FCC ID: ZNFE435G

Report No.: DRTFCC1302-0099

Total 90pages

SAR TEST REPORT

Test item	:	Cellular/PCS GSM/GPRS/EDGE(RX Only)/WCDMA/HSDPA Phone with Bluetooth. WLAN
Model No.	:	LG-E435g, LG-E435G, LGE435g, LGE435G, E435g, E435G
Order No.	:	DEMC1212-02801
Date of receipt	:	2012-12-07

Test duration : 2012-12-28 ~ 2013-01-04

Date of issue : 2013-02-05

Use of report : FCC Original Grant

Applicant : LG Electronics MobileComm U.S.A., Inc.

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Test laboratory : Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea

Test specification : §2.1093, FCC/OET Bulletin 65 Supplement C[July 2001]

Test environment : See appended test report

Witnessed by:

Test result : ☐ Pass ☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Engineer
NoKyun, Im

Engineer
SunKyu, Ryu

Technical Director
Harvey Sung

Tested by:

Reviewed by:

Table of Contents

1. DESCRIPTION OF DEVICE	4
1.1 Guidance Applied	
1.2 Device Overview	
1.3 Nominal and Maximum Output Power Specifications	
1.5 SAR Test Exclusions Applied	
1.6 Device Serial Numbers	
2. INTROCUCTION	
3. DESCRIPTION OF TEST EQUIPMENT	9
3.1 SAR MEASUREMENT SETUP	
3.2 EX3DV4 Probe Specification	
3.3 Probe Calibration Process	
3.4 Data Extrapolation	
3.5 SAM Twin PHANTOM	
3.6Device Holder for Transmitters	13
3.7 Brain & Muscle Simulation Mixture Characterization	
3.8 SAR TEST EQUIPMENT	
5. SAR MEASUREMENT PROCEDURE	
6. DESCRIPTION OF TEST POSITION	
6.1 Ear Reference Point	
6.2 Handset Reference Points	
6.3 Device Holder	19
6.4 Positioning for Cheek/Touch	
6.5 Positioning for Ear / 15 ° Tilt	
6.6 Body-Worn Accessory Configurations	
7. IEEE P1528 –MEASUREMENT UNCERTAINTIES	
8. ANSI / IEEE C95.1-2005 RF EXPOSURE LIMITS	
9. SYSTEM VERIFICATION	28
9.1 Tissue Verification	28
9.2 Test System Verification	29
10. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	
10.1 Introduction	
10.3 Simultaneous Transmission Procedures 10.3 Simultaneous Transmission Capabilities	
10.4 Head SAR Simultaneous Transmission Analysis	
10.5 Body-Worn Simultaneous Transmission Analysis	
10.6 Hotspot SAR Simultaneous Transmission Analysis	
10.7 Description of Volume Scan	
11. FCC MEASUREMENT PROCEDURES	
11.1 Measured and Reported SAR	
11.2 Procedures Used to Establish RF Signal for SAR	
11.2.1 SAR Measurement Conditions for UMTS	
11.2.2 SAR Testing with 802.11 Transmitters	
12. RF CONDUCTED POWERS	
13. SAR TEST RESULTS	
	// //
13.2 Body-Worn SAR Results	
13.2 Body-Worn SAR Results	44 47
13.2 Body-Worn SAR Results	44 47 48
13.2 Body-Worn SAR Results 13.3 Wireless router SAR Results 13.4 SAR Test Notes 14. SAR MEASUREMENT VARIABILITY 15. CONCLUSION	44 47 48
13.2 Body-Worn SAR Results 13.3 Wireless router SAR Results 13.4 SAR Test Notes 14. SAR MEASUREMENT VARIABILITY 15. CONCLUSION 16. REFERENCES	444849
13.2 Body-Worn SAR Results 13.3 Wireless router SAR Results 13.4 SAR Test Notes 14. SAR MEASUREMENT VARIABILITY 15. CONCLUSION 16. REFERENCES Attachment 1. – Probe Calibration Data	44484950
13.2 Body-Worn SAR Results 13.3 Wireless router SAR Results 13.4 SAR Test Notes 14. SAR MEASUREMENT VARIABILITY 15. CONCLUSION 16. REFERENCES	

Test Report Version

Test Report No.	Date	Description
DRTFCC1302-0099	Feb. 05, 2013	Final version for approval

1. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

General Information

Equipment type	Cellular/PCS GSM/GPRS/EDGE(RX Only)/WCDMA/HSDPA Phone with Bluetooth, WLAN							
FCC ID	ZNFE435G							
Equipment model name	LG-E435g							
Equipment add model name	LG-E435G, LGE435g, LGE435G, E435g, E435G							
Equipment serial no.	Identical prototype							
Mode(s) of Operation	GSM850, PCS1900, WCDMA850, WCDMA1900, W-LAN(802.11b/g/n(HT20))							
TX Frequency Range	824.2 ~ 848.8 MHz(Cellular Band) / 826.4 ~ 846.6 MHz(WCDMA FDD V) 1850.2 ~ 1909.8 MHz(PCS Band) / 1852.4 ~ 1907.6 MHz(WCDMA FDD II) 2412 ~ 2462 MHz(802.11b/g/n(HT20))							
RX Frequency Range	869.2 ~ 893.8 MHz(Cellular Band) / 871.4 ~ 891.6 MHz(WCDMA FDD V) 1930.2 ~ 1989.8 MHz(PCS Band) / 1932.4 ~ 1987.6 MHz(WCDMA FDD II) 2412 ~ 2462 MHz(802.11b/g/n(HT20))							

		Measured	Reported SAR				
Equipment Class	Band	Conducted Power	1g SAR (W/kg)				
Class		[dBm]	Head	GPRS Head	Body-worn	Hotspot	
PCE	GSM850	34.2	0.44	0.46	0.77	0.78	
PCE	WCDMA850	23.70	0.45	-	0.51	0.51	
PCE	PCS1900	30.7	0.75	0.89	0.73	0.79	
PCE	WCDMA1900	22.69	1.11	-	1.07	1.07	
DTS	2.4 G W-LAN(802.11b)	15.72	0.10	-	<0.10	<0.10	
Simultaneous SAI	1r02	1.17	0.94	1.18	1.15		
FCC Equipment Class	Licensed Portable Tra	nsmitter Held t	o Ear (PCE)				
Date(s) of Tests	2012-12-28 ~ 2013-01	1-04					
Antenna Type	Internal Type Antenna						
Functions	 GSM/GPRS(GPRS Class: 12) / EDGE(RX Only) supported DTM not supported BT(2.4GHz) / WLAN(2.4GHz 802.11b/g/n(HT20)) supported No simultaneous transmission between BT & WLAN Simultaneous transmission between GSM, WCDMA voice & WLAN / GPRS, WCDMA & WLAN VoIP supported. Mobile Hotspot supported. 					, WCDMA	

1.1 Guidance Applied

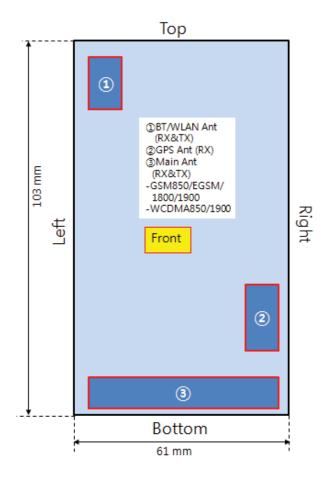
- FCC OET Bullentin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01 v05 (General SAR Guidance)

1.2 Device Overview

Band & Mode	Operating Modes	Tx Frequency		
GSM/GPRS/EDGE Rx Only 850	Voice/Data	824.2 ~ 848.8 MHz		
WCDMA850	Voice/Data	826.4 ~ 846.6 MHz		
GSM/GPRS/EDGE Rx Only 1900	Voice/Data	1850.2 ~ 1909.8 MHz		
WCDMA1900	Voice/Data	1852.4 ~ 1907.6 MHz		
2.4 GHz WLAN	Data	2412 ~ 2462 MHz		
Bluetooth	Data	2402 ~ 2480 MHz		

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.


Band & Mode		Voice [dBm]	Burst Average GMSK [dBm]				
		1 TX Slot	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	
GSM/GPRS 850	Maximum	34.2	34.2	30.7	29.2	27.7	
	Nominal	33.7	33.7	30.2	28.7	27.2	
GSM/GPRS 1900	Maximum	30.7	30.7	27.7	26.2	24.7	
	Nominal	30.2	30.2	27.2	25.7	24.2	

		Modulated Average [dBm]					
Band &	Mode	3GPP RMC	3GPP HSDPA	3GPP HSUPA			
WCDMA 850	Maximum	23.7	23.7	N/A			
	Nominal	23.2	23.2	N/A			
WCDMA 1900	Maximum	22.7	22.7	N/A			
WCDIVIA 1900	Nominal	22.2	22.2	N/A			

Band	Band & Mode			
IEEE 902 11h (2.4 CH-)	Maximum	17.0		
IEEE 802.11b (2.4 GHz)	Nominal	16.3		
IEEE 802.11g (2.4 GHz)	Maximum	14.0		
	Nominal	13.3		
IEEE 802.11n (2.4 GHz)	Maximum	13.0		
1EEE 802.1111 (2.4 GH2)	Nominal	12.3		
Divisto ath	Maximum	7.1		
Bluetooth	Nominal	6.4		

1.4 DUT Antenna Locations & SAR Test Configurations

DUT Antenna Locations

Note: Specific antenna dimensions and separation distances are shown in the antenna distance document.

SAR Test Configurations

Mode	Mobile Hotspot Sides for SAR Testing							
	Тор	Bottom	Front	Rear	Right	Left		
GSM 850	Х	0	0	0	0	0		
WCDMA 850	X	0	0	0	0	0		
PCS 1900	X	0	0	0	0	0		
WCDMA 1900	X	0	0	0	0	0		
2.4G W-LAN(802.11b/g/n)	0	X	0	0	X	0		

Table 1.1 Mobile Hotspot Sides for SAR Testing

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device.

1.5 SAR Test Exclusions Applied

(A) WIFI & BT

Per FCC KDB 447498 D01v05, **WIFI SAR was required and Bluetooth SAR was not required** based on the maximum conducted power and the Bluetooth antenna to user separation distance.

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel }(\textit{mW})}{\textit{Test Separation Dist }(\textit{mm})} * \sqrt{\textit{Frequency}(\textit{GHz})} \le 3.0$$

Based on the maximum conducted power of WIFI and the antenna to use separation distance, WIFI SAR was required; $(50.119 / 10) * \sqrt{2.412} = 7.8 > 3.0$.

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required; $(5.129 / 10) * \sqrt{2.441} = 0.801 < 3.0$.

(B) Licensed Transmitter(s)

GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data.

When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

1.6 Device Serial Numbers

Band & Mode	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE Rx Only 850	LG-03-A	LG-03-A	LG-03-A
WCDMA 850	LG-03-A	LG-03-A	LG-03-A
GSM/GPRS/EDGE Rx Only 1900	LG-03-A	LG-03-A	LG-03-A
WCDMA 1900	LG-03-A	LG-03-A	LG-03-A
2.4 GHz WLAN	LG-03-A	LG-03-A	LG-03-A

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 1.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-2600 3.4GHz desktop computer with Windows NT system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

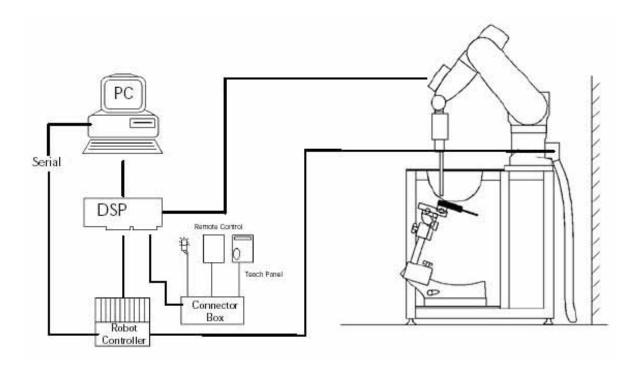


Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

FCC ID: ZNFE435G Date of issue: Feb.05, 2013 Report No.: DRTFCC1302-0099

3.2 EX3DV4 Probe Specification

Calibration In air from 10 MHz to 6 GHz

> In brain and muscle simulating tissue at Frequencies of 750 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz 5200 MHz, 5300 MHz, 5500 MHz, 5600 MHz, 5800 MHz

10 MHz to 6 GHz Frequency

Linearity ± 0.2 dB(30 MHz to 6 GHz)

Dynamic $5 \mu W/g \text{ to } > 100 \text{ mW/g}$

Range Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length 20 mm

Body diameter 12 mm

Tip diameter 2.5 mm

Distance from probe tip to sensor center 1.0 mm

Application SAR Dosimetry Testing

Compliance tests of mobile phones

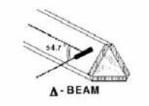


Figure 3.2 Triangular Probe Configurations

Figure 3.3 Probe Thick-Film Technique

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip (see Fig. 3.3). It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the rmist or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

 $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$

where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\!\Delta T$ / $\!\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

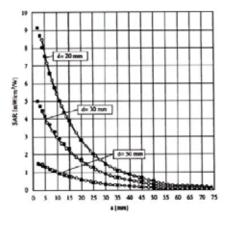


Figure 3.4E-Field and Temperature Measurements at 900MHz

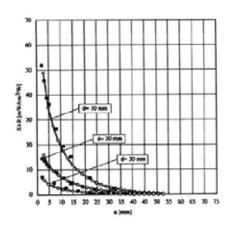


Figure 3.5 E-Field and Temperature Measurements at 1800MHz

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i}$$
 $(i=x,y,z)$

$$cf = \text{crest factor of exciting field}$$
 $(DASY parameter)$

$$dcp_i = \text{diode compression point}$$
 $(DASY parameter)$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

3.5 SAM Twin PHANTOM

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

three points with the robot.

Figure 3.6 SAM Twin Phantom

SAM Twin Phantom Specification

Construction

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as

Twin SAM V4.0, but has reinforced top structure.

Shell Thickness 2 ± 0.2 mm

Filling Volume Approx. 25 liters

Dimensions Length: 1000 mm

Width: 500 mm

Height: adjustable feet

3.6Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Mounting Device

3.7 Brain & Muscle Simulation Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.8 SimulatedTissue

Table3.1 Composition of the Tissue Equivalent Matter

		SIMULATING TISSUE							
INGREDIE	NTS	835 MHz Brain	835 MHz Muscle	1900 MHz Brain	1900 MHz Muscle	2450 MHz Brain	2450 MHz Muscle	5200