056	Standard	Left Ear	0.133	0.149	13
4 000 0	CC4 (M:-I)	Voip	29.98	-0.189	Standard	Left Tilt 15°	0.051	0.057	14
1 880.0	661 (Mid)	GPRS3Tx	29.98	-0.03	Standard	Right Ear	0.068	0.076	15
			29.98	-0.022	Standard	Right Tilt 15°	0.053	0.059	16
	ANSI/ IEE	E C95.1 - 1 Spatial			Head				

NOTES:

1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

2 All modes of operation were investigated and the worst-case are reported.

3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.

Uncontrolled Exposure/ General Population

4 Tissue parameters and temperatures are listed on the SAR plot.

7	ribbac parameters and the	criperatures are no	tod on the of the plot.	
5	Battery Type	Standard	□ Extended	☐ Slim
		Batteries are fully	charged for all readings.	
_	T . C C			

- 6 Test Signal Call Mode ☐ Manual Test cord ☒ Base Station Simulator
- 7 According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- For body SAR testing, the EUT was set in GPRS multi-slot class12 with 3uplink slots for GSM1900 due to maximum source-based time-averaged output power.

 According to the KDB 941225 D03 SAR test reduction GSM/GPRS/EDGE, the maximum output power configuration were chosen for Body SAR testing.

HCT CO., LTD.

Averaged over 1 gram

13.3 Measurement Results (WCDMA1900 Head SAR)

Frequency		Modulation	Modulation Conducted Power (dBm)		Power Drift Battery	Phantom	Measured	Scaled	Plot
MHz	Channel			Position	SAR(mW/g)	SAR(mW/g)	No.		
1 880.0			22.99	-0.049	Standard	Left Ear	0.164	0.164	17
	0.400 (1.41)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	22.99	-0.094	Standard	Left Tilt 15°	0.065	0.065	18
	9400 (Mid)	WCDMA1900	22.99	0.006	Standard	Right Ear	0.082	0.082	19
			22.99	-0.011	Standard	Right Tilt 15°	0.069	0.069	20

ANSI/ IEEE C95.1 - 2005- Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head
1.6 W/kg (mW/g)
Averaged over 1 gram

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type ⊠ Standard □ Extended □ Slim Batteries are fully charged for all readings.
- 6 Test Signal Call Mode ☐ Manual Test cord ☐ Base Station Simulator
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 8 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

HCT CO., LTD.

13.4 Measurement Results (802.11b/g/n Head)

Frequency		Modulation	Conducted Power	Power Drift	Battery	Phantom	Data Rate	Measured	Scaled	Plot
MHz	Channel		(dBm)	(dB)		Position		SAR(mW/g)	SAR(mW/g)	No.
			17.05	0.131	Standard	Left Ear	1Mbps	0.085	0.094	21
2 437	e (Mid)	802.11b	17.05	-0.100	Standard	Left Tilt 15°	1Mbps	0.056	0.062	22
	6 (Mid)	802.110	17.05	0.166	Standard	Right Ear	1Mbps	0.063	3 0.070	23
			17.05	-0.095	Standard	Right Tilt 15	1Mbps	0.041	0.045	24

ANSI/ IEEE C95.1 - 1992- Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head
1.6 W/kg (mW/g)

NOTES:

- 1 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].
- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type Standard Extended Slim Batteries are fully charged for all readings.
- 6 Test Signal Call Mode

 ☐ Manual Test cord ☐ Base Station Simulator ☐ Base Station Simulator
- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- 8 For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

HCT CO., LTD.

13.5 Measurement Results (GSM850 Hotspot SAR)

Frequency		Modulation	Conducted	Power Drift	Configura tion	Separation Distance	Measured SAR(mW/g)	Scaled SAR(mW/g)	Plot No.
MHz	Channel		(dBm)	(dB)	tion	Distance	SAR(IIIW/g)	JAR(IIIV/g)	NO.
824.2	128 (low)	GPRS 3Tx	29.52	-0.055	Rear	1.0 cm	0.892	0.996	25
836.6	190 (Mid)	GPRS 3Tx	29.38	-0.081	Rear	1.0 cm	0.959	1.106	26
849.8	251 (High)	GPRS 3Tx	29.30	-0.009	Rear	1.0 cm	0.672	0.790	27
836.6	190 (Mid)	GPRS 3Tx	29.38	-0.135	Front	1.0 cm	0.507	0.585	28
836.6	190 (Mid)	GPRS 3Tx	29.38	0.046	Left	1.0 cm	0.383	0.442	29
836.6	190 (Mid)	GPRS 3Tx	29.38	0.093	Right	1.0 cm	0.502	0.579	30
836.6	190 (Mid)	GPRS 3Tx	29.38	-0.112	Bottom	1.0 cm	0.102	0.118	31

ANSI/ IEEE C95.1 - 1992- Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head
1.6 W/kg (mW/g)
Averaged over 1 gram

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]

2 All modes of operation were investigated and the worst-case are reported.

	3	Measured I	Depth o	f Simulating	Tissue is	15.0 cr	$n \pm 0.2 c$	m.
--	---	------------	---------	--------------	-----------	---------	---------------	----

4 Tissue parameters and temperatures are listed on the SAR plot.

☐ Slim
Simulator
er
Ī

- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 3uplink slots for GSM850 due to maximum source-based time-averaged output power. According to the KDB 941225 D03 SAR test reduction GSM/GPRS/EDGE, the maximum output power configuration were chosen for Body SAR testing.

13.6 Measurement Results (GSM1900 Hotspot SAR)

Frequency		Modulation	Conducted Power	Power Drift	Configura tion	Separation Distance	Measured SAR(mW/g)	Scaled SAR(mW/g)	Plot No.
MHz	Channel		(dBm)	(dB)	tion	Distance	SAK(IIIW/g)	SAK(IIIW/g)	INO.
1 880 661			26.16	-0.064	Rear	1.0 cm	0.117	0.131	32
			26.16	-0.029	Front	1.0 cm	0.112	0.125	33
	661 (Mid)	GPRS 3Tx	26.16	-0.174	Left	1.0 cm	0.084	0.094	
			26.16	0.185	Right	1.0 cm	0.026	0.029	35
			26.16	0.037	Bottom	1.0 cm	0.062	0.069	34

ANSI/ IEEE C95.1 - 1992- Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head
1.6 W/kg (mW/g)
Averaged over 1 gram

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- 9 For body SAR testing, the EUT was set in GPRS multi-slot class12 with 3uplink slots for GSM1900 due to maximum source-based time-averaged output power. According to the KDB 941225 D03 SAR test reduction GSM/GPRS/EDGE, the maximum output power configuration were chosen for Body SAR testing.

