

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics U.S.A, Inc. 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632 United States Date of Testing: 07/20/2020 - 08/07/2020 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2006040088-15-R2.ZNF Date of Issue:

08/10/2020

FCC ID: ZNFG900VM

APPLICANT: LG ELECTRONICS U.S.A, INC.

Scope of Test: Audio Band Magnetic Testing (T-Coil)

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §20.19(b)
HAC Standard: ANSI C63.19-2011

285076 D01 HAC Guidance v05

285076 D02 T-Coil testing for CMRS IP v03

DUT Type: Portable Handset **Model:** LM-G900VM

Additional Model(s): LMG900VM, G900VM, LM-G900QM6, LMG900QM6,

G900QM6, LM-G902V, LMG902V, G902V

Test Device Serial No.: Pre-Production Sample [S/N: 01225]

Class II Permissive Change(s): See FCC Change Document

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M2006040088-15-R2.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 1 of 99
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 1 of 88

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	22
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	25
8.	FCC 3G MEASUREMENTS	30
9.	T-COIL TEST SUMMARY	32
10.	MEASUREMENT UNCERTAINTY	44
11.	EQUIPMENT LIST	45
12.	TEST DATA	46
13.	CALIBRATION CERTIFICATES	74
14.	CONCLUSION	81
15.	REFERENCES	82
16.	TEST SETUP PHOTOGRAPHS	84

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 2 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 2 of 88

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.



Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 3 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 3 01 00

 1M2006040088-15-R2.ZNF
 07/20/2020 - 08/07/2020
 Portable Handset

 © 2020 PCTEST
 REV 3.5.M

2. DUT DESCRIPTION

FCC ID: ZNFG900VM

Applicant: LG Electronics U.S.A, Inc.

111 Sylvan Avenue, North Building

Englewood Cliffs, NJ 07632

United States

Model: LM-G900VM

Additional Model(s): LMG900VM, G900VM, LM-G900QM6, LMG900QM6,

G900QM6, LM-G902V, LMG902V, G902V

Serial Number: 01225 HW Version: Rev.D

SW Version: G900VM07a

Antenna: Internal Antenna

DUT Type: Portable Handset

I. LTE Band Selection

This device supports the following pair of LTE bands with similar frequencies: LTE B4 & B66. This pair of LTE bands has the same target power and shares the same transmission path. Since the supported frequency span for the smaller LTE band is completely covered by the larger LTE band, only the larger LTE band (LTE B66) was evaluated for hearing-aid compliance.

II. Accessory Testing

This device has been additionally evaluated with the dual display accessory. Since this accessory has no additional transmitters, only the overall worst-case standalone configuration was evaluated.

FCC ID: ZNFG900VM	PCTEST . Thought to be post of @ second	HAC (T-COIL) TEST REPORT	€ LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 4 of 99
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 4 of 88

Table 2-1 ZNFG900VM HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated
	835	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EVRC
CDMA	1900					
	EvDO	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	850	vo	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR
GSM	1900					
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	850	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR
UMTS	1900					
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS
	700 (B12)					
	780 (B13)					VoLTE: NB AMR, WB AMR, EVS Google Duo: OPUS
LTE (FDD)	850 (B5)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	
LIL (I DD)	1700 (B4)]	103	ics. Will of Bi	Volte, Google Buo	
	1700 (B66)					
	1900 (B2)					
LTE (TDD)	3600 (B48)	VD	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	Volte: NB AMR, WB AMR, EVS Google Duo: OPUS
	850 (n5)					
NR (FDD)	1700 (n66)	VD	Yes ³	Yes: WIFI or BT	Google Duo²	OPUS
	1900 (n2)					
110 (TDD)	28000 (n261)		4	V 14451 2-	0 1 0 2	0.001.0
NR (TDD)	39000 (n260)	VD	No ⁴	Yes: WIFI or BT	Google Duo ²	OPUS
	2450					
	5200 (U-NII 1)					
WIFI	5300 (U-NII 2A)	VD	Yes	Yes: CDMA, GSM, UMTS, LTE, or NR	VoWIFI², Google Duo²	VoWIFI: NB AMR, WB AMR, EVS Google Duo: OPUS
	5500 (U-NII 2C)					Google Duo. OPO3
	5800 (U-NII 3)					
ВТ	2450	DT	No	Yes: CDMA, GSM, UMTS, LTE, or NR	N/A	N/A
	ype Transport Notes:					

- Reference reverts 2000 in accordance with 1 color 2 color 7.II.4.

 NR was evaluated using an interim procedure outlined in Section 7.II.4.

 ANSI CG3 10 and EGC in the color 2 color 2
- 4. n260 and n261 are currently outside the scope of ANSI C63.19 and FCC HAC regulations therefore they were not evaluated.

FCC ID: ZNFG900VM	PCTEST Hourt to be post of @ memorial	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 5 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 5 01 66

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

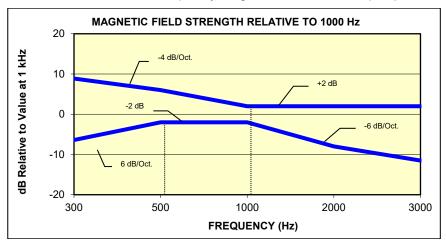


Figure 3-1
Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

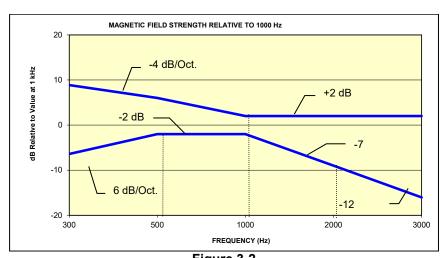


Figure 3-2
Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: ZNFG900VM	PCTEST Hours to be post of Semental	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 0 01 00

 1M2006040088-15-R2.ZNF
 07/20/2020 - 08/07/2020
 Portable Handset

 © 2020 PCTEST
 REV 3.5.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters		
Calegory	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]		
T1	0 to 10 dB		
T2	10 to 20 dB		
Т3	20 to 30 dB		
T4	> 30 dB		
Table 3-1 Magnetic Coupling Parameters			

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: ZNFG900VM	PCTEST* Houd to be post of § secure	HAC (T-COIL) TEST REPORT	€ LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 7 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 7 of 88

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

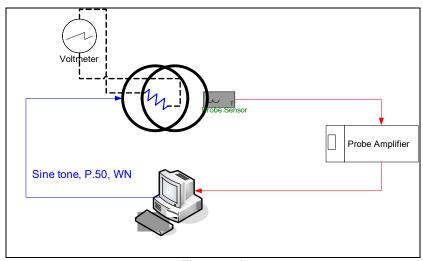


Figure 4-1
Validation Setup with Helmholtz Coil

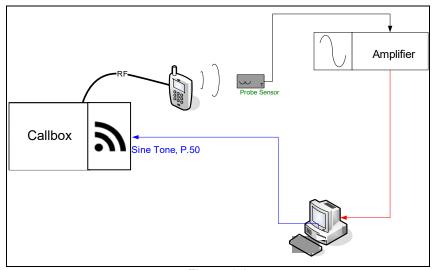


Figure 4-2 **T-Coil Test Setup**

FCC ID: ZNFG900VM	PCTEST Thought to be port of the received	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage o oi oo

© 2020 PCTEST REV 3.5.M 7/20/2020

II. Scanning Mechanism

Manufacturer: TEM

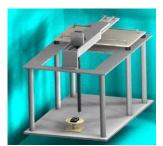
Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec

Line Voltage: 115 VAC

Line Frequency: 60 Hz


Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer: ITU-T

Active Frequency Range: 100 Hz – 8 kHz

Stimulus Type: Male and Female, no spaces

Single Sample 20.96 seconds

Duration:

Activity Level: 100%

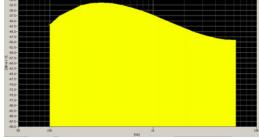


Figure 4-4
Spectral Characteristic of full P.50

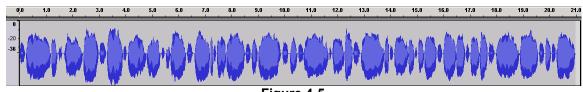
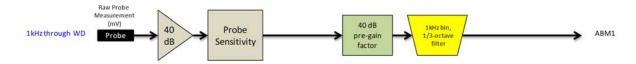



Figure 4-5
Temporal Characteristic of full P.50

FCC ID: ZNFG900VM	PCTEST hour to be port of ® senses	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 9 01 00

ABM2 Measurement Block Diagram:

Figure 4-6 Magnetic Measurement Processing Steps

IV. **Test Procedure**

- 1. Ambient Noise Check per C63.19 §7.3.1
 - Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - "A-weighting" and Half-Band Integration was applied to the measurements.
 - Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193Ω and using V=29mV

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316A/m \approx -10dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Page 42).

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 10 01 00

c. Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50 signal as shown below:

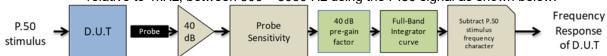


Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

Table 4-1
ABM2 Frequency Response Validation

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: ZNFG900VM	PCTEST Thought to be port of the received	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 11 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 11 01 00

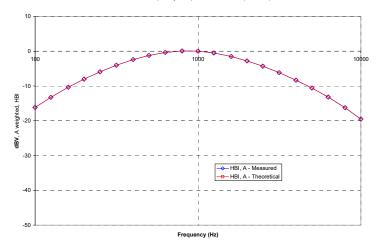
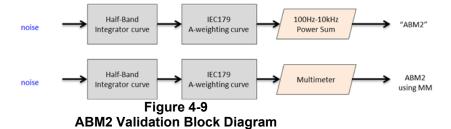



Figure 4-8
ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Table 4-2
ABM2 Power Sum Validation

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

FCC ID: ZNFG900VM	PCTEST . Thought to be post of @ second	HAC (T-COIL) TEST REPORT	€ LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 12 01 66

© 2020 PCTEST REV 3.5.M 7/20/2020

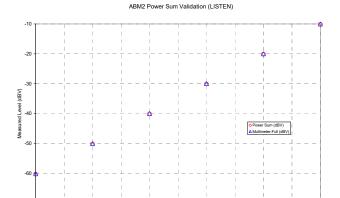
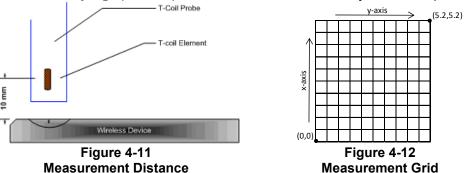



Figure 4-10
ABM2 Power Sum Validation

- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-14 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 13 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 13 01 00

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for CDMA and UMTS. LTE configuration information can be found in Section 5 and 7. NR configuration information can be found in Section 7. WIFI configuration information can be found in Section 6 and 7.)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: ZNFG900VM	PCTEST Total to be part of the recent of the second of the	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 14 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 14 01 00

V. **Test Setup**

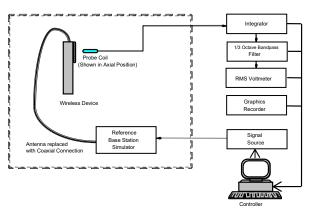


Figure 4-13 **Audio Magnetic Field Test Setup**

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. **Deviation from C63.19 Test Procedure**

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: ZNFG900VM	PCTEST* Houd to be post of § secure	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 15 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 15 of 88

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Table 4-3
Center Channels and Frequencies

Test frequencies & associated channels					
Channel	Frequency (MHz)				
Cellular 850	Cellular 850				
384 (CDMA)	836.52				
190 (GSM)	836.60				
4183 (UMTS)	836.60				
PCS 1900					
600 (CDMA)	1880				
661 (GSM)	1880				
9400 (UMTS)	1880				

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. The middle channel and supported bandwidths from LTE TDD B48 as well as the worst-case LTE FDD band according to Table 7-6 were additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-5 to 9-10, Tables 9-19 and 9-20, and Table 9-22 for LTE bandwidths and channels.

3. 5G (NR) Modes

The middle channel and supported bandwidths from the worst-case NR FDD band according to Table 7-10 was evaluated with OTT VoIP for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. See Table 9-21 for NR bandwidths and channels.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-11 to 9-15 as well as Tables 9-23 to 9-26 for WIFI standards and channels.

