

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 28.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d159

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

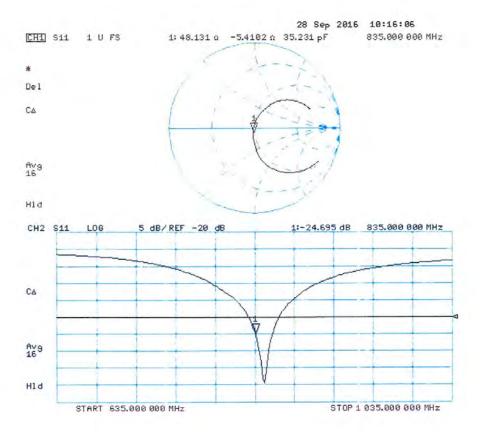
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.99 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.15 W/kg



0 dB = 3.15 W/kg = 4.98 dBW/kg

Certificate No: D835V2-4d159_Sep16

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D1800V2-2d047_May17

CALIBRATION CERTIFICATE

Object D1800V2 - SN:2d047

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: May 23, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7460	19-May-17 (No. EX3-7460_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	pere un
Approved by:	Katja Pokovic	Technical Manager	alux-

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d047_May17

Issued: May 30, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-2d047_May17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	- 1

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	NAME:	440

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d047_May17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$47.5 \Omega - 5.8 j\Omega$
Return Loss	- 23.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.2 Ω - 5.4 jΩ	
Return Loss	- 20.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2002

DASY5 Validation Report for Head TSL

Date: 23.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d047

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7460; ConvF(8.15, 8.15, 8.15); Calibrated: 19.05.2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

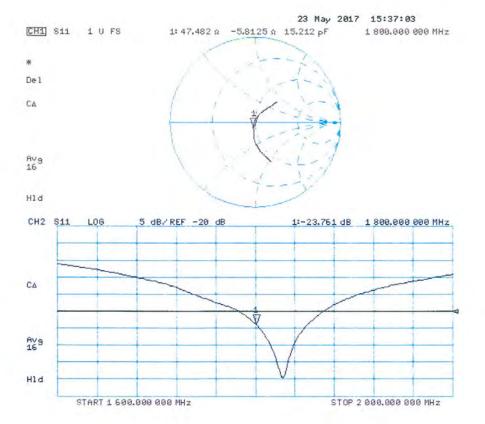
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.18 W/kg


Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d047

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

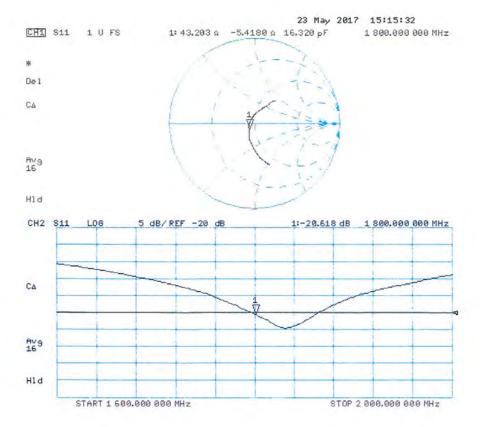
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7460; ConvF(7.98, 7.98, 7.98); Calibrated: 19.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.8 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.72 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D1900V2-5d176_Sep16

	CERTIFICATI		
Object	D1900V2 - SN:5	d176	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	ove 700 MHz
Calibration date:	September 28, 2	2016	
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical unprobability are given on the following pages are ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
Calibration Equipment used (M&			
Primary Standards Power meter NRP	ID # SN: 104778	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration Apr-17
	314. 104776	00-Apr-10 (NO. 217-02200/02209)	Apt-17
	SN- 102244	06-Apr-16 (No. 217-02222)	Apr. 17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16)	Apr-17 Apr-17 Apr-17 Jun-17
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 15-Jun-15 (in house check Jun-15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (In house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-16