HCT CO., LTD.

13.7 Measurement Results (WCDMA1900 Hotspot SAR)

Fre	equency	Modulation	Conducted Power	Power Drift	Configuration	Separation Distance	Measured SAR(mW/g)	Scaled SAR(m	Plot No.
MHz	Channel		(dBm)	(dB)		Distance	O/ ((((iiivv/g)	W/g)	140.
1 880.0	9400 (Mid)	WCDMA1900	22.99	-0.001	Rear	1.0 cm	0.155	0.155	37
1 880.0	9400 (Mid)	WCDMA1900	22.99	-0.101	Front	1.0 cm	0.163	0.163	38
1 880.0	9400 (Mid)	WCDMA1900	22.99	-0.031	Left	1.0 cm	0.105	0.105	39
1 880.0	9400 (Mid)	WCDMA1900	22.99	0.04	Right	1.0 cm	0.033	0.033	40
1 880.0	9400 (Mid)	WCDMA1900	22.99	-0.018	Bottom	1.0 cm	0.083	0.083	41

ANSI/ IEEE C95.1 - 2005- Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Body 1.6 W/kg (mW/g) Averaged over 1 gram

1	The test data reported are the worst-case SAR value with the antenna-Body position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001].

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm \pm 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type extstyle extstyle

Batteries are fully charged for all readings.

- 6 Test Signal Call Mode ☐ Manual Test cord ☒ Base Station Simulator
- 7 Test Configuration ☐ With Holster ☒ Without Holster
- Justification for reduced test configurations: per FCC/OET Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
- 9 WCDMA Mode was tested under RMC 12.2 kbps and HSPA Inactive.

13.8 Measurement Results (802.11b/g/n Hotspot SAR)

Fre	quency	Modulation	Conducted Power	Power Drift	Configuration	Data Rate	Measured	Scaled	Plot		
MHz	Channel		(dBm)	(dB)			SAR(mW/g)	SAR(mW/g)	No.		
		802.11b	17.05	-0.061	Rear	1Mbps	0.070	0.078	42		
2 437	C (M:4)		17.05	-0.178	Front	1Mbps	0.019	0.021	43		
2 437	6 (Mid)		17.05	-0.148	Right	1Mbps	0.071	0.079	44		
			17.05	-0.145	Тор	1Mbps	0.014	0.016	45		
	ANSI/ IEEE C95.1 - 1992- Safety Limit						Head				

ANSI/ IEEE C95.1 - 1992– Safety Limit
Spatial Peak
Uncontrolled Exposure/ General Population

Head 1.6 W/kg (mW/g)

Averaged over 1 gram

NOTES:

1	The test data reported are the worst-case SAR value with the antenna-body position set in a typical
	configuration. Test procedures used are according to FCC/OET Bulletin 65, Supplement C [July 2001]

- 2 All modes of operation were investigated and the worst-case are reported.
- 3 Measured Depth of Simulating Tissue is 15.0 cm ± 0.2 cm.
- 4 Tissue parameters and temperatures are listed on the SAR plot.
- 5 Battery Type ⊠ Standard □ Extended □ Slim
 Batteries are fully charged for all readings.
- 6 Test Signal Call Mode ☑ Manual Test code ☐ Base Station Simulator
- 7 IEEE 802.11g(including 802.11n) SAR testing is required when the conducted powers are equal to or greater than 0.25 dB Than the conducted powers in IEEE 802.11b.
- 8 For 2.4GHz WLAN, Highest average power channel for the lowest data rate was selected for SAR evaluation based on KDB 248227. Other channels are not necessary because 1g-average SAR < 0.8 W/Kg and peak SAR < 1.6W/Kg per KDB 248227.

HCT CO., LTD.

14. SAR Summation Scenario

	Position	Applicable Combination
		GSM850 Voice + 2.4 GHz WiFi
	Head	GSM1900 Voice + 2.4 GHz WiFi
		WCDMA1900 Voice + 2.4 GHz WiFi
		GPRS850 Data + 2.4 GHz WiFi
		GPRS1900 Data + 2.4 GHz WiFi
	Hatanat	WCDMA1900 Data + 2.4 GHz WiFi
	Hotspot	GPRS850 Data + 2.4 GHz Bluetooth
Simultaneous Transmission		GPRS1900 Data + 2.4 GHz Bluetooth
Transmission		WCDMA1900 Data + 2.4 GHz Bluetooth
		GSM850 Voice + 2.4 GHz WiFi
		GSM1900 Voice + 2.4 GHz WiFi
	Dody worn	WCDMA1900 Voice + 2.4 GHz WiFi
	Body-worn	GSM850 Voice + 2.4 GHz Bluetooth
		GSM1900 Voice + 2.4 GHz Bluetooth
		WCDMA1900 Voice + 2.4 GHz Bluetooth

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6W/kg. when standalone SAR is not required to be measured per FCC KDB 447498 D01v05 4.3.22, the following equation must be used to estimate the standalone 1-g SAR for simultaneous transmission assessment involving that transmitter

.Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min.Separation Distance}$$

. Mode	Frequency	Maximum Separatuin		Estimated SAR
		Allowed Power Distance (Body)		(Body)
	[MHz]	[mW]	[mm]	[W/kg]
Bluetooth	2440	8.91	10	0.19

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission.

HCT CO., LTD.

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

Simultaneous Transmission Summation for Held to Ear

Simultaneous Transmission Summation for field to Ear									
Simultaneous TX	configuration	GSM850 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GPRS850 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)
	Left Cheek	0.348	0.094	0.442		Left Cheek	0.409	0.094	0.503
Lload CAD	Left Tilt	0.231	0.062	0.293	Hood CAD	Left Tilt	0.300	0.062	0.362
Head SAR	Right Cheek	0.42	0.07	0.490	Head SAR	Right Cheek	0.501	0.07	0.571
	Right Tilt	0.259	0.045	0.304		Right Tilt	0.351	0.045	0.396
Simultaneous TX	configuration	GSM1900 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GPRS1900 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)
	Left Cheek	0.117	0.094	0.211		Left Cheek	0.149	0.094	0.243
Head SAR	Left Tilt	0.044	0.062	0.106	Head SAR	Left Tilt	0.057	0.062	0.119
Head SAR	Right Cheek	0.058	0.07	0.128	TIEdu SAK	Right Cheek	0.076	0.07	0.146
	Right Tilt	0.046	0.045	0.091		Right Tilt	0.059	0.045	0.104
Simultaneous TX	configuration	WCDMA1900 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)					
	Left Cheek	0.164	0.094	0.258					
Head SAR	Left Tilt	0.065	0.062	0.127					
HEdu SAR	Right Cheek	0.082	0.07	0.152					
	Right Tilt	0.069	0.045	0.114					