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 10 01 00

IX. Test Flow

The flow diagram below was followed (From C63.19):

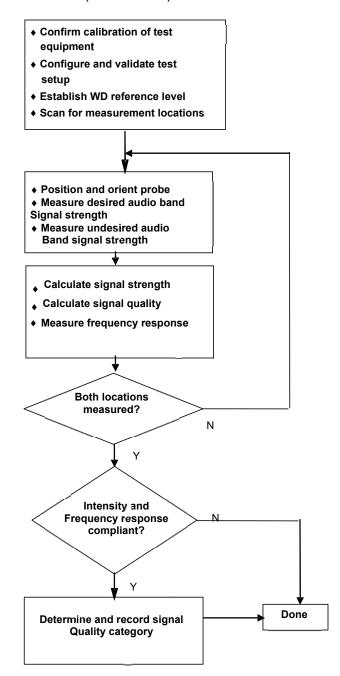


Figure 4-14 C63.19 T-Coil Signal Test Process

FCC ID: ZNFG900VM	PCTEST Hours to be post of Semental	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 17 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 17 01 00

© 2020 PCTEST Portable Handset REV 3.5.M

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

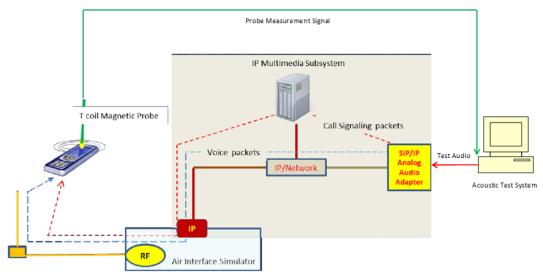


Figure 5-1
Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level*. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: ZNFG900VM	PCTEST Thought to be port of the received	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 18 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 10 01 00

© 2020 PCTEST REV 3.5.M

II. DUT Configuration for VoLTE over IMS T-coil Testing

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 99%RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

Table 5-1
VoLTE over IMS SNNR by Radio Configuration

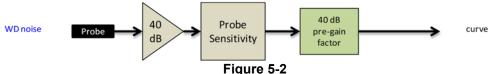
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
66	1745.0	132322	20	QPSK	1	0	5.75	-43.07	48.82
66	1745.0	132322	20	QPSK	1	50	5.76	-42.97	48.73
66	1745.0	132322	20	QPSK	1	99	6.00	-40.29	46.29
66	1745.0	132322	20	QPSK	50	0	6.05	-46.15	52.20
66	1745.0	132322	20	QPSK	50	25	6.20	-45.40	51.60
66	1745.0	132322	20	QPSK	50	50	6.32	-44.65	50.97
66	1745.0	132322	20	QPSK	100	0	6.23	-45.15	51.38
66	1745.0	132322	20	16QAM	1	0	5.83	-34.88	40.71
66	1745.0	132322	20	16QAM	1	50	5.90	-34.58	40.48
66	1745.0	132322	20	16QAM	1	99	5.88	-34.09	39.97
66	1745.0	132322	20	16QAM	50	0	5.86	-46.32	52.18
66	1745.0	132322	20	16QAM	50	25	6.14	-42.94	49.08
66	1745.0	132322	20	16QAM	50	50	5.79	-45.39	51.18
66	1745.0	132322	20	16QAM	100	0	6.17	-46.38	52.55
66	1745.0	132322	20	64QAM	1	0	5.90	-36.00	41.90
66	1745.0	132322	20	64QAM	1	50	5.86	-35.40	41.26
66	1745.0	132322	20	64QAM	1	99	6.01	-34.97	40.98
66	1745.0	132322	20	64QAM	50	0	5.90	-45.73	51.63
66	1745.0	132322	20	64QAM	50	25	5.94	-45.94	51.88
66	1745.0	132322	20	64QAM	50	50	5.96	-46.18	52.14
66	1745.0	132322	20	64QAM	100	0	6.21	-45.53	51.74

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 5-2

AMR Codec Investigation – VoLTE over IMS


Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	7.54	6.19	8.25	8.08		LTE Band 66 20MHz	132322
ABM2 (dBA/m)	-34.93	-34.42	-34.52	-34.92			
Frequency Response	Pass	Pass	Pass	Pass	Axial		
S+N/N (dB)	42.47	40.61	42.77	43.00			

FCC ID: ZNFG900VM	PCTEST* Proof to be part of ® secured	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 10 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 19 of 88

Table 5-3
EVS Codec Investigation - VoLTE over IMS

Codec Setting:	EVS Primary SWB 13.2kbps	Orientation	Band / BW	Channel	
ABM1 (dBA/m)	9.63				
ABM2 (dBA/m)	-34.38	Axial	LTE Band 66	132322	
Frequency Response	Pass	Axiai	20MHz	132322	
S+N/N (dB)	44.01				

- · Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length T_f = 307200 \cdot T_s = 10 ms, where T_s is a number of time units equal to 1/(15000 x 2048) seconds. Additionally, each radio frame consists of 10 subframes, each of length 30720 \cdot T_s = 1 ms, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 \cdot Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

Table 5-4
Uplink-Downlink Configurations for Type 2 Frame Structures

Uplink-downlink	Downlink-to-Uplink	Subframe number								Calculated Transmission		
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

FCC ID: ZNFG900VM	PCTEST* Houd to be post of § secure	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 20 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 20 of 88

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power Class 3 was evaluated with the following radio configuration: channel 55990, 20MHz BW, 16QAM, 1RB, 99RB Offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 0 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Table 5-5 Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
3625.0	55990	20	16QAM	1	99	0	5.86	-23.59	29.45
3625.0	55990	20	16QAM	1	99	1	5.93	-23.65	29.58
3625.0	55990	20	16QAM	1	99	2	5.79	-23.82	29.61
3625.0	55990	20	16QAM	1	99	3	5.97	-26.69	32.66
3625.0	55990	20	16QAM	1	99	4	6.17	-26.83	33.00
3625.0	55990	20	16QAM	1	99	5	5.94	-26.56	32.50
3625.0	55990	20	16QAM	1	99	6	6.20	-23.66	29.86

b. Conclusion

Per the investigations above, UL-DL Configuration 0 was used to evaluate Power Class 3 VoLTE over IMS.

FCC ID: ZNFG900VM	PCTEST* Houd to be post of § secure	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 24 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 21 of 88

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

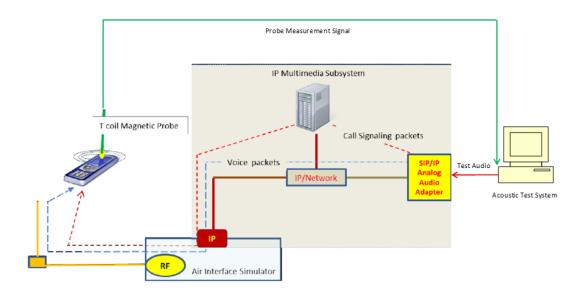


Figure 6-1
Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

1 00 Office of Engineer	1 00 office of Engineering and Technology NBB, 2000/0 Bb2 1-0011 Testing for Office in 100, deptember 10, 2017										
FCC ID: ZNFG900VM	PCTEST*	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager							
Filename:	Test Dates:	DUT Type:		Page 22 of 88							
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 22 01 00							

© 2020 PCTEST REV 3.5.M

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

Table 6-1
IEEE 802.11b SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11b	6	DSSS	1	2.05	-27.19	29.24
IEEE 802.11b	6	DSSS	2	1.96	-27.31	29.27
IEEE 802.11b	6	CCK	5.5	1.81	-27.71	29.52
IEEE 802.11b	6	CCK	11	2.18	-27.77	29.95

Table 6-2 IEEE 802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate	ABM1	ABM2	SNNR
			[Mbps]	[dB(A/m)]	[dB(A/m)]	[dB]
IEEE 802.11g	6	BPSK	6	1.99	-31.32	33.31
IEEE 802.11g	6	BPSK	9	2.08	-32.26	34.34
IEEE 802.11g	6	QPSK	12	2.37	-32.10	34.47
IEEE 802.11g	6	QPSK	18	2.06	-31.61	33.67
IEEE 802.11g	6	16QAM	24	1.99	-32.62	34.61
IEEE 802.11g	6	16QAM	36	1.98	-31.75	33.73
IEEE 802.11g	6	64QAM	48	2.01	-32.68	34.69
IEEE 802.11g	6	64QAM	54	2.08	-33.11	35.19

Table 6-3 IEEE 802.11n/ac 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	20	40	BPSK	0	1.86	-30.52	32.38
IEEE 802.11n	20	40	QPSK	1	2.00	-30.46	32.46
IEEE 802.11n	20	40	QPSK	2	1.89	-29.79	31.68
IEEE 802.11n	20	40	16QAM	3	1.88	-29.61	31.49
IEEE 802.11n	20	40	16QAM	4	1.85	-30.73	32.58
IEEE 802.11n	20	40	64QAM	5	2.15	-26.41	28.56
IEEE 802.11n	20	40	64QAM	6	1.94	-23.11	25.05
IEEE 802.11n	20	40	64QAM	7	1.92	-24.58	26.50
IEEE 802.11ac	20	40	256QAM	8	1.80	-27.97	29.77

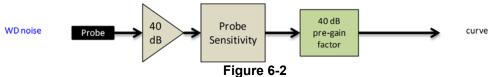
FCC ID: ZNFG900VM	PCTEST Total to be part of the recent of the second of the	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 23 01 00

Table 6-4 IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

	IEEE 002.1 Thrac 40MHz DW ONNIX by Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]			
IEEE 802.11n	40	38	BPSK	0	1.81	-29.80	31.61			
IEEE 802.11n	40	38	QPSK	1	1.96	-30.27	32.23			
IEEE 802.11n	40	38	QPSK	2	1.87	-29.72	31.59			
IEEE 802.11n	40	38	16QAM	3	1.93	-29.53	31.46			
IEEE 802.11n	40	38	16QAM	4	1.75	-25.38	27.13			
IEEE 802.11n	40	38	64QAM	5	2.06	-24.95	27.01			
IEEE 802.11n	40	38	64QAM	6	1.96	-25.97	27.93			
IEEE 802.11n	40	38	64QAM	7	1.90	-26.92	28.82			
IEEE 802.11ac	40	38	256QAM	8	1.88	-29.27	31.15			
IEEE 802.11ac	40	38	256QAM	9	1.76	-28.78	30.54			

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:


> Table 6-5 AMR Codec Investigation - VoWIFI over IMS

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	3.75	2.20	3.49	3.24				
ABM2 (dBA/m)	-26.99	-27.45	-27.13	-27.18	A.dal	2.4015	IEEE 802.11b	6
Frequency Response	Pass	Pass	Pass	Pass	Axial	2.4GHz		
S+N/N (dB)	30.74	29.65	30.62	30.42				

Table 6-6 **EVS Codec Investigation – VoWIFI over IMS**

				••••	
Codec Setting:	EVS Primary SWB 13.2kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	5.24				
ABM2 (dBA/m)	-27.20	Axial	2.4GHz	IEEE 802.11b	6
Frequency Response	Pass	Axial	2.4GHZ		
S+N/N (dB)	32.44				

Mute on; Backlight off; Max Volume; Max Contrast

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 24 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 24 01 00

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 75kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Table 7-1
Codec Investigation – OTT VoIP (EvDO)

Codec Setting:	75kbps	6kbps	Orientation	Channel
ABM1 (dBA/m)	20.40	20.75		
ABM2 (dBA/m)	-43.26	-44.42	Axial	600
Frequency Response	Pass	Pass	Axiai	
S+N/N (dB)	63.66	65.17		

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

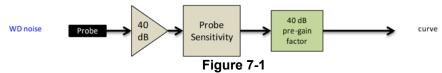
1 CC Office of Engineer	ing and recimology RDB, 20	3070 D02 1-Coll resulty for Civil Coll	voo, oeptember 15, 2	2017
FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 25 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 25 01 00

Table 7-2 Codec Investigation - OTT VoIP (EDGE)

Oddec investigation – OTT voil (EDGE)							
Codec Setting:	75kbps	6kbps	Orientation	Channel			
ABM1 (dBA/m)	20.34	20.25					
ABM2 (dBA/m)	-17.84	-18.10	Axial	004			
Frequency Response	Pass	Pass	Axiai	661			
S+N/N (dB)	38.18	38.35					

Table 7-3 Codec Investigation - OTT VolP (HSPA)

Oddec investigation – OTT voil (not A)							
Codec Setting:	75kbps	6kbps	Orientation	Channel			
ABM1 (dBA/m)	20.45	20.28					
ABM2 (dBA/m)	-44.53	-45.24	Axial	0400			
Frequency Response	Pass	Pass	Axiai	9400			
S+N/N (dB)	64.98	65.52					


Table 7-4 Codec Investigation - OTT VolP (LTF)

Codec investigation – OTT voil (LTL)										
Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel					
ABM1 (dBA/m)	20.33	20.34		LTE Band 12 10MHz 23						
ABM2 (dBA/m)	-33.75	-33.97	Axial		22205					
Frequency Response	Pass	Pass	Axiai		23095					
S+N/N (dB)	54.08	54.31								

Table 7-5 Codec Investigation - OTT VolP (WIFI)

Codec investigation – OTT voil (vvii i)										
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel				
ABM1 (dBA/m)	20.48	20.62								
ABM2 (dBA/m)	-24.24	-24.60	Axial		IEEE 802.11b					
Frequency Response	Pass	Pass	Axiai	2.4GHz	IEEE 802.11D	6				
S+N/N (dB)	44.72	45.22								

- Mute on; Backlight off; Max Volume; Max Contrast
- Radio Configurations can be found in Section 9.II.H

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFG900VM	PCTEST Hood to be post of Seminaria	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 20 01 00

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 13 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

> Table 7-6 OTT VoIP (LTE FDD) SNNR by LTE Band

			• ,	·, ·		,			
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
12	707.5	23095	10	16QAM	1	49	20.26	-33.42	53.68
13	782.0	23230	10	16QAM	1	49	20.42	-32.32	52.74
5	836.5	20525	10	16QAM	1	49	20.21	-33.08	53.29
66	1745.0	132322	20	16QAM	1	99	20.51	-33.76	54.27
2	1880.0	18900	20	16QAM	1	99	20.69	-33.91	54.60

3. LTE FDD Uplink Carrier Aggregation for OTT VolP

LTE FDD ULCA was evaluated to ensure LTE FDD standalone was the worst-case scenario. The configurations in Table 7-7 were determined from Table 7-6 and satisfy the configuration requirements as defined in 3GPP 36.101.

