Total 57 Pages

RF TEST REPORT

Test item	:	Cellular/PCS GPRS and Cellu Wireless Router with WLAN	ılar WCDMA/HSDPA/HSUPA
Model No.	:	L-02F	
Order No.	:	DEMC1309-02886	
Date of receipt	:	2013-09-16	
Test duration	:	2013-10-14 ~ 2013-10-23	
Date of issue	:	2013-10-28	
Use of report	:	FCC Original Grant	
Applicant : LG Electr	onio	cs MobileComm USA, Inc.	
1000 Sylv	/an	Avenue, Englewood Cliffs NJ 0	7632
Test laboratory : Digital EN	AC (Co., Ltd.	
683-3, Yu	bar	ng-Dong, Cheoin-Gu, Yongin-S	i, Gyeonggi-Do, 449-080, Korea
Test specificatio	n	§22(H), §24(E)	
Test environmer	nt	: See appended test re	eport
Test result		: 🛛 Pass	Fail
		n this test report are limited only to the s other than its purpose. This test repo	ample supplied by applicant and rt shall not be reproduced except in full,
		t the written approval of DIGITAL EMC	
Tested by:		Witnessed by:	Reviewed by:
			N
			6
Engineer		N/A	Deputy General Manager
JaeJin Lee			WonJung Lee

FCCID: ZNFL02F DEMC1309-02886

Report No.: DRTFCC1310-1020

Test Report Version

Test Report No.	Date	Description
DRTFCC1310-1020	Oct. 28, 2013	Initial issue

Report No.: DRTFCC1310-1020

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. EUT DESCRIPTION	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS	6
3.1 ERP&EIRP	6
3.2 PEAK TO AVERAGE RATIO	7
3.3 OCCUPIED BANDWIDTH	9
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	10
3.5 RADIATED SPURIOUS EMISSIONS	11
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	12
4. LIST OF TEST EQUIPMENT	13
5. SUMMARY OF TEST RESULTS	14
6. SAMPLE CALCULATION	
7. TEST DATA	16
7.1 CONDUCTED OUTPUT POWER	16
7.2 PEAK TO AVERAGE RATIO	17
7.3 OCCUPIED BANDWIDTH	17
7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	17
7.5 BAND EDGE	17
7.6 EFFECTIVE RADIATED POWER	18
7.7 EQUIVALENT ISOTROPIC RADIATED POWER	19
7.8 RADIATED SPURIOUS EMISSIONS	
7.8.1 RADIATED SPURIOUS EMISSIONS (GPRS850)	
7.8.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)	21
7.8.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)	
7.8.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)	
7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	24
7.9.1 FREQUENCY STABILITY (GPRS850)	24
7.9.2 FREQUENCY STABILITY (WCDMA850)	25
7.9.3 FREQUENCY STABILITY (HSUPA850)	26
7.9.4 FREQUENCY STABILITY (GPRS1900)	27
8.1 Peak to Average Ratio	28
8.2 Occupied Bandwidth 99 % Bandwidth	29
8.3 Spurious Emissions at Antenna Terminal	37
8.4 Band Edge	52

FCCID: ZNFL02F DEMC1309-02886

DRTFCC1310-1020 Report No.:

1. GENERAL INFORMATION

Applicant Name: LG Electronics MobileComm USA, Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID ZNFL02F

FCC Classification Licensed Portable Transmitter(PCB)

Cellular/PCS GPRS and Cellular WCDMA/HSDPA/HSUPA Wireless Router **EUT Type**

with WLAN

Model Name L-02F

Add Model Name N/A

Supplying power Standard Battery

- Type: Li-Ion Battery

- M/N: L22

- Rating: DC 3.7 V & 3600 mAh / 13.3 Wh

Antenna Information Internal Antenna

- Type: Built-In type

Tx Frequency GPRS850: 824.2 MHz ~ 848.8 MHz

GPRS1900: 1850.2 MHz ~ 1909.8 MHz WCDMA850: 826.4 MHz ~ 846.6 MHz HSUPA850: 826.4 MHz ~ 846.6 MHz

GPRS850: 869.2 MHz ~ 893.8 MHz **Rx Frequency**

1930.2 MHz ~ 1989.8 MHz GPRS1900: 871.4 MHz ~ 891.6 MHz WCDMA850: 871.4 MHz ~ 891.6 MHz HSUPA850:

GPRS850: 0.971 W ERP (29.87 dBm) Max. RF Output Power

0.921 W EIRP (29.64 dBm) GPRS1900: 0.122 W ERP (20.86 dBm) WCDMA850: HSUPA850: 0.115 W ERP (20.62 dBm)

GPRS850: 248KGXW **Emission Designator(s)** :

> GPRS1900: 245KGXW WCDMA850: 4M16F9W HSUPA850: 4M15F9W

FCCID: ZNFL02F DEMC1309-02886

Report No.: DRTFCC1310-1020

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Equipment under Test(EUT) supports a cellular band(GPRS/WCDMA/HSDPA/HSUPA) and a PCS band(GPRS) wireless router with WLAN.

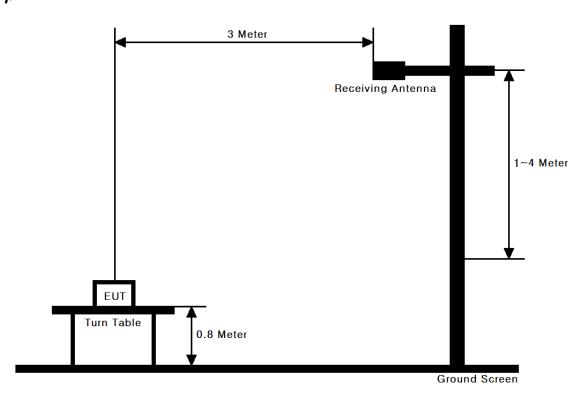
2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The 3 & 10M test site and conducted measurement facility used to collect the radiated data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- 3&10M test site registration Number: 678747


DEMC1309-02886 Report No.: **DRTFCC1310-1020**

3. DESCRIPTION OF TESTS

3.1 ERP&EIRP

(Effective Radiated Power & Equivalent Isotropic Radiated Power)

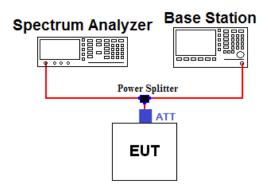
Test Set-up

Test Procedure

These measurements were performed at 3 & 10m test site. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading.


For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

FCCID: ZNFL02F DEMC1309-02886

DRTFCC1310-1020 Report No.:

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure

A peak to average ratio measurement is performed of **KDB971168 D01**.

CCDF Procedure

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve
- 3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%

Report No.: DRTFCC1310-1020

Alternate Procedure

DEMC1309-02886

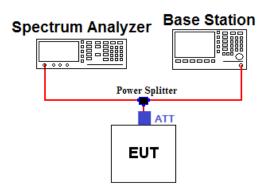
Use one of the measurement procedures of the peak power and record as P_{Pk} . Use one of the measurement procedures of the average power and record as P_{Avg} . Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm) - P_{Avq} (dBm).

- Peak Power Measurement

- 1. Set the RBW ≥ OBW
- 2. Set VBW ≥ 3 × RBW
- 3. Set span ≥ 2 x RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Ensure that the number of measurement points ≥ span/RBW.
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the peak amplitude level.

