

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 05/06/16 - 05/16/16 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1605060879-R2.ZNF

FCC ID: ZNFL56VL

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): LGL56VL, LG-L56VL, L56VL

Equipment Class	Band & Mode	Tx Frequency	SAR Tx Frequency			
			1 gm Head (W/kg)	SAR 1 gm Body- Worn (W/kg) 0.76 1.28 1.29 0.55 0.71 1.29 1.29 0.13 0.17		
PCE	Cell. CDMA/EVDO	824.70 - 848.31 MHz	0.60	0.76	0.78	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	1.05	1.28	1.29	
PCE	LTE Band 13	779.5 - 784.5 MHz	0.37	0.55	0.55	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.45	0.71	0.76	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.78	1.29	1.29	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	1.08	0.13	0.17	
DSS/DTS	Bluetooth	2402 - 2480 MHz	N/A	< 0.1	N/A	
Simultaneous	Simultaneous SAR per KDB 690783 D01v01r03:			1.42	1.42	

Note: This revised Test Report (S/N: 0Y1605060879-R2.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

FCC ID: ZNFL56VL	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 1 of EO
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 1 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	7
3	INTROD	UCTION	8
4	DOSIME	TRIC ASSESSMENT	9
5	DEFINIT	ION OF REFERENCE POINTS	. 10
6	TEST CO	DNFIGURATION POSITIONS	. 11
7	RF EXPO	OSURE LIMITS	. 14
8	FCC ME	ASUREMENT PROCEDURES	. 15
9	RF CON	DUCTED POWERS	. 20
10	SYSTEM	VERIFICATION	. 30
11	SAR DA	ΓA SUMMARY	. 32
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	. 40
13	SAR ME	ASUREMENT VARIABILITY	. 45
14	EQUIPM	ENT LIST	. 46
15	MEASUF	REMENT UNCERTAINTIES	. 47
16	CONCLU	JSION	. 48
17	REFERE	NCES	. 49
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFL56VL	PCTEST.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 6 5 0
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 2 of 50

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 13	Data	779.5 - 784.5 MHz
LTE Band 4 (AWS)	Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Mode / Band		Modulated Average (dBm)
C-II	Maximum	24.7
Cell. CDMA/EVDO	Nominal	24.2
DCS CDMA/EVDO	Maximum	24.7
PCS CDMA/EVDO	Nominal	24.2

FCC ID: ZNFL56VL	PCTEST SUBJECTION OF THE PROPERTY INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 2 of E0
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 3 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

Mode / Band		Modulated Average (dBm)
LTE Band 13	Maximum	24.2
LIE Ballu 13	Nominal	23.7
LTE Dand 4 (ANAS)	Maximum	24.2
LTE Band 4 (AWS)	Nominal	23.7
LTE Dand 2 (DCS)	Maximum	24.2
LTE Band 2 (PCS)	Nominal	23.7

Mode / Band	Modulated Average (dBm)			
		Ch. 1	Ch. 2-10	Ch. 11
IEEE 802.11b (2.4 GHz)	Maximum	16.0		
TEEE 802.110 (2.4 GHZ)	Nominal	15.0		
IEEE 802 11a (2.4 CHz)	Maximum	14.0	15.0	13.0
IEEE 802.11g (2.4 GHz)	Nominal	13.0	14.0	12.0
IEEE 802.11n (2.4 GHz)	Maximum	13.0	14.0	12.0
TEEE 802.1111 (2.4 GHZ)	Nominal	12.0	13.0	11.0

Mode / Band	Modulated Average (dBm)	
DI atauti	Maximum	9.5
Bluetooth	Nominal	7.5
Bluetooth LE	Maximum	0.0
Bidetootii LE	Nominal	-1.0

FCC ID: ZNFL56VL	PCTEST.	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 4 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 4 of 50

1.4 DUT Antenna Locations

The overall dimensions of this device are $> 9 \times 5$ cm. The overall diagonal dimension of the device is ≤ 160 mm and the diagonal display is ≤ 150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Top	Bottom	Right	Left
Cell. EVDO	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory		Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	1x CDMA voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	
3	LTE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*VOIP applications are considered.
4	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*VOIP applications are considered.
5	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*VOIP applications are considered.
6	CDMA/EVDO data + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*VOIP applications are considered.

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.

FCC ID: ZNFL56VL	@\ PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
200121211120012	V SNOINSEEDER LASOKATREY, INC.		U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 5 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 5 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

3. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI direct are included in the above table.

1.6 Miscellaneous SAR Test Considerations

(A) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1x Advanced was not more than 0.25 dB higher than the maximum powers for 1x.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
Cell. CDMA/EVDO	09018	09067	09067
PCS CDMA/EVDO	09067	09067	09067
LTE Band 13	09059	09026	09026
LTE Band 4 (AWS)	09059	09059	09059
LTE Band 2 (PCS)	09026	09059	09059
2.4 GHz WLAN	09091	09091	09091
Bluetooth	-	08994	-

FCC ID: ZNFL56VL	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by:
	FROMELINE LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates: DUT Type:			Page 6 of FO
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 6 of 50

2 LTE INFORMATION

LTE Information				
FCC ID		ZNFL56VL		
Form Factor		Portable Handset		
Frequency Range of each LTE transmission band	LTE	Band 13 (779.5 - 784.5 N	MHz)	
	LTE Band 4 (AWS) (1710.7 - 1754.3 MHz)			
	LTE Ba	nd 2 (PCS) (1850.7 - 1909	0.3 MHz)	
Channel Bandwidths	L	ΓΕ Band 13: 5 MHz, 10 MI	Hz	
	· ,	4 MHz, 3 MHz, 5 MHz, 10		
	` '	MHz, 3 MHz, 5 MHz, 10		
Channel Numbers and Frequencies (MHz)	Low	Mid	High	
LTE Band 13: 5 MHz	779.5 (23205)	782 (23230)	784.5 (23255)	
LTE Band 13: 10 MHz	N/A	782 (23230)	N/A	
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)	
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)	
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
UE Category		4		
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS 36.101				
section 6.2.3~6.2.5? (manufacturer attestation to be		YES		
provided)				
A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Release 10 Additional Information	This device does not support full CA features on 3GPP Release 10. The following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, elCl, WIFI Offloading, MDH, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.			

FCC ID: ZNFL56VL	SAR EVALUATION REPORT		LG	Reviewed by:
				Quality Manager
Document S/N: Test Dates: DUT Type:				Page 7 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		rage 7 01 30
C DCTECT Engineering Laboratory Inc.				DEV/ 17 G M

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFL56VL	SAR EVALUATION REPORT	G IG	Reviewed by:		
1 00 12 12 11 20012			U Lu	Quality Manager	
Document S/N:	Test Dates: DUT Type:		Dogo 9 of 50		
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 8 of 50	

© 2016 PCTEST Engineering Laboratory, Inc.

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.



Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	,,	,,	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤15	≤8	≤5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤ 4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
	SEGUNDADES LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 9 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16 Portable Handset			PEVIZON

© 2016 PCTEST Engineering Laboratory, Inc.

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

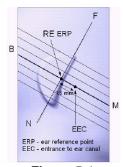


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

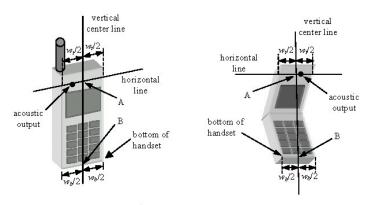


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFL56VL	SAR EVALUATION REPORT	(A) I G	Reviewed by:	
1 00 12 12 11 20012			U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Page 10 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16			Page 10 of 50

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15º Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFL56VL	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 -4 F0
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 11 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15º Tilt Position

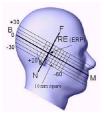


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

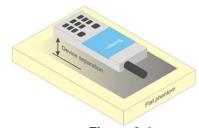


Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: ZNFL56VL	 PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:
I GO ID. ZIVI ESOVE	SWGINLERIED LABORATERY, INC.	CAN EVALUATION HEI OHT	LG	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 12 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 12 of 50
016 PCTEST Engineering Laboratory.	Inc.	<u> </u>		REV 17.6 M

© 2016 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT		Reviewed by:
	V 20010111111111111111111111111111111111			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 13 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 13 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT			
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)			
Peak Spatial Average SAR _{Head}	1.6	8.0			
Whole Body SAR	0.08	0.4			
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20			

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFL56VL	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 14 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 14 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT LG		Reviewed by:
	SEGULIARS LABORATORY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 15 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		rage 15 01 50
16 PCTEST Engineering Laboratory.	Inc.			REV 17.6 M

© 2016 PCTEST Engineering Laboratory, Inc

- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

Parameter	Units	Value
I _{or}	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2
Parameters for Max. Power for RC3

Parameter	Units	Value
Îor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with Ev-Do capabilities, the 3G SAR test reduction procedure is applied to Ev-Do Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	G LG	Reviewed by:
	INGINIERRE LAIOKATERY, INC.		<u> </u>	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 16 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 16 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For Ev-Do data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with Ev-Do Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.4.6 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers are measured using SO75 with RC8 on the uplink and RC11 on the downlink per FCC KDB Publication 941225 D01v03r01. Smart blanking is disabled for all measurements. The EUT is configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers are measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

The 3G SAR test reduction procedure is applied to the 1x-Advanced transmission mode with 1x RTT RC3 as the primary mode. When SAR measurement is required, the 1x-Advanced power measurement configurations are used. The1x Advanced SAR procedures are applied separately to head, body-worn accessory and other exposure conditions.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

SAR EVALUATION REPORT LG		Reviewed by:	
V SEGINSTERS LABORATORY, INC.			Quality Manager
Test Dates:	DUT Type:		Page 17 of 50
05/06/16 - 05/16/16	Portable Handset		Fage 17 01 50
	Test Dates:	Test Dates: DUT Type:	Test Dates: DUT Type:

© 2016 PCTEST Engineering Laboratory, Inc.

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

FCC ID: ZNFL56VL	SAR EVALUATION REPORT		Reviewed by:	
1 00 12 12 11 20012	SEGUNDADES LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 18 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 18 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

8.6.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.4 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test Configuration Procedure

For OFDM, in both 2.4 Ghz bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.3).

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT LG		Reviewed by:
	** *** *** *** *** *** *** *** *** ***			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 19 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Fage 19 01 30
16 PCTEST Engineering Laboratory, In	nc.			REV 17.6 M

© 2016 PCTEST Engineering Laboratory, Inc.

9 RF CONDUCTED POWERS

9.1 CDMA Conducted Powers

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
	1013	22H	824.7	24.07	23.99	24.13	23.99	23.90	23.98	23.94
Cellular	384	22H	836.52	24.37	24.29	24.48	24.28	24.22	24.28	24.26
	777	22H	848.31	24.50	24.44	24.50	24.29	24.38	24.36	24.31
	25	24E	1851.25	24.10	23.95	24.00	24.16	24.04	24.00	23.98
PCS	600	24E	1880	24.50	24.52	24.32	24.39	24.45	24.45	24.38
	1175	24E	1908.75	24.59	24.40	24.35	24.48	24.44	24.49	24.55

Note: RC1 is only applicable for IS-95 compatibility.

Figure 9-1
Power Measurement Setup

FCC ID: ZNFL56VL	INDINITIES LADRATURY, INC.	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		, ,	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 20 of 50	

© 2016 PCTEST Engineering Laboratory, Inc.