> Table 7-7 LITE FDD SNNR for OTT VolP Unlink Carrier Aggregation

			_	. – . –			. •		~ P			.55.0	g ~ · .	•			
				PCC							SCC					1	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL) Channel	SCC (UL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
CA_5B	LTE B5	10	20525	836.5	16QAM	1	0	LTE B5	5	20453	829.3	16QAM	1	24	20.58	-33.83	54.41

4. Interim Procedure for evaluation OTT VoIP (NR)

The following procedure is used to evaluate OTT VoIP (NR) given equipment limitations.

- a. This procedure is applicable for OTT VoIP (NR) voice calls that use the same protocol, codec(s), and reference level as OTT VoIP (LTE) (i.e. -20dBm0).
- b. Establish the ABM1_{NR} value by using the ABM1_{LTE} magnetic intensity for an LTE call using a correlating LTE band through existing procedures and test equipment.
- c. Establish an ABM2_{NR} value using factory test mode (FTM) to simulate a NR connection for the desired NR band and channel under test.
- d. The following information is documented in Section 9:
 - i. ABM2_{LTE} and ABM2_{NR} for respective tests.
 - ii. Calculate SNNR:
 - 1. ABM1 = ABM1LTE
 - 2. ABM2 = ABM2NR
 - 3. $SNNR_{NR} = [ABM1_{LTE} ABM2_{NR}] 3dB$
 - a. A 3dB margin is built in to ensure conservative results with this interim procedure.

The above is only applicable for OTT VoIP scenarios, this device does not support VoNR over IMS.

The manufacturer has confirmed the handset as designed is expected to exhibit similar audio intensity levels between an OTT VoIP call placed over a 4G LTE and a 5G Sub-6GHz data connection.

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 27 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 27 01 00

5. Radio Configuration for OTT VoIP (NR)

An investigation was performed to determine the waveform, modulation, and RB configuration to be used for testing. Due to equipment limitations, the procedure outlined in 7.II.4 was used to evaluate the SNNR for each radio configuration below. CP-OFDM 16QAM, 1RB, 50%RB offset was determined to be the worst-case configuration for the handset and will be used for full testing in Section 9.

> Table 7-8 NR OTT VolP SNNR by Radio Configuration (CP-OFDM)

D d	Frequency	01	Bandwidth	waretan.	Mandadada.		DD 055-14	ABM1 _{LTE}	ABM2 _{NR}	SNNR _{NR}
Band	[MHz]	Channel	[MHz]	Waveform	Modulation	RB Size	RB Offset	[dB(A/m)]	[dB(A/m)]	[dB]
n2	1880.0	376000	20	CP-OFDM	QPSK	1	1	20.69	-45.66	66.35
n2	1880.0	376000	20	CP-OFDM	QPSK	1	53	20.69	-47.40	68.09
n2	1880.0	376000	20	CP-OFDM	QPSK	1	104	20.69	-44.50	65.19
n2	1880.0	376000	20	CP-OFDM	QPSK	50	0	20.69	-47.03	67.72
n2	1880.0	376000	20	CP-OFDM	QPSK	50	28	20.69	-46.08	66.77
n2	1880.0	376000	20	CP-OFDM	QPSK	50	56	20.69	-48.94	69.63
n2	1880.0	376000	20	CP-OFDM	QPSK	100	0	20.69	-49.49	70.18
n2	1880.0	376000	20	CP-OFDM	16QAM	1	1	20.69	-44.44	65.13
n2	1880.0	376000	20	CP-OFDM	16QAM	1	53	20.69	-43.73	64.42
n2	1880.0	376000	20	CP-OFDM	16QAM	1	104	20.69	-44.73	65.42
n2	1880.0	376000	20	CP-OFDM	16QAM	50	0	20.69	-49.34	70.03
n2	1880.0	376000	20	CP-OFDM	16QAM	50	28	20.69	-47.00	67.69
n2	1880.0	376000	20	CP-OFDM	16QAM	50	56	20.69	-48.11	68.80
n2	1880.0	376000	20	CP-OFDM	16QAM	100	0	20.69	-45.66	66.35
n2	1880.0	376000	20	CP-OFDM	64QAM	1	1	20.69	-46.34	67.03
n2	1880.0	376000	20	CP-OFDM	64QAM	1	53	20.69	-45.22	65.91
n2	1880.0	376000	20	CP-OFDM	64QAM	1	104	20.69	-48.07	68.76
n2	1880.0	376000	20	CP-OFDM	64QAM	50	0	20.69	-47.38	68.07
n2	1880.0	376000	20	CP-OFDM	64QAM	50	28	20.69	-48.42	69.11
n2	1880.0	376000	20	CP-OFDM	64QAM	50	56	20.69	-48.17	68.86
n2	1880.0	376000	20	CP-OFDM	64QAM	100	0	20.69	-46.36	67.05
n2	1880.0	376000	20	CP-OFDM	256QAM	1	1	20.69	-47.80	68.49
n2	1880.0	376000	20	CP-OFDM	256QAM	1	53	20.69	-48.22	68.91
n2	1880.0	376000	20	CP-OFDM	256QAM	1	104	20.69	-48.38	69.07
n2	1880.0	376000	20	CP-OFDM	256QAM	50	0	20.69	-48.59	69.28
n2	1880.0	376000	20	CP-OFDM	256QAM	50	28	20.69	-47.81	68.50
n2	1880.0	376000	20	CP-OFDM	256QAM	50	56	20.69	-48.14	68.83
n2	1880.0	376000	20	CP-OFDM	256QAM	100	0	20.69	-48.13	68.82

FCC ID: ZNFG900VM	PCTEST* Proof to be part of ® secured	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 20 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 28 of 88

Table 7-9 NR OTT VolP SNNR by Radio Configuration (DFT-s-OFDM)

	Fraguenay	1111 0 1	Bandwidth	TITLE DY INC	aio coiiii	garatio		ABM1 _{LTE}	ABM2 _{NR}	SNNR _{NR}
Band	Frequency [MHz]	Channel	[MHz]	Waveform	Modulation	RB Size	RB Offset	IdB(A/m)1	IdB(A/m)1	IdB1
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	1	1	20.69	-48.13	68.82
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	1	53	20.69	-48.33	69.02
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	1	104	20.69	-47.96	68.65
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	50	0	20.69	-48.87	69.56
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	50	28	20.69	-49.28	69.97
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	50	56	20.69	-49.24	69.93
n2	1880.0	376000	20	DFT-s-OFDM	π/2-BPSK	100	0	20.69	-47.43	68.12
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	1	1	20.69	-45.46	66.15
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	1	53	20.69	-46.51	67.20
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	1	104	20.69	-47.48	68.17
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	50	0	20.69	-49.31	70.00
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	50	28	20.69	-49.36	70.05
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	50	56	20.69	-48.04	68.73
n2	1880.0	376000	20	DFT-s-OFDM	QPSK	100	0	20.69	-48.18	68.87
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	1	1	20.69	-45.15	65.84
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	1	53	20.69	-44.51	65.20
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	1	104	20.69	-45.90	66.59
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	50	0	20.69	-48.50	69.19
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	50	28	20.69	-49.65	70.34
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	50	56	20.69	-47.97	68.66
n2	1880.0	376000	20	DFT-s-OFDM	16QAM	100	0	20.69	-49.77	70.46
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	1	1	20.69	-46.58	67.27
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	1	53	20.69	-45.04	65.73
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	1	104	20.69	-44.80	65.49
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	50	0	20.69	-49.42	70.11
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	50	28	20.69	-50.52	71.21
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	50	56	20.69	-48.35	69.04
n2	1880.0	376000	20	DFT-s-OFDM	64QAM	100	0	20.69	-49.89	70.58
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	1	1	20.69	-47.14	67.83
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	1	53	20.69	-47.31	68.00
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	1	104	20.69	-47.25	67.94
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	50	0	20.69	-50.17	70.86
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	50	28	20.69	-48.46	69.15
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	50	56	20.69	-47.89	68.58
n2	1880.0	376000	20	DFT-s-OFDM	256QAM	100	0	20.69	-49.50	70.19

An investigation was performed to determine the worst-case NR FDD band to be used for OTT VoIP testing. NR n66 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different NR FDD bands:

> **Table 7-10** OTT VoIP (NR FDD) SNNR by Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	SNNR _{NR} [dB]
n5	836.5	167300	20	CP-OFDM	16QAM	1	53	20.21	-45.42	65.63
n66	1745.0	349000	20	CP-OFDM	16QAM	1	53	20.51	-42.48	62.99
n2	1880.0	376000	20	CP-OFDM	16QAM	1	53	20.69	-43.58	64.27

FCC ID: ZNFG900VM	PCTEST hout to be post of ® senses	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 29 01 00

8. FCC 3G MEASUREMENTS

I. **CDMA Test Configurations**

Radio Configuration 1, Service Option 3 (thick, green data curve) was used for the testing as the worstcase configuration for the handset due to vocoder gating from the EVRC logic. See below plot for ABM noise comparison between operational field service options and radio configurations for a CDMA2000 handset:

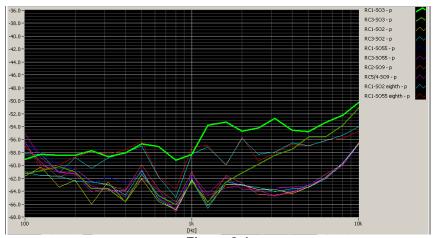
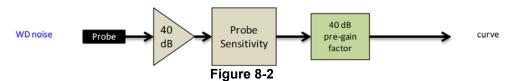



Figure 8-1 **CDMA Audio Band Magnetic Noise**

Table 8-1 FCC 3G ABM Measurements for ZNFG900VM (CDMA)

Configuration:	RC1/SO3	RC3/SO3	RC4/SO3	Orientation	Channel
ABM1 (dBA/m)	6.09	6.06	6.19		
ABM2 (dBA/m)	-30.09	-47.38	-49.33	Axial	600
Frequency Response	Pass	Pass	Pass	Axiai	600
S+N/N (dB)	36.18	53.44	55.52		

- Mute on; Backlight off; Max Volume; Max Contrast
- Power Control Bits = "All Up"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFG900VM	PCTEST hout to be post of ® senses	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 30 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 30 01 66

© 2020 PCTEST **REV 3.5.M**

II. UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB (thick, purple data curve) was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

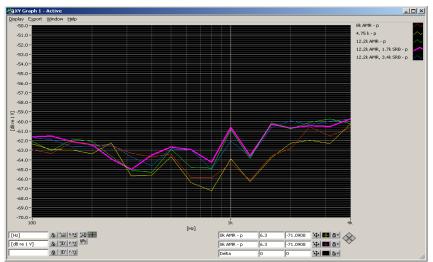
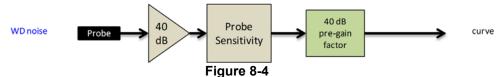



Figure 8-3
UMTS Audio Band Magnetic Noise

Table 8-2 Codec Investigation - UMTS

Codec investigation - Cin 10										
Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel					
ABM1 (dBA/m)	8.30	8.26	8.12							
ABM2 (dBA/m)	-49.04	-49.47	-49.70	Axial	0400					
Frequency Response	Pass	Pass	Pass	Axiai	9400					
S+N/N (dB)	57.34	57.73	57.82							

- Mute on; Backlight off; Max Volume; Max Contrast
- · TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFG900VM	PCTEST Hourt to be post of @ memorial	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 31 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 31 01 00