- Average Power Measurement


- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3. Set VBW \geq 3 x RBW.
- Set number of points in sweep ≥ 2 × span / RBW.
- 5. Sweep time = auto-couple.
- 6. Detector = RMS (power averaging).
- 7. If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
- 8. If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

TRF-RF-210(01)130923 Page 8 / 57

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

3.3 OCCUPIED BANDWIDTH.

Test set-up

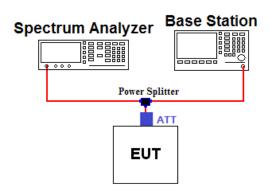
Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.2	16.31	1850.2	16.74
826.4	16.32	1880.0	16.77
836.6	16.38	1909.8	16.86
846.6	16.40		
848.8	16.40		

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter + ATT + Cable B

Test Procedure


The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 ~ 5% of the expected OBW & VBW ≥ 3 X RBW
- 3. Detector = Peak
- 4. Trance mode = Max hold
- 5. Sweep = Auto couple
- 6. The trace was allowed to stabilize
- 7. If necessary, step $2 \sim 7$ were repeated after changing the RBW such that it would be within $1 \sim 5\%$ of the 99% occupied bandwidth observed in step 7.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
823.0	16.31	1850.0	16.73	15000.0	19.34
824.0	16.31	1910.0	16.88	20000.0	20.45
849.0	16.41	5000.0	17.93		
850.0	16.41	10000.0	18.48		

Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test.

Offset value = Cable A + Splitter + ATT + Cable B

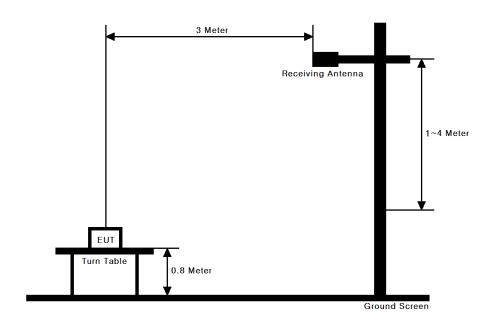
Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

- 1. RBW = 1MHz & VBW ≥ 3MHz
- 2. Detector = Positive peak
- 3. Trace mode = Max hold
- 4. Sweep time = Auto
- 5. The trace was allowed to stabilize

The highest, lowest and a middle channel were tested for out of band measurements. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.


- Note 1: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter was employed to measure the out of band Emissions.
- Note 2: Compliance with the applicable limits is based on the use of measurement instrumentation employing a RBW of 100 KHz or greater for Part 22 and 1 MHz or greater for Part 24.

FCCID: ZNFL02F DEMC1309-02886 **DRTFCC1310-1020**

Report No.:

3.5 RADIATED SPURIOUS EMISSIONS

Test Set-up

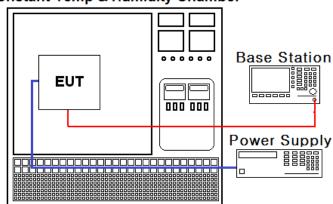
Test Procedure

This measurement was performed at 3-meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.

For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.


This measurement was performed with the EUT oriented in 3 orthogonal axis.

DEMC1309-02886 Report No.: DRTFCC1310-1020

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification - the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within \pm 0.000 25 %(\pm 2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

4. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Multimeter	H.P	34401A	13/02/27	14/02/27	3146A13475
DC Power Supply	H.P	6622A	13/02/27	14/02/27	3448A03760
Power Splitter	Anritsu	K241B	13/09/12	14/09/12	020611
Attenuator	Aeroflex/Weinschel	56-3	13/09/12	14/09/12	Y2342
Attenuator	WEINSCHEL	23-10-34	12/09/17	13/09/17	BP4386
Thermohygrometer	BODYCOM	BJ5478	13/01/14	14/01/14	090205-4
Constant Temp & Humidity Chamber	JISICO	KR-100/J-RHC2	13/09/13	14/09/13	30604493/021031
Dipole Antenna	Schwarzbeck	VHA9103	12/03/12	14/03/12	2116
Dipole Antenna	Schwarzbeck	VHA9103	12/03/22	14/03/22	2117
Dipole Antenna	Schwarzbeck	UHA9105	12/03/12	14/03/12	2261
Dipole Antenna	Schwarzbeck	UHA9105	12/03/22	14/03/22	2262
Bilog Antenna	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
HORN ANT	ETS	3115	12/02/20	14/02/20	6419
HORN ANT	ETS	3115	13/02/28	15/02/28	00021097
HORN ANT	A.H.Systems	SAS-574	13/03/20	15/03/20	154
HORN ANT	A.H.Systems	SAS-574	13/05/27	15/05/27	155
Amplifier	Agilent	8447E	13/01/08	14/01/08	2945A02865
Amplifier	Agilent	8449B	13/02/27	14/02/27	3008A00370
High-pass filter	Wainwright	WHKX1.0	13/09/12	14/09/12	9
High-pass filter	Wainwright	WHNX2.1	13/09/12	14/09/12	1
8960 Series 10 Wireless Comms Test Set	Agilent	E5515C	13/02/28	14/02/28	GB43461134
Universal Radio Communication Tester	Rohde Schwarz	CMU200	13/02/28	14/02/28	106760
Vector Signal Generator	Rohde Schwarz	SMJ100A	13/01/08	14/01/08	100148
Signal Generator	Rohde Schwarz	SMF100A	13/07/22	14/07/22	102341
Amplifier	EMPOWER	BBS3Q7ELU	13/09/12	14/09/12	1020
Spectrum Analyzer	Agilent	E4440A	13/01/08	14/01/08	MY44033778
Spectrum Analyzer	Agilent	N9020A	13/09/16	14/09/16	MY50410163

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 (4.4) RSS-133 (4.1)	Conducted Output Power	С
22.913(a) 24.232(c)	RSS-132 (4.4) [SRSP-503(5.1.3)] RSS-133 (6.4) [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	С
22.917(a) 24.238(a) 2.1049	RSS-Gen (4.6.1) RSS-133 (2.3)	Occupied Bandwidth	С
22.917(a) 24.238(a) 2.1051	RSS-132 (4.5.1) RSS-133 (6.5.1)	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	С
24.232(d)	RSS-133 (6.4)	Peak to Average Ratio	С
22.917(a) 24.238(a) 2.1053	RSS-132 (4.5.1) RSS-133 (6.5.1)	Radiated Spurious and Harmonic Emissions	С
22.355 24.235 2.1055	RSS-132 (4.3) RSS-133 (6.3)	Frequency Stability	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI/TIA/EIA-603-C-2004 and KDB 971168 D01 v02r01

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

6. SAMPLE CALCULATION

A. Emission Designator

GPRS850 Emission Designator

Emission Designator = 248KGXW

GPRS OBW = 247.59 kHz

(Measured at the 99.75 % power bandwidth)

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA850 Emission Designator

Emission Designator = 4M16F9W

WCDMA OBW = 4.1604 MHz

(Measured at the 99.75 % power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

GPRS1900 Emission Designator

Emission Designator = 245KGXW

GPRS OBW = 244.87 kHz

(Measured at the 99.75 % power bandwidth)

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

HSUPA850 Emission Designator

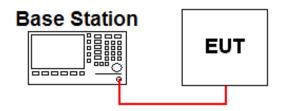
Emission Designator = 4M15F9W

HSUPA OBW = 4.1535 MHz

(Measured at the 99.75 % power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information


W = Combination (Audio/Data)