Certificate No: D1900V2-5d176_Sep16

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d176_Sep16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω + 5.8 jΩ	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.4 \Omega + 6.5 j\Omega$	
Return Loss	- 23.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	June 08, 2012	

DASY5 Validation Report for Head TSL

Date: 28.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d176

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

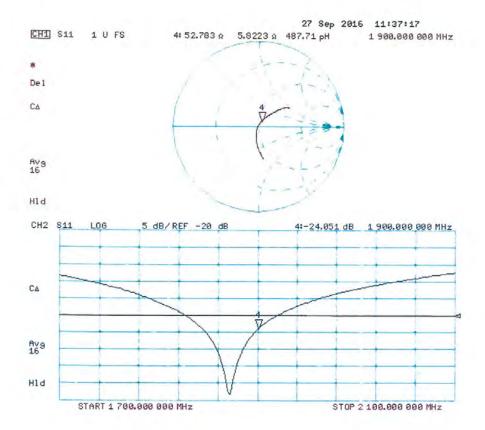
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.1 W/kg


SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.34 W/kgMaximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d176

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

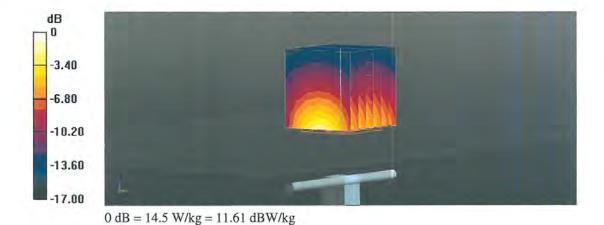
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

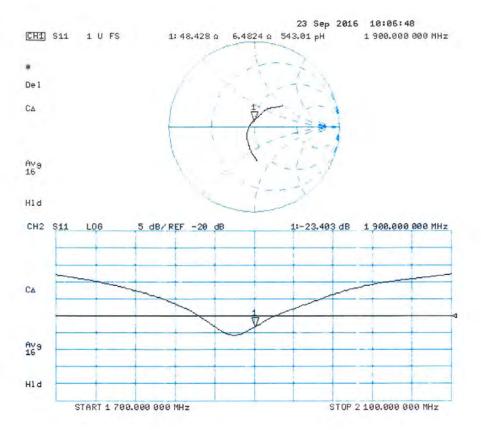
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.3 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.69 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 14.5 W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D2450V2-920_Sep16

CALIBRATION CERTIFICATE

Object D2450V2 - SN:920

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: September 23, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seef Illy
Approved by:	Katja Pokovic	Technical Manager	Dal

Issued: September 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-920_Sep16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	(market)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		500

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.9 Ω + 2.3 jΩ	
Return Loss	- 24.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$52.3 \Omega + 5.0 j\Omega$
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
Liedincal Delay (one direction)	1.104 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 19, 2012

DASY5 Validation Report for Head TSL

Date: 23.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

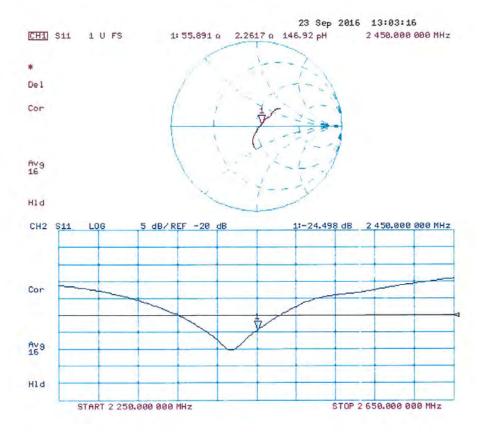
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.0 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.5 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kgMaximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