T-COIL TEST SUMMARY

Table 9-1 **Consolidated Tabled Results**

					netic		SNNR		
		-	esponse rgin	•	/ Verdict		dict	Margin from	C63.19-2011
		8.3	3.2	8.3	3.1	8.3	3.4	FCC Limit (dB)	Rating
C63.19	9 Section	Axial	Radial	Axial	Radial	Axial	Radial	()	
	Cellular	PASS	NA	PASS	PASS	PASS	PASS	40.00	T.4
CDMA	PCS	PASS	NA	PASS	PASS	PASS	PASS	-12.03	T4
EvDO	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-41.18	T4
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	-41.10	14
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-5.30	Т3
	PCS	PASS	NA	PASS	PASS	PASS	PASS	-0.00	10
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-14.77	T4
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS		
UMTS	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-35.08	T4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		. ,
HSPA	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-44.04	T4
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	B12	PASS	NA	PASS	PASS	PASS	PASS		
	B13	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD	B5	PASS	NA	PASS	PASS	PASS	PASS	-17.62	T4
	B66	PASS	NA	PASS	PASS	PASS	PASS		
	B2	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD (OTT VoIP)	B13	PASS	NA	PASS	PASS	PASS	PASS	-23.92	T4
LTE TDD	B48	PASS	NA	PASS	PASS	PASS	PASS	-8.99	Т3
LTE TDD (OTT VoIP)	B48	PASS	NA	PASS	PASS	PASS	PASS	-23.92	T4
NR FDD (OTT VoIP)	n66	NA	NA	PASS	PASS	PASS	PASS	-39.38	T4
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-9.17	Т3
WLAN	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-9.17	13
	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-24.40	T4
(OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-27.40	14
	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
U-NII	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-4.26	Т3
	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS		
II AIII	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS		
U-NII (OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-21.42	T4
	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS		

FCC ID: ZNFG900VM	PCTEST hout to be post of ® senses	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 32 01 00

© 2020 PCTEST **REV 3.5.M**

I. Raw Handset Data

Table 9-2
Raw Data Results for CDMA

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1013	6.06	-25.97		2.00	32.03	20.00	-12.03	T4	
	Axial	384	6.70	-27.04	-61.16	2.00	33.74	20.00	-13.74	T4	0.8, 2.4
Cellular		777	6.67	-26.76		2.00	33.43	20.00	-13.43	T4	
Celiulai		1013	-2.65	-39.63			36.98	20.00	-16.98	T4	
Radial	384	-2.60	-40.51	-61.52	-61.52	-61.52 N/A	37.91	20.00	-17.91	T4	0.8, 1.6
		777	-2.33	-40.39			38.06	20.00	-18.06	T4	
		25	6.25	-28.77		2.00	35.02	20.00	-15.02	T4	
	Axial	600	6.31	-29.91	-61.16	2.00	36.22	20.00	-16.22	T4	0.8, 2.4
PCS		1175	6.15	-28.26		2.00	34.41	20.00	-14.41	T4	
FCS		25	-2.49	-38.40			35.91	20.00	-15.91	T4	
	Radial	600	-2.41	-39.67	-61.52	N/A	37.26	20.00	-17.26	T4	0.8, 1.6
		1175	-2.70	-38.47			35.77	20.00	-15.77	T4	

Table 9-3
Raw Data Results for GSM

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		128	13.43	-11.87		2.00	25.30	20.00	-5.30	Т3		
	Axial	190	13.87	-12.53	-61.16	2.00	26.40	20.00	-6.40	Т3	0.8, 2.4	
GSM850		251	13.77	-12.19		2.00	25.96	20.00	-5.96	Т3		
GSWIOSU		128	5.33	-23.24			28.57	20.00	-8.57	Т3		
	Radial	190	5.25	-24.06	-61.52	-61.52	N/A	29.31	20.00	-9.31	Т3	0.8, 1.6
		251	5.27	-24.42				29.69	20.00	-9.69	Т3	
		512	13.70	-14.61		2.00	28.31	20.00	-8.31	Т3		
	Axial	661	13.40	-15.31	-61.16	2.00	28.71	20.00	-8.71	Т3	0.8, 2.4	
GSM1900		810	13.79	-15.48		2.00	29.27	20.00	-9.27	Т3		
G3W1900		512	5.11	-26.08			31.19	20.00	-11.19	T4		
	Radial	661	5.29	-26.86	-61.52	N/A	32.15	20.00	-12.15	T4	0.8, 1.6	
		810	5.29	-27.29			32.58	20.00	-12.58	T4		

Table 9-4
Raw Data Results for UMTS

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		4132	8.24	-49.54		2.00	57.78	20.00	-37.78	T4	
	Axial	4183	8.22	-49.98	-61.16	2.00	58.20	20.00	-38.20	T4	0.8, 2.4
UMTS V		4233	8.24	-49.78		2.00	58.02	20.00	-38.02	T4	
OWITS V		4132	-0.23	-55.47			55.24	20.00	-35.24	T4	
	Radial	4183	-0.25	-55.99	-61.52	N/A	55.74	20.00	-35.74	T4	0.8, 1.6
		4233	0.17	-55.66			55.83	20.00	-35.83	T4	
		9262	8.26	-49.55		2.00	57.81	20.00	-37.81	T4	
	Axial	9400	8.30	-48.01	-61.16	2.00	56.31	20.00	-36.31	T4	0.8, 2.4
UMTS II		9538	8.36	-49.70		2.00	58.06	20.00	-38.06	T4	
OWISI		9262	-0.21	-55.83			55.62	20.00	-35.62	T4	
	Radial	9400	-0.20	-55.28	-61.52	N/A	55.08	20.00	-35.08	T4	0.8, 1.6
		9538	-0.21	-55.32			55.11	20.00	-35.11	T4	

FCC ID: ZNFG900VM	PCTEST Thought to be port of the received	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 33 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 33 01 00

Table 9-5 Raw Data Results for LTE B12

	TOWN DATA TOO ATO TOT ETE DIE											
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	23095	5.72	-33.21		1.89	38.93	20.00	-18.93	T4	
	Axial	5MHz	23095	5.88	-32.84	-61.16	1.85	38.72	20.00	-18.72	T4	0.8. 2.4
	Axiai	3MHz	23095	5.91	-33.96	-01.10	1.75	39.87	20.00	-19.87	T4	0.0, 2.4
LTE Band 12		1.4MHz	23095	5.89	-34.46		1.70	40.35	20.00	-20.35	T4	
LIE Band 12		10MHz	23095	-3.46	-47.98			44.52	20.00	-24.52	T4	
	Radial	5MHz	23095	-3.33	-46.41	-61.52	N/A	43.08	20.00	-23.08	T4	0.8, 1.6
	Naulai	3MHz	23095	-3.02	-46.18	-01.52	IVA	43.16	20.00	-23.16	T4	0.6, 1.6
		1.4MHz	23095	-3.15	-46.08			42.93	20.00	-22.93	T4	

Table 9-6 Raw Data Results for LTE B13

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	10MHz	23230	5.87	-33.29	-61.16	1.72	39.16	20.00	-19.16	T4	0.8. 2.4
LTE Band 13		5MHz	23230	5.94	-32.89	-61.16	1.71	38.83	20.00	-18.83	T4	0.6, 2.4
LIE Band 13	Radial	10MHz	23230	-3.18	-45.02	-61.52	N/A	41.84	20.00	-21.84	T4	0.8, 1.6
	Radiai	5MHz	23230	-3.41	-46.62	-01.52	IVA	43.21	20.00	-23.21	T4	0.6, 1.6

Table 9-7 Raw Data Results for LTE B5

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	20525	5.97	-33.71		1.67	39.68	20.00	-19.68	T4	
		5MHz	20625	5.86	-31.76		1.85	37.62	20.00	-17.62	T4	
	Axial	5MHz	20525	5.86	-32.69	-61.16	1.81	38.55	20.00	-18.55	T4	0.8, 2.4
	Axidi	5MHz	20425	5.87	-32.58	-01.10	1.71	38.45	20.00	-18.45	T4	0.6, 2.4
LTE Band 5		3MHz	20525	6.13	-34.09		1.75	40.22	20.00	-20.22	T4	
LIE Band 5		1.4MHz	20525	5.87	-33.19		1.70	39.06	20.00	-19.06	T4	
		10MHz	20525	-3.19	-46.20			43.01	20.00	-23.01	T4	
	Radial	5MHz	20525	-3.17	-45.36	-61.52	N/A	42.19	20.00	-22.19	T4	0.8, 1.6
	radiai	3MHz	20525	-3.17	-45.53	-01.52	IVA	42.36	20.00	-22.36	T4	0.0, 1.0
		1.4MHz	20525	-3.35	-45.91			42.56	20.00	-22.56	T4	

Table 9-8 Raw Data Results for LTE B66

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132322	6.30	-33.90		1.82	40.20	20.00	-20.20	T4	
		15MHz	132322	6.07	-33.43		1.82	39.50	20.00	-19.50	T4	
	Axial	10MHz	132322	6.16	-34.05	-61.16	1.71	40.21	20.00	-20.21	T4	0.8, 2.4
	Axiai	5MHz	132322	5.82	-33.71	-01.10	1.68	39.53	20.00	-19.53	T4	0.0, 2.4
		3MHz	132322	5.91	-34.33		1.74	40.24	20.00	-20.24	T4	
LTE Band 66		1.4MHz	132322	5.81	-35.42		1.86	41.23	20.00	-21.23	T4	
LIE Ballu 66		20MHz	132322	-3.35	-47.09			43.74	20.00	-23.74	T4	
		15MHz	132322	-3.21	-46.08			42.87	20.00	-22.87	T4	
	Radial	10MHz	132322	-3.16	-47.00	-61.52	N/A	43.84	20.00	-23.84	T4	0.8, 1.6
	Radiai	5MHz	132322	-3.19	-45.72	-01.52	IN/A	42.53	20.00	-22.53	T4	0.6, 1.6
		3MHz	132322	-3.24	-45.75			42.51	20.00	-22.51	T4	
		1.4MHz	132322	-3.18	-46.89			43.71	20.00	-23.71	T4	

FCC ID: ZNFG900VM	PCTEST*	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 24 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 34 of 88

Table 9-9
Raw Data Results for LTE B2

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	18900	5.83	-34.20		1.68	40.03	20.00	-20.03	T4	
		15MHz	18900	6.04	-34.36		1.83	40.40	20.00	-20.40	T4	
	Axial	10MHz	18900	6.00	-35.70	-61.16	1.75	41.70	20.00	-21.70	T4	0.8, 2.4
	Axiai	5MHz	18900	5.82	-36.09	-01.10	1.70	41.91	20.00	-21.91	T4	0.6, 2.4
		3MHz	18900	5.91	-36.43		1.76	42.34	20.00	-22.34	T4	
LTE Band 2		1.4MHz	18900	6.15	-37.00		1.84	43.15	20.00	-23.15	T4	
LIE Band 2		20MHz	18900	-3.10	-46.47			43.37	20.00	-23.37	T4	
		15MHz	18900	-3.21	-46.17			42.96	20.00	-22.96	T4	
	Radial	10MHz	18900	-3.35	-46.50	64.50	N/A	43.15	20.00	-23.15	T4	0.8, 1.6
	Radiai	5MHz	18900	-3.17	-47.08	-61.52	IN/A	43.91	20.00	-23.91	T4	0.6, 1.6
		3MHz	18900	-3.53	-47.53			44.00	20.00	-24.00	T4	
		1.4MHz	18900	-3.49	-48.09			44.60	20.00	-24.60	T4	

Table 9-10
Raw Data Results for LTE B48 Power Class 3

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	55990	5.88	-23.35		1.84	29.23	20.00	-9.23	T3	
		15MHz	56665	6.25	-23.46		1.80	29.71	20.00	-9.71	Т3	
	Axial	15MHz	55990	5.83	-23.16	-61.16	1.70	28.99	20.00	-8.99	Т3	0.8, 2.4
	Axiai	15MHz	55315	5.85	-24.06	-01.10	1.75	29.91	20.00	-9.91	Т3	0.6, 2.4
		10MHz	55990	5.81	-23.37		1.92	29.18	20.00	-9.18	Т3	
LTE Band 48		5MHz	55990	5.75	-23.45		1.67	29.20	20.00	-9.20	Т3	
LIE Ballu 46		20MHz	56640	-3.59	-32.68			29.09	20.00	-9.09	T3	
		20MHz	55990	-3.18	-32.37			29.19	20.00	-9.19	T3	
	D-di-l	20MHz	55340	-3.39	-33.17	04.50	N/A	29.78	20.00	-9.78	Т3	00.40
	Radial	15MHz	55990	-3.26	-32.85	-61.52	N/A	29.59	20.00	-9.59	Т3	0.8, 1.6
		10MHz	55990	-3.52	-32.76			29.24	20.00	-9.24	Т3	
		5MHz	55990	-3.15	-32.38			29.23	20.00	-9.23	T3	