9.2 **LTE Conducted Powers**

9.2.1 LTE Band 13

Table 9-1 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

			LTE Band 13 10 MHzBandwidth		
			Mid Channel		
Modulation	RB Size	, , ,	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	0011 [05]	
	1	0	24.17		0
	1	25	24.12	0	0
	1	49	24.20		0
QPSK	25	0	22.90		1
	25	12	22.95	0-1	1
	25	25	23.03	0-1	1
	50	0	23.01		1
	1	0	23.08		1
	1	25	22.76	0-1	1
	1	49	22.99		1
16QAM	25	0	21.52		2
	25	12	21.55	0-2	2
	25	25	21.43] 0-2	2
	50	0	21.52		2

Table 9-2 LTE Band 13 Conducted Powers - 5 MHz Bandwidth

			aaotoa i omoio	O MITTLE BUTTON	
			LTE Band 13 5 MHzBandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	23.86		0
	1	12	23.79	0	0
	1	24	23.94		0
QPSK	12	0	23.07		1
	12	6	22.95	0-1	1
	12	13	22.93	0-1	1
	25	0	23.06		1
	1	0	22.63		1
	1	12	22.82	0-1	1
	1	24	22.76		1
16QAM	12	0	21.51		2
	12	6	21.50	0-2	2
	12	13	21.53	0-2	2
	25	0	21.49		2

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	G LG	Reviewed by:
	FRGINITIES LATORATURE, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 21 01 50

9.2.2 LTE Band 4 (AWS)

Table 9-3 LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

		, ,,,,,	LTE Band 4 (AWS)		
			20 MHzBandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	oci i (ub)	
	1	0	24.12		0
	1	50	24.18	0	0
	1	99	24.19		0
QPSK	50	0	22.95		1
	50	25	22.96	0-1	1
	50	50	22.90	0-1	1
	100	0	22.88		1
	1	0	23.05		1
	1	50	22.86	0-1	1
	1	99	22.99		1
16QAM	50	0	21.58		2
	50	25	21.66	0-2	2
	50	50	21.56	0-2	2
	100	0	21.51		2

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-4 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 4 (AWS) 15 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.60	23.97	23.91		0
	1	36	23.57	23.95	23.74	0	0
	1	74	23.72	24.12	23.72		0
QPSK	36	0	22.54	23.01	22.87	0-1	1
	36	18	22.56	22.99	22.82		1
	36	37	22.64	22.85	22.84		1
	75	0	22.63	22.91	22.81		1
	1	0	22.19	22.42	22.23		1
	1	36	22.26	22.31	22.00	0-1	1
Ī	1	74	22.34	22.49	22.01		1
16QAM	36	0	21.22	21.36	21.46		2
	36	18	21.33	21.34	21.38	0-2	2
	36	37	21.29	21.24	21.33	0-2	2
	75	0	21.14	21.36	21.34		2

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
1 00 12 12 11 20012	*** V SEGINEERING LABORATIST, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 22 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 22 01 50

Table 9-5 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

			Janu + (AWS) C	onducted Powe	13 - 10 WITE Dai	Idwidtii	
				LTE Band 4 (AWS)			
		1	Law Chamal	10 MHzBandwidth	Liimh Ohannal		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	[]
				Conducted Power [dBm	1]		
·	1	0	23.65	23.96	23.89		0
	1	25	23.88	24.04	23.99	0	0
	1	49	23.64	23.86	23.80		0
QPSK	25	0	22.61	22.95	22.93		1
	25	12	22.66	22.99	22.91	0.1	1
	25	25	22.71	22.94	22.86	0-1	1
	50	0	22.65	22.99	22.91		1
	1	0	22.21	22.49	22.50		1
	1	25	22.24	22.48	22.51	0-1	1
	1	49	22.30	22.46	22.38		1
16QAM	25	0	21.10	21.57	21.36		2
	25	12	21.15	21.39	21.45	0-2	2
	25	25	21.19	21.32	21.46] 0-2	2
	50	0	21.18	21.58	21.33	1	2

Table 9-6 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 4 (AWS) 5 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.52	24.06	23.62		0
	1	12	23.68	23.95	23.89	0	0
	1	24	23.87	24.05	23.76		0
QPSK	12	0	22.48	22.92	22.73	0-1	1
	12	6	22.54	22.97	22.83		1
	12	13	22.55	22.90	22.70		1
	25	0	22.56	22.91	22.94		1
	1	0	22.11	22.46	22.29		1
	1	12	22.02	22.40	22.25	0-1	1
	1	24	22.18	22.27	22.20		1
16QAM	12	0	21.24	21.46	21.51		2
	12	6	21.21	21.47	21.50	0-2	2
	12	13	21.26	21.41	21.40		2
	25	0	21.19	21.45	21.35		2

FCC ID: ZNFL56VL	PCTEST:	SAR EVALUATION REPORT	(L) LG	Reviewed by:
				Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 23 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Fage 23 01 50

Table 9-7 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

			Dalla + (AWS)	onducted Powe	13 - 5 WILL Dall	awiatii	
				LTE Band 4 (AWS) 3 MHzBandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.75	24.08	24.02		0
	1	7	23.62	23.91	24.02	0	0
1	1	14	23.74	23.83	24.00		0
QPSK	8	0	22.56	22.94	22.76		1
	8	4	22.53	22.89	22.63	0.1	1
	8	7	22.54	22.87	22.73	0-1	1
	15	0	22.51	23.02	22.74		1
	1	0	21.85	22.43	22.55		1
	1	7	21.82	22.37	22.57	0-1	1
	1	14	21.83	22.31	22.53		1
16QAM	8	0	21.13	21.21	21.29		2
	8	4	21.19	21.20	21.29	0.0	2
	8	7	21.14	21.14	21.21	0-2	2
	15	0	20.89	21.30	21.43		2

Table 9-8 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

				ondaotod i otro				
				LTE Band 4 (AWS)				
				1.4 MHzBandwidth				
			Low Channel	Mid Channel	High Channel			
Modulation	RR Size	PR Size PR Offeet	RB Size RB Offset	19957	20175	20393	MPR Allowed per	MPR [dB]
modulation.	112 0120	112 011301	(1710.7 MHz)	(1732.5 MHz)	(1754.3 MHz)	3GPP [dB]	[0.5]	
			(Conducted Power [dBm	1]			
	1	0	23.67	24.03	24.13		0	
	1	2	23.73	24.12	24.12		0	
	1	5	23.68	24.07	24.11	0	0	
QPSK	3	0	23.53	24.13	24.01		0	
	3	2	23.46	24.13	24.08]	0	
	3	3	23.55	24.09	24.04]	0	
	6	0	22.60	22.86	22.95	0-1	1	
	1	0	21.93	22.38	22.83		1	
	1	2	22.18	22.22	22.60]	1	
	1	5	22.38	22.37	22.43	0-1	1	
16QAM	3	0	21.89	22.39	22.59	0-1	1	
	3	2	22.08	22.51	22.38		1	
	3	3	21.99	22.32	22.23		1	
	6	0	21.06	21.74	21.41	0-2	2	

FCC ID: ZNFL56VL	<i>©</i> Λ PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
1 33 15 2141 E30VE	*** V SNGINSERIND LAFORATORY, INC.	CARLETALOANION NEI ONT	U LG	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 24 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 24 01 50

9.2.3 LTE Band 2 (PCS)

Table 9-9 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Low Channel	nel Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.62	23.70	23.95		0
	1	50	23.47	23.42	23.81	0	0
	1	99	23.56	23.38	23.72		0
QPSK	50	0	22.41	22.66	22.75	0-1	1
	50	25	22.31	22.70	22.62		1
	50	50	22.36	22.53	22.56		1
	100	0	22.35	22.55	22.57		1
	1	0	22.30	22.64	22.50		1
	1	50	22.21	22.71	22.60	0-1	1
16QAM	1	99	22.30	22.54	22.43		1
	50	0	21.08	21.26	21.17		2
	50	25	21.02	21.27	21.11	0-2	2
	50	50	20.85	21.21	21.08	0-2	2
	100	0	20.86	21.16	21.06		2

Table 9-10 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 2 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.86	23.96	23.90		0
	1	36	23.45	23.44	23.64	0	0
	1	74	23.44	23.36	23.76		0
QPSK	36	0	22.26	22.56	22.58	0-1	1
	36	18	22.18	22.42	22.51		1
	36	37	22.20	22.48	22.49		1
	75	0	22.28	22.41	22.46		1
	1	0	21.87	21.98	22.26		1
	1	36	21.89	22.04	22.01	0-1	1
	1	74	21.87	22.09	22.04	1	1
16QAM	36	0	20.86	21.13	21.13		2
	36	18	20.87	21.01	21.14	1	2
	36	37	20.89	20.97	20.94	0-2	2
Ī	75	0	20.86	20.96	20.98	1	2

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:	
1 00 12 12 11 20012	SINGINIERIES LABORATORY, INC.			Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 25 of 50	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 25 01 50	

Table 9-11 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

				LTE Band 2 (PCS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.27	23.59	23.56		0
	1	25	23.28	23.84	23.64	0	0
	1	49	23.20	23.52	23.47		0
QPSK	25	0	22.34	22.53	22.63	0-1	1
	25	12	22.28	22.59	22.59		1
	25	25	22.17	22.60	22.66		1
	50	0	22.23	22.66	22.58		1
	1	0	21.89	21.84	22.01		1
	1	25	21.82	21.85	21.83	0-1	1
16QAM	1	49	21.75	21.88	22.11		1
	25	0	20.95	21.17	21.07		2
	25	12	20.84	21.27	21.05	0-2	2
	25	25	20.86	21.25	21.02	0-2	2
	50	0	20.92	21.20	21.13	1	2

Table 9-12 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 2 (PCS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.21	23.54	23.24		0
	1	12	23.25	23.76	23.56	0	0
	1	24	23.15	23.48	23.29		0
QPSK	12	0	22.30	22.67	22.57	0-1	1
	12	6	22.38	22.71	22.42		1
	12	13	22.24	22.76	22.38		1
	25	0	22.27	22.62	22.49		1
	1	0	22.02	22.11	22.02		1
	1	12	22.18	22.46	22.29	0-1	1
	1	24	21.76	22.67	22.05	1	1
16QAM	12	0	20.94	20.88	20.89		2
	12	6	20.81	20.92	20.88	0-2	2
	12	13	20.74	20.98	20.89	0-2	2
ļ	25	0	20.78	21.24	21.15	1	2

FCC ID: ZNFL56VL	@\ PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:
1 00 12 12111 20072	FRGINEERIED LABORATORY, INC.		U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 26 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 26 01 50

Table 9-13 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

			varia 2 (1 00) 00	Jilauctea Fowe	3 - 5 WILL Dank	wiatii	
				LTE Band 2 (PCS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.30	23.52	23.57		0
	1	7	23.32	23.58	23.67	0	0
	1	14	23.35	23.55	23.49		0
QPSK	8	0	22.30	22.61	22.56	0-1	1
	8	4	22.37	22.59	22.58		1
	8	7	22.28	22.60	22.45		1
	15	0	22.28	22.65	22.60		1
	1	0	21.71	22.57	21.71		1
	1	7	21.86	22.46	22.06	0-1	1
	1	14	21.72	22.48	21.75		1
16QAM	8	0	21.06	21.21	21.13		2
	8	4	21.00	21.22	21.08	1	2
	8	7	21.06	21.21	21.17	0-2	2
	15	0	20.84	21.24	21.04		2

Table 9-14 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.25	23.52	23.56		0
	1	2	23.33	23.57	23.66	1	0
	1	5	23.37	23.41	23.55	0	0
QPSK	3	0	23.25	23.63	23.58		0
	3	2	23.34	23.66	23.70		0
	3	3	23.30	23.59	23.62		0
	6	0	22.36	22.60	22.64	0-1	1
	1	0	21.80	22.74	21.74		1
	1	2	21.71	22.78	21.71	1	1
	1	5	21.75	22.77	21.77	0-1	1
16QAM	3	0	21.76	22.21	21.78	1 0-1	1
	3	2	22.08	22.28	21.76	1	1
	3	3	22.03	22.20	21.74	1	1
	6	0	20.71	21.21	20.86	0-2	2

Document S/N: Test Dates: DUT Type:	Reviewed by:
Pa	Quality Manager
	Page 27 of 50
0Y1605060879-R2.ZNF	rage 27 01 50

9.3 **WLAN Conducted Powers**

Table 9-15 2.4 GHz WLAN Average RF Power

		2.4GHz Conducted Power [dBm]					
Freq [MHz]	Channel						
2412	1	15.57	13.18	11.91			
2417	2	N/A	14.23	13.02			
2437	6	15.12	14.13	12.95			
2457	10	N/A	14.28	12.98			
2462	11	15.38	12.34	11.89			

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

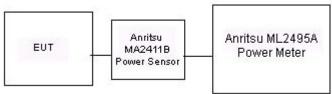


Figure 9-2 Power Measurement Setup for Bandwidths < 50 MHz

FCC ID: ZNFL56VL	@\ PCTEST	SAR EVALUATION REPORT		Reviewed by:
201212111 20072	V SEGINLERIED LABORATORY, INC.	3 2 2 3	U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 28 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 28 01 50

9.4 Bluetooth Conducted Powers

Table 9-16
Bluetooth Average RF Power

_	Data		Avg Conducted Power		
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	1.0	0	8.42	6.954	
2441	1.0	39	9.12	8.167	
2480	1.0	78	6.94	4.948	
2402	2.0	0	6.03	4.010	
2441	2.0	39	6.72	4.694	
2480	2.0	78	4.54	2.846	
2402	3.0	0	6.05	4.031	
2441	3.0	39	6.80	4.786	
2480	3.0	78	4.65	2.919	

Note: The bolded data rate and channel above were tested for SAR.

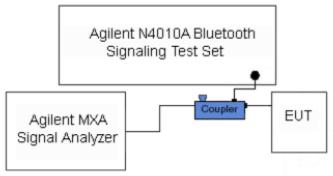


Figure 9-3
Power Measurement Setup

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:
	V SNG(NELEHRE LABORATORY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 29 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		PEV 17.6 M

© 2016 PCTEST Engineering Laboratory, Inc.