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

Simultaneous Transmission Summation for Body-Worn (1cm)

		mananoodo		001011 04		Souy-Worn (1	0111)		
Simultaneous TX	configuration	GSM850 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GSM1900 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)
Body SAR	Back	1.106	0.078	1.184	Body SAR	Back	0.131	0.078	0.209
Body SAR	Front	0.585	0.021	0.606	Body SAR	Front	0.125	0.021	0.146
Simultaneous TX	configuration	WCDMA1900 Scaled SAR(W/kg)	2.4 GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)					
Body SAR	Back	0.155	0.078	0.233					
Body SAR	Front	0.163	0.021	0.184					
Simultaneous TX	configuration	GSM850 Scaled SAR(W/kg)	BT SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GSM1900 Scaled SAR(W/kg)	BT SAR (W/kg)	∑SAR (W/kg)
Body SAR	Back	1.106	0.19	1.296	Body SAR	Back	0.131	0.19	0.321
Body SAR	Front	0.585	0.19	0.775	Body SAR	Front	0.125	0.19	0.315
Simultaneous TX	configuration	WCDMA1900 Scaled SAR(W/kg)	BT SAR (W/kg)	∑SAR (W/kg)					
Body SAR	Back	0.155	0.19	0.345					
Body SAR	Front	0.163	0.19	0.353					

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Report No.: Jan.31, 2013

Simultaneous Transmission Summation for Hotspot (1cm)

		Simultaneou	as mansi	111331011		Hotspot (10	•••		
Simultaneous TX	configuration	GSM850 Scaled SAR(W/kg)	2.4GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GSM1900 Scaled SAR(W/kg)	2.4GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)
	Back	1.106	0.078	1.184		Back	0.131	0.078	0.209
	Front	0.585	0.021	0.606		Front	0.125	0.021	0.146
D. d. CAD	Left	0.442	-	0.442	D. J. CAD	Left	0.094	-	0.094
Body SAR	Right	0.579	0.079	0.658	Body SAR	Right	0.029	0.079	0.108
	Bottom	0.118	-	0.118		Bottom	0.069	-	0.069
	Тор	-	0.016	0.016		Тор	-	0.016	0.016
Simultaneous TX	configuration	WCDMA1900 Scaled SAR(W/kg)	2.4GHz WIFI Scaled SAR (W/kg)	∑SAR (W/kg)					
	Back	0.155	0.078	0.233					
	Front	0.163	0.021	0.184					
Body SAR	Left	0.105	ī	0.105					
body SAR	Right	0.033	0.079	0.112					
	Bottom	0.083	-	0.083					
	Тор	-	0.016	0.016					
Simultaneous TX	configuration	GSM850 Scaled SAR(W/kg)	BT SAR (W/kg)	∑SAR (W/kg)	Simultaneous TX	configuration	GSM1900 Scaled SAR(W/kg)	BT SAR (W/kg)	∑SAR (W/kg)
	Back	1.106	0.19	1.296		Back	0.131	0.19	0.321
	Front	0.585	0.19	0.775		Front	0.125	0.19	0.315
Pody CAD	1.64								
	Left	0.442	0.19	0.632	Rody SAD	Left	0.094	0.19	0.284
Body SAR	Right	0.442 0.579	0.19 0.19	0.632 0.769	Body SAR	Left Right	0.094 0.029	0.19 0.19	0.284
bouy SAR					Body SAR				
body SAK	Right	0.579	0.19	0.769	Body SAR	Right	0.029	0.19	0.219
Simultaneous TX	Right Bottom	0.579	0.19 0.19	0.769 0.308	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259
Simultaneous	Right Bottom Top	0.579 0.118 - WCDMA1900 Scaled	0.19 0.19 0.19 BT SAR	0.769 0.308 0.190 ∑SAR	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259
Simultaneous	Right Bottom Top configuration	0.579 0.118 - WCDMA1900 Scaled SAR(W/kg)	0.19 0.19 0.19 BT SAR (W/kg)	0.769 0.308 0.190 ΣSAR (W/kg)	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259
Simultaneous TX	Right Bottom Top configuration Back	0.579 0.118 - WCDMA1900 Scaled SAR(W/kg) 0.155	0.19 0.19 0.19 BT SAR (W/kg)	0.769 0.308 0.190 ∑SAR (W/kg) 0.345	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259
Simultaneous	Right Bottom Top configuration Back Front	0.579 0.118 - WCDMA1900 Scaled SAR(W/kg) 0.155 0.163	0.19 0.19 0.19 BT SAR (W/kg) 0.19	0.769 0.308 0.190 ∑SAR (W/kg) 0.345 0.353	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259
Simultaneous TX	Right Bottom Top configuration Back Front Left	0.579 0.118 - WCDMA1900 Scaled SAR(W/kg) 0.155 0.163 0.105	0.19 0.19 0.19 BT SAR (W/kg) 0.19 0.19	0.769 0.308 0.190 ∑SAR (W/kg) 0.345 0.353 0.295	Body SAR	Right Bottom	0.029	0.19 0.19	0.219 0.259

Note;

- **Body-Worn SAR**: Although body-worn accessory conditions are typically for voice configurations, the GPRS slot frame averaged output power was more conservative and was included for the body-worn accessory SAR assessment.

- The EUT front body-worn configuration is provided to cover any potential accessory that will position the EUT in this manner.

14.1 Simultaneous Transmission Conclusion

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. No volumetric SAR summation is required per FCC KDB Publication 648474.

The above tables represent the worst-case simultaneous transmission scenarios possibility with this device.

Per FCC KDB 447498 D01v05, Bluetooth Body SAR was not required based on the maximum conducted power and the Bluetooth antenna to user separation distance.

$$\frac{\textit{Max Power of Channel}(\textit{mW})}{\textit{Test Separation Dist}(\textit{mm})} * \sqrt{\textit{Frequency}(\textit{GHz})} \leq 3.0$$

. Mode	Frequency	Maximum Allowed Power	Separatuin Distance	≤ 3.0
	[MHz]	[mW]	[mm]	
Bluetooth	2440	8.91	10	1.39

15. SAR Measurement Variability and Uncertainty

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Fre	equency	Modulation	Battery	Battery Configuration		Repeated	Largest to Smallest	Plot
MHz	Channel	Woddialion	·	Ū	SAR(mW/g)	SAR(mW/g)	SAR Ratio	No.
836.6	190 (Mid)	GPRS 3Tx	Standard	Rear	0.959	0.904	1.061	46

Note(s):

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

HCT CO., LTD.

16. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/IEEE C95.1 1992.

These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests.

17. REFERENCES

- [1] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields, July 2001.
- [2] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, IEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices.
- [3] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [4] ANSI/IEEE C95.1 1991, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [5] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9]K. Pokovi^o, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, EidgenØssische Technische Hoschschule Zòrich, Dosimetric Evaluation of the Cellular Phone.
- [21] SAR Evaluation of Handsets with Multiple Transmitters and Antennas #648474.
- [22] SAR Measurement Procedure for 802.11 a/b/g Transmitters #KDB 248227.

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Jan.31, 2013 Report No.:

Attachment 1. - SAR Test Plots

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2~^{\circ}\text{C}$ Ambient Temperature: $21.4~^{\circ}\text{C}$ Test Date: Jan.17, 2013

Plot NO.

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

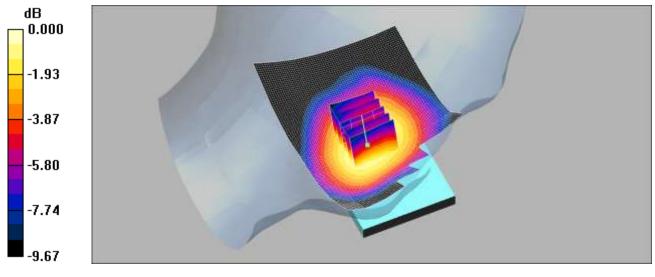
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Left touch/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.359 mW/g

GSM850 Left touch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.55 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.428 W/kg

SAR(1 g) = 0.338 mW/g; SAR(10 g) = 0.251 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.362 mW/g

0 dB = 0.362 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2~^{\circ}\text{C}$ Ambient Temperature: $21.4~^{\circ}\text{C}$ Test Date: Jan.17, 2013

Plot NO. 2

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

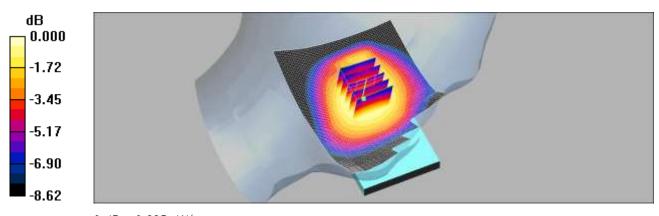
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Left tilt 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.232 mW/g

GSM850 Left tilt 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.1 V/m; Power Drift = -0.108 dB

Peak SAR (extrapolated) = 0.267 W/kg

SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.172 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.235 mW/g

0 dB = 0.235 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.17, 2013

Plot NO. 3

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

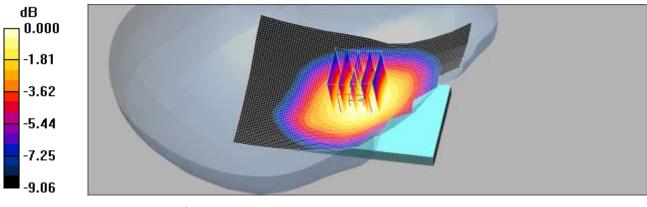
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Right touch 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.442 mW/g

GSM850 Right touch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 7.00 V/m; Power Drift = 0.072 dB

Peak SAR (extrapolated) = 0.500 W/kg

SAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.307 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.433 mW/g

0 dB = 0.433 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.17, 2013

Plot NO. 4

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

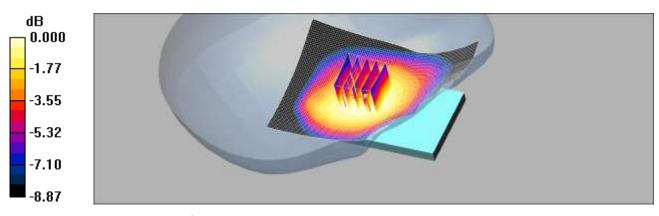
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Right tilt 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.270 mW/g

GSM850 Right tilt 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 10.4 V/m; Power Drift = -0.118 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.251 mW/g; SAR(10 g) = 0.193 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.260 mW/g

0 dB = 0.260 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.17, 2013

Plot NO. 5

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

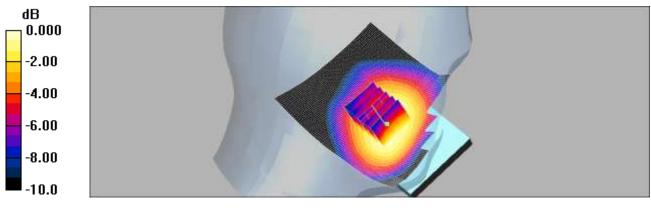
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Left touch GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.382 mW/g

GSM850 Left touch GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.93 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.265 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.375 mW/g

0 dB = 0.375 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2~^{\circ}\text{C}$ Ambient Temperature: $21.4~^{\circ}\text{C}$ Test Date: Jan.17, 2013

Plot NO. 6

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

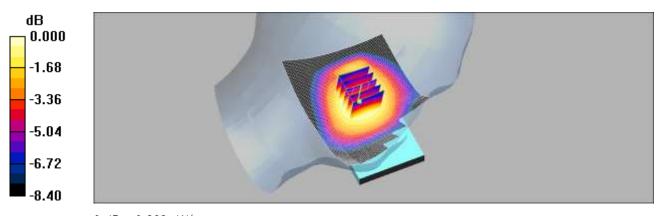
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Left tilt GPRS 3Tx 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.266 mW/g

GSM850 Left tilt GPRS 3Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 12.1 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.260 mW/g; SAR(10 g) = 0.195 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.269 mW/g

0 dB = 0.269 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2~^{\circ}\text{C}$ Ambient Temperature: $21.4~^{\circ}\text{C}$ Test Date: Jan.17, 2013

Plot NO. 7

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

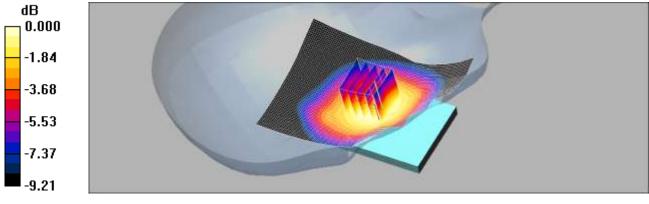
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Right touch GPRS 3Tx190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.487 mW/g