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

• GSM / GPRS / EDGE

		Test Result(dBm)									
Band	Channel	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot	
	128	N/A	32.4	30.1	N/A	N/A	N/A	N/A	N/A	N/A	
Cellular	190	N/A	32.4	30.2	N/A	N/A	N/A	N/A	N/A	N/A	
	251	N/A	32.4	30.1	N/A	N/A	N/A	N/A	N/A	N/A	
	512	N/A	29.5	28.1	N/A	N/A	N/A	N/A	N/A	N/A	
PCS	661	N/A	29.6	28.3	N/A	N/A	N/A	N/A	N/A	N/A	
	810	N/A	29.6	28.3	N/A	N/A	N/A	N/A	N/A	N/A	

WCDMA

3GPP	MIOGE		Р	Power (dBm)			В	0	D /0	Sub-
Release Version	Chanr	nel	4132	2 4183 4233		MPR	Вс	βa	Bc/βd	Test
00	WCDMA	RMC	22.76	22.81	22.74	N/A	N/A	N/A	N/A	N/A
99	WCDIVIA	ARM	N/A	N/A	N/A	IN/A	IN/A	IN/A	IN/A	IN/A
			22.71	22.79	22.70	0	2/15	15/15	2/15	1
5	HSDF	PA	22.69	22.75	22.69	0	12/15	15/15	12/15	2
5	(Cellul	ar)	22.23	22.24	22.22	0.5	15/15	8/15	15/8	3
			22.21	22.23	22.20	0.5	15/15	4/15	15/4	4
			22.69	22.71	22.65	0	11/15	15/15	11/15	1
			20.71	20.76	20.68	2	6/15	15/15	6/15	2
6		HSUPA (Cellular)		21.79	21.69	1	15/15	9/15	15/9	3
	, och	,,	20.70	20.72	20.69	2	2/15	15/15	2/15	4
			22.65	22.69	22.64	0	15/15	15/15	15/15	5

Report No.: DRTFCC1310-1020

7.2 PEAK TO AVERAGE RATIO

DEMC1309-02886

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH

Band	Channel	Test Result(KHz)
	128	246.99
GPRS850	190	247.59
	251	245.36
	512	244.87
GPRS1900	661	244.70
	810	242.89
	4132	4160.40
WCDMA850	4183	4156.70
	4233	4154.60
	4132	4147.70
HSUPA850	4183	4151.50
	4233	4153.50

⁻ Plots of the EUT's Occupied Bandwidth are shown in Clause 8.2

7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5 BAND EDGE

- Plots of the EUT's Band Edge are shown in Clause 8.4

FCCID: ZNFL02F DEMC1309-02886

DRTFCC1310-1020 Report No.:

7.6 EFFECTIVE RADIATED POWER

- GPRS850 data

	EUT		Test Conditions(Power Step: 5)										
Freq.(MHz) CH.	z) EUT Position (Axis)	Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Power Supply	Note.				
824.2 128 CH	Х	- 5.81	Н	26.90	1.20	28.10	0.646	DC 3.7 V	-				
836.6 190 CH	X	- 5.28	Н	28.72	1.15	29.87	0.971	DC 3.7 V	-				
848.8 251 CH	Х	- 5.14	Н	28.46	1.05	29.51	0.893	DC 3.7 V	-				

- WCDMA850 data

	FUT	Test Conditions(TPC bits all set to "1")										
Freq.(MHz) CH.	(Axis)	Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Power Supply	Note.			
826.4 4132 CH	X	- 14.45	Н	18.49	1.19	19.68	0.093	DC 3.7 V	-			
836.6 4183 CH	X	- 15.13	Н	19.13	1.15	20.28	0.107	DC 3.7 V	-			
846.6 4233 CH	X	- 14.68	Н	19.76	1.10	20.86	0.122	DC 3.7 V	-			

- HSUPA850 data

110017101	11001 A000 data									
		Test Conditions(TPC bits all set to "1")								
Freq.(MHz) CH.	EUT Position (Axis)	Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Power Supply	Note.	
826.4 4132 CH	X	- 15.30	Н	17.64	1.19	18.83	0.076	DC 3.7 V	-	
836.6 4183 CH	Х	- 14.90	Н	19.36	1.15	20.51	0.112	DC 3.7 V	-	
846.6 4233 CH	X	- 14.92	Н	19.52	1.10	20.62	0.115	DC 3.7 V	-	

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM and TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

TRF-RF-210(01)130923 Page 18 / 57

Report No.: DRTFCC1310-1020

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- GPRS 1900 data

DEMC1309-02886

		TEST CONDITIONS(Power Step: 0)								
Freq.(MHz) CH.	EUT Position (Axis)	Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Power Supply	Note.	
1850.2 512 CH	Υ	-9.52	V	20.38	8.06	28.44	0.697	DC 3.7V	-	
1880.0 661 CH	Y	-9.27	V	20.37	8.12	28.49	0.706	DC 3.7V	-	
1909.8 810 CH	Y	-9.33	V	21.46	8.18	29.64	0.921	DC 3.7V	-	

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM and TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.8 RADIATED SPURIOUS EMISSIONS

7.8.1 RADIATED SPURIOUS EMISSIONS (GPRS850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
100	1648.46	Х	Н	- 48.53	5.48	- 43.05	71.15	
128	2472.64	Х	Н	- 47.40	6.89	- 40.51	68.61	41.10
(0.646W)	-	-	-	-	-	-	-	
400	1673.06	Х	Н	- 47.99	5.53	- 42.46	72.33	
190	2510.01	Х	Н	- 49.26	6.94	- 42.32	72.19	42.87
(0.971W)	-	-	-	-	-	-	-	
054	1697.50	Х	Н	- 48.62	5.58	- 43.04	72.55	
251 (0.893W)	2546.45	Х	Н	- 48.22	7.00	- 41.22	70.73	42.51
	-	-	-	-	-	-	-	

- Limit Calculation= 43 + 10 log₁₀(ERP [W]) [dBc]
- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.8.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	1654.28	X	Н	- 64.20	5.49	- 58.71	78.39	32.68
4132 (0.093W)	-	-	-	-	-	-	-	
(0.00011)	-	-	-	-	-	-	-	
	1671.72	Х	Н	- 65.75	5.53	- 60.22	80.50	33.28
4183 (0.107W)	-	-	-	-	-	-	-	
(0.10111)	-	-	-	-	-	-	-	
	1694.91	Х	Н	- 65.20	5.58	- 59.62	80.48	33.86
4233 (0.122W)	-	-	-	-	-	-	-	
(32277)	-	-	-	-	-	-	-	

⁻ Limit Calculation = 43 + 10 log₁₀(ERP [W]) [dBc]

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reportedgreater than listed emissions above table.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.8.3 RADIATED SPURIOUS EMISSIONS (HSUPA850)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	1654.20	X	Н	- 64.17	5.49	- 58.68	77.51	31.83
4132 (0.076W)	1	-	1	1	-	ı	-	
(5.5.5.1)	1	-	1	1	-	ı	-	
	1675.15	X	Н	- 64.91	5.54	- 59.37	79.88	33.51
4183 (0.112W)	-	-	-	-	-	-	-	
(0111211)	1	-	ı	1	-	ı	-	
	1694.92	Х	Н	- 67.04	5.58	- 61.46	82.08	
4233 (0.115W)	-	-	ı	1	-	-	-	33.62
(31311)	1	-	1	1	-	- -	-	

⁻ Limit Calculation = 43 + 10 log₁₀ (ERP [W]) [dBc]

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

⁻ No other spurious and harmonic emissions were reported greater than listed emissions above table.