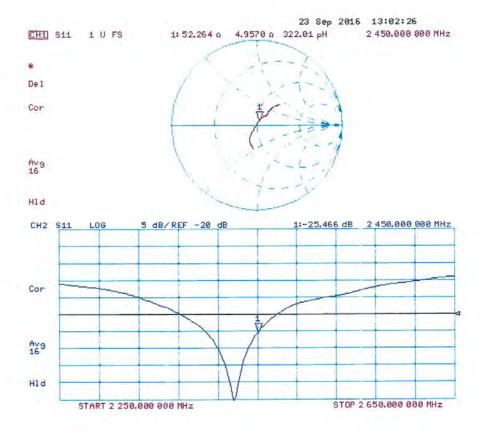
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.12 W/kg


Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D2600V2-1016_Mar17

Object	D2600V2 - SN:1016		
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
	,		
Calibration date:	March 23, 2017		
		HAR ON PROPERTY AND ADVANCED	and the second second
		onal standards, which realize the physical un robability are given on the following pages an	
ne measurements and the unce	rtainties with confidence p	Tobability are given on the following pages an	are part of the commonter
All calibrations have been conduc	eted in the closed laborato	ry facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
All Calibrations have been conduc	ned in the closed laborato	y racinty. Cristicianical temperature (EE 2 sy	
Calibration Equipment used (M&)	E critical for calibration)		
Calibration Equipment used (M&	TE critical for calibration)		
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration Apr-17
Primary Standards Power meter NRP	ID#		
Primary Standards Power meter NRP Power sensor NRP-Z91	ID # SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID # SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

Issued: March 23, 2017

Certificate No: D2600V2-1016_Mar17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.0 Ω - 6.2 jΩ	
Return Loss	-24.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 5.6 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

The state of the s	
Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

DASY5 Validation Report for Head TSL

Date: 22.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1016

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

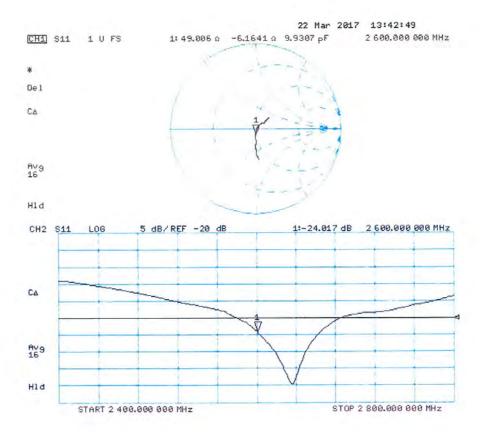
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.2 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.1 W/kg


SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.46 W/kgMaximum value of SAR (measured) = 25.0 W/kg

0 dB = 25.0 W/kg = 13.98 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1016

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.21 \text{ S/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

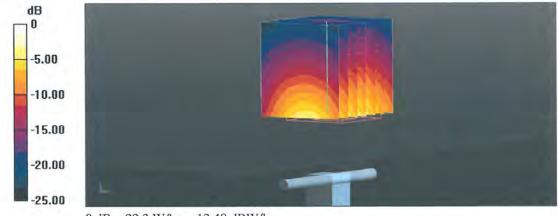
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 31.12.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

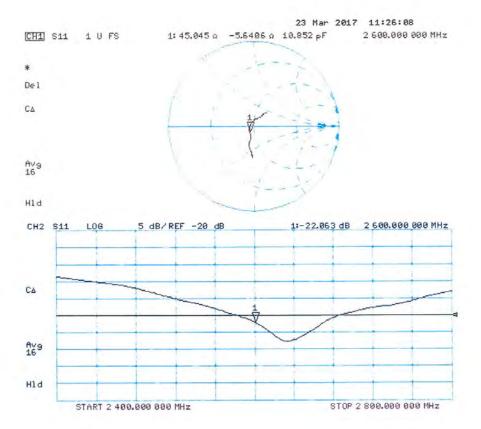
Electronics: DAE4 Sn601; Calibrated: 04.01.2017


Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.0 W/kg


SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.06 W/kgMaximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client DT&C (Dymstec)