Table 9-11 Raw Data Results for 2.4GHz WIFI

Tan Bata 100 atto 101 217 6112 Will 1												
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		1	2.08	-27.52		1.68	29.60	20.00	-9.60	Т3		
	Axial	6	2.24	-26.93	-60.23	1.56	29.17	20.00	-9.17	Т3	0.8, 2.4	
IEEE		11	2.11	-27.95		1.71	30.06	20.00	-10.06	T4		
802.11b		1	-6.42	-38.03			31.61	20.00	-11.61	T4		
	Radial	6	-6.59	-37.28	-61.52	N/A	30.69	20.00	-10.69	T4	0.8, 1.6	
		11	-6.48	-39.17			32.69	20.00	-12.69	T4		
IEEE	Axial	6	2.22	-30.88	-60.23	1.60	33.10	20.00	-13.10	T4	0.8, 2.4	
802.11g	Radial	6	-6.41	-39.64	-61.52	N/A	33.23	20.00	-13.23	T4	0.8, 1.6	
IEEE	Axial	6	2.21	-33.38	-60.23	1.74	35.59	20.00	-15.59	T4	0.8, 2.4	
802.11n	Radial	6	-6.43	-39.57	-61.52	N/A	33.14	20.00	-13.14	T4	0.8, 1.6	
IEEE	Axial	6	2.00	-31.02	-60.23	1.59	33.02	20.00	-13.02	T4	0.8, 2.4	
802.11ac	Radial	6	-6.18	-42.31	-61.52	N/A	36.13	20.00	-16.13	T4	0.8, 1.6	

Table 9-12 Raw Data Results for 5GHz WIFI IEEE 802.11a

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	20MHz	1	40	2.03	-29.12	-60.23	1.65	31.15	20.00	-11.15	T4	0.8, 2.4
IEEE 802.11	a												
	Radial	20MHz	1	40	-6.40	-39.03	-61.52	N/A	32.63	20.00	-12.63	T4	0.8, 1.6

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 33 01 00

Table 9-13
Raw Data Results for 5GHz WIFI IEEE 802.11n

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	2.05	-25.04		1.71	27.09	20.00	-7.09	Т3	
		20MHz	1	40	1.98	-22.77		1.55	24.75	20.00	-4.75	Т3	
		40MHz	2A	54	1.76	-27.95		1.59	29.71	20.00	-9.71	T3	
		20MHz	2A	56	2.08	-28.50		1.81	30.58	20.00	-10.58	T4	
	Axial	40MHz	2C	118	1.98	-27.49	-60.23	1.66	29.47	20.00	-9.47	Т3	0.8, 2.4
	Axidi	20MHz	2C	120	1.73	-27.15	-00.23	1.69	28.88	20.00	-8.88	Т3	0.0, 2.4
		40MHz	3	151	1.94	-22.83		1.71	24.77	20.00	-4.77	Т3	
		20MHz	3	149	2.12	-23.15		1.69	25.27	20.00	-5.27	Т3	
		20MHz	3	157	2.00	-22.41		1.77	24.41	20.00	-4.41	Т3	
IEEE		20MHz	3	165	2.03	-25.04		1.77	27.07	20.00	-7.07	Т3	
802.11n													
302		40MHz	1	38	-6.38	-35.74			29.36	20.00	-9.36	T3	
		20MHz	1	36	-6.52	-34.23			27.71	20.00	-7.71	Т3	
		20MHz	1	40	-6.53	-35.56			29.03	20.00	-9.03	T3	
		20MHz	1	48	-6.21	-35.08			28.87	20.00	-8.87	Т3	
	Radial	40MHz	2A	54	-6.46	-38.69	-61.52	N/A	32.23	20.00	-12.23	T4	0.8, 1.6
	radiai	20MHz	2A	56	-6.20	-39.24	-01.02	19/75	33.04	20.00	-13.04	T4	0.0, 1.0
		40MHz	2C	118	-6.49	-37.42			30.93	20.00	-10.93	T4	
		20MHz	2C	120	-6.28	-39.13			32.85	20.00	-12.85	T4	
		40MHz	3	151	-6.61	-38.08			31.47	20.00	-11.47	T4	
		20MHz	3	157	-6.57	-37.05			30.48	20.00	-10.48	T4	

Table 9-14

Raw Data Results for 5GHz WIFI IEEE 802.11n - Dual Display Accessory Testing

	Mode	Orientation	Bandwidth	U-NII	Channel	Accessory	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
١		A	20MHz	3	157	Dual Display - Open	1.87	-22.39	00.00	1.75	24.26	20.00	-4.26	T3	0.8. 2.4
	IEEE	Axial	20MHz	3	157	Dual Display - Closed	-5.25	-32.45	-60.88	1.60	27.20	20.00	-7.20	T3	Γ3
	IEEE 802.11n														
	802.11n	Radial	20MHz	1	36	Dual Display - Open	-6.82	-33.78		N/A	26.96	20.00	-6.96	Т3	0.8. 1.6
		rvadiai	20MHz	1	36	Dual Display - Closed	-14.13	-47.85	-01.00	IWA	33.72	20.00	-13.72	T4	0.0, 1.0

Table 9-15
Raw Data Results for 5GHz WIFI IEEE 802.11ac

	1.00. 20.00.1.00.00.1.01.1.1.1.1.1.1.1.00												
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	2.11	-27.63	-60.23	1.75	29.74	20.00	-9.74	T3	0.8, 2.4
IEEE	Axiai	20MHz	1	40	1.96	-27.45	-00.23	1.67	29.41	20.00	-9.41	T3	0.6, 2.4
802.11ac													
002.11ac	Radial	40MHz	1	38	-6.56	-39.14	-61.52	N/A	32.58	20.00	-12.58	T4	0.8. 1.6
	Naulai	20MHz	1	40	-6.14	-40.98	-01.52	IWA	34.84	20.00	-14.84	T4	0.6, 1.6

Table 9-16
Raw Data Results for EvDO (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Cellular	Axial	384	20.49	-40.69	-60.23	1.71	61.18	20.00	-41.18	T4	0.8, 2.4
EvDO	Radial	384	12.67	-51.95	-61.52	N/A	64.62	20.00	-44.62	T4	0.8, 1.6
PCS	Axial	600	20.43	-43.02	-60.23	1.96	63.45	20.00	-43.45	T4	0.8, 2.4
EvDO	Radial	600	12.77	-53.07	-61.52	N/A	65.84	20.00	-45.84	T4	0.8, 1.6

FCC ID: ZNFG900VM	PCTEST* Houd to be post of § secure	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 26 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 36 of 88

Table 9-17 Raw Data Results for EDGE (OTT VoIP)

				<i>-</i>	oouito ioi	\	• · · • • · · ·	,			
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	20.11	-14.66	-60.23	1.60	34.77	20.00	-14.77	T4	0.8, 2.4
EDGE030	Radial	190	12.40	-23.88	-61.60	N/A	36.28	20.00	-16.28	T4	0.8, 1.6
EDGE1900	Axial	661	20.11	-17.77	-60.23	1.53	37.88	20.00	-17.88	T4	0.8, 2.4
LDGL 1900	Radial	661	12.35	-29.67	-61.52	N/A	42.02	20.00	-22.02	T4	0.8, 1.6

Table 9-18 Raw Data Results for HSPA (OTT VoIP)

	11411 2414 11004110 101 1101 11												
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates		
HSDA V	Axial	4183	20.62	-44.80	-60.23	1.84	65.42	20.00	-45.42	T4	0.8, 2.4		
HSPA V	Radial	4183	12.64	-52.56	-61.52	N/A	65.20	20.00	-45.20	T4	0.8, 1.6		
HSPA II	Axial	9400	20.60	-44.67	-60.23	1.87	65.27	20.00	-45.27	T4	0.8, 2.4		
HOPAII	Radial	9400	12.60	-51.44	-61.52	N/A	64.04	20.00	-44.04	T4	0.8, 1.6		

Table 9-19 Raw Data Results for LTE FDD B13 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	10MHz	23230	20.43	-32.62	-60.23	1.93	53.05	20.00	-33.05	T4	0.8, 2.4
LTE Band		5MHz	23230	20.18	-33.28	-60.23	1.92	53.46	20.00	-33.46	T4	0.6, 2.4
LIE Danc	Radial	10MHz	23230	12.11	-44.64	-61.52	N/A	56.75	20.00	-36.75	T4	0.8. 1.6
	Radiai	5MHz	23230	12.00	-44.82	-61.52	IN/A	56.82	20.00	-36.82	T4	0.6, 1.6

Table 9-20 Raw Data Results for LTE TDD B48 (OTT VoIP)

			11411	Duta Itc	Juito 10	<u> </u>	, , , , , , , , , , , , , , , , , , , 	0 1 1 101	<u>' / </u>			
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	55990	20.62	-24.18		1.91	44.80	20.00	-24.80	T4	
		15MHz	55990	20.57	-24.24		1.94	44.81	20.00	-24.81	T4	
	Axial	10MHz	55990	20.30	-24.12	-60.23	1.94	44.42	20.00	-24.42	T4	0.8, 2.4
	Axiai	5MHz	56715	20.19	-23.82	-60.23	1.94	44.01	20.00	-24.01	T4	0.6, 2.4
		5MHz	55990	20.39	-23.75		1.95	44.14	20.00	-24.14	T4	
LTE Band 48		5MHz	55265	20.25	-24.54		1.94	44.79	20.00	-24.79	T4	
LIE Danu 40		20MHz	55990	12.18	-32.15			44.33	20.00	-24.33	T4	
		15MHz	55990	12.03	-32.02			44.05	20.00	-24.05	T4	
	Radial	10MHz	55690	12.02	-32.35	-61.52	N/A	44.37	20.00	-24.37	T4	0.8, 1.6
	Naulai	10MHz	55990	11.99	-31.93	-01.52	IN/A	43.92	20.00	-23.92	T4	0.0, 1.0
		10MHz	55290	12.05	-32.60			44.65	20.00	-24.65	T4	
		5MHz	55990	11.97	-31.96			43.93	20.00	-23.93	T4	

Table 9-21 Raw Data Results for NR n66 (OTT VolP)

	Num Buttu Resource for Mix 100 (CTT Voll)													
Mode	Orientation	Bandwidth	Channel	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{NR} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	349000	20.31	-43.93	-33.65			64.24	61.24	20.00	-41.24	T4	
		15MHz	349000	20.31	-43.18	-33.65			63.49	60.49	20.00	-40.49	T4	
	Axial	10MHz	355000	20.31	-44.24	-33.65	-60.23	N/A	64.55	61.55	20.00	-41.55	T4	0.8, 2.4
	Axiai	10MHz	349000	20.31	-42.07	-33.65	-60.23	INA	62.38	59.38	20.00	-39.38	T4	0.6, 2.4
		10MHz	343000	20.31	-43.94	-33.65			64.25	61.25	20.00	-41.25	T4	
NR n66		5MHz	349000	20.31	-42.88	-33.65			63.19	60.19	20.00	-40.19	T4	
NIX 1100		20MHz	354000	12.11	-51.86	-46.02			63.97	60.97	20.00	-40.97	T4	
		20MHz	349000	12.11	-51.19	-46.02			63.30	60.30	20.00	-40.30	T4	
	Radial	20MHz	344000	12.11	-51.69	-46.02	-61.52	N/A	63.80	60.80	20.00	-40.80	T4	0040
	radiai	15MHz	349000	12.11	-52.11	-46.02	-01.52	IWA	64.22	61.22	20.00	-41.22	T4	0.8, 1.6
		10MHz	349000	12.11	-52.22	-46.02			64.33	61.33	20.00	-41.33	T4	
		5MHz	349000	12.11	-52.35	-46.02			64.46	61.46	20.00	-41.46	T4	

FCC ID: ZNFG900VM	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 27 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 37 of 88

Table 9-22 Raw Data Results for LTE B66 (OTT VoIP - Additional Measurements for NR)

Mode	Orientation	Bandwidth	Channel	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	ABM2 _{LTE} [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N _{LTE} (dB)	S+N/N _{NR} - 3 dB (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
LTERES	Axial	20MHz	132322	20.31	N/A	-33.65	-60.23	N/A	53.96	N/A	20.00	-33.96	T4	0.8, 2.4
LTE B66	Radial	20MHz	132322	12.11	14//4	-46.02	-61.52	IV/A	58.13	INA	20.00	-38.13	T4	0.8, 1.6

Table 9-23 Raw Data Results for 2 4GHz WIFL (OTT VolP)

	Naw Data Results 101 2.45H2 WIFT (OTT VOIF)													
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates			
		1	20.30	-25.31		1.89	45.61	20.00	-25.61	T4				
	Axial	6	20.17	-24.23	-60.23	1.90	44.40	20.00	-24.40	T4	0.8, 2.4			
IEEE		11	20.61	-25.11		1.88	45.72	20.00	-25.72	T4				
802.11b		1	12.42	-37.63			50.05	20.00	-30.05	T4				
	Radial	6	12.29	-36.76	-61.52	N/A	49.05	20.00	-29.05	T4	0.8, 1.6			
		11	12.48	-38.52			51.00	20.00	-31.00	T4				
IEEE	Axial	6	20.37	-27.17	-60.23	1.86	47.54	20.00	-27.54	T4	0.8, 2.4			
802.11g	Radial	6	12.57	-39.37	-61.52	N/A	51.94	20.00	-31.94	T4	0.8, 1.6			
IEEE	Axial	6	20.25	-27.66	-60.23	1.81	47.91	20.00	-27.91	T4	0.8, 2.4			
802.11n	Radial	6	12.41	-41.98	-61.52	N/A	54.39	20.00	-34.39	T4	0.8, 1.6			
IEEE	Axial	6	20.72	-28.81	-60.23	1.88	49.53	20.00	-29.53	T4	0.8, 2.4			
802.11ac	Radial	6	12.42	-42.19	-61.52	N/A	54.61	20.00	-34.61	T4	0.8, 1.6			