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.8.4 RADIATED SPURIOUS EMISSIONS (GPRS1900)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	POL (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
	3700.19	Z	Н	- 53.15	9.90	- 43.25	71.69	
512 (0.697W)	7400.74	Z	Н	- 50.27	11.64	- 38.63	67.07	41.44
(0.001.11)	-	-	-	-	-	-	-	
	3759.98	Z	Н	- 51.65	9.90	- 41.75	70.23	
661 (0.706W)	7520.37	Z	Н	- 49.71	11.59	- 38.12	66.61	41.49
(6.1.6611)	-	-	-	-	-	-	-	
	3819.62	Z	Н	- 47.84	9.91	- 37.93	67.57	
810 (0.921W)	7638.95	Z	Н	- 46.68	11.54	- 35.14	64.78	42.64
(3.32)	-	-	-	-	-	-	-	

- Limit Calculation = 43 + 10 log₁₀(EIRP [W]) [dBc]
- No other spurious and harmonic emissions were reportedgreater than listed emissions above table.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

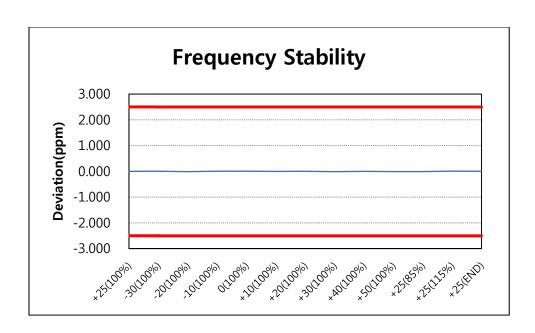
The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

DEMC1309-02886 FCCID: **ZNFL02F**Report No.: **DRTFCC1310-1020**

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE


7.9.1 FREQUENCY STABILITY (GPRS850)

OPERATING FREQUENCY : <u>836,599,982</u> Hz CHANNEL : <u>190(Mid)</u>

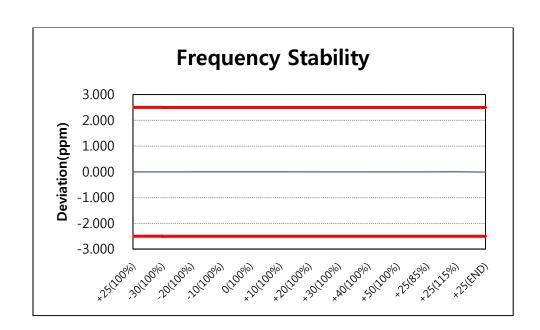
REFERENCE VOLTAGE : 3.700 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Deviation		
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)	
100 %	3.700	+ 25(Ref)	836,599,982	0.000	0.00000000	
100 %		- 30	836,599,989	0.008	0.00000084	
100 %		- 20	836,599,971	- 0.013	- 0.00000131	
100 %		- 10	836,599,989	0.008	0.00000084	
100 %		0	836,599,988	0.007	0.00000072	
100 %		+ 10	836,599,981	- 0.001	- 0.00000012	
100 %		+ 20	836,599,985	0.004	0.00000036	
100 %		+ 30	836,599,973	- 0.011	- 0.00000108	
100 %		+ 40	836,599,983	0.001	0.0000012	
100 %		+ 50	836,599,974	- 0.010	- 0.00000096	
85 %	3.145	+ 25	836,599,975	- 0.008	- 0.0000084	
115 %	4.255	+ 25	836,599,990	0.010	0.00000096	
BATT.ENDPOINT	2.700	+ 25	836,599,984	0.002	0.00000024	

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.9.2 FREQUENCY STABILITY (WCDMA850)


OPERATING FREQUENCY : 836,599,982 Hz

CHANNEL: 4183(Mid)

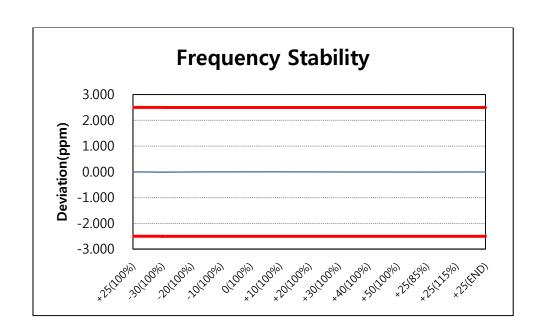
REFERENCE VOLTAGE : 3.700 V DC

DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Dev	riation
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)
100 %	3.700	+ 25(Ref)	836,599,982	0.000	0.00000000
100 %		- 30	836,599,980	- 0.002	- 0.00000024
100 %		- 20	836,599,985	0.004	0.00000036
100 %		- 10	836,599,980	- 0.002	- 0.0000024
100 %		0	836,599,983	0.001	0.0000012
100 %		+ 10	836,599,988	0.007	0.00000072
100 %		+ 20	836,599,979	- 0.004	- 0.0000036
100 %		+ 30	836,599,985	0.004	0.00000036
100 %		+ 40	836,599,983	0.001	0.00000012
100 %		+ 50	836,599,977	- 0.006	- 0.00000060
85 %	3.145	+ 25	836,599,980	- 0.002	- 0.00000024
115 %	4.255	+ 25	836,599,984	0.002	0.00000024
BATT.ENDPOINT	2.700	+ 25	836,599,975	- 0.008	- 0.00000084

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

7.9.3 FREQUENCY STABILITY (HSUPA850)


OPERATING FREQUENCY : 836,599,986 Hz

CHANNEL: 4183(Mid)

REFERENCE VOLTAGE : 3.700 V DC

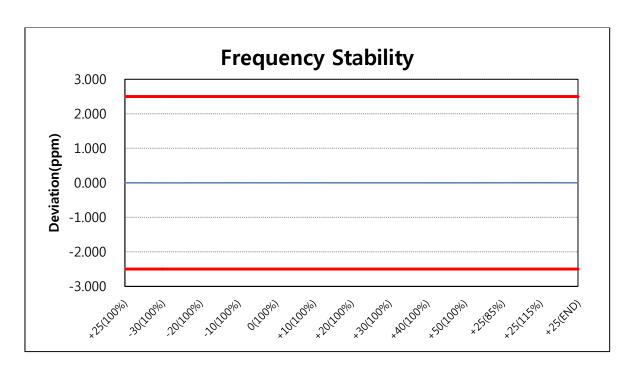
DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ	Dev	riation
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)
100 %	3.700	+ 25(Ref)	836,599,986	0.000	0.00000000
100 %		- 30	836,599,976	- 0.012	- 0.00000120
100 %		- 20	836,599,985	- 0.001	- 0.00000012
100 %		- 10	836,599,989	0.004	0.0000036
100 %		0	836,599,983	- 0.004	- 0.0000036
100 %		+ 10	836,599,988	0.002	0.00000024
100 %		+ 20	836,599,981	- 0.006	- 0.00000060
100 %		+ 30	836,599,984	- 0.002	- 0.00000024
100 %		+ 40	836,599,979	- 0.008	- 0.00000084
100 %		+ 50	836,599,984	- 0.002	- 0.00000024
85 %	3.145	+ 25	836,599,978	- 0.010	- 0.00000096
115 %	4.255	+ 25	836,599,982	- 0.005	- 0.0000048
BATT.ENDPOINT	2.700	+ 25	836,599,983	- 0.004	- 0.0000036

FCCID: ZNFL02F DEMC1309-02886

Report No.: DRTFCC1310-1020

7.9.4 FREQUENCY STABILITY (GPRS1900)


OPERATING FREQUENCY 1,879,999,993 Hz

CHANNEL 661(Mid)