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	%devε
			740	0.896	41.947	0.893	41.994	0.34%	-0.11%
5/10/2016	750H	22.5	755	0.911	41.766	0.894	41.916	1.90%	-0.36%
0/10/2010	73011	22.5	770	0.926	41.587	0.895	41.838	3.46%	-0.60%
			785	0.940	41.384	0.896	41.760	4.91%	-0.90%
			820	0.882	40.282	0.899	41.578	-1.89%	-3.12%
5/9/2016	835H	22.4	835	0.893	40.146	0.900	41.500	-0.78%	-3.26%
			850	0.907	39.940	0.916	41.500	-0.98%	-3.76%
			1710	1.307	40.124	1.348	40.142	-3.04%	-0.04%
5/9/2016	1750H	22.1	1750	1.343	39.929	1.371	40.079	-2.04%	-0.37%
			1790	1.384	39.760	1.394	40.016	-0.72%	-0.64%
			1850	1.398	40.792	1.400	40.000	-0.14%	1.98%
5/9/2016	1900H	22.3	1880	1.427	40.645	1.400	40.000	1.93%	1.61%
			1910	1.464	40.520	1.400	40.000	4.57%	1.30%
			2400	1.757	40.409	1.756	39.289	0.06%	2.85%
5/9/2016	2450H	23.2	2450	1.819	40.155	1.800	39.200	1.06%	2.44%
			2500	1.872	39.981	1.855	39.136	0.92%	2.16%
			2400	1.816	39.800	1.756	39.289	3.42%	1.30%
5/16/2016	2450H	24.5	2450	1.875	39.613	1.800	39.200	4.17%	1.05%
			2500	1.939	39.425	1.855	39.136	4.53%	0.74%
			740	0.957	54.557	0.963	55.570	-0.62%	-1.82%
5/9/2016	750B	23.9	755	0.974	54.375	0.964	55.512	1.04%	-2.05%
0,0,2010	7005	20.0	770	0.989	54.214	0.965	55.453	2.49%	-2.23%
			785	1.001	54.045	0.966	55.395	3.62%	-2.44%
			820	1.007	53.868	0.969	55.258	3.92%	-2.52%
5/9/2016	835B	21.5	835	1.017	53.791	0.970	55.200	4.85%	-2.55%
			850	1.033	53.703	0.988	55.154	4.55%	-2.63%
			1710	1.415	52.683	1.463	53.537	-3.28%	-1.60%
5/9/2016	1750B	22.0	1750	1.456	52.534	1.488	53.432	-2.15%	-1.68%
			1790	1.499	52.407	1.514	53.326	-0.99%	-1.72%
			1850	1.511	53.506	1.520	53.300	-0.59%	0.39%
5/7/2016	1900B	22.1	1880	1.549	53.412	1.520	53.300	1.91%	0.21%
			1910	1.585	53.300	1.520	53.300	4.28%	0.00%
			1850	1.474	53.125	1.520	53.300	-3.03%	-0.33%
5/10/2016	1900B	23.4	1880	1.506	53.052	1.520	53.300	-0.92%	-0.47%
			1910	1.539	52.922	1.520	53.300	1.25%	-0.71%
			2400	1.972	51.792	1.902	52.767	3.68%	-1.85%
5/6/2016	2450B	23.6	2450	2.041	51.604	1.950	52.700	4.67%	-2.08%
			2500	2.109	51.403	2.021	52.636	4.35%	-2.34%
			2400	1.898	51.931	1.902	52.767	-0.21%	-1.58%
5/12/2016	2450B	22.7	2450	1.973	51.820	1.950	52.700	1.18%	-1.67%
			2500	2.034	51.628	2.021	52.636	0.64%	-1.92%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:
1 00 12 12 11 20012	SEGUNDADES LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 30 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 30 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-2 System Verification Results

	System Verification System Verification											
	TARGET & MEASURED											
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (℃)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
J	750	HEAD	05/10/2016	23.2	22.5	0.200	1046	3318	1.660	8.200	8.300	1.22%
G	835	HEAD	05/09/2016	24.5	23.2	0.200	4d133	3334	1.960	9.130	9.800	7.34%
Н	1750	HEAD	05/09/2016	23.7	22.1	0.100	1051	3319	3.700	36.100	37.000	2.49%
Α	1900	HEAD	05/09/2016	23.7	22.3	0.100	5d148	3332	4.100	39.900	41.000	2.76%
Е	2450	HEAD	05/09/2016	23.0	22.6	0.100	719	7406	5.090	54.200	50.900	-6.09%
С	2450	HEAD	05/16/2016	23.5	23.5	0.100	797	3288	5.180	52.700	51.800	-1.71%
С	750	BODY	05/09/2016	23.7	23.9	0.200	1003	3288	1.640	8.660	8.200	-5.31%
J	835	BODY	05/09/2016	21.9	21.5	0.200	4d119	3318	1.970	9.140	9.850	7.77%
K	1750	BODY	05/09/2016	23.5	22.0	0.100	1051	3022	3.610	36.500	36.100	-1.10%
I	1900	BODY	05/07/2016	22.6	22.3	0.100	5d149	3333	4.290	40.400	42.900	6.19%
1	1900	BODY	05/10/2016	24.4	23.4	0.100	5d149	3333	4.220	40.400	42.200	4.46%
Н	2450	BODY	05/06/2016	24.3	23.5	0.100	719	3319	5.440	51.900	54.400	4.82%
J	2450	BODY	05/12/2016	21.9	22.7	0.100	882	3318	4.770	49.400	47.700	-3.44%

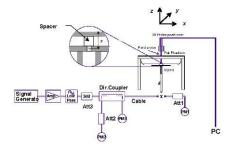


Figure 10-1 System Verification Setup Diagram

Figure 10-2
System Verification Setup Photo

	T		1
FOC ID: THE FOU	@ PCTEST	SAR EVALUATION REPORT	Reviewed by:
FCC ID: ZNFL56VL	SEGINEERISE LABORATERY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 21 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset	Page 31 of 50

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 Cell. CDMA Head SAR

					М	EASURE	MENT RI	SULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)	g	(W/kg)	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.29	0.07	Right	Cheek	09018	1:1	0.492	1.099	0.541	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.29	0.03	Right	Tilt	09018	1:1	0.253	1.099	0.278	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.29	0.16	Left	Cheek	09018	1:1	0.383	1.099	0.421	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.29	0.14	Left	Tilt	09018	1:1	0.216	1.099	0.237	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.26	-0.09	Right	Cheek	09018	1:1	0.546	1.107	0.604	A1
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.26	0.02	Right	Tilt	09018	1:1	0.276	1.107	0.306	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.26	0.00	Left	Cheek	09018	1:1	0.394	1.107	0.436	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.26	0.03	Left	Tilt	09018	1:1	0.237	1.107	0.262	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 gran	n		

Table 11-2 PCS CDMA Head SAR

							MENT RI	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	. , . ,	(W/kg)	,	(W/kg)	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.52	-0.02	Right	Cheek	09067	1:1	0.570	1.042	0.594	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.52	-0.02	Right	Tilt	09067	1:1	0.347	1.042	0.362	
1851.25	25	PCS CDMA	RC3 / SO55	24.7	23.95	0.03	Left	Cheek	09067	1:1	0.630	1.189	0.749	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.52	-0.05	Left	Cheek	09067	1:1	0.913	1.042	0.951	
1908.75	1175	PCS CDMA	RC3 / SO55	24.7	24.40	0.01	Left	Cheek	09067	1:1	0.975	1.072	1.045	A2
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.52	-0.04	Left	Tilt	09067	1:1	0.575	1.042	0.599	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.55	0.03	Right	Cheek	09067	1:1	0.525	1.035	0.543	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.55	-0.06	Right	Tilt	09067	1:1	0.234	1.035	0.242	
1851.25	25	PCS CDMA	EVDO Rev. A	24.7	23.98	-0.04	Left	Cheek	09067	1:1	0.560	1.180	0.661	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.38	0.04	Left	Cheek	09067	1:1	0.827	1.076	0.890	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.55	0.02	Left	Cheek	09067	1:1	0.805	1.035	0.833	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.55	0.10	Left	Tilt	09067	1:1	0.483	1.035	0.500	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak			Head 1.6 W/kg (mW/g) averaged over 1 gram							

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by:
	V SNGINSLESSE LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 32 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 32 01 50

Table 11-3 LTE Band 13 Head SAR

										• • • •	<u>uu 0,</u>								
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	0.00	0	Right	Cheek	QPSK	1	49	09059	1:1	0.367	1.000	0.367	A3
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	-0.03	1	Right	Cheek	QPSK	25	25	09059	1:1	0.244	1.040	0.254	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	0.00	0	Right	Tilt	QPSK	1	49	09059	1:1	0.240	1.000	0.240	
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	0.00	1	Right	Tilt	QPSK	25	25	09059	1:1	0.153	1.040	0.159	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	-0.03	0	Left	Cheek	QPSK	1	49	09059	1:1	0.285	1.000	0.285	
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	0.04	1	Left	Cheek	QPSK	25	25	09059	1:1	0.201	1.040	0.209	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	-0.19	0	Left	Tilt	QPSK	1	49	09059	1:1	0.179	1.000	0.179	
782.00 23230 Mid LTE Band 13 10 23.2 23.03 -0.13 1 Left Tilt QPSK 25 25 09059								1:1	0.134	1.040	0.139								
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Head 1.6 W/kg (m eraged over	ıW/g)		,		

Table 11-4 LTE Band 4 (AWS) Head SAR

								Daniu	7 (7	1000)	Heau	JAH							
								MEA	SUREM	ENT RES	ULTS								
FI	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	0.16	0	Right	Cheek	QPSK	1	99	09059	1:1	0.284	1.002	0.285	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	-0.04	1	Right	Cheek	QPSK	50	25	09059	1:1	0.259	1.057	0.274	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	0.06	0	Right	Tilt	QPSK	1	99	09059	1:1	0.204	1.002	0.204	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	0.06	1	Right	Tilt	QPSK	50	25	09059	1:1	0.173	1.057	0.183	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	-0.08	0	Left	Cheek	QPSK	1	99	09059	1:1	0.449	1.002	0.450	A4
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	0.01	1	Left	Cheek	QPSK	50	25	09059	1:1	0.349	1.057	0.369	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	0.14	0	Left	Tilt	QPSK	1	99	09059	1:1	0.342	1.002	0.343	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	-0.08	1	Left	Tilt	QPSK	50	25	09059	1:1	0.253	1.057	0.267	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Period Uncontrolled Exposure/General Population									•	•			Head 1.6 W/kg (m veraged over	ıW/g)		•		

Table 11-5 LTE Band 2 (PCS) Head SAR

								<u>. – /.</u>		ouu	<u> </u>								
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
M Hz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.13	0	Right	Cheek	QPSK	1	0	09026	1:1	0.444	1.059	0.470	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.01	1	Right	Cheek	QPSK	50	0	09026	1:1	0.337	1.109	0.374	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	-0.03	0	Right	Tilt	QPSK	1	0	09026	1:1	0.209	1.059	0.221	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.18	1	Right	Tilt	QPSK	50	0	09026	1:1	0.155	1.109	0.172	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	-0.07	0	Left	Cheek	QPSK	1	0	09026	1:1	0.739	1.059	0.783	A5
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.01	1	Left	Cheek	QPSK	50	0	09026	1:1	0.561	1.109	0.622	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.08	0	Left	Tilt	QPSK	1	0	09026	1:1	0.299	1.059	0.317	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.02	1	Left	Tilt	QPSK	50	0	09026	1:1	0.228	1.109	0.253	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Head 1.6 W/kg (m eraged over	٠,		•		

	T		1
FOC ID: ZNIEL FOVI	@ PCTEST	SAR EVALUATION REPORT	Reviewed by:
FCC ID: ZNFL56VL	SEGUNDADES LABORATERY, INC.	SAR EVALUATION REPORT	Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 22 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset	Page 33 of 50

Table 11-6 DTS Head SAR

							ı	MEASUF	REMENT	RESULT	s							
FREQUE	ENCY	Mode	Service	Bandw idth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	16.0	15.57	-0.04	Right	Cheek	09091	1	99.8	0.531	0.343	1.104	1.002	0.379	
2412	1	802.11b	DSSS	22	16.0	15.57	0.14	Right	Tilt	09091	1	99.8	0.235	0.144	1.104	1.002	0.159	
2412	1	802.11b	DSSS	22	16.0	15.57	-0.03								1.104	1.002	1.040	A6
2462	11	802.11b	DSSS	22	16.0	15.38	0.00	Left Cheek 09091 1 99.8 1.626 0.932								1.002	1.077	
2412								Left	Tilt	09091	1	99.8	0.645	0.387	1.104	1.002	0.428	
2412	12 1 802.11b DSSS 22 16.0 15.57							Left	Cheek	09091	1	99.8	1.559	0.897	1.104	1.002	0.992	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Hea					
	Spatial Peak												1.6 W/kg	,				
		Uncontrolled	Exposure/Ge	eneral Popu	ılation								averaged ov	er 1 gram				

Note: Blue entry represents variability measurement.