Table 9-24 Raw Data Results for 5GHz WIFI IEEE 802.11a (OTT VoIP)

	Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
ſ	IEEE	Axial	20MHz	1	40	20.66	-27.67	-60.23	1.84	48.33	20.00	-28.33	T4	0.8, 2.4
	802.11a													
	ou∠.11a	Radial	20MHz	1	40	12.47	-37.76	-61.52	N/A	50.23	20.00	-30.23	T4	0.8, 1.6

Table 9-25 Raw Data Results for 5GHz WIFI IEEE 802.11n (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	20.63	-24.75		1.88	45.38	20.00	-25.38	T4	
		20MHz	1	36	20.49	-24.41		1.89	44.90	20.00	-24.90	T4	
		20MHz	1	40	20.73	-22.70		1.88	43.43	20.00	-23.43	T4	
		20MHz	1	48	20.77	-20.65		1.89	41.42	20.00	-21.42	T4	
	Axial	40MHz	2A	54	20.67	-26.26	-60.23	1.88	46.93	20.00	-26.93	T4	0.8, 2.4
	Axidi	20MHz	2A	56	20.72	-26.03	-00.23	1.85	46.75	20.00	-26.75	T4	0.0, 2.4
		40MHz	2C	118	20.65	-25.41		1.81	46.06	20.00	-26.06	T4	
		20MHz	2C	120	20.24	-24.35		1.88	44.59	20.00	-24.59	T4	
		40MHz	3	151	20.72	-22.92		1.92	43.64	20.00	-23.64	T4	
IEEE		20MHz	3	157	20.38	-23.38		1.79	43.76	20.00	-23.76	T4	
802.11n													
002		40MHz	1	38	12.42	-36.31			48.73	20.00	-28.73	T4	
		20MHz	1	40	12.50	-36.56			49.06	20.00	-29.06	T4	
		40MHz	2A	54	12.48	-36.92			49.40	20.00	-29.40	T4	
		20MHz	2A	56	12.44	-35.95			48.39	20.00	-28.39	T4	
	Radial	40MHz	2C	118	12.35	-37.06	-61.52	N/A	49.41	20.00	-29.41	T4	0.8, 1.6
	Itaulai	20MHz	2C	120	12.46	-35.05	-01.32	IVA	47.51	20.00	-27.51	T4	0.0, 1.0
		40MHz	3	151	12.39	-36.99			49.38	20.00	-29.38	T4	
		20MHz	3	149	12.14	-35.47			47.61	20.00	-27.61	T4	
		20MHz	3	157	12.46	-34.50			46.96	20.00	-26.96	T4	
		20MHz	3	165	12.40	-35.16			47.56	20.00	-27.56	T4	

FCC ID: ZNFG900VM	PCTEST hour to be port of ® senses	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 30 01 00

Table 9-26
Raw Data Results for 5GHz WIFI IEEE 802.11ac (OTT VoIP)

			Du			· · · · ·			40 (0 . .	,			
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	20.75	-26.91	-60.23	1.88	47.66	20.00	-27.66	T4	0.8, 2.4
Axial	20MHz	1	40	20.65	-26.05	-00.23	1.88	46.70	20.00	-26.70	T4	0.6, 2.4	
802.11ac													
002.1100		40MHz	1	38	12.40	-38.24	-61.52	N/A	50.64	20.00	-30.64	T4	0.8. 1.6
	Naulai	20MHz	1	40	12.38	-39.25	-01.52	IWA	51.63	20.00	-31.63	T4	0.0, 1.0

II. Test Notes

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- Hearing Aid Mode (Phone→Call Settings→Additional Settings→Hearing aids) was set to ON for Frequency Response compliance
- 4. Speech Signal: ITU-T P.50 Artificial Voice
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).
- 8. The overall worst-case configuration from each probe orientation (Axial and Radial) was additionally evaluated using the dual display accessory (see Table 9-14).

B. CDMA

- 1. Power Configuration: Power Control Bits = "All Up"
- 2. Vocoder Configuration: RC1/SO3 (CDMA EVRC)

C. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

D. UMTS

- 1. Power Configuration: TPC= "All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);

E. LTE FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 99%RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 5 at 5MHz is the worst-case for the Axial probe orientation. LTE Band 13 at 10MHz bandwidth is the worst-case for the Radial probe orientation. However, since LTE Band 13 at 10MHz only supports one channel, no additional testing was performed.

F. LTE TDD

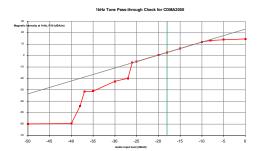
- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 99%RB offset
- 3. Power Class 3 Uplink-Downlink configuration: 0
- 4. Vocoder Configuration: WB AMR 6.60kbps
- 5. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 48 (Power Class 3) at 15MHz is the worst-case for the Axial probe orientation. LTE Band 48 (Power Class 3) at 20MHz is the worst-case for the Radial probe orientation.

FCC ID: ZNFG900VM	PCTEST: Noted to be part of @ secured	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 20 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 39 of 88

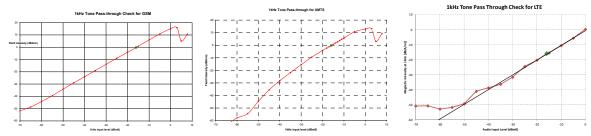
G. WIFI

- 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11g/a: BPSK, 6Mbps
 - c. IEEE 802.11n/ac 20MHz: 64QAM, MCS 6
 - d. IEEE 802.11n/ac 40MHz: 64QAM, MCS 5
- 2. Vocoder Configuration: WB AMR 6.60kbps
- 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
- 4. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11n 20MHz BW (U-NII 3) is the worst-case for the Axial probe orientation. IEEE 802.11n 20MHz BW (U-NII 1) is the worst-case for the Radial probe orientation.

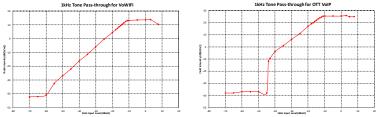
H. OTT VolP


- 1. Vocoder Configuration: 75kbps
- 2. EvDO Configuration
 - a. Revision: A
- 3. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
- 4. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
- 5. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 99%RB offset
 - c. LTE Band 13 was the worst-case band from Table 7-6 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 13 at 10MHz is the worst-case for both the Axial and Radial probe orientations. However, since LTE Band 13 at 10MHz only supports one channel, no additional testing was performed.
- 6. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 99%RB offset
 - c. Power Class 3 Uplink-Downlink configuration: 0
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 48 (Power Class 3) at 5MHz is the worst-case for the Axial probe orientation. LTE Band 48 (Power Class 3) at 10MHz is the worst-case for the Radial probe orientation.
- 7. NR FDD Configuration
 - a. Power Configuration: TxAGC is set such that the DUT operates at max power.
 - b. Radio Configuration: CP-OFDM, 16QAM, 1RB, 50% RB Offset
 - c. Due to equipment limitations, ABM1 measurements were not possible. Therefore, the procedure outlined in Section 7.II.4 was followed to obtain SNNR values. Additionally, Frequency Response measurements were not possible due to equipment limitations.
 - d. NR Band n66 was the worst-case band from Table 7-10 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n66 at 10MHz is the worst-

FCC ID: ZNFG900VM	PCTEST: Houd to be part of @ memore	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 40 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 40 of 88


case for the Axial probe orientation. NR n66 at 20MHz bandwidth is the worst-case for the Radial probe orientation.

- 8. WIFI Configuration:
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g/a: BPSK, 6Mbps
 - iii. IEEE 802.11n/ac 20MHz: 64QAM, MCS 5
 - iv. IEEE 802.11n/ac 40MHz: 64QAM, MCS 6
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
 - c. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11n 20MHz BW (U-NII 1) is the worst-case for the Axial probe orientation. IEEE 802.11n 20MHz BW (U-NII 3) is the worst-case for the Radial probe orientation.


III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -18 dBm0 for CDMA. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 41 01 66

IV. T-Coil Validation Test Results

Table 9-27
Helmholtz Coil Validation Table of Results – 07/20/2020

ltem	Item Target Res		Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.920	PASS
Environmental Noise	< -58 dBA/m	-61.16	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 9-28
Helmholtz Coil Validation Table of Results – 07/27/2020

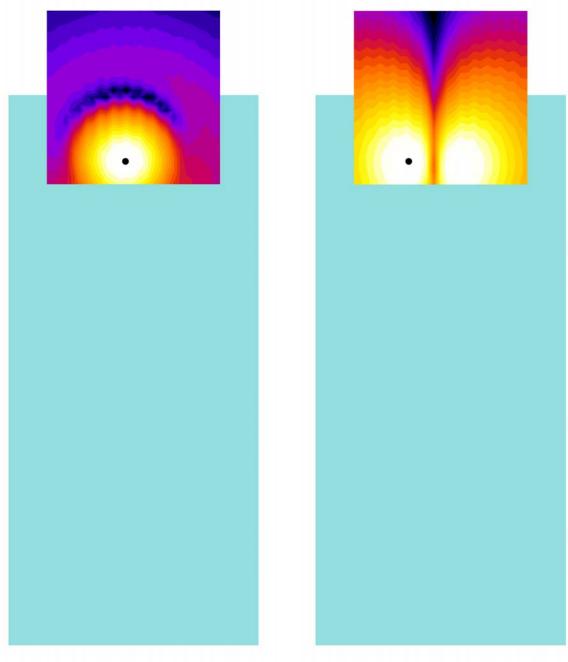

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.920	PASS
Environmental Noise	< -58 dBA/m	-60.23	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.172	PASS
Environmental Noise	< -58 dBA/m	-61.52	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 9-29
Helmholtz Coil Validation Table of Results – 08/03/2020

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.889	PASS
Environmental Noise	< -58 dBA/m	-60.88	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.101	PASS
Environmental Noise	< -58 dBA/m	-61.60	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

FCC ID: ZNFG900VM	PCTEST Board of Brancon	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Faye 42 01 00

ABM1 Magnetic Field Distribution Scan Overlays ٧.

Axial Radial (Transverse)

Figure 9-1 **T-Coil Scan Overlay Magnetic Field Distributions**

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFG900VM	PCTEST Total to be post of Serverses	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 42 of 99
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 43 of 88

© 2020 PCTEST **REV 3.5.M**

MEASUREMENT UNCERTAINTY 10.

Table 10-1 Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)					17.7%	0.71	
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Notes:

- 1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFG900VM	PCTEST HAC (T-COIL) TEST REPORT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 44 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Faye 44 01 00

EQUIPMENT LIST 11.