GSM850 Right touch GPRS 3Tx190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 7.62 V/m; Power Drift = -0.096 dB

Peak SAR (extrapolated) = 0.518 W/kg

SAR(1 g) = 0.434 mW/g; SAR(10 g) = 0.330 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.456 mW/g

0 dB = 0.456 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.17, 2013

Plot NO. 8

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.919 \text{ mho/m}$; $\epsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.36, 6.36, 6.36); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

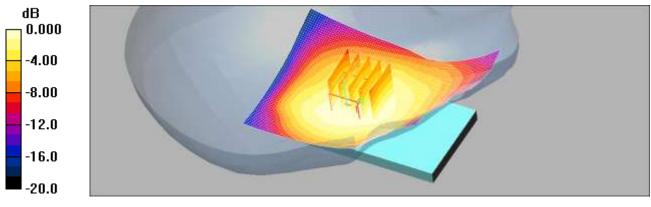
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Right tilt GPRS 3Tx 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.309 mW/g


GSM850 Right tilt GPRS 3Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.220 mW/g

Maximum value of SAR (measured) = 0.310 mW/g

0 dB = 0.310 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 9

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.35$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

$\textbf{GSM1900 Left touch 661/Area Scan (71x101x1):} \ \ \text{Measurement grid: } \ \text{dx=15mm, dy=15mm}$

Maximum value of SAR (interpolated) = 0.123 mW/g

 $\textbf{GSM1900 Left touch 661/Zoom Scan (5x5x7)/Cube 0:} \ \ \texttt{Measurement grid: dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 3.28 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.111 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.124 mW/g

0 dB = 0.124 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 10

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.35$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

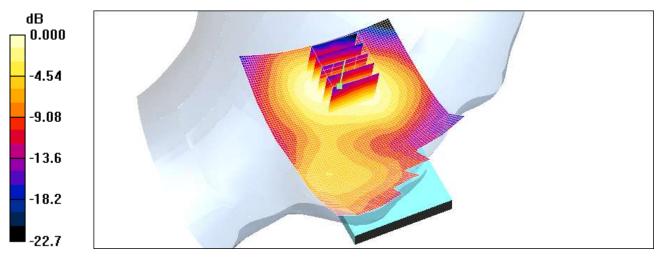
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

$\textbf{GSM1900 Left tilt 661/Area Scan (71x101x1):} \ \ \textbf{Measurement grid: } \ dx=15mm, \ dy=15mm$

Maximum value of SAR (interpolated) = 0.048 mW/g


GSM1900 Left tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.78 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.067 W/kg

SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.025 mW/g

Maximum value of SAR (measured) = 0.045 mW/g

0 dB = 0.045 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO.

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f=1880 MHz; $\sigma=1.35$ mho/m; $\epsilon_r=40.9$; $\rho=1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

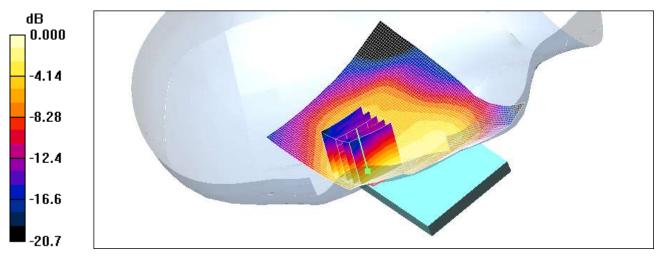
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

$\textbf{GSM1900 Right touch 661/Area Scan (71x101x1):} \ \ \texttt{Measurement grid: } \ \mathtt{dx=15mm, \ dy=15mm}$

Maximum value of SAR (interpolated) = 0.059 mW/g


 $\textbf{GSM1900 Right touch 661/Zoom Scan (5x5x7)/Cube 0:} \ \ \texttt{Measurement grid: } \ \ \texttt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 2.90 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.060 mW/g

0 dB = 0.060 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 12

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.35 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

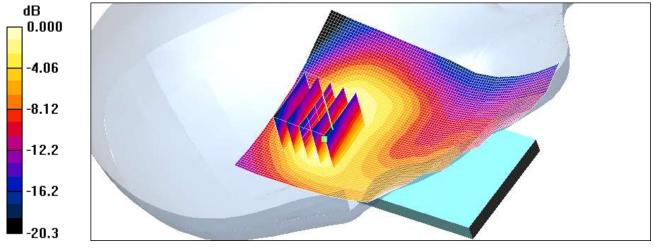
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Right tilt 661/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.050 mW/g


$\textbf{GSM1900 Right tilt 661/Zoom Scan (5x5x7)/Cube 0:} \ \, \texttt{Measurement grid: } \ \, \texttt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 4.93 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 0.067 W/kg

SAR(1 g) = 0.044 mW/g; SAR(10 g) = 0.026 mW/g

Maximum value of SAR (measured) = 0.047 mW/g

0 dB = 0.047 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 13

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; σ = 1.35 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

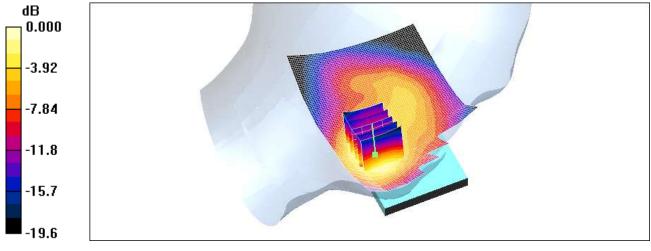
DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn869; Calibrated: 2012-09-18Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Left touch 661 GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.145 mW/g


 $\textbf{GSM1900 Left touch 661 GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0:} \ \texttt{Measurement grid:} \ \texttt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 3.65 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.145 mW/g

0 dB = 0.145 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 14

DUT: LG-P710; Type: bar; Serial: #1

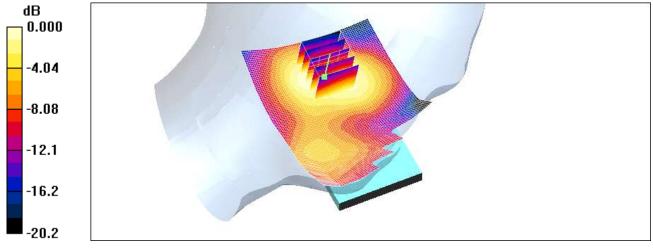
Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; σ = 1.35 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

DASY4 Configuration:

Build 184

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2012-09-18


- Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Left tilt 661 GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.057 mW/g

GSM1900 Left tilt 661 GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.29 V/m; Power Drift = -0.189 dB

Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.030 mW/gMaximum value of SAR (measured) = 0.056 mW/g