11.2 Standalone Body-Worn SAR Data

Table 11-7 CDMA Body-Worn SAR Data

					<u> </u>		<u>,</u>	0/							
					- 1	MEASUR	EMENT	RESULTS							
FREQUE	NCY	Mode	Service	Maxim um Allow ed	Conducted	Power	Spacing	Accessory	Device Serial	Duty	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]			Number	Cycle		(W/kg)		(W/kg)	
836.52						-0.01	10 mm	None	09067	1:1	back	0.682	1.117	0.762	A7
1851.25	25	PCS CDMA	TDSO / SO32	24.7	24.04	0.05	10 mm	None	09067	1:1	back	1.020	1.164	1.187	
1880.00						-0.01	10 mm	None	09067	1:1	back	1.210	1.059	1.281	A9
1880.00	600	PCS CDMA	TDSO / SO32	24.7	24.45	-0.01	10 mm	Headphones	09067	1:1	back	0.948	1.059	1.004	
1908.75	1175	PCS CDMA	TDSO/SO32	0.08	10 mm	None	09067	1:1	back	1.160	1.062	1.232			
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT							Bod	•			
			Spatial Peak							1	1.6 W/kg (mW/g)			
		Uncontrolled	Exposure/Gener	al Population						av	eraged over	er 1 gram			

Table 11-8 LTE Body-Worn SAR

									Joury	- 44 011	ו טאו									
								MEA	ASUREM	ENT RESI	JLTS									
FF	REQUENCY	′	Mode	Bandwidth	Accesory	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	Ch.		[MHz]	_	Power [dBm]	Power [dBm]	Drift [dB]		Number						Cycle	(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	None	24.2	24.20	0.10	0	09026	QPSK	1	49	10 mm	back	1:1	0.545	1.000	0.545	A11
782.00	23230	Mid	LTE Band 13	10	None	23.2	23.03	-0.02	1	09026	QPSK	25	25	10 mm	back	1:1	0.397	1.040	0.413	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	None	24.2	24.19	-0.18	0	09059	QPSK	1	99	10 mm	back	1:1	0.713	1.002	0.714	A12
1732.50	20175	Mid	LTE Band 4 (AWS)	20	None	23.2	22.96	0.05	1	09059	QPSK	50	25	10 mm	back	1:1	0.563	1.057	0.595	
1860.00	18700	Low	LTE Band 2 (PCS)	20	None	24.2	23.62	0.02	0	09059	QPSK	1	0	10 mm	back	1:1	1.130	1.143	1.292	
1860.00	18700	Low	LTE Band 2 (PCS)	20	Headphones	24.2	23.62	0.21	0	09059	QPSK	1	0	10 mm	back	1:1	1.000	1.143	1.143	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	None	24.2	23.70	0.18	0	09059	QPSK	1	0	10 mm	back	1:1	1.140	1.122	1.279	A14
1900.00	19100	High	LTE Band 2 (PCS)	20	None	24.2	23.95	0.02	0	09059	QPSK	1	0	10 mm	back	1:1	1.120	1.059	1.186	
1860.00	18700	Low	LTE Band 2 (PCS)	20	None	23.2	22.41	-0.01	1	09059	QPSK	50	0	10 mm	back	1:1	0.738	1.199	0.885	
1880.00	.00 18900 Mid LTE Band 2 (PCS) 20 None 23.2 22.70 -0.06							1	09059	QPSK	50	25	10 mm	back	1:1	0.798	1.122	0.895		
1900.00	19100	High	LTE Band 2 (PCS)	20	None	23.2	22.75	0.16	1	09059	QPSK	50	0	10 mm	back	1:1	0.872	1.109	0.967	
1900.00	19100 High LTE Band 2 (PCS) 20 None 23.2 22.57 0.00							1	09059	QPSK	100	0	10 mm	back	1:1	0.783	1.156	0.905		
			ANSI		1992 - SAFE	TY LIMIT			•						Во	•				
				Spat	ial Peak										1.6 W/kg					
			Uncontr	Spatial Peak Uncontrolled Exposure/General Population										a	veraged o	ver 1 gram	1			

	FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	G	Reviewed by:
		FRGINEIRIS LABORATERY, INC.		V .	Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 34 of 50
	0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Fage 34 01 50
. 4	6 DCTECT Engineering Laboratory Inc.				DEV/ 17.6 M

Table 11-9 DTS Body-Worn SAR

							M	EASUR	EMENT	RESUL	TS							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	16.0	15.57	0.05	10 mm	09091	1	back	99.8	0.133	0.119	1.104	1.002	0.132	A15
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												В	lody				
	Spatial Peak												1.6 W/I	(g (mW/g)				
		Uncontro	olled Expo	osure/Gener	al Population	1							averaged	over 1 gram				

Table 11-10 Bluetooth Body-Worn SAR

					ME	EASUREM	IENT RE	SULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number		Cycle	(W/kg)	_	(W/kg)	
2441	39	Bluetooth	FHSS	9.5	9.12	0.14	10 mm	08994	back	1:1	0.008	1.091	0.009	A17
		ANSI / IEEE	C95.1 199	2 - SAFETY LI	MIT						Body			
							1.0	6 W/kg (mW/g	j)					
		Uncontrolled	Exposure/	General Popu	lation					aver	aged over 1 gr	am		

11.3 Standalone Hotspot SAR Data

Table 11-11 CDMA Hotspot SAR Data

								n Data						
					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [ubili]	Driit [db]		Number	Cycle		(W/kg)		(W/kg)	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.28	-0.05	10 mm	09067	1:1	back	0.706	1.102	0.778	A8
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.28	-0.02	10 mm	09067	1:1	front	0.517	1.102	0.570	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.28	-0.04	10 mm	09067	1:1	bottom	0.219	1.102	0.241	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.28	0.11	10 mm	09067	1:1	right	0.543	1.102	0.598	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.28	0.03	10 mm	09067	1:1	left	0.369	1.102	0.407	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.00	-0.01	10 mm	09067	1:1	back	1.020	1.175	1.199	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	0.03	10 mm	09067	1:1	back	1.220	1.059	1.292	A10
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.49	-0.04	10 mm	09067	1:1	back	1.170	1.050	1.229	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.00	0.11	10 mm	09067	1:1	front	1.030	1.175	1.210	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	-0.09	10 mm	09067	1:1	front	1.070	1.059	1.133	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.49	-0.04	10 mm	09067	1:1	front	1.090	1.050	1.145	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	0.04	10 mm	09067	1:1	bottom	0.350	1.059	0.371	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	0.00	10 mm	09067	1:1	right	0.148	1.059	0.157	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.00	-0.02	10 mm	09067	1:1	left	0.674	1.175	0.792	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	-0.04	10 mm	09067	1:1	left	0.866	1.059	0.917	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.49	-0.17	10 mm	09067	1:1	left	0.847	1.050	0.889	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.45	0.06	10 mm	09067	1:1	back	1.220	1.059	1.292	
		ANSI / IEE	E C95.1 1992 - SA	FETY LIMIT				•			Body			
			Spatial Peak								W/kg (mW/g	-		
		Uncontrolled	Exposure/Gener	al Population	ı					avera	iged over 1 gra	am		

Note: Blue entry represents variability measurement.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** V SEGINEERING LABORATIST, INC.		U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 35 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 33 01 30

Table 11-12 LTE Band 13 Hotspot SAR

								MEAS	UREMENT	RESULTS	3							,	
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHZ]	Power [dBm]	Power [abm]	Drift (aB)		Number							(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	0.10	0	09026	QPSK	1	49	10 mm	back	1:1	0.545	1.000	0.545	A11
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	-0.02	1	09026	QPSK	25	25	10 mm	back	1:1	0.397	1.040	0.413	
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	0.14	0	09026	QPSK	1	49	10 mm	front	1:1	0.374	1.000	0.374	
782.00 23230 Mid LTE Band 13 10 232 23.03 0.06 1 09026 OPSK 25 25 10 mm front 1:1 0.268 782.00 23230 Mid LTE Band 13 10 242 24.20 -0.08 0 09026 OPSK 1 49 10 mm bottom 1:1 0.164											1.040	0.279							
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	-0.08	0	09026	QPSK	1	49	10 mm	bottom	1:1	0.164	1.000	0.164	
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	-0.02	1 09026 QPSK 25 25 10 mm bottom 1:1 0.115 1.								1.040	0.120		
782.00	23230	Mid	LTE Band 13	10	24.2	24.20	-0.18	0	09026	QPSK	1	49	10 mm	right	1:1	0.448	1.000	0.448	
782.00	23230	Mid	LTE Band 13	10	23.2	23.03	0.12	1	09026	QPSK	25	25	10 mm	right	1:1	0.321	1.040	0.334	
782.00 23230 Mid LTE Band 13 10 24.2 24.20							0.11	0	09026	QPSK	1	49	10 mm	left	1:1	0.299	1.000	0.299	
782.00								1	09026	QPSK	25	25	10 mm	left	1:1	0.229	1.040	0.238	
			ANSI / IEEE C95.		ETY LIMIT									Body				•	
	Spatial Peak												1.6 W	//kg (mW	//g)				
		ι	Incontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-13 LTE Band 4 (AWS) Hotspot SAR

								MEAS	UREMENT	RESULTS	_								
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[]	Power [dBm]	rower [abin]	Sint [ab]		ramber							(W/kg)		(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	-0.18	0	09059	QPSK	1	99	10 mm	back	1:1	0.713	1.002	0.714	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	0.05	1	09059	QPSK	50	25	10 mm	back	1:1	0.563	1.057	0.595	
1732.50 20175 Mid LTE Band 4 (AWS) 20 24.2 24.19 -0.13 0 1732.50 20175 Mid LTE Band 4 (AWS) 20 23.2 22.96 0.08 1							0	09059	QPSK	1	99	10 mm	front	1:1	0.760	1.002	0.762	A13	
1732.50	20175	Mid	LTE Band 4 (AWS)	20									0.603	1.057	0.637				
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	-0.04	0	09059	QPSK	1	99	10 mm	bottom	1:1	0.292	1.002	0.293	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	0.01	1	09059						1:1	0.245	1.057	0.259	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.19	0.17	0	09059	QPSK	1	99	10 mm	right	1:1	0.094	1.002	0.094	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.96	-0.09	1	09059	QPSK	50	25	10 mm	right	1:1	0.070	1.057	0.074	
1732.50 20175 Mid LTE Band 4 (AWS) 20 24.2 24.19							0.16	0	09059	QPSK	1	99	10 mm	left	1:1	0.369	1.002	0.370	
1732.50 20175 Mid LTE Band 4 (AWS) 20 23.2 22.96							-0.09	1	09059	QPSK	50	25	10 mm	left	1:1	0.282	1.057	0.298	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Body //kg (mW ed over 1					

FCC ID: ZNFL56VL	@\ PCTEST	SAR EVALUATION REPORT	A IG	Reviewed by:
1 00 12 12111 20072	FRGINEERIED LABORATORY, INC.		U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 36 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Fage 36 01 50

Table 11-14 LTE Band 2 (PCS) Hotspot SAR

								MEASUREMENT RESULTS											
FRE	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	23.62	0.02	0	09059	QPSK	1	0	10 mm	back	1:1	1.130	1.143	1.292	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.70	0.18	0	09059	QPSK	1	0	10 mm	back	1:1	1.140	1.122	1.279	A14
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.02	0	09059	QPSK	1	0	10 mm	back	1:1	1.120	1.059	1.186	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	22.41	-0.01	1	09059	QPSK	50	0	10 mm	back	1:1	0.738	1.199	0.885	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	22.70	-0.06	1	09059	QPSK	50	25	10 mm	back	1:1	0.798	1.122	0.895	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	0.16	1	09059	QPSK	50	0	10 mm	back	1:1	0.872	1.109	0.967	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.57	0.00	1	09059	QPSK	100	0	10 mm	back	1:1	0.783	1.156	0.905	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	23.62	-0.16	0	09059	QPSK	1	0	10 mm	front	1:1	0.970	1.143	1.109	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.70	0.20	0	09059	QPSK	1	0	10 mm	front	1:1	1.090	1.122	1.223	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.08	0	09059	QPSK	1	0	10 mm	front	1:1	1.110	1.059	1.175	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	22.41	0.09	1	09059	QPSK	50	0	10 mm	front	1:1	0.699	1.199	0.838	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	22.70	-0.04	1	09059	QPSK	50	25	10 mm	front	1:1	0.773	1.122	0.867	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	0.12	1	09059	QPSK	50	0	10 mm	front	1:1	0.806	1.109	0.894	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.57	0.02	1	09059	QPSK	100	0	10 mm	front	1:1	0.785	1.156	0.907	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	-0.01	0	09059	QPSK	1	0	10 mm	bottom	1:1	0.403	1.059	0.427	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.08	1	09059	QPSK	50	0	10 mm	bottom	1:1	0.278	1.109	0.308	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.11	0	09059	QPSK	1	0	10 mm	right	1:1	0.144	1.059	0.152	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.21	1	09059	QPSK	50	0	10 mm	right	1:1	0.112	1.109	0.124	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	23.62	0.00	0	09059	QPSK	1	0	10 mm	left	1:1	0.667	1.143	0.762	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.70	0.19	0	09059	QPSK	1	0	10 mm	left	1:1	0.709	1.122	0.795	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	23.95	0.15	0	09059	QPSK	1	0	10 mm	left	1:1	0.770	1.059	0.815	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.75	-0.06	1	09059	QPSK	50	0	10 mm	left	1:1	0.547	1.109	0.607	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.57	0.05	1	09059	QPSK	100	0	10 mm	left	1:1	0.531	1.156	0.614	
			ANSI / IEEE C95.		ETY LIMIT					·				Body			·		
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												averag	ed over 1	gram				

Table 11-15 WLAN Hotspot SAR

					_/ \		, , , , ,											
							N	IEASURI	MENT	RESUL	rs							
FREQU	ENCY	Mode	Service	Bandwidth [MHz]		Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	Power [abm]	[авј		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	16.0	15.57	0.05	10 mm	09091	1	back	99.8	0.133	0.119	1.104	1.002	0.132	
2412	1	802.11b	DSSS	22	16.0	15.57	0.07	10 mm	09091	1	front	99.8	0.172	0.151	1.104	1.002	0.167	A16
2412	1	802.11b	DSSS	22	16.0	15.57	0.15	10 mm	09091	1	top	99.8	0.017	-	1.104	1.002	-	
2412	1	802.11b	DSSS	22	16.0	15.57	0.00	10 mm	09091	1	right	99.8	0.139	-	1.104	1.002	1	
		ANSI /	IEEE C95	.1 1992 - SA	AFETY LIMIT								В	ody				
	Spatial Peak						1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population												averaged	over 1 gram				

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

FCC ID: ZNFL56VL	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 27 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 37 of 50

© 2016 PCTEST Engineering Laboratory, Inc.