Table 11-1 Equipment List

Equipment Flot						
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/6/2020	Biennial	3/6/2022	200170289
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	9/6/2018	Biennial	9/6/2020	2655082910
Listen	SoundConnect	Microphone Power Supply	9/6/2018	Biennial	9/6/2020	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/6/2018	Biennial	9/6/2020	23792992
Rohde & Schwarz	CMW500	Radio Communication tester	8/14/2019	Annual	8/14/2020	140144
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/4/2020	Annual	2/4/2021	162125
Rohde & Schwarz	CMW500	Radio Communication Tester	5/21/2020	Annual	5/21/2021	128635
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A
TEM	Helmholtz Coil	Helmholtz Coil	10/10/2018	Biennial	10/10/2020	SBI 1052
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Biennial	9/19/2020	TEM-1129

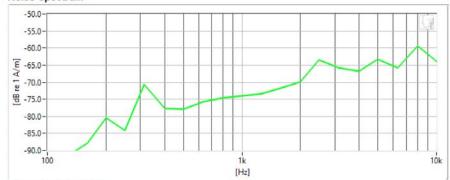
FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 45 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 45 of 88

12. TEST DATA

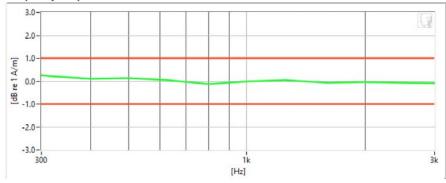
FCC ID: ZNFG900VM	PCTEST Total to be part of Seminaria	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 40 01 00

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

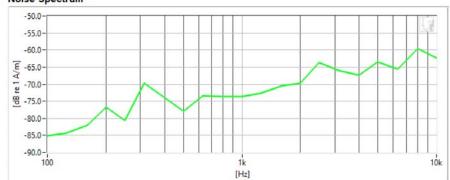
Frequency Response

Results

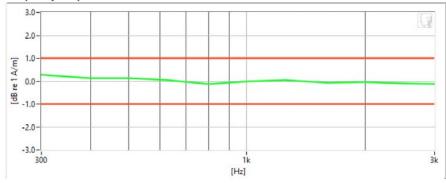
Verification 1kHz Intensity	-9.92	dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-61.16	dB	~	Maximum	-58.0
Frequency Response Margin	700m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 47 01 00

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

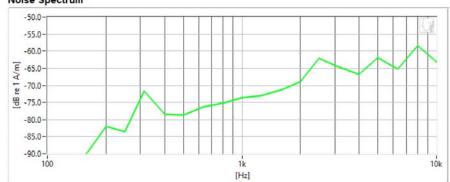
Frequency Response

Results

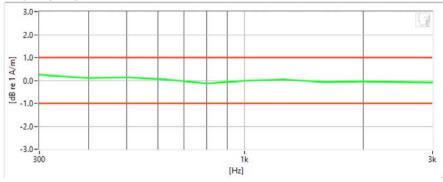
Verification 1kHz Intensity	-9.92	dB	9	Max/Min	-9.5/-10.5
Verification ABM2	-60.23	dB	•	Maximum	-58.0
Frequency Response Margin	700m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 40 01 00

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

Frequency Response

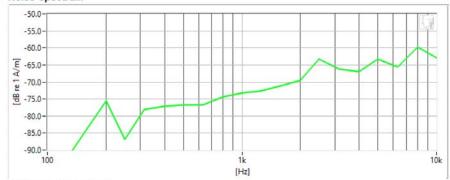
Results

Verification 1kHz Intensity	-9.889	dB		Max/Min	-9.5/-10.5
Verification ABM2	-60.88	dB	•	Maximum	-58.0
Frequency Response Margin	700m	dB	~	Tolerance curves	Aligned Data

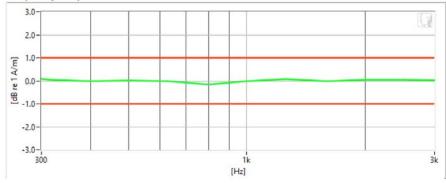
FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 49 01 00

PCTEST Hearing-Aid Compatibility Facility

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

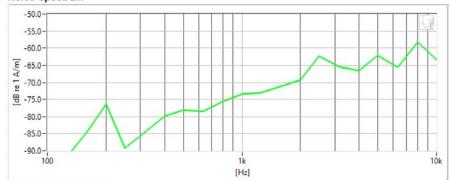
Frequency Response

Results

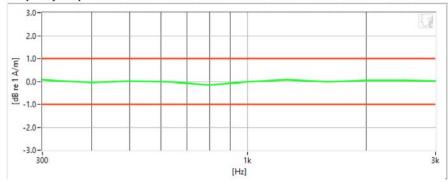
Verification 1kHz Intensity	-10.172	dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-61.52	dB	•	Maximum	-58.0
Frequency Response Margin	800m	dB	•	Tolerance curves	Aligned Data

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 50 01 66

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI 1052; Calibrated: 10/10/2018

Noise Spectrum

Frequency Response

Results

Verification 1kHz Intensity	-10.101 dB	~	Max/Min	-9.5/-10.5	
Verification ABM2	-61.6 dB	~	Maximum	-58.0	
Frequency Response Margin	0.8 dB	~	Tolerance curves	Aligned Data	

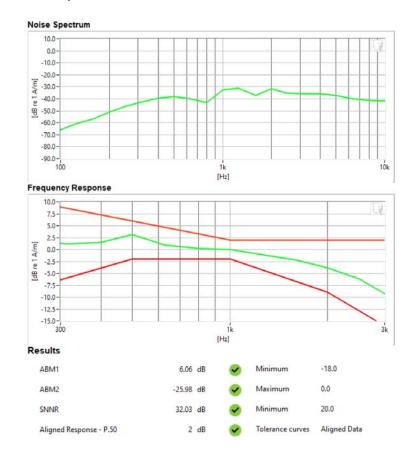
FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 51 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 31 01 00

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018


Test Configuration:

Mode: Cellular CDMA

Channel: 1013

Speech Signal: ITU-T P.50 Artificial Voice

Accessory: none

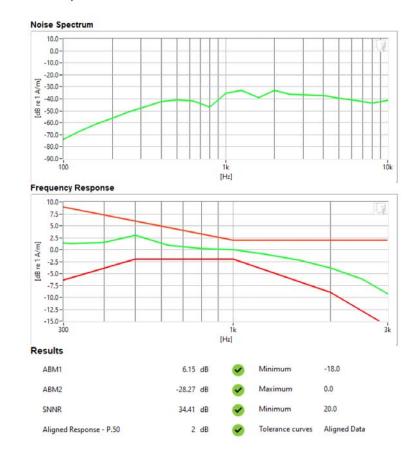
FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 32 01 00

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018


Test Configuration:

Mode: PCS CDMA

Channel: 1175

Speech Signal: ITU-T P.50 Artificial Voice

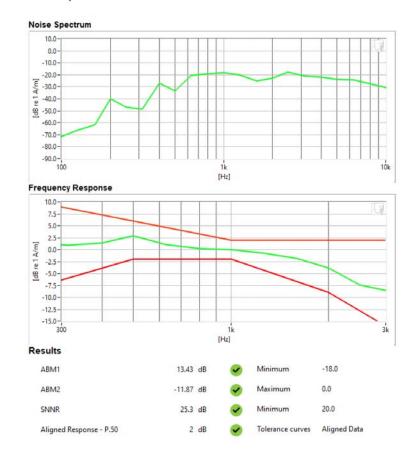
Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 33 01 66

REV 3.5.M

DUT: ZNFG900VM

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

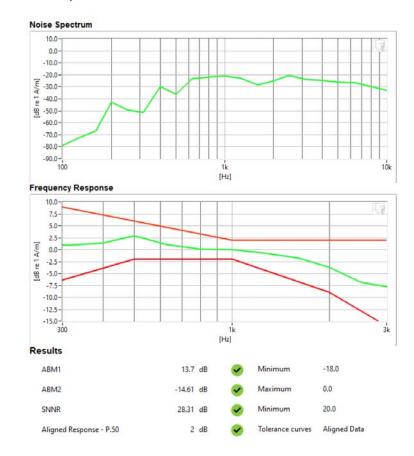
- Mode: GSM850Channel: 128
- · Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 34 01 00

REV 3.5.M

DUT: ZNFG900VM

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

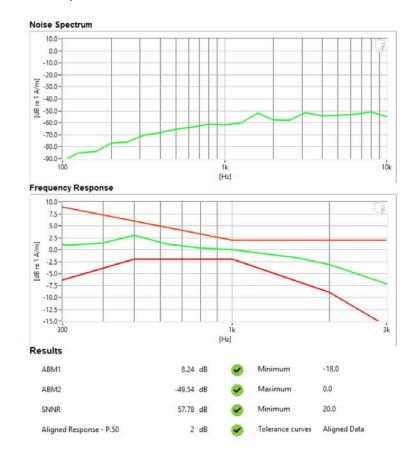
- Mode: GSM1900Channel: 512
- · Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 55 01 00

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS VChannel: 4132

· Speech Signal: ITU-T P.50 Artificial Voice

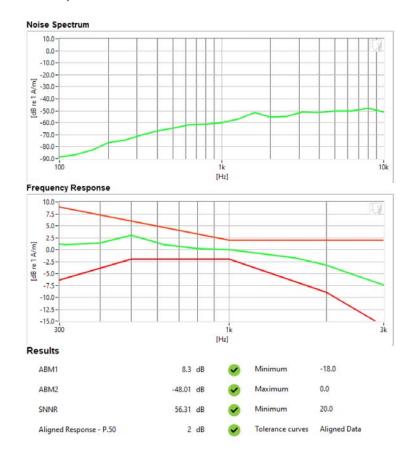
· Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 30 01 00

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

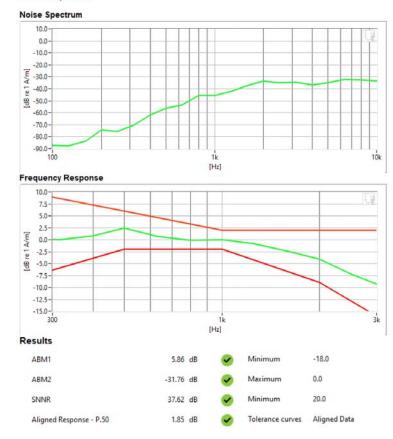
Mode: UMTS IIChannel: 9400

· Speech Signal: ITU-T P.50 Artificial Voice

· Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 57 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 37 01 00

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

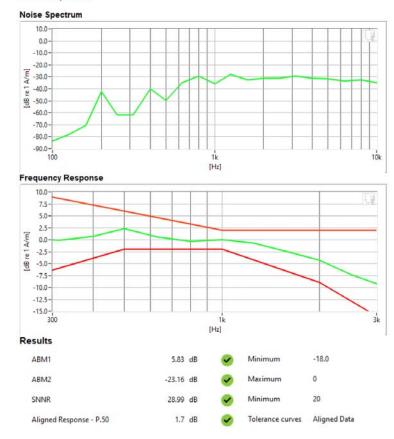
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: LTE FDD Band 5
- Bandwidth: 5MHz
- Channel: 20625
- · Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 30 01 00

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

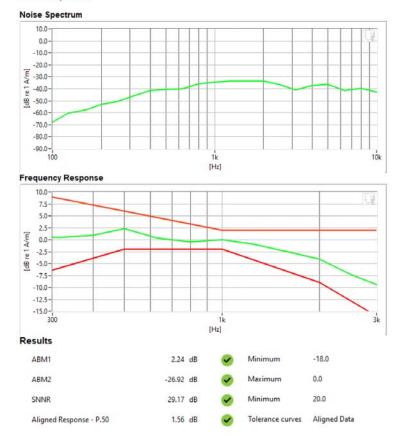
- Mode: LTE TDD Band 48
- Bandwidth: 15MHz
- Channel: 55990
- · Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 39 01 00

REV 3.5.M

DUT: ZNFG900VM

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WLAN Standard: IEEE 802.11b
- Channel: 6
- Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 00 01 00

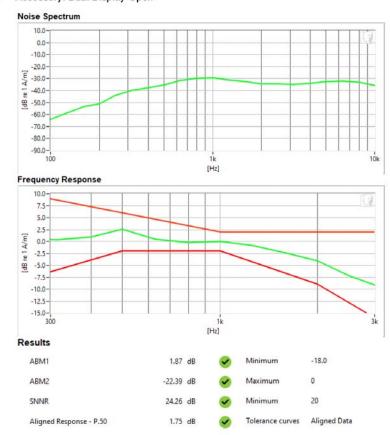
7/20/2020

DUT: ZNFG900VM

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

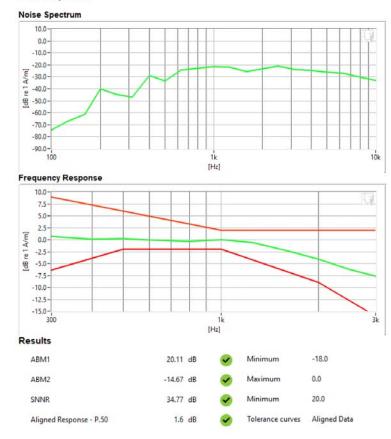
Mode: 5GHz WLANStandard: IEEE 802.11nBandwidth: 20MHzChannel: 157

Speech Signal: ITU-T P.50 Artificial Voice

· Accessory: Dual Display Open

FCC ID: ZNFG900VM	PCTEST Hood to be port of ® memorial	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 01 01 00

Type: Portable Handset Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

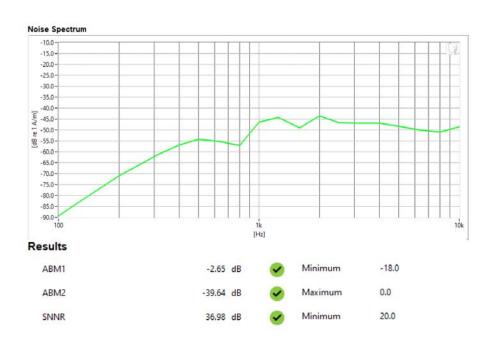
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE850
- Channel: 190
- · Speech Signal: ITU-T P.50 Artificial Voice
- Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 02 01 00

Serial: 01225


Measurement Standard: ANSI C63.19-2011

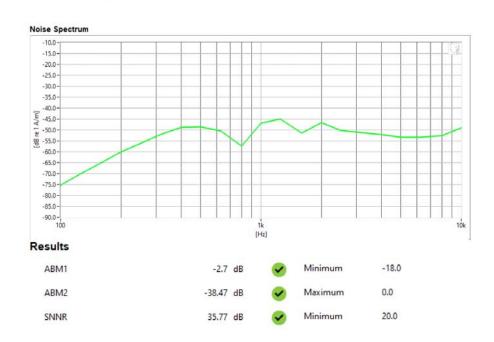
Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: Cellular CDMA Channel: 1013 Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 03 01 00