0 dB = 0.056 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 15

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; σ = 1.35 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

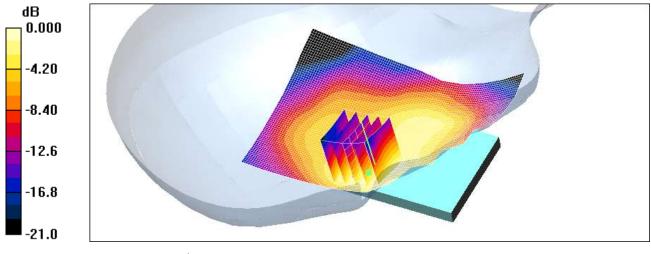
DASY4 Configuration:

Build 184

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM


GSM1900 Right touch GPRS 3Tx 661/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.073 mW/g

GSM1900 Right touch GPRS 3Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.15 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.041 mW/g

Maximum value of SAR (measured) = 0.072 mW/g

0 dB = 0.072 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO.

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; σ = 1.35 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Right tilt GPRS 3Tx 661/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.061 mW/g

GSM1900 Right tilt GPRS 3Tx 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.41 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.080 W/kg

SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.031 mW/g

Maximum value of SAR (measured) = 0.056 mW/g

0 dB = 0.056 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 17

DUT: LG-P710; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.35$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

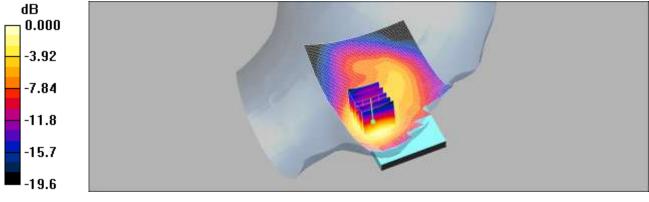
- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

WCDMA1900 Left touch 9400/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.184 mW/g


WCDMA1900 Left touch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.15 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.164 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.184 mW/g

0 dB = 0.184 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 18

DUT: LG-P710; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f=1880 MHz; $\sigma=1.35$ mho/m; $\epsilon_r=40.9$; $\rho=1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

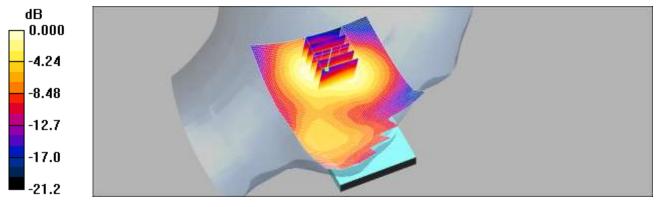
- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

WCDMA1900 Left tilt 9400/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.073 mW/g


WCDMA1900 Left tilt 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.13 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.069 mW/g

0 dB = 0.069 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 19

DUT: LG-P710; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f=1880 MHz; $\sigma=1.35$ mho/m; $\epsilon_r=40.9$; $\rho=1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

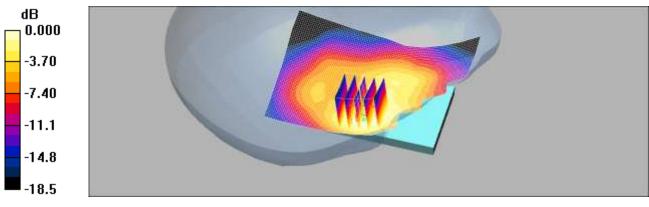
DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

WCDMA1900 Right touch 9400/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.089 mW/g


WCDMA1900 Right touch 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.72 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.091 mW/g

0 dB = 0.091 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.3 $^{\circ}$ C Ambient Temperature: 21.5 $^{\circ}$ C Test Date: Jan.18, 2013

Plot NO. 20

DUT: LG-P710; Type: bar; Serial: #1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f=1880 MHz; $\sigma=1.35$ mho/m; $\epsilon_r=40.9$; $\rho=1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.26, 5.26, 5.26); Calibrated: 2012-03-19

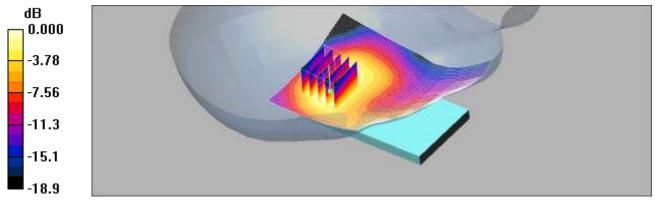
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

- Phantom: SAM 1800/1900 MHz; Type: SAM

$\label{lem:wcdma1900} \textbf{WCDMA1900 Right tilt 9400/Area Scan (71x101x1):} \ \ \text{Measurement grid: } dx=15mm, \ dy=15mm$

Maximum value of SAR (interpolated) = 0.079 mW/g


WCDMA1900 Right tilt 9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.16 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.040 mW/g

Maximum value of SAR (measured) = 0.073 mW/g

0 dB = 0.073 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.19, 2013

Plot NO. 21

DUT: LG-P710; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.83$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

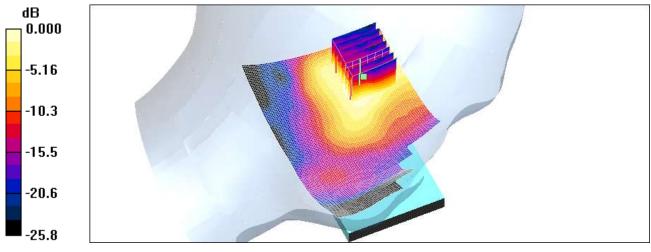
- Phantom: 835/900 Phamtom; Type: SAM

WIFI2450MHz Left touch 1Mbps 6ch/Area Scan (81x121x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.091 mW/g

WIFI2450MHz Left touch 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.07 V/m; Power Drift = 0.131 dB

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.044 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.093 mW/g

0 dB = 0.093 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.19, 2013

Plot NO. 22

DUT: LG-P710; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.83 \text{ mho/m}$; $\epsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19

Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE4 Sn869; Calibrated: 2012-09-18

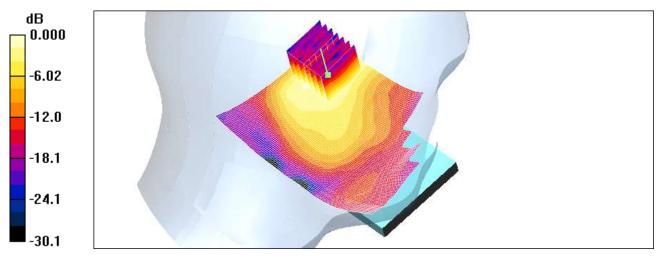
- Phantom: 835/900 Phamtom; Type: SAM

WIFI2450MHz Left tilt 1Mbps 6ch/Area Scan (81x121x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.060 mW/g