04/28/2016

- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. When the standalone reported body-worn SAR was ≥ 1.2 W/kg, additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information.

FCC ID: ZNFL56VL	@\PCTEST	SAR EVALUATION REPORT	G IG	Reviewed by:
1 00 12 12 11 20012	SEGUNDADES LABORATERY, INC.			Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 38 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 38 01 50

- 3. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFL56VL	PCTEST SIGNATURE, INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 39 of 50

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g SAR.

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	Si	multaned	ous Trans	smission	Scenai	rio with 2	.4 GHZ WL	AN (Heid	to Ear)		
Simult Tx	Configuration	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Right Cheek	0.541	0.379	0.920	N/A		Right Cheek	0.604	0.379	0.983	N/A
Head SAR	Right Tilt	0.278	0.159	0.437	N/A	Head SAR	Right Tilt	0.306	0.159	0.465	N/A
ricad Grait	Left Cheek	0.421	1.077	1.498	N/A	riodd Ortif	Left Cheek	0.436	1.077	1.513	N/A
	Left Tilt	0.237	0.428	0.665	N/A		Left Tilt	0.262	0.428	0.690	N/A
Simult Tx	Configuration	PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Right Cheek	0.594	0.379	0.973	N/A		Right Cheek	0.543	0.379	0.922	N/A
Head SAR	Right Tilt	0.362	0.159	0.521	N/A	Head SAR	Right Tilt	0.242	0.159	0.401	N/A
ricad Grait	Left Cheek	1.045	1.077	See Note 1	0.04	riodd Ortif	Left Cheek	0.890	1.077	See Note 1	0.03
	Left Tilt	0.599	0.428	1.027	N/A		Left Tilt	0.500	0.428	0.928	N/A
Simult Tx	Configuration	LTE Band 13 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Right Cheek	0.367	0.379	0.746	N/A		Right Cheek	0.285	0.379	0.664	N/A
Head SAR	Right Tilt	0.240	0.159	0.399	N/A	Head SAR	Right Tilt	0.204	0.159	0.363	N/A
	Left Cheek	0.285	1.077	1.362	N/A		Left Cheek	0.450	1.077	1.527	N/A
	Left Tilt	0.179	0.428	0.607	N/A		Left Tilt	0.343	0.428	0.771	N/A
			Simult Ty (Configuration	LTE Band		> < AB	CDI CD			

Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
	Right Cheek	0.470	0.379	0.849	N/A
Head SAR	Right Tilt	0.221	0.159	0.380	N/A
TICAU OATT	Left Cheek	0.783	1.077	See Note 1	0.03
	Left Tilt	0.317	0.428	0.745	N/A

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis

PCTEST	SAR EVALUATION REPORT	(I G	Reviewed by:
W SEGUNDADES LABORATORY, INC.		U Lu	Quality Manager
Test Dates:	DUT Type:		Page 40 of 50
05/06/16 - 05/16/16	Portable Handset		Fage 40 01 50
	Test Dates:	Test Dates: DUT Type:	Test Dates: DUT Type:

© 2016 PCTEST Engineering Laboratory, Inc.

04/28/2016

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

			\	
Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Cell. CDMA	0.762	0.132	0.894
	PCS CDMA	1.281	0.132	1.413
Body-Worn	LTE Band 13	0.545	0.132	0.677
	LTE Band 4 (AWS)	0.714	0.132	0.846
	LTE Band 2 (PCS)	1.292	0.132	1.424

Table 12-3
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	Cell. CDMA	0.762	0.009	0.771
	PCS CDMA	1.281	0.009	1.290
Body-Worn	LTE Band 13	0.545	0.009	0.554
	LTE Band 4 (AWS)	0.714	0.009	0.723
	LTE Band 2 (PCS)	1.292	0.009	1.301

FCC ID: ZNFL56VL	PCTEST INGINITION LATERT, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		, ,
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 41 of 50

Hotspot SAR Simultaneous Transmission Analysis 12.5

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB Publication 248227, the worst case WLAN hotspot SAR result was used for simultaneous transmission analysis.

Table 12-4 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.778	0.132	0.910		Back	1.292	0.132	1.424
	Front	0.570	0.167	0.737		Front	1.210	0.167	1.377
Hotspot SAR	Тор	-	0.167*	0.167	Hotspot SAR	Тор	-	0.167*	0.167
Hotspot SAIT	Bottom	0.241	-	0.241	Tiotspot OATT	Bottom	0.371	-	0.371
	Right	0.598	0.167*	0.765		Right	0.157	0.167*	0.324
	Left	0.407	-	0.407		Left	0.917	-	0.917
Simult Tx	Configuration	LTE Band 13	2.4 GHz WLAN SAR	ΣSAR	Simult Tx	0 5 11	LTE Band 4	2.4 GHz	ΣSAR
		SAR (W/kg)	(W/kg)	(W/kg)	Official 1X	Configuration	(AWS) SAR (W/kg)	WLAN SAR (W/kg)	(W/kg)
	Back	0.545	(W/kg) 0.132	0.677	Official 1X	Back	(W/kg) 0.714	(W/kg) 0.132	0.846
	Front	, o,	(W/kg) 0.132 0.167	0.677 0.541	Simult 1x	Back Front	(W/kg)	0.132 0.167	0.846 0.929
Hotspot SAR	Front Top	0.545	(W/kg) 0.132	0.677 0.541 0.167		Back Front Top	0.714 0.762	(W/kg) 0.132	0.846 0.929 0.167
Hotspot SAR	Front	0.545 0.374	(W/kg) 0.132 0.167 0.167*	0.677 0.541	Hotspot SAR	Back Front	(W/kg) 0.714	(W/kg) 0.132 0.167 0.167*	0.846 0.929
Hotspot SAR	Front Top	0.545 0.374	(W/kg) 0.132 0.167 0.167*	0.677 0.541 0.167		Back Front Top	0.714 0.762	(W/kg) 0.132 0.167 0.167*	0.846 0.929 0.167

Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	ΣSAR (W/kg)
	Back	1.292	0.132	1.424
	Front	1.223	0.167	1.390
Hotspot SAR	Тор	-	0.167*	0.167
Tiotopot SAIT	Bottom	0.427	-	0.427
	Right	0.152	0.167*	0.319
	Left	0.815	-	0.815

FCC ID: ZNFL56VL	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -4 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 42 of 50

12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is

 \leq 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

$$\begin{aligned} \text{Distance}_{\text{Tx1-Tx2}} &= \text{R}_{\text{i}} = \sqrt{\left(x_{1} - x_{2}\right)^{2} + \left(y_{1} - y_{2}\right)^{2} + \left(z_{1} - z_{2}\right)^{2}} \\ \text{SPLS Ratio} &= \frac{\left(SAR_{1} + SAR_{2}\right)^{1.5}}{R_{i}} \end{aligned}$$

12.6.1 Left Cheek SPLSR Evaluation and Analysis

Table 12-5
Peak SAR Locations for Left Cheek

Mode/Band	x (mm)	y (mm)	z (mm)	Reported SAR (W/kg)
2.4 GHz WLAN	22.15	322.84	-174.89	1.077
PCS CDMA	52.19	253.09	-170.31	1.045
PCS EVDO	55.99	247.54	-168.37	0.890
LTE Band 2	52.95	249.15	-169.48	0.783

Table 12-6
Left Cheek SAR Sum to Peak Location Separation Ratio Calculations

_									
	Antenna Pair		Standalor	Standalone 1g SAR		Peak SAR			
			(W/kg)		SAR Sum	Separation	SPLS Ratio	Plot	
L			(VV/Kg)		(W/kg)	Distance (mm)		Number	
	Ant "a"	Ant "b"	a b		a+b	D_{a-b}	$(a+b)^{1.5}/D_{a-b}$		
	2.4 GHz WLAN	PCS CDMA	1.077	1.045	2.122	76.08	0.04	1	
L	2.4 GHz WLAN	PCS EVDO	1.077	0.890	1.967	82.81	0.03	2	
	2.4 GHz WLAN	LTE Band 2	1.077	0.783	1.860	80.05	0.03	3	

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 43 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Fage 43 01 50

Left Cheek SAR Sum to Peak Location Separation Ratio Plots 2.4 GHz WLAN 2.4 GHz WLAN 2.4 GHz WLAN LTE Band 2

Table 12-7

Simultaneous Transmission Conclusion

3

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFL56VL	@ PCTEST	SAR EVALUATION REPORT	(E) LG	Reviewed by:
	PROGRESHES LABORATEST, INC.		C C	
Document S/N:	Test Dates:	DUT Type:		Page 44 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 44 or 50

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-q SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1 Head SAR Measurement Variability Results

	,												
	HEAD VARIABILITY RESULTS												
Band	Band		Mode/Band	Service	Side	Test Position	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2412.00	1	802.11b, 22 MHz Bandwidth	DSSS	Left	Cheek	0.940	0.897	1.05	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head N/kg (mW jed over 1					

Table 13-2
Body SAR Measurement Variability Results

	Body OAR Medsurement variability results												
	BODY VARIABILITY RESULTS												
Band	FREQUENCY	NCY	Mode	Service	Service Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g) Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1880.00	600	PCS CDMA	EVDO Rev. 0	back	10 mm	1.220	1.220	1.00	N/A	N/A	N/A	N/A
		ANS	SI / IEEE C95.1 1992 - SAFETY LIMIT	Г		Body							
	Spatial Peak			1.6 W/kg (mW/g)									
		Uncor	trolled Exposure/General Populat	ion		averaged over 1 gram							

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	SAR EVALUATION REPORT	
*** V SNOINSEERE LABORATERY, INC.	La La	Quality Manager
Test Dates:	DUT Type:	Page 45 of 50
05/06/16 - 05/16/16	Portable Handset	raye 45 01 50

© 2016 PCTEST Engineering Laboratory, Inc.