Certificate No: D5GHzV2-1103_Mar17

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN:1103

Calibration procedure(s) QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: March 17, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 3503	31-Dec-16 (No. EX3-3503_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	Mar

Certificate No: D5GHzV2-1103_Mar17

Page 1 of 16

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	3323
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	100	

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.62 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		Lucy

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.1 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	5.13 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.0 ± 6 %	5.58 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	7-16	

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	6.28 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	COL	770

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.4 Ω - 5.8 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.8 Ω - 0.2]Ω
Return Loss	- 38.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50,2 Ω - 2.8 jΩ
Return Loss	- 30.9 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.1 Ω + 0.9 jΩ		
Return Loss	- 26.2 dB		

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.2 Ω + 0.9 jΩ	
Return Loss	- 32.5 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.7 Ω - 4.9 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	$49.8 \Omega + 0.6 j\Omega$
Return Loss	- 43.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	49.8 Ω - 1.6 jΩ
Return Loss	- 35.6 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.5 Ω + 1.5 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω + 1.5 ϳΩ
Return Loss	- 30.9 dB

General Antenna Parameters and Design

lasted to the state of the stat	
Electrical Delay (one direction)	Carrier and an artist and a second a second and a second
John Straig (one direction)	1.209 ns
	1,200113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2010

DASY5 Validation Report for Head TSL

Date: 17.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.62$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.81$ S/m; $\epsilon_r = 34.5$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5600 MHz; $\sigma = 4.92$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.13$ S/m; $\epsilon_r = 34.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.35, 5.35, 5.35);
 Calibrated: 31.12.2016, ConvF(5.2, 5.2, 5.2); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09);
 Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372).

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.95 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.36 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.89 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1103_Mar17

Page 11 of 16

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

Report No.: DRRFCC1708-0085(2)

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.46 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

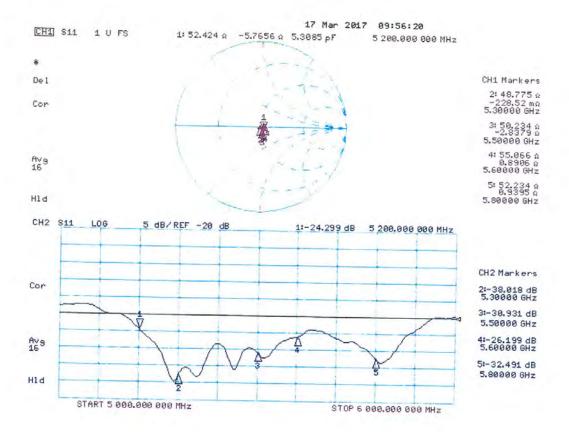
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=14mm (8x8x7)/Cuba 0x Market Scan, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.17 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg


Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1103

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.58$ S/m; $\epsilon_r = 48$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.85$ S/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ S/m; $\epsilon_r = 47.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(5.04, 5.04, 5.04);
 Calibrated: 31.12.2016, ConvF(4.62, 4.62, 4.62); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57);
 Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.58 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.42 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.66 V/m; Power Drift = -0.04 dB

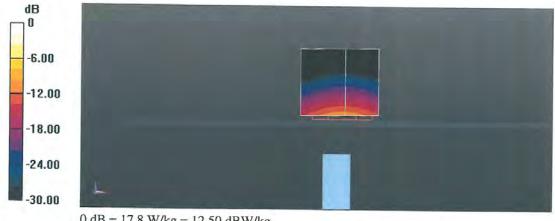
Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.25 W/kg