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: PCS CDMA Channel: 1175 Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 64 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 04 01 00

Serial: 01225


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: GSM850 Channel: 128 Accessory: none

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 05 01 66

Measurement Standard: ANSI C63.19-2011

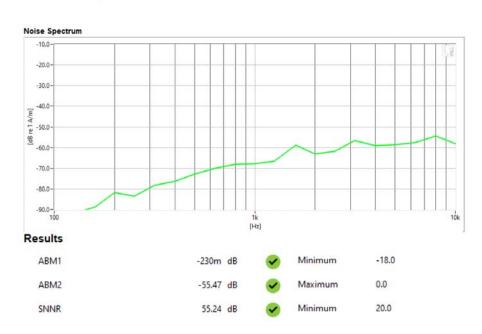
Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: GSM1900Channel: 512Accessory: none

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 66 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 00 01 00


Measurement Standard: ANSI C63.19-2011

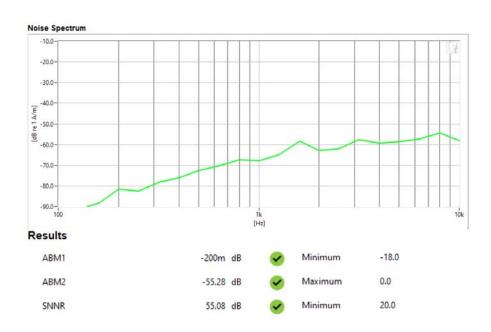
Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS VChannel: 4132Accessory: none

FCC ID: ZNFG900VM	PCTEST Total to be part of the second	HΔC (T-COIL) TEST REPORT		Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 67 of 88	
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage of 01 00	


Measurement Standard: ANSI C63.19-2011

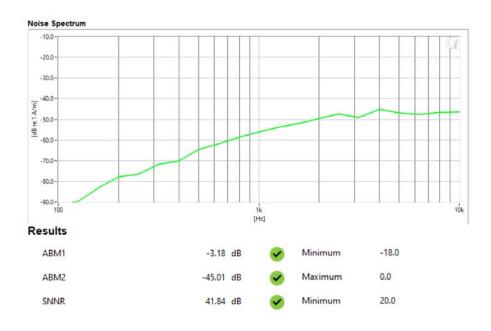
Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

 Mode: UMTS II Channel: 9400 Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (1-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 68 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 00 01 00


Measurement Standard: ANSI C63.19-2011

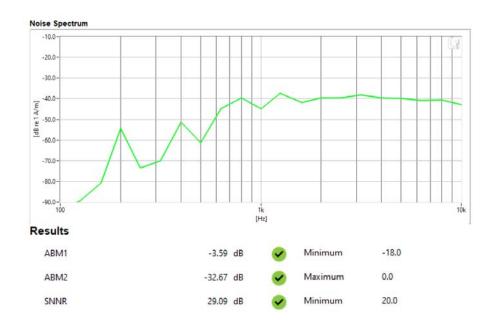
Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: LTE FDD Band 13 Bandwidth: 10MHz Channel: 23230 Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (1-COII) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 69 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 09 01 00


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

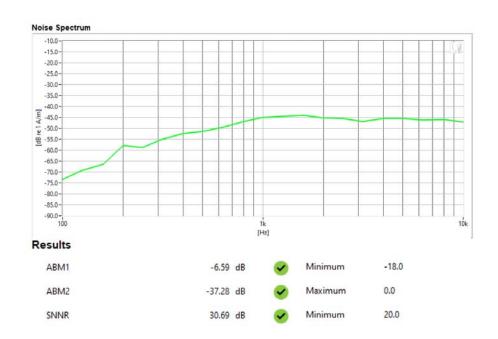
Test Configuration:

Mode: LTE TDD Band 48 Bandwidth: 20MHz Channel: 56640 Accessory: none

FCC ID: ZNFG900VM	PCTEST: Hood to be part of @ memore	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 70 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 70 01 66

Serial: 01225

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

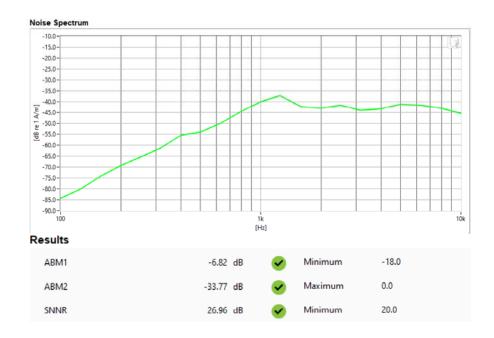
Mode: 2.4GHz WLAN Standard: IEEE 802.11b

Channel: 6 Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (I-COIL) IEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 71 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage / 1 01 00

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: 5GHz WLAN Standard: IEEE 802.11n Bandwidth: 20MHz Channel: 36

Accessory: Dual Display Open

FCC ID: ZNFG900VM	PCTEST Thought to be port of the received	HAC (I-COIL) IEST REPORT		Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 72 of 88	
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 12 01 00	

Type: Portable Handset Serial: 01225

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

· VolP Application: Google Duo

Mode: EDGE850Channel: 190Accessory: none

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 73 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 73 01 00

CALIBRATION CERTIFICATES 13.

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 74 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 74 of 88

© 2020 PCTEST **REV 3.5.M**

Certificate of Calibration

for

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING LP

Model No:

AXIAL T COIL PROBE

Serial No: Calibration Recall No: TEM-1123 29156

Submitted By:

Customer:

Andrew Harwell

Company: Address: PCTest Engineering Lab 6660-B Dobbin Road

Columbia

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM C

Upon receipt for Calibration, the instrument was found to be:

12/4/2019

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.
The information supplied relates to the calibrated item listed above.
West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by: Fc

Calibration Date:

19-Sep-18

Felix Christopher (QA Mgr.)

Certificate No:

29156 -2

West Caldwell

ISO/IEC 17025:2005

QA Doc. #1051 Rev. 2.0 10/1/01

Certificate Page 1 of 1

ACCREDITED

uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

 FCC ID: ZNFG900VM
 PCTEST
 HAC (T-COIL) TEST REPORT
 Approved by: Quality Manager

 Filename: 1M2006040088-15-R2.ZNF
 Test Dates: 07/20/2020 - 08/07/2020
 DUT Type: Portable Handset
 Page 75 of 88

© 2020 PCTEST

REV 3.5.M

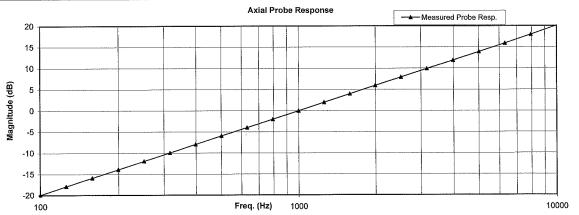
1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1123 I. D. No.: XXXX


Calibration results: Probe Sensitivity measured with Helmholtz Coil Helmholtz Coll; Before & after data same: ... X ... the number of turns on each coil; 10 No. 0.204 Laboratory Environment: the radius of each coil, in meters; Ambient Temperature: °C 0.08 22.7 the current in the coils, in amperes.; Α 7.09 A/m/V Ambient Humidity: % RH Helmholtz Coil Constant; Helmholtz Coil magnetic field; 5.95 A/m Ambient Pressure: 99.326 Calibration Date: 19-Sep-2018 Calibration Due: Probe Sensitivity at 1000 Hт -59.89 dBV/A/m. Report Number: 29156 -2 was 1.013 mV/A/m Control Number: 29156 903 Ohms Probe resistance The above listed instrument meets or exceeds the tested manufacturer's specifications.

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Calibrated on WCCL system type 9700

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, IŞØ)17025

Cal. Date: 19-Sep-2018

Measurements performed by:

James Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFG900VM	PCTEST	HAC (I-COIL) TEST REPORT		Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 76 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage 70 01 00

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

for Model No.: Axial T Coil Probe

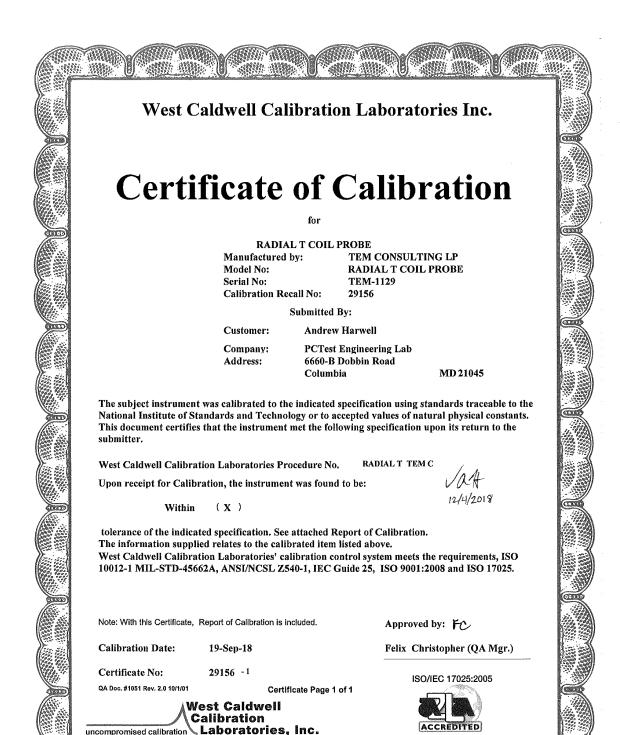
Serial No.: TEM-1123

			Measured values			
			Before	Out	Remarks	
Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89			
		dB				
Probe Level Linearity		6	6.03			
	Ref. (0 dB)	0	0.00			
		-6	-6.03			
		-12	-12.05			
	***************************************	Hz				
Probe Frequency Response			i I			
		794	-2.0			
	Ref. (0 dB)	1000	0.0			
		1259	2.0			
		1585	4.0			
		1995	5.9			
		2512	7.9			
		3162	9.9			
		3981	11.9			
		5012	13.9			
		6310	15.9			
		7943	18.0			
		10000	20.1			
	Probe Level Linearity Probe Frequency Response	Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) 0 -6 -12 Hz Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)	

Instruments used for o	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700


This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	(LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 77 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		rage // 01 00

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 78 of 88
1M2006040088-15-R2 7NE	07/20/2020 - 08/07/2020	Portable Handset		rage 76 01 66

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

HCRTEMC_TEM-1129_Sep-19-2018

1575 State Route 96, Victor NY 14564

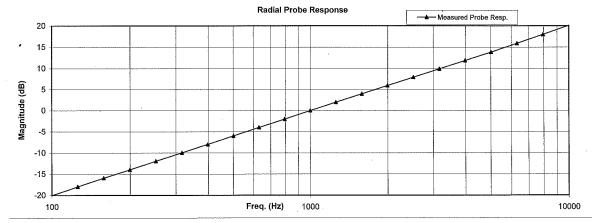
REPORT OF CALIBRATION

TEM Consulting LP Radial T Coil Probe ,Company: PCTest Engineering Lab

Model No.: Radial T Coil Probe

Serial No.: TEM-1129

I. D. No.: XXXX


Probe Sensitivity measured wit	h Helmholi	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.08	Α	Ambient Temperature:	22.7	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	52.1	% RH
Helmholtz Coil magnetic field;	5.95	A/m	Ambient Pressure:	99.326	kPa
			Calibration Date:	19-Sep-2018	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:		
was	-60.37	dBV/A/m	Report Number:	29156	-1
	0.958	mV/A/m	Control Number:	29156	
Probe resistance	886	Ohms			

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISQ 17025

Cal. Date: 19-Sep-2018

Measurements performed by: James Zhu

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 79 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Faye / 9 01 00

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Radial T Coil Probe

Serial No.: TEM-1129

	Tolera	Measured values			
rido como como como como como como como co	——————————————————————————————————————		Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37		
		dB			
Probe Level Linearity		6	6.03		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.05		
		Hz			
Probe Frequency Response			1 :		
			1		
	Ref. (0 dB)				
			1 1		
			18.0		
		10000	20.1		
		Probe Level Linearity Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) Ref. (0 dB) -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)	Probe Level Linearity Ref. (0 dB) Ref. (0 dB)

nstruments used for o	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 80 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye 00 01 00

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFG900VM	PCTEST:	HAC (T-COIL) TEST REPORT	€ LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 81 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Fage 61 01 00

15. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, " U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: ZNFG900VM	PCTEST: Hood to be part of @ memore	HAC (T-COIL) TEST REPORT	€ LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 00 of 00
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		Page 82 of 88

- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 19. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- 20. Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFG900VM	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 83 of 88
1M2006040088-15-R2.ZNF	07/20/2020 - 08/07/2020	Portable Handset		raye os ul oo