04/28/2016

14 EQUIPMENT LIST

Manufacturer Model Description Cal Date Cal Interval Cal D Agilent 8594A (9kHz-2.9GHz) Spectrum Analyzer N/A N/A N/A Agilent 8753E (30kHz-6GHz) Network Analyzer 3/2/2016 Annual 3/2/20 Agilent 8753ES S-Parameter Network Analyzer 11/4/2015 Annual 11/4/2 Agilent E4432B ESG-D Series Signal Generator 3/5/2016 Annual 3/5/20 Agilent E4438C ESG Vector Signal Generator 3/12/2015 Biennial 3/12/2 Agilent E5515C Wireless Communications Test Set 11/4/2014 Biennial 11/4/2	ue Serial Number
Agilent 8753E (30kHz-6GHz) Network Analyzer 3/2/2016 Annual 3/2/2016 Agilent 8753ES S-Parameter Network Analyzer 11/4/2015 Annual 11/4/2 Agilent E4432B ESG-D Series Signal Generator 3/5/2016 Annual 3/5/20 Agilent E4438C ESG Vector Signal Generator 3/12/2015 Biennial 3/12/2	3051A00187
Agilent 8753ES S-Parameter Network Analyzer 11/4/2015 Annual 11/4/2 Agilent E4432B ESG-D Series Signal Generator 3/5/2016 Annual 3/5/20 Agilent E4438C ESG Vector Signal Generator 3/12/2015 Biennial 3/12/2	
Agilent E4438C ESG Vector Signal Generator 3/12/2015 Biennial 3/12/2	016 US39170118
· ·	017 US40053896
Agilent E5515C Wireless Communications Test Set 11/4/2014 Biennial 11/4/2	017 MY45090700
	016 GB43193563
Agilent E8257D (250kHz-20GHz) Signal Generator 3/2/2016 Annual 3/2/20	MY45470194
Agilent N4010A Wireless Connectivity Test Set CBT N/A CB*	Γ GB46170464
Agilent N5182A MXG Vector Signal Generator 11/6/2015 Annual 11/6/2	016 MY47420603
Amplifier Research 15S1G6 Amplifier CBT N/A CB [*]	
Anritsu MA24106A USB Power Sensor 5/29/2015 Annual 5/29/2	
Anritsu MA24106A USB Power Sensor 5/29/2015 Annual 5/29/2	
Anritsu MA2411B Pulse Power Sensor 12/7/2015 Annual 12/7/2	
Anritsu MA2411B Pulse Power Sensor 2/28/2016 Annual 2/28/2	
Anritsu ML2495A Power Meter 10/16/2015 Biennial 10/16/2	
Anritsu ML2496A Power Meter 3/5/2016 Annual 3/5/20	
Anritsu MT8820C Radio Communication Analyzer 7/24/2015 Annual 7/24/2	
COMTech AR85729-5 Solid State Amplifier CBT N/A CB*	
Control Company 4040 Digital Thermometer 3/15/2015 Biennial 3/15/2	
Control Company 4352 Ultra Long Stem Thermometer 3/8/2016 Biennial 3/8/20	
Control Company 4353 Long Stem Thermometer 1/22/2015 Biennial 1/22/2	
Gigatronics 80701A (0.05-18GHz) Power Sensor 11/4/2015 Annual 11/4/2	
Gigatronics 8651A Universal Power Meter 11/4/2015 Annual 11/4/2	
Keysight 772D Dual Directional Coupler CBT N/A CB*	
MCL BW-N6W5+ 6dB Attenuator CBT N/A CB*	
MiniCircuits SLP-2400+ Low Pass Filter CBT N/A CB*	
Mini-Circuits BW-N20W5 Power Attenuator CBT N/A CB*	
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A CB*	
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A CB*	
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A CB*	
Mitutoyo CD-6"CSX Digital Caliper 3/2/2016 Biennial 3/2/20	
Narda 4772-3 Attenuator (3dB) CBT N/A CB*	
Pasternack NC-100 Torque Wrench 5/21/2015 Biennial 5/21/2	
Pasternack PE2208-6 Bidirectional Coupler CBT N/A CB' Pasternack PE2209-10 Bidirectional Coupler CBT CBT CBT CB'	
Seekonk NC-100 Torque Wrench 11/6/2015 Biennial 11/6/2 Seekonk NC-100 Torque Wrench 5/16", 8" lbs 3/2/2016 Biennial 3/2/20	
SPEAG D1750V2 1750 MHz SAR Dipole 4/13/2016 Annual 4/13/2	
SPEAG D1900V2 1730 WHZ SAR Dipole 47/32/2015 Annual 47/32/ SPEAG D1900V2 1900 WHZ SAR Dipole 77/4/2015 Annual 77/4/2	
SPEAG D1900V2 1900 MHz SAR Dipole 2/19/2016 Annual 2/19/2	
SPEAG D2450V2 2450 MHz SAR Dipole 8/20/2015 Annual 8/20/2	
SPEAG D2450V2 2450 MHz SAR Dipole 10/21/2015 Annual 10/21/2	
SPEAG D2450V2 2450 MHz SAR Dipole 2/18/2016 Annual 2/18/2	
SPEAG D750V3 750 MHz SAR Dipole 1/15/2016 Annual 1/15/2	
SPEAG D750V3 750 MHz SAR Dipole 2/16/2016 Annual 2/16/2	
SPEAG D835V2 835 MHz SAR Dipole 7/23/2015 Annual 7/23/2	
SPEAG D835V2 835 MHz SAR Dipole 4/14/2016 Annual 4/14/2	
SPEAG DAE4 Dasy Data Acquisition Electronics 9/16/2015 Annual 9/16/2	
SPEAG DAE4 Dasy Data Acquisition Electronics 9/18/2015 Annual 9/18/2	
OT EACH DALS DASY DATA ACQUISITION DESCRIPTION STOCKED	2016 1333
SPEAG DAE4 Dasy Data Acquisition Electronics 9/16/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2	2016 1415
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2	017 1466
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2	
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2	017 665
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2	017 665 017 1368
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016	017 665 017 1368 017 1407
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit 10/20/2015 Annual 3/1/2 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 Annual	017 665 017 1368 017 1407 017 1102 2016 1091
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 4/14/2 SPEAG DAK-12 Dielectric Assessment Kit 10/20/2015 Annual 3/1/20 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 Annual 10/20/2015 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annu	017 665 017 1368 017 1407 017 1102 2016 1091
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/20 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 Annual 3/1/20/20 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/20 SPEAG DAKS_3.5 Portable Dielectric Assessment Kit 7/14/2015 Annual 7/14/2	017 665 017 1368 017 1407 017 1102 016 1091 016 80513 016 1039
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Diselectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/20 SPEAG DAK-12 Diselectric Assessment Kit 10/20/2015 Annual 3/1/20 SPEAG DAKS_NAR 140 VNA for Portable DAK 8/16/2015 Annual 8/16/2 SPEAG DAKS_NAR 25 Portable Diselectric Assessment Kit 7/14/2015 Annual 8/16/2 SPEAG DAKS-3.5 Portable Diselectric Assessment Kit 7/14/2015	017 665 017 1368 017 1407 017 1102 016 1091 016 80513 016 1039
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/201 SPEAG DAK-3.5 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2	017 665 017 1368 017 1407 017 1407 017 1102 016 1091 016 80513 016 1039 016 3022 016 3288
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2015 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 1/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit 10/20/2016 Annual 3/1/20 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 An	017 665 017 1368 017 1407 017 1407 017 1102 016 1091 016 80513 016 1039 016 3022 016 3288
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 1/15/2016 Annual 11/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/201 SPEAG DAKS-3.5 Dielectric Assessment Kit 10/20/2015 <td>017 665 017 1368 017 1407 017 1102 016 1091 016 80513 016 1039 016 3022 016 3288 016 3332</td>	017 665 017 1368 017 1407 017 1102 016 1091 016 80513 016 1039 016 3022 016 3288 016 3332
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/15/2016 Annual 11/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 Annual 8/16/2 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2 SPEAG DAKS_VNA R140 VNA for Portable Cassesment Kit 7/14/2015	017 665 017 1368 017 1407 017 1102 016 1091 016 80513 016 1039 016 3022 016 3288 016 3332
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/15/2016 Annual 11/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAK-4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit 10/20/2016 Annual 3/1/20 SPEAG DAK-3.5 Dielectric Assessment Kit 10/20/2015 Annual 10/20/20 SPEAG DAKS-3.5 Portable Dielectric Assessment Kit 7/14/2015	017 665 017 1368 017 1407 117 1102 1016 1091 016 80513 016 1039 016 3022 016 3288 016 3332 016 3333 0116 3333
SPEAG DAE4 Dasy Data Acquisition Electronics 10/27/2015 Annual 10/27/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/11/2015 Annual 11/11/2 SPEAG DAE4 Dasy Data Acquisition Electronics 11/15/2016 Annual 11/15/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2016 Annual 2/19/2 SPEAG DAE4 Dasy Data Acquisition Electronics 3/14/2016 Annual 3/14/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-1 Dasy Data Acquisition Electronics 4/14/2016 Annual 3/14/2 SPEAG DAK-12 Dielectric Assessment Kit (10MHz - 3GHz) 3/1/2016 Annual 3/1/2 SPEAG DAK-3.5 Dielectric Assessment Kit 10/2002015 Annual 3/1/2 SPEAG DAKS_VNA R140 VNA for Portable DAK 8/16/2015 Annual 8/16/2 SPEAG DAKS_VNA R140 VNA for Portable Cassessment Kit 7/14/2015	017 665 017 1368 017 1407 017 1407 017 1102 0016 1091 016 80513 016 3022 016 3022 016 3332 016 3332 016 3333 0016 3334 0017 3318

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	<u> </u>	•		
FCC ID: ZNFL56VL	€ \ PCTEST	SAR EVALUATION REPORT		Reviewed by:
1 33 15, 2141 23012	TISSURIUME LADIATORY, INC.		U Lu	Quality Manager
Document S/N:	Test Dates:	DUT Type:		Done 40 of 50
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		Page 46 of 50
AC DOTECT Engineering Laboratory Inc.		•		DEV/ 17 C M

© 2016 PCTEST Engineering Laboratory, Inc.

REV 17.6 M 04/28/2016

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.	.(=,)	Ci	Ci	1gm	10gms	
Uncertainty Component		Dist.	Div.	1gm			ŭ	
oncontaint, component	(± %)	DISt.	DIV.	rgiii	10 gms	u _i (± %)	u _i (± %)	Vi
Measurement System						(± %)	(± /6)	
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	×
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	×
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	×
Response Time	8.0	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	oc
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	oc
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	oc
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	oc
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	×
Combined Standard Uncertainty (k=1)		RSS		1	ı	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
		_						

FCC ID: ZNFL56VL	PCTEST*	CAR EVALUATION REPORT	Reviewed by:	
		SAR EVALUATION REPORT	Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 47 of 50	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset		

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFL56VL	PCTEST WINDOWS LADSTATUT, INC.	SAR EVALUATION REPORT	LG	Reviewed by:	
				Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 48 of 50	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset			

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFL56VL	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by:	
				Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 49 of 50	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset			

© 2016 PCTEST Engineering Laboratory, Inc.

04/28/2016

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFL56VL	PCTEST:	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 50 of 50	
0Y1605060879-R2.ZNF	05/06/16 - 05/16/16	Portable Handset			

APPENDIX A: SAR TEST DATA

DUT: ZNFL56VL; Type: Portable Handset; Serial: 09018

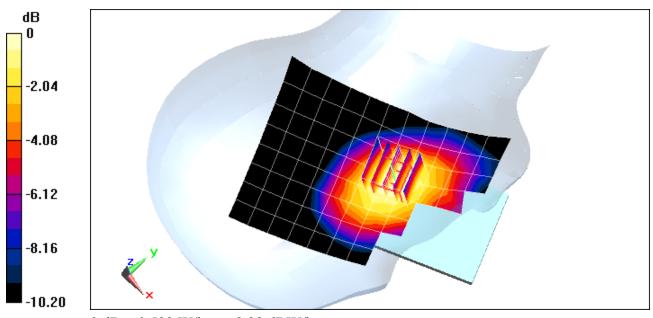
Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 0.894$ S/m; $\epsilon r = 40.125$; $\rho = 1000$ kg/m3 Phantom section: Right Section

Test Date: 05-09-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO Rev. A, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.61 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.714 W/kg

SAR(1 g) = 0.546 W/kg

0 dB = 0.599 W/kg = -2.23 dBW/kg

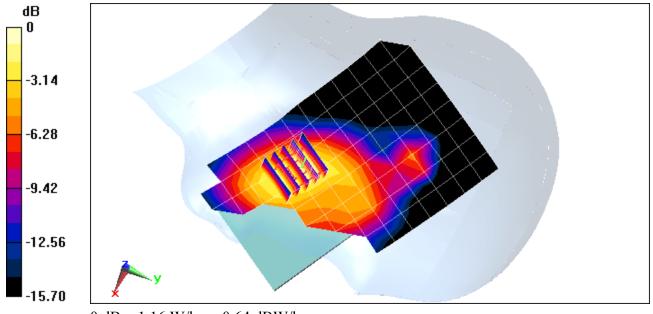
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09067

Communication System: UID 0, PCS CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.462 \text{ S/m}; \ \epsilon_r = 40.525; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(5.06, 5.06, 5.06); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/15/2016
Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Left Head, Cheek, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.24 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.975 W/kg

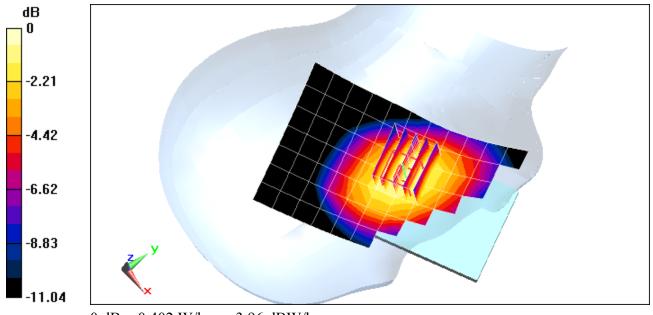
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09059

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.937 \text{ S/m}; \ \epsilon_r = 41.425; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-10-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3318; ConvF(6.48, 6.48, 6.48); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 49 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.35 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.474 W/kg

SAR(1 g) = 0.367 W/kg

0 dB = 0.402 W/kg = -3.96 dBW/kg

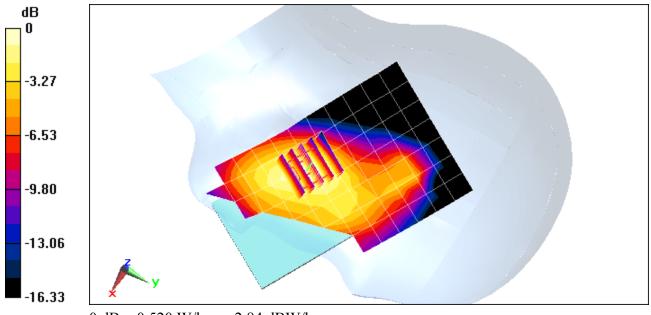
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09059

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.327 \text{ S/m}; \ \epsilon_r = 40.014; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3319; ConvF(5.2, 5.2, 5.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth OPSK, 1 RB, 99 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.63 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.685 W/kg