REFERENCE VOLTAGE V DC 3.700

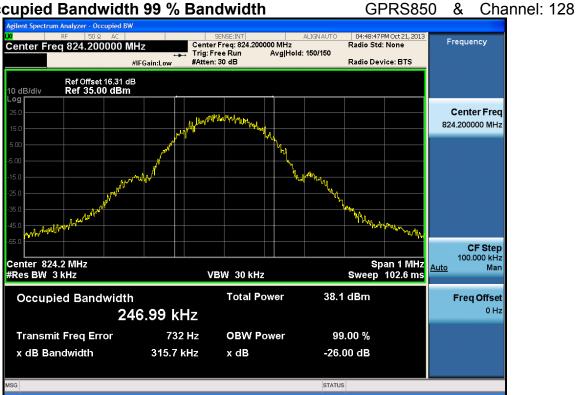
DEVIATION LIMIT ± 0.00025 % or 2.5 ppm

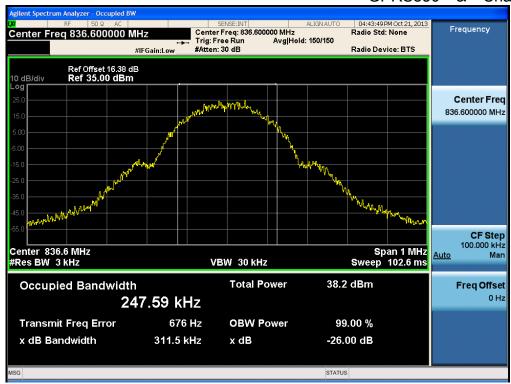

VOLTAGE	POWER	TEMP	FREQ	Dev	riation
(%)	(V DC)	(℃)	(Hz)	(ppm)	(%)
100 %	3.700	+ 25(Ref)	1,879,999,993	0.000	0.00000000
100 %		- 30	1,879,999,989	- 0.002	- 0.00000021
100 %		- 20	1,879,999,988	- 0.003	- 0.00000027
100 %		- 10	1,879,999,993	0.000	0.00000000
100 %		0	1,879,999,992	- 0.001	- 0.0000005
100 %		+ 10	1,879,999,994	0.001	0.0000005
100 %		+ 20	1,879,999,988	- 0.003	- 0.0000027
100 %		+ 30	1,879,999,993	0.000	0.00000000
100 %		+ 40	1,879,999,986	- 0.004	- 0.0000037
100 %		+ 50	1,879,999,992	- 0.001	- 0.0000005
85 %	3.145	+ 25	1,879,999,991	- 0.001	- 0.0000011
115 %	4.255	+ 25	1,879,999,995	0.001	0.00000011
BATT.ENDPOINT	2.700	+ 25	1,879,999,991	- 0.001	- 0.0000011

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

8.1 Peak to Average Ratio

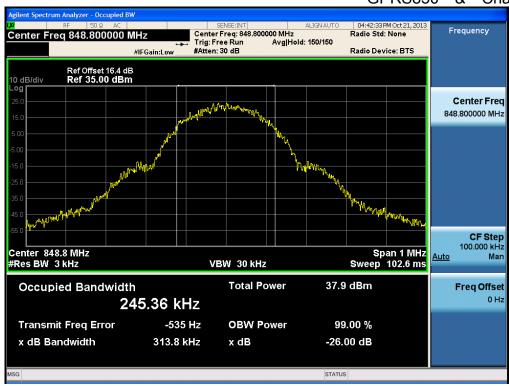
GPRS1900 & Channel: 661


GPRS1900 & Channel: 661

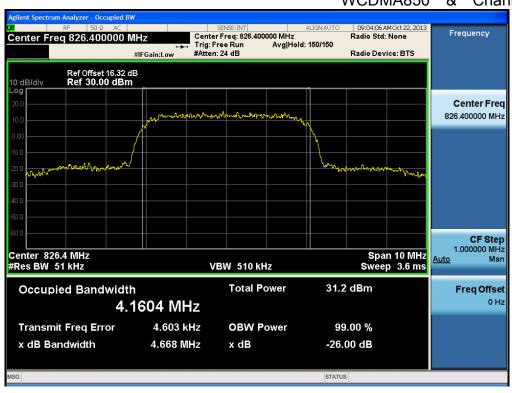

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 29.613 dBm - 29.400 dBm = 0.213 dB

DRTFCC1310-1020 Report No.:

8.2 Occupied Bandwidth 99 % Bandwidth



GPRS850 & Channel: 190

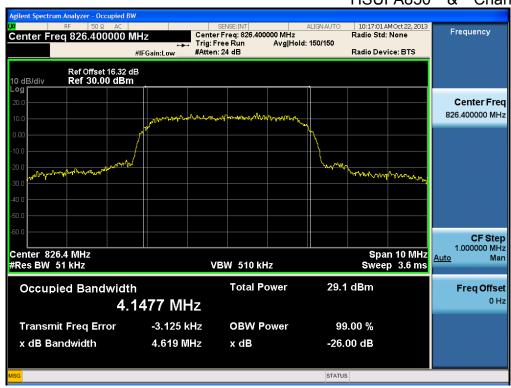

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

GPRS850 & Channel: 251

DEMC1309-02886 DRTFCC1310-1020 Report No.:

WCDMA850 & Channel: 4132

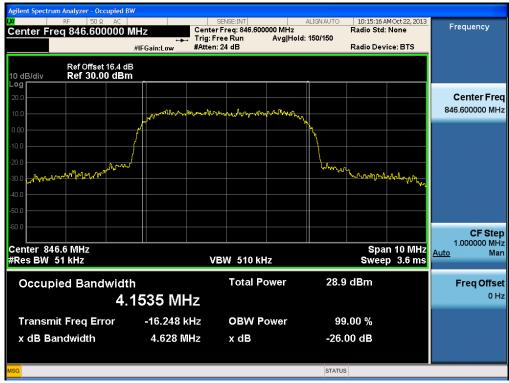
WCDMA850 & Channel: 4183


DEMC1309-02886 Report No.: **DRTFCC1310-1020**

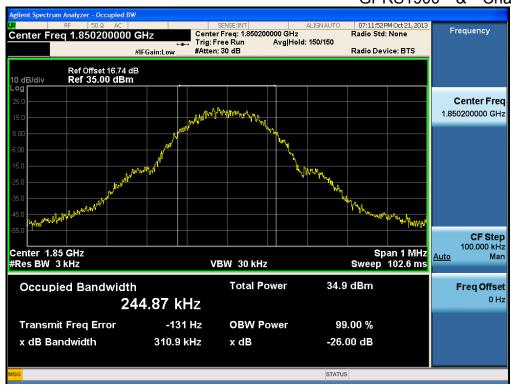
WCDMA850 & Channel: 4233

ZNFL02F DRTFCC1310-1020

HSUPA850 & Channel: 4132



Channel: 4183 HSUPA850 &

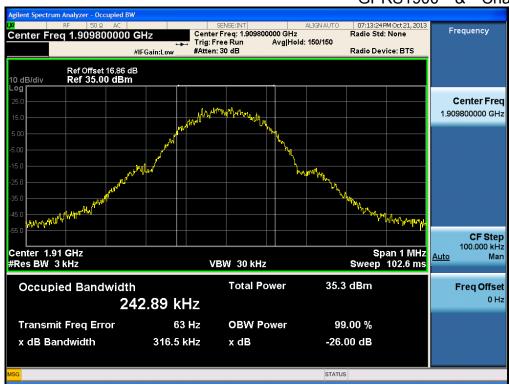

DEMC1309-02886 Report No.: **DRTFCC1310-1020**

HSUPA850 & Channel: 4233

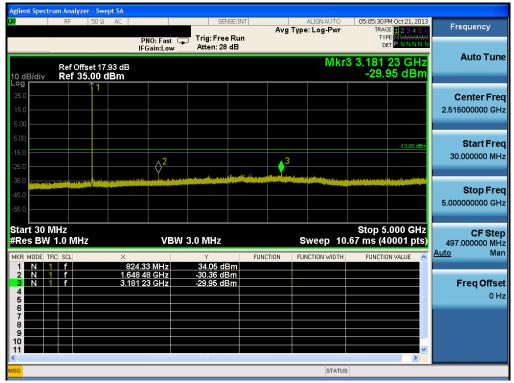


DRTFCC1310-1020 Report No.:

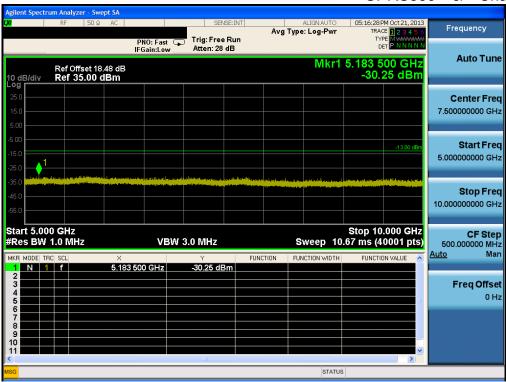
GPRS1900 & Channel: 512

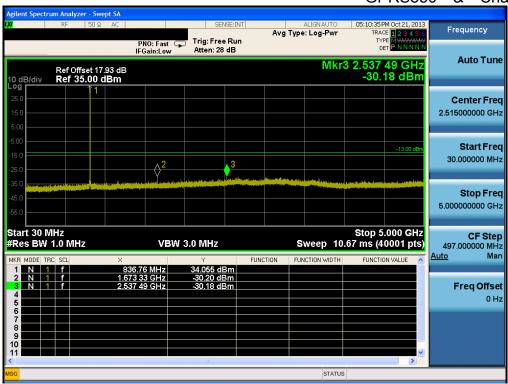


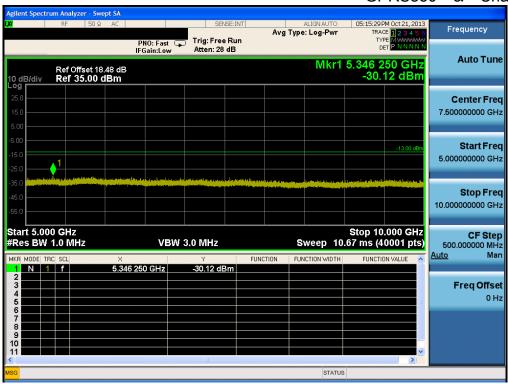
Channel: 661 GPRS1900 &



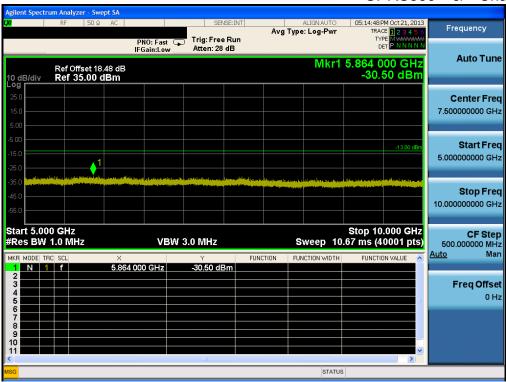
DRTFCC1310-1020 Report No.:

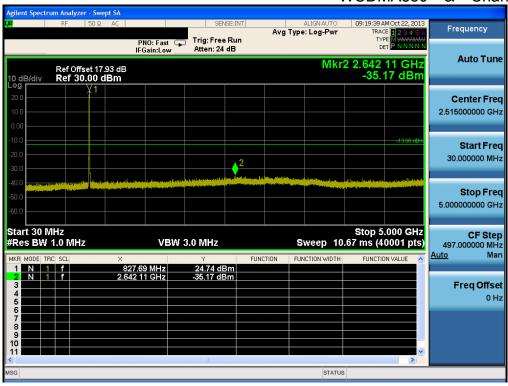

GPRS1900 & Channel: 810

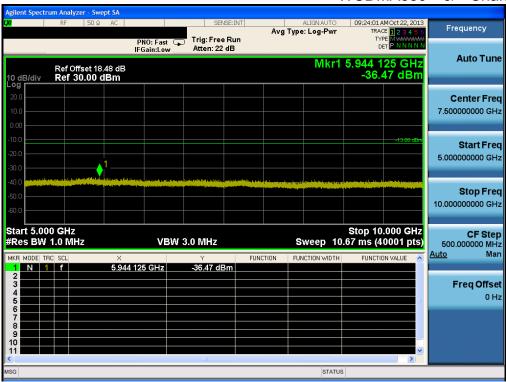

8.3 Spurious Emissions at Antenna Terminal GPRS850 & Channel: 128

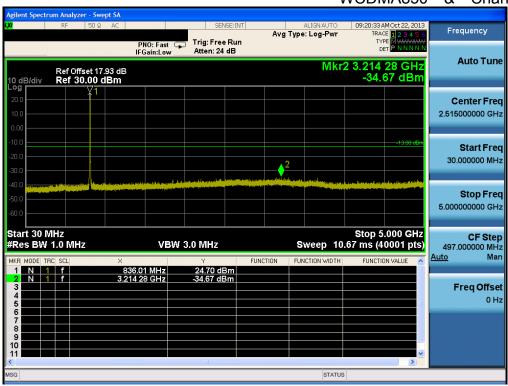

Channel: 128 GPRS850 &

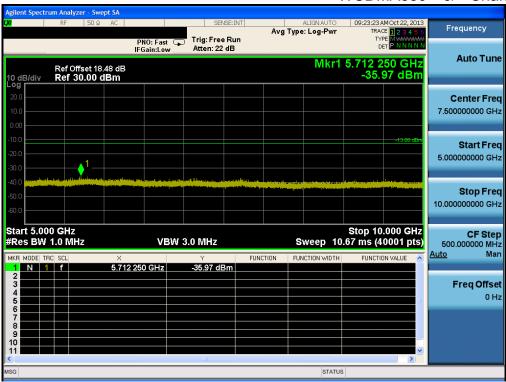
GPRS850 & Channel: 190

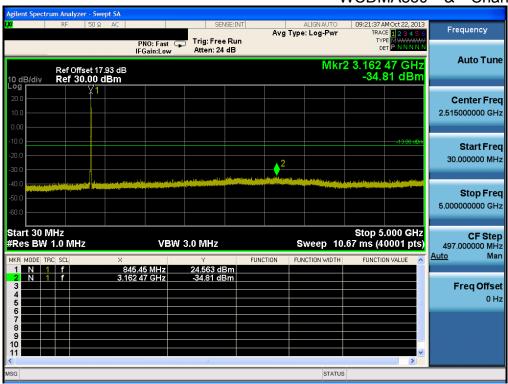

GPRS850 Channel: 190 &

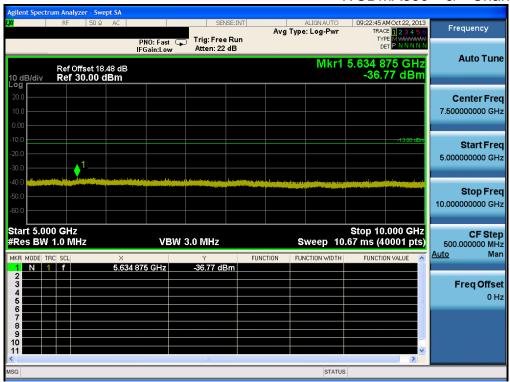

GPRS850 & Channel: 251

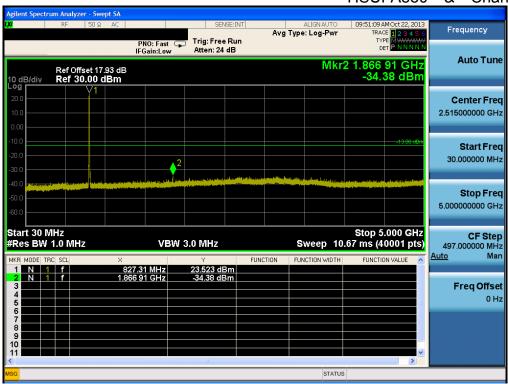

GPRS850 & Channel: 251

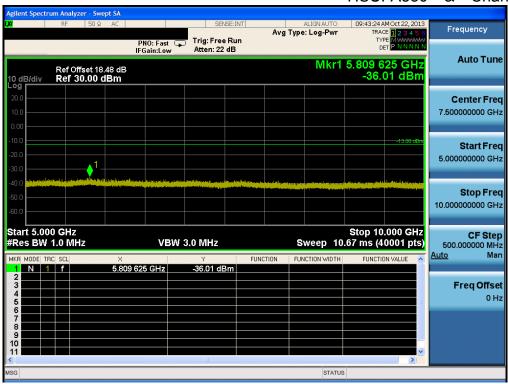

WCDMA850 & Channel: 4132

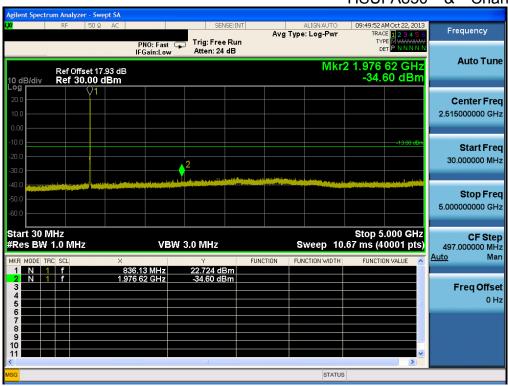

WCDMA850 & Channel: 4132

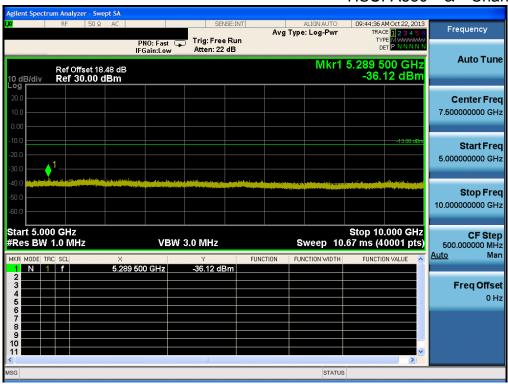

WCDMA850 & Channel: 4183

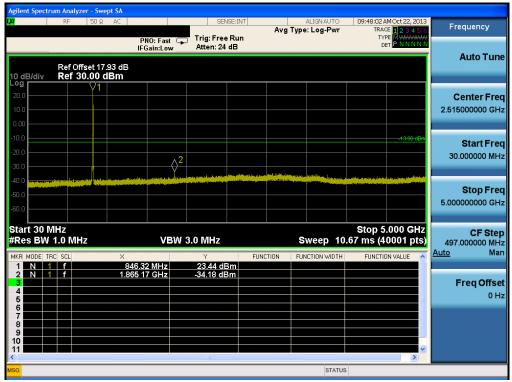

WCDMA850 & Channel: 4183

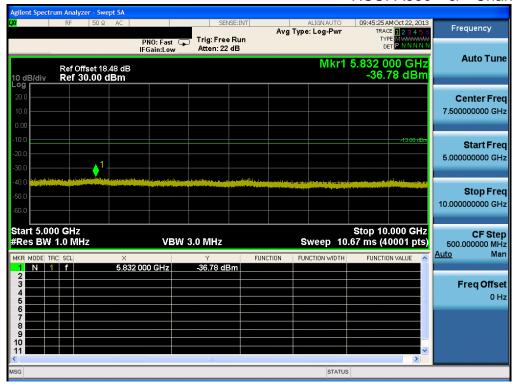

WCDMA850 & Channel: 4233

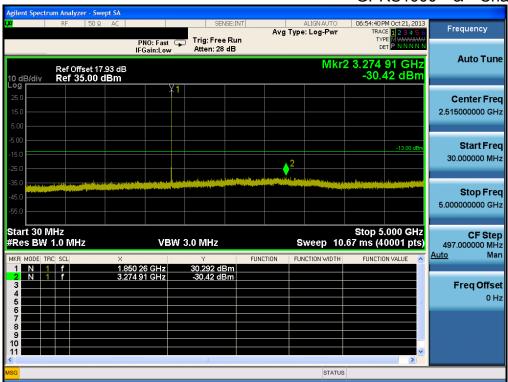

WCDMA850 & Channel: 4233

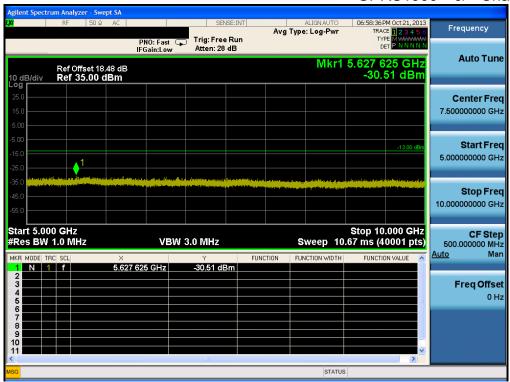

HSUPA850 & Channel: 4132


Channel: 4132 HSUPA850 &

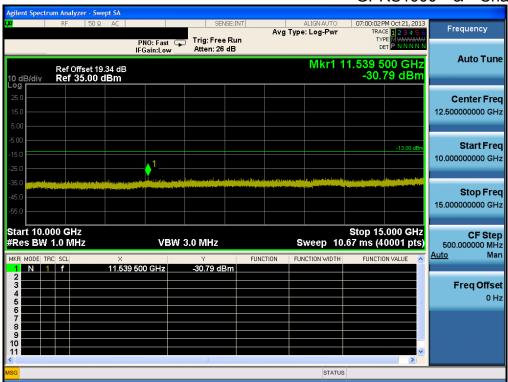

HSUPA850 & Channel: 4183

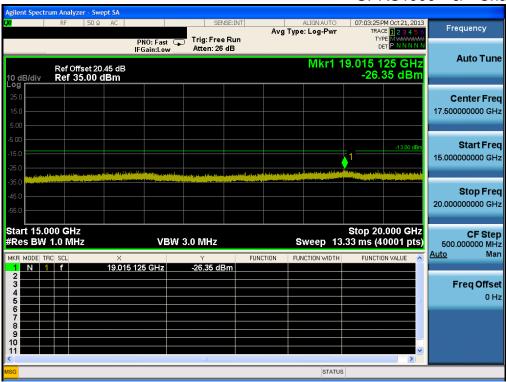