WIFI2450MHz Left tilt 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.52 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.134 W/kg

SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.027 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.060 mW/g

0 dB = 0.060 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.19, 2013

Plot NO. 23

DUT: LG-P710; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.83 mho/m; ϵ_r = 39; ρ = 1000 kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

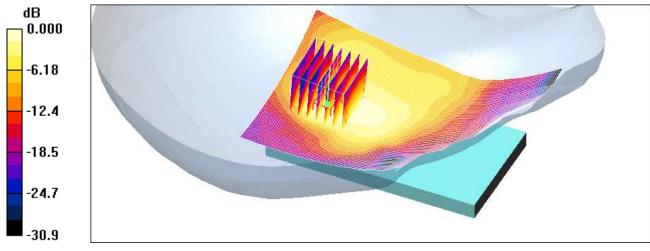
- Phantom: 835/900 Phamtom; Type: SAM

WIFI2450MHz Right touch 1Mbps 6ch/Area Scan (81x121x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.071 mW/g

WIFI2450MHz Right touch 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.98 V/m; Power Drift = 0.166 dB

Peak SAR (extrapolated) = 0.157 W/kg

SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.031 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.069 mW/g

0 dB = 0.069 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: 21.2 $^{\circ}$ C Ambient Temperature: 21.4 $^{\circ}$ C Test Date: Jan.19, 2013

Plot NO. 24

DUT: LG-P710; Type: bar; Serial: #1

Communication System: 2450MHz FCC; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.83$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Right Section; Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.52, 4.52, 4.52); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

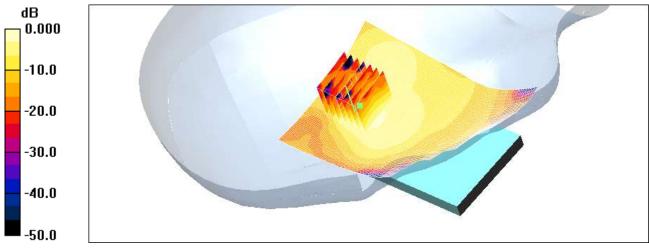
- Phantom: 835/900 Phamtom; Type: SAM

WIFI2450MHz Right tilt 1Mbps 6ch/Area Scan (81x121x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.044 mW/g

WIFI2450MHz Right tilt 1Mbps 6ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 4.24 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.018 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.047 mW/g

0 dB = 0.047 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 25

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 825 MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 57.2$; $\rho = 1000$ kg/m³

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body rear GPRS 3Tx 128/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.979 mW/g

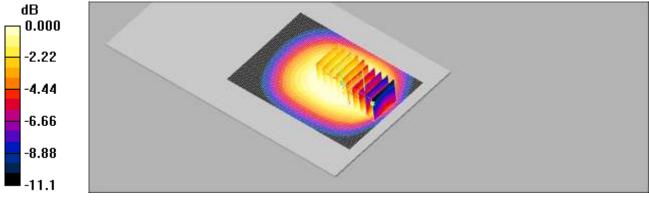
GSM850 Body rear GPRS 3Tx 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.88 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.727 mW/g

Maximum value of SAR (measured) = 0.932 mW/g


GSM850 Body rear GPRS 3Tx 128/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.88 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 0.841 W/kg

SAR(1 g) = 0.629 mW/g; SAR(10 g) = 0.469 mW/g

Maximum value of SAR (measured) = 0.716 mW/g

0 dB = 0.716 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 26

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.986 \text{ mho/m}$; $\varepsilon_r = 57.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body rear GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.979 mW/g

GSM850 Body rear GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

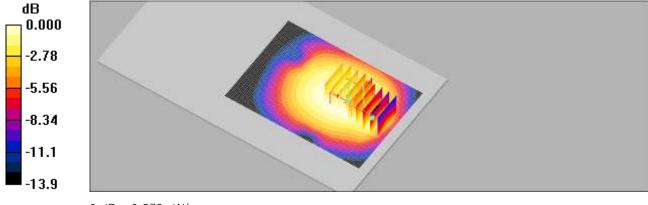
Reference Value = 9.05 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 0.959 mW/g; SAR(10 g) = 0.753 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.973 mW/g


GSM850 Body rear GPRS 3Tx/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.05 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.999 W/kg

SAR(1 g) = 0.733 mW/g; SAR(10 g) = 0.518 mW/g

Maximum value of SAR (measured) = 0.873 mW/g

0 dB = 0.873 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 27

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.996 mho/m; ϵ_r = 57; ρ = 1000 kg/m³

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body rear GPRS 3Tx 251/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.702 mW/g

GSM850 Body rear GPRS 3Tx 251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

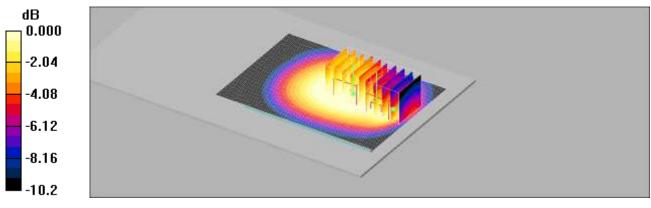
Reference Value = 7.56 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.672 mW/g; SAR(10 g) = 0.541 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.701 mW/g


 $\textbf{GSM850 Body rear GPRS 3Tx 251/Zoom Scan (5x5x7)/Cube 1:} \ \texttt{Measurement grid: } \ \texttt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 7.56 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.646 W/kg

SAR(1 g) = 0.478 mW/g; SAR(10 g) = 0.361 mW/g

Maximum value of SAR (measured) = 0.521 mW/g

0 dB = 0.521 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013 Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

28

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.986 \text{ mho/m}$; $\varepsilon_r = 57.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

Plot NO.