SAR(1 g) = 0.449 W/kg

0 dB = 0.520 W/kg = -2.84 dBW/kg

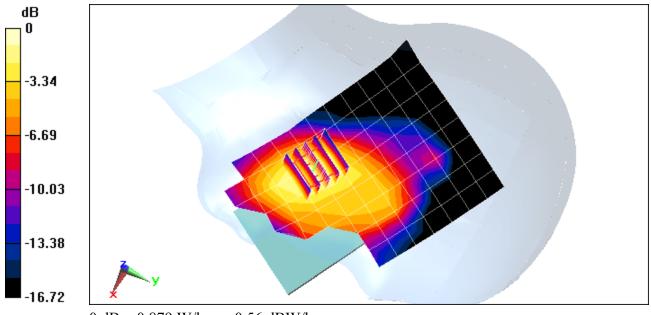
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09026

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.452 \text{ S/m}; \ \epsilon_r = 40.562; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(5.06, 5.06, 5.06); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/15/2016
Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Left Head, Cheek, High.ch, 20 MHz Bandwidth QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.38 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.739 W/kg

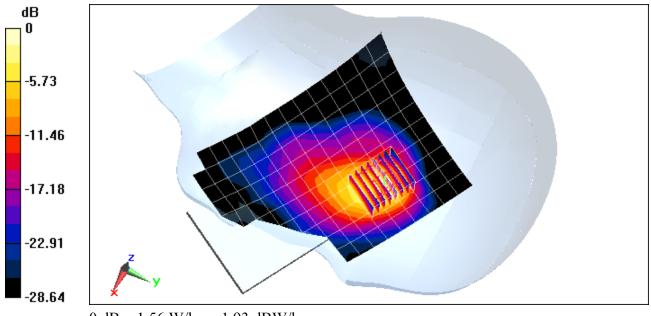
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09091

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.772 \text{ S/m}; \ \epsilon_r = 40.348; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-09-2016; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7406; ConvF(7.29, 7.29, 7.29); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 01, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.98 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.940 W/kg

0 dB = 1.56 W/kg = 1.93 dBW/kg

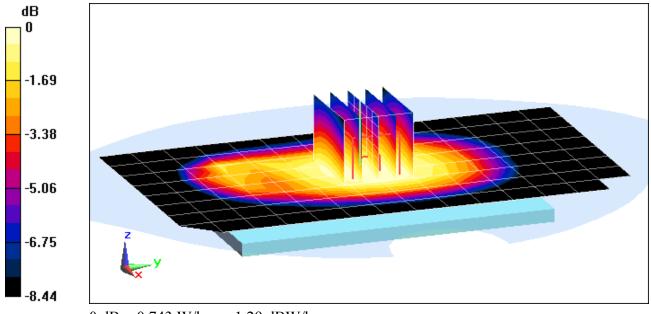
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09067

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 1.019$ S/m; $\varepsilon_r = 53.782$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.77 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.845 W/kg

SAR(1 g) = 0.682 W/kg

0 dB = 0.743 W/kg = -1.29 dBW/kg

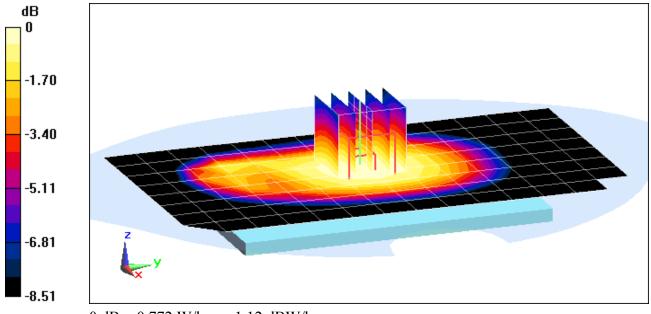
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09067

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 836.52 MHz; $\sigma = 1.019$ S/m; $\varepsilon_r = 53.782$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Cell. EVDO Rev. 0, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.28 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.871 W/kg

SAR(1 g) = 0.706 W/kg

0 dB = 0.772 W/kg = -1.12 dBW/kg

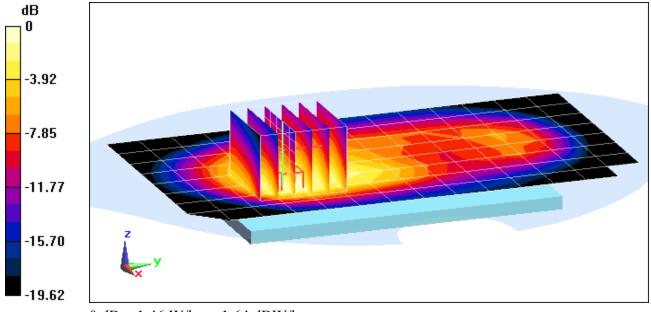
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09067

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.549 \text{ S/m}$; $\epsilon_r = 53.412$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2016; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.71 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.06 W/kg

SAR(1 g) = 1.21 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

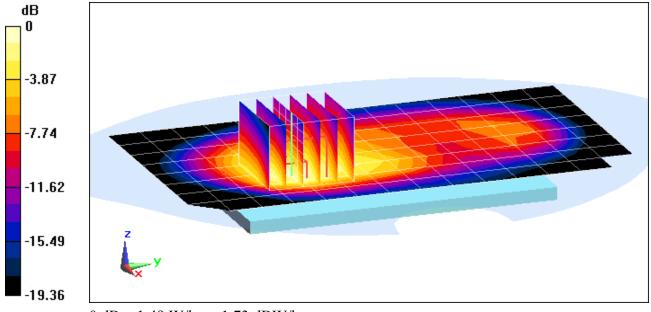
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09067

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.549 \text{ S/m}$; $\epsilon_r = 53.412$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2016; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: PCS EVDO Rev. 0, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.01 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.08 W/kg

SAR(1 g) = 1.22 W/kg

0 dB = 1.49 W/kg = 1.73 dBW/kg

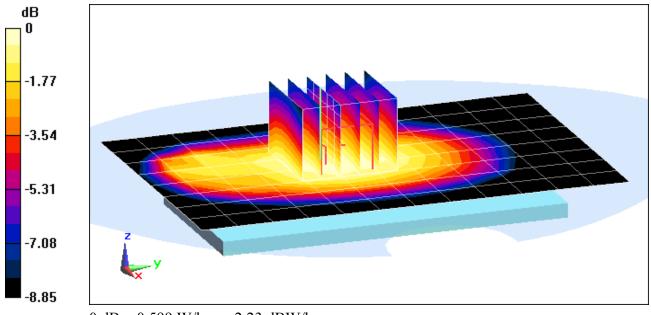
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09026

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.999$ S/m; $\epsilon_r = 54.079$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3288; ConvF(6.57, 6.57, 6.57); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2015
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.90 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.545 W/kg

0 dB = 0.599 W/kg = -2.23 dBW/kg

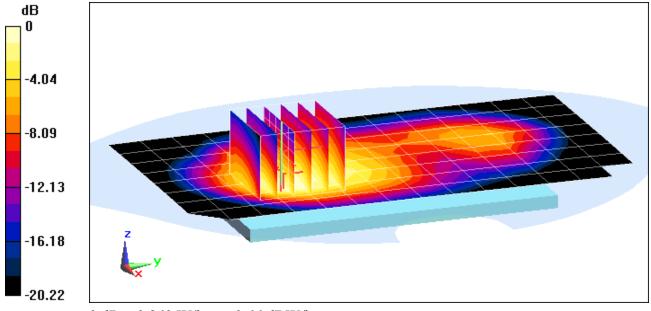
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09059

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.438 \text{ S/m}$; $\epsilon_r = 52.599$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/16/2015
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth OPSK, 1 RB, 99 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.37 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.713 W/kg

0 dB = 0.860 W/kg = -0.66 dBW/kg

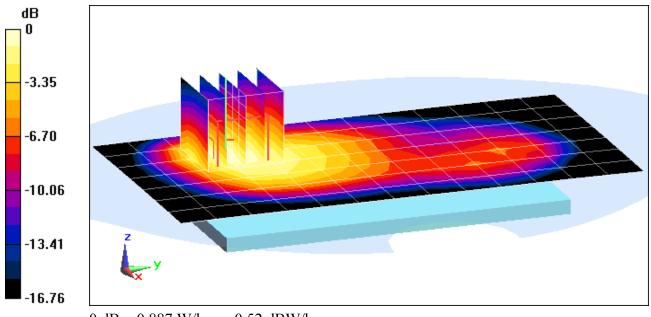
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09059

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.438 \text{ S/m}$; $\epsilon_r = 52.599$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/16/2015
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 4 (AWS), Body SAR, Front side, Mid.ch, 20 MHz Bandwidth OPSK, 1 RB, 99 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.44 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.760 W/kg

0 dB = 0.887 W/kg = -0.52 dBW/kg

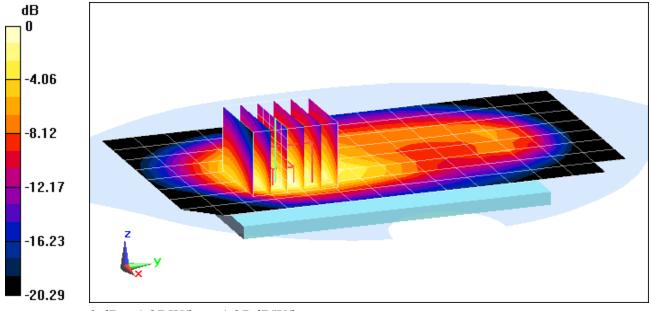
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09059

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1880 MHz; $\sigma = 1.549$ S/m; $\varepsilon_r = 53.412$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2016; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.04 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 1.14 W/kg

0 dB = 1.37 W/kg = 1.37 dBW/kg

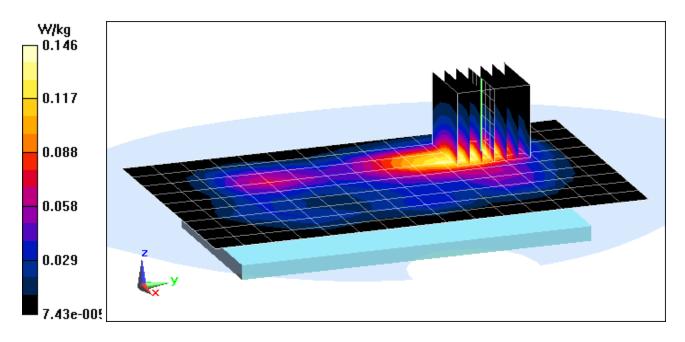
DUT: ZNFL56VL; Type: Portable Handset; Serial: 09091

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.989 \text{ S/m}; \ \epsilon_r = 51.747; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2016; Ambient Temp: 24.3°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3319; ConvF(4.2, 4.2, 4.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Back Side


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.100 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.231 W/kg

SAR(1 g) = 0.119 W/kg

DUT: ZNFL56VL; Type: Portable Handset; Serial: 09091

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2412 \text{ MHz}; \ \sigma = 1.989 \text{ S/m}; \ \epsilon_r = 51.747; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

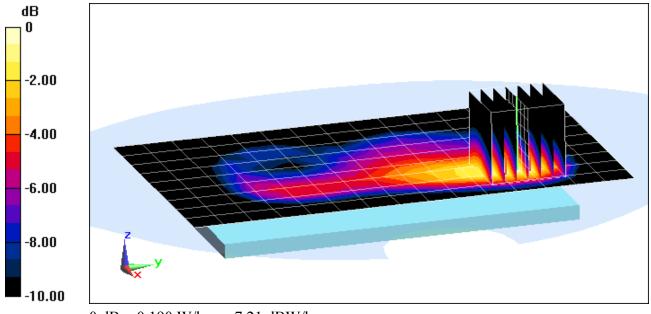
Test Date: 05-06-2016; Ambient Temp: 24.3°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3319; ConvF(4.2, 4.2, 4.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 01, 1 Mbps, Front Side


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.342 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.151 W/kg

0 dB = 0.190 W/kg = -7.21 dBW/kg

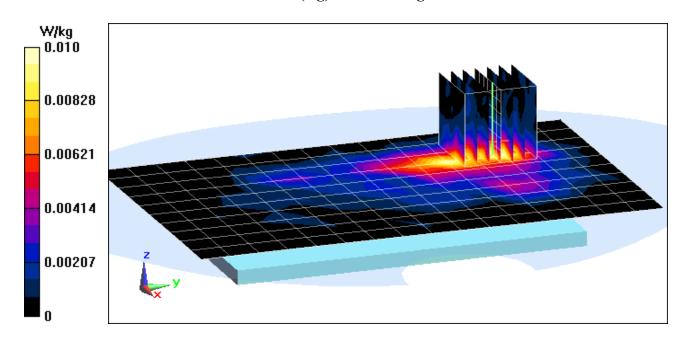
DUT: ZNFL56VL; Type: Portable Handset; Serial: 08994

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.96$ S/m; $\varepsilon_r = 51.84$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2016; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3318; ConvF(4.45, 4.45, 4.45); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.045 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0140 W/kg