HSUPA850 & Channel: 4183

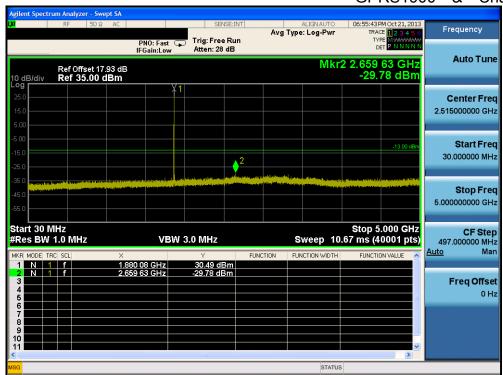

HSUPA850 & Channel: 4233

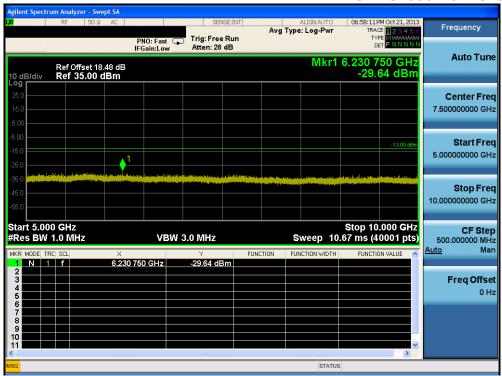


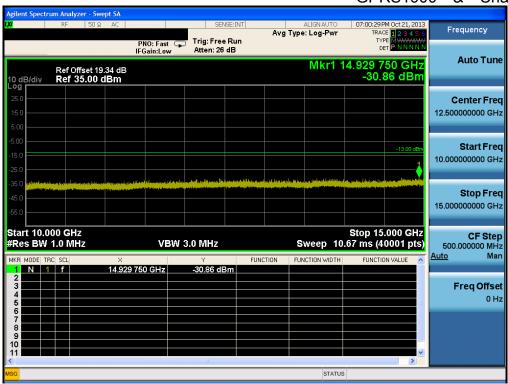
HSUPA850 & Channel: 4233

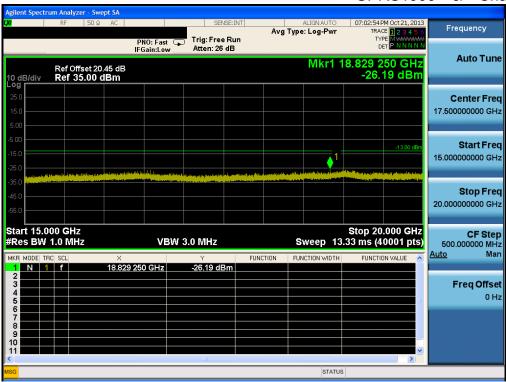


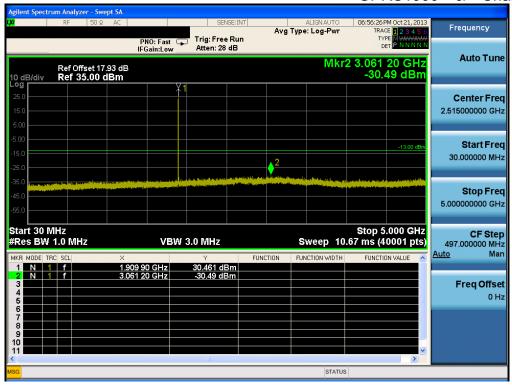

GPRS1900 & Channel: 512

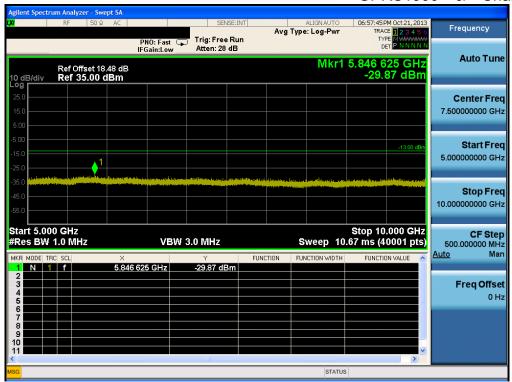

GPRS1900 & Channel: 512

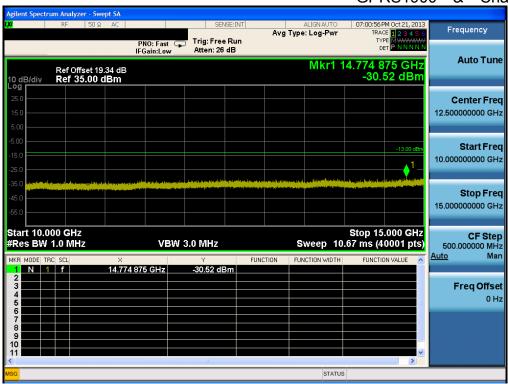


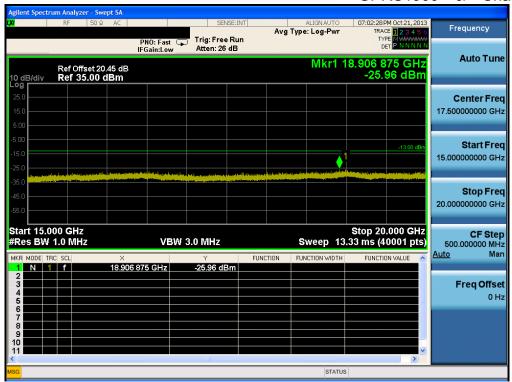

Report No.: DRTFCC1310-1020


GPRS1900 & Channel: 661

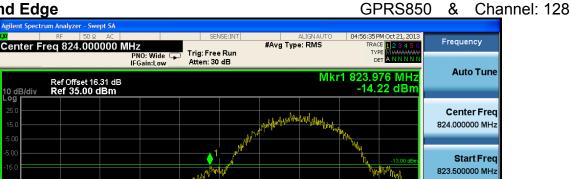



GPRS1900 & Channel: 661




GPRS1900 & Channel: 810

GPRS1900 & Channel: 810



DEMC1309-02886 DRTFCC1310-1020 Report No.:

8.4 Band Edge

Ref Offset 16.31 dB Ref 35.00 dBm

GPRS850 & Channel: 251

WCDMA850 & Channel: 4132

& Channel: 4132 WCDMA850

WCDMA850 & Channel: 4233

Channel: 4233 WCDMA850 &

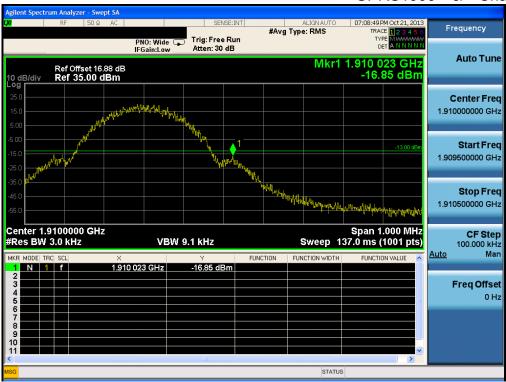
FCCID: **ZNFL02F**

Report No.: DRTFCC1310-1020

HSUPA850 & Channel: 4132

HSUPA850 & Channel: 4132

HSUPA850 & Channel: 4233


Channel: 4233 HSUPA850 &

GPRS1900 & Channel: 512

Channel: 810 GPRS1900 &