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn869; Calibrated: 2012-09-18

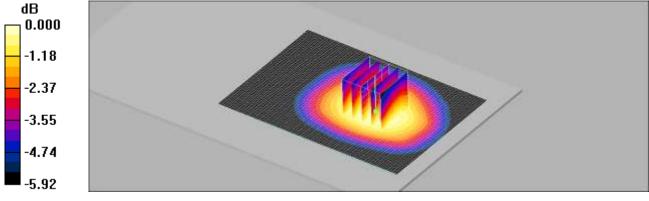
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body front GPRS 3Tx 190/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.530 mW/g

GSM850 Body front GPRS 3Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.55 V/m; Power Drift = -0.135 dB

Peak SAR (extrapolated) = 0.550 W/kg

SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.425 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.525 mW/g

0 dB = 0.525 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 29

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.986 \text{ mho/m}$; $\epsilon_r = 57.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

Build 184

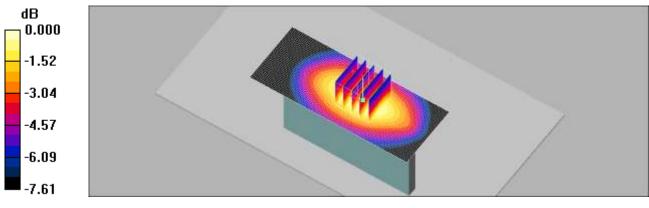
DASY4 Configuration:

- Probe: ET3DV6 SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body Left side 3Tx 190/Area Scan (101x41x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.406 mW/g


 $\textbf{GSM850 Body Left side 3Tx 190/Zoom Scan (5x5x7)/Cube 0:} \ \texttt{Measurement grid: } \ \texttt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 21.0 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.383 mW/g; SAR(10 g) = 0.270 mW/g

Maximum value of SAR (measured) = 0.405 mW/g

0 dB = 0.405 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 30

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 57.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

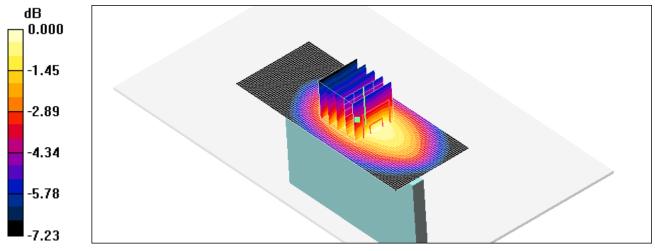
DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body Right side 3Tx 190/Area Scan (101x41x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.


Maximum value of SAR (interpolated) = 0.496 mW/g

GSM850 Body Right side 3Tx 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.9 V/m; Power Drift = 0.093 dB

Peak SAR (extrapolated) = 0.635 W/kg

SAR(1 g) = 0.502 mW/g; SAR(10 g) = 0.366 mW/g

Maximum value of SAR (measured) = 0.529 mW/g

0 dB = 0.529 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.2 \,^{\circ}\mathrm{C}$ Ambient Temperature: $21.4 \,^{\circ}\mathrm{C}$ Test Date: Jan.17, 2013
Separation Distance: $1.0 \,^{\circ}\mathrm{cm}$ Plot NO. 31

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.986$ mho/m; $\epsilon_r = 57.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.24, 6.24, 6.24); Calibrated: 2012-03-19

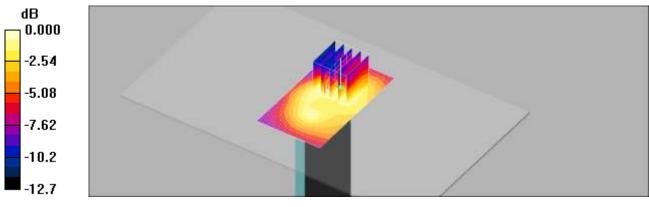
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM850 Body Bottom 190/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.111 mW/g

GSM850 Body Bottom 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 8.32 V/m; Power Drift = -0.112 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.061 mW/g

$In fo: Interpolated \ medium \ parameters \ used \ for \ SAR \ evaluation.$

Maximum value of SAR (measured) = 0.111 mW/g

0 dB = 0.111 mW/g

HCTA1301FS06 FCC ID: ZNFP710 Date of Issue: Jan.31, 2013 Report No.:

HCT CO., LTD Test Laboratory:

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

21.3 ℃ Liquid Temperature: 21.5 ℃ Ambient Temperature: Test Date: Jan.18, 2013 Separation Distance: 1.0 cm Plot NO. 32

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77

Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8

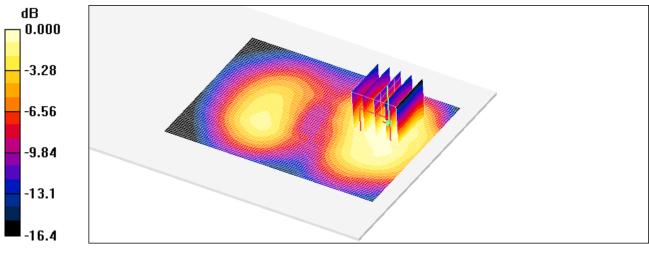
Build 184

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.55, 4.55, 4.55); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM1900 Body rear GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.131 mW/g


GSM1900 Body rear GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.08 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.117 mW/g; SAR(10 g) = 0.073 mW/g

Maximum value of SAR (measured) = 0.126 mW/g

0 dB = 0.126 mW/g

Test Laboratory: HCT CO., LTD

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only/PCS WCDMA/HSDPA/HSUPA Phone with

Bluetooth, WLAN/NFC

Liquid Temperature: $21.3~^{\circ}\text{C}$ Ambient Temperature: $21.5~^{\circ}\text{C}$ Test Date: Jan.18, 2013
Separation Distance: 1.0~cmPlot NO. 33

DUT: LG-P710; Type: bar; Serial: #1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:2.77 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section: Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMC4

Phantom section: Center Section; Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 184

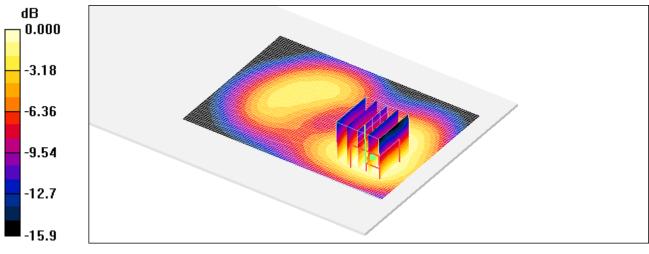
Dullu 104

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.55, 4.55, 4.55); Calibrated: 2012-03-19

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn869; Calibrated: 2012-09-18
- Phantom: Triple Flat Phantom 5.1C_20120905; Type: QD 000 P51 CA

GSM1900 Body front GPRS 3Tx/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.137 mW/g


 $\textbf{GSM1900 Body front GPRS 3Tx/Zoom Scan (5x5x7)/Cube 0:} \ \ \texttt{Measurement grid: } \ \mathtt{dx=8mm, dy=8mm, dz=5mm}$

Reference Value = 4.57 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.133 mW/g

0 dB = 0.133 mW/g