SAR(1 g) = 0.008 W/kg

APPENDIX B: SYSTEM VERIFICATION

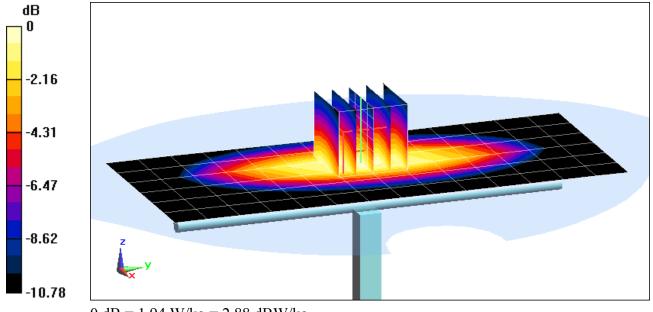
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1046

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.906 \text{ S/m}$; $\epsilon_r = 41.826$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-10-2016; Ambient Temp: 23.2°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3318; ConvF(6.48, 6.48, 6.48); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.49 W/kg

SAR(1 g) = 1.66 W/kg

Deviation(1 g) = 1.22%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

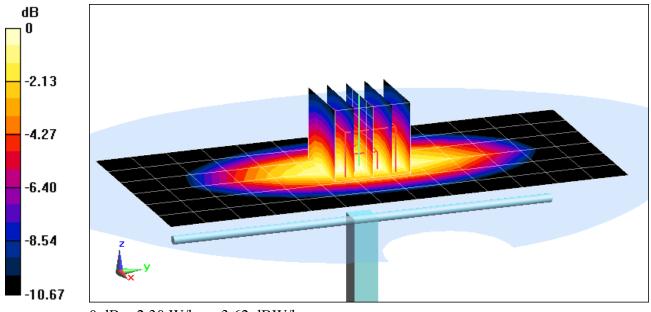
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.146; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-09-2016; Ambient Temp: 24.5°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3334; ConvF(6.37, 6.37, 6.37); Calibrated: 11/17/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 11/11/2015
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.89 W/kg

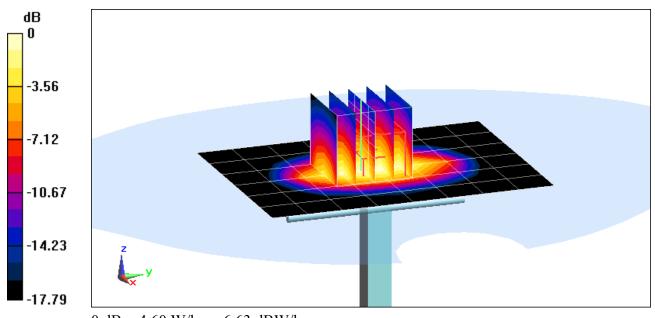
SAR(1 g) = 1.96 W/kg

Deviation(1 g) = 7.34%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: f = 1750 MHz; $\sigma = 1.343$ S/m; $\varepsilon_r = 39.929$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C


Probe: ES3DV3 - SN3319; ConvF(5.2, 5.2, 5.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.61 W/kgSAR(1 g) = 3.70 W/kgDeviation(1 g) = 2.49%

0 dB = 4.60 W/kg = 6.63 dBW/kg

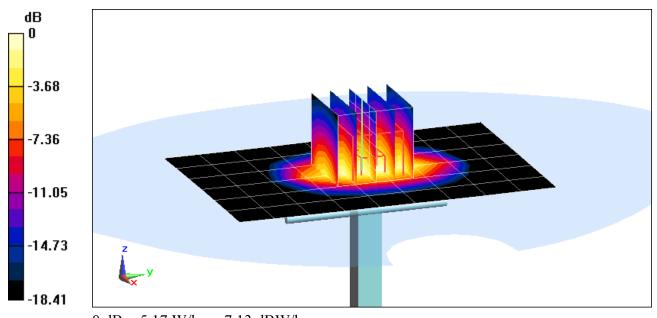
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.452 \text{ S/m}; \ \epsilon_r = 40.562; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3332; ConvF(5.06, 5.06, 5.06); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/15/2016
Phantom: SAM Main; Type: QD000P40CC; Serial: TP 1114
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.60 W/kg

SAR(1 g) = 4.10 W/kg

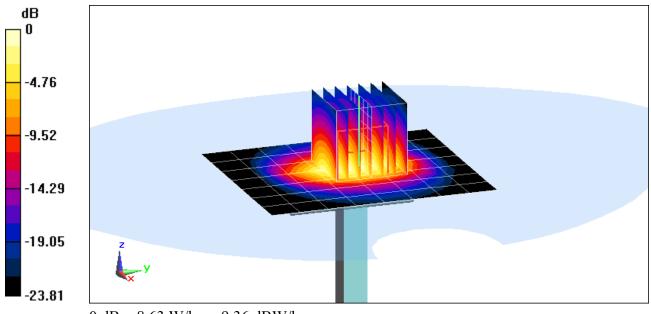
Deviation(1 g) = 2.76%

0 dB = 5.17 W/kg = 7.13 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.819 \text{ S/m}; \ \epsilon_r = 40.155; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.0°C; Tissue Temp: 22.6°C


Probe: EX3DV4 - SN7406; ConvF(7.29, 7.29, 7.29); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

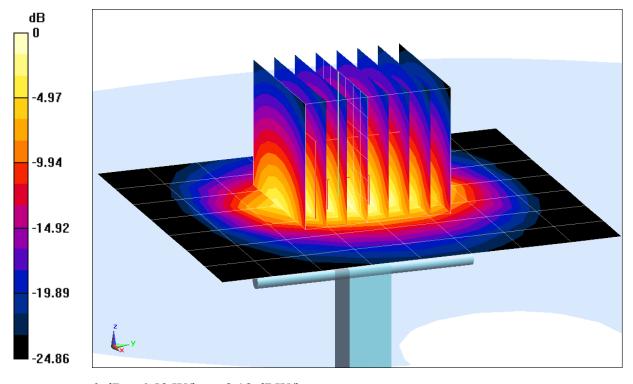
Peak SAR (extrapolated) = 10.9 W/kgSAR(1 g) = 5.09 W/kgDeviation(1 g) = -6.09%

0 dB = 8.63 W/kg = 9.36 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.875 \text{ S/m}; \ \epsilon_r = 39.613; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-16-2016; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C


Probe: ES3DV3 - SN3288; ConvF(4.57, 4.57, 4.57); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 9/18/2015
Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.5 W/kgSAR(1 g) = 5.18 W/kgDeviation(1 g) = -1.71%

0 dB = 6.58 W/kg = 8.18 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.968 \text{ S/m}; \ \epsilon_r = 54.436; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

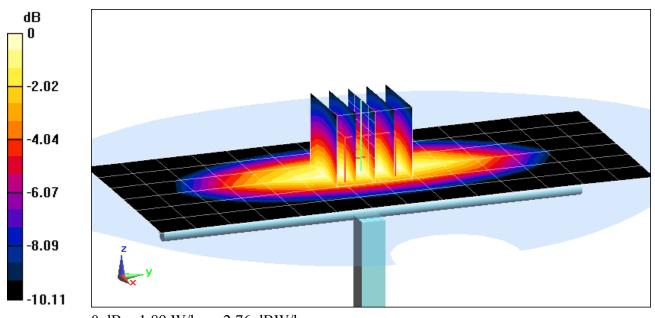
Test Date: 05-09-2016; Ambient Temp: 23.7°C; Tissue Temp: 23.9°C

Probe: ES3DV3 - SN3288; ConvF(6.57, 6.57, 6.57); Calibrated: 9/18/2015; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 9/18/2015

Phantom: Sub TWIN SAM; Type: QD000P40CC; Serial: TP-1357

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 1.64 W/kg

Deviation(1 g) = -5.31%

0 dB = 1.89 W/kg = 2.76 dBW/kg

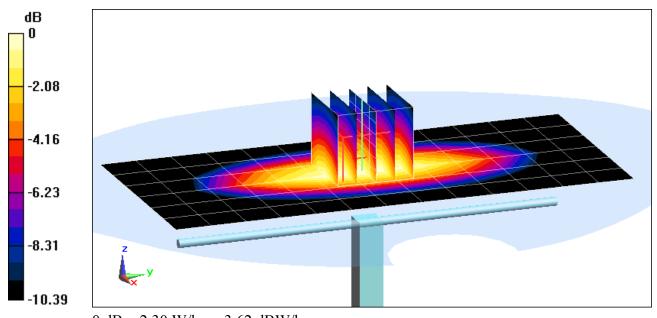
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: f = 835 MHz; $\sigma = 1.017$ S/m; $\epsilon_r = 53.791$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-09-2016; Ambient Temp: 21.9°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(6.11, 6.11, 6.11); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.87 W/kg

SAR(1 g) = 1.97 W/kg

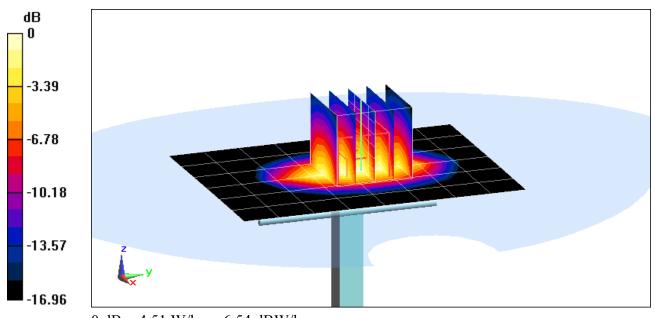
Deviation(1 g) = 7.77%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.456$ S/m; $\varepsilon_r = 52.534$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-09-2016; Ambient Temp: 23.5°C; Tissue Temp: 22.0°C


Probe: ES3DV2 - SN3022; ConvF(4.79, 4.79, 4.79); Calibrated: 8/26/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/16/2015
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.37 W/kgSAR(1 g) = 3.61 W/kgDeviation(1 g) = -1.10%

0 dB = 4.51 W/kg = 6.54 dBW/kg

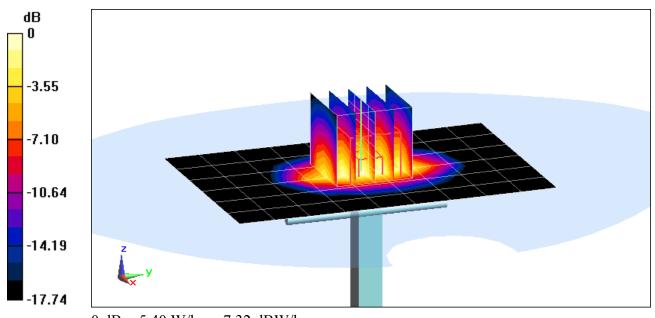
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.573 \text{ S/m}$; $\epsilon_r = 53.337$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-07-2016; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3333; ConvF(4.7, 4.7, 4.7); Calibrated: 10/29/2015; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 10/27/2015
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.65 W/kg

SAR(1 g) = 4.29 W/kg

Deviation(1 g) = 6.19%

0 dB = 5.40 W/kg = 7.32 dBW/kg

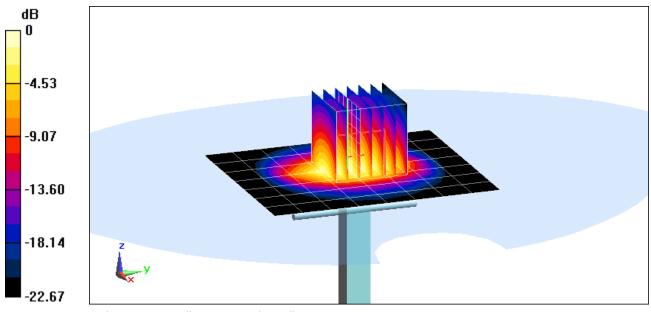
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.041$ S/m; $\varepsilon_r = 51.604$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2016; Ambient Temp: 24.3°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3319; ConvF(4.2, 4.2, 4.2); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 11.1 W/kg

SAR(1 g) = 5.44 W/kg

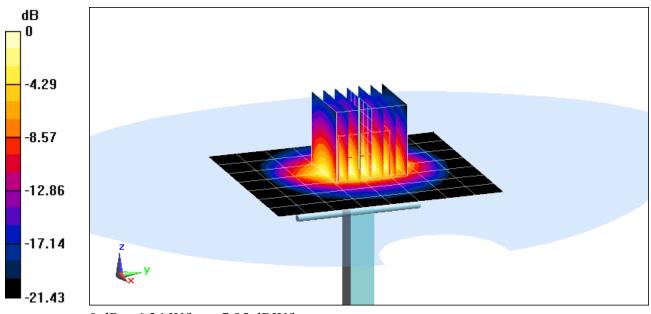
Deviation(1 g) = 4.82%

0 dB = 7.18 W/kg = 8.56 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 51.82$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2016; Ambient Temp: 21.9°C; Tissue Temp: 22.7°C


Probe: ES3DV3 - SN3318; ConvF(4.45, 4.45, 4.45); Calibrated: 2/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/19/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 9.84 W/kgSAR(1 g) = 4.77 W/kgDeviation(1 g) = -3.44%

0 dB = 6.24 W/kg = 7.95 dBW/kg