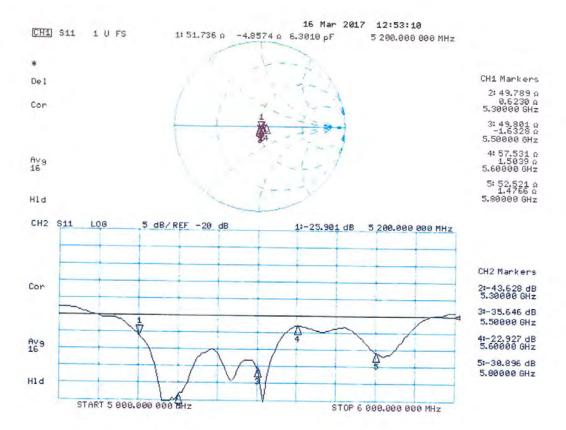
Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: D5GHzV2-1103_Mar17

Page 14 of 16



Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.60 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.25 W/kgMaximum value of SAR (measured) = 19.6 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.69 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kgMaximum value of SAR (measured) = 19.8 W/kg

Impedance Measurement Plot for Body TSL

Attachment 3. - SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

Report No.: DRRFCC1708-0085(2)

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

PERM. COND. CW Validation MOD. Validation SAR Probe Frea. Probe Date Probe CAL. Point System [MHz] Probe Probe Duty Type (**o**) MOD. Type PAR (er) tivity Linearity Isortopy Factor 2017-06-19 3866 EX3DV4 40.851 0.911 PASS PASS PASS N/A N/A N/A Α 835 2017-06-19 3866 EX3DV4 835 Head 40.565 0.922 **PASS** PASS PASS GMSK PASS N/A Α 1800 2017-06-20 EX3DV4 1.434 PASS PASS 3866 1800 Head 39.551 PASS N/A N/A N/A Α 1900 2017-06-20 3866 FX3DV4 1900 Head 39 545 1 416 PASS PASS PASS GMSK PASS N/A Α 2450 2017-06-21 EX3DV4 2450 Head 38.565 **PASS** PASS **PASS** OFDM/TDD PASS **PASS** Α 2600 2017-06-21 3866 EX3DV4 2600 40.115 1.915 PASS PASS PASS TDD PASS N/A Head OFDM Α 5200 2017-06-22 3866 EX3DV4 5300 34.845 4.775 PASS PASS PASS N/A PASS Head 2017-06-22 N/A FX3DV4 34 774 PASS OFDM Α 5300 3866 5300 Head 4 881 PASS PASS PASS Α 5600 2017-06-23 EX3DV4 5600 34.225 5.212 PASS PASS PASS OFDM N/A PASS 3866 Head Α 5800 2017-06-23 3866 EX3DV4 5600 34.051 5.356 PASS PASS PASS OFDM N/A PASS Head Α 750 2017-06-19 EX3DV4 750 55.051 0.977 PASS PASS PASS N/A N/A N/A 3866 Body Α 835 2017-06-19 EX3DV4 835 55.113 0.975 PASS PASS PASS GMSK PASS 3866 Body N/A Α 1800 2017-06-20 EX3DV4 1800 52.465 PASS PASS PASS N/A N/A N/A 3866 Body 1.556 Α 1900 2017-06-20 3866 EX3DV4 1900 52.441 1.561 PASS PASS PASS **GMSK** PASS N/A Body Α 2450 2017-06-21 3866 EX3DV4 2450 Body 51.985 2.015 PASS PASS PASS OFDM/TDD PASS PASS Α 2600 2017-06-21 EX3DV4 2600 Body 52.223 2.223 **PASS** PASS **PASS** TDD PASS N/A Α 5200 2017-06-22 3866 EX3DV4 5300 Body 48.554 5.414 PASS PASS PASS OFDM N/A PASS Α 5300 2017-06-22 3866 EX3DV4 5300 48.153 5.525 **PASS** PASS PASS **OFDM** N/A **PASS** Body Α 5600 2017-06-23 3866 FX3DV4 5600 Body 47 974 5 846 PASS PASS PASS OFDM N/A PASS 5800 2017-06-23 EX3DV4 5600 47.556 6.113 PASS PASS OFDM PASS 3866 Body PASS

Table Attachment 3.1 SAR System Validation Summary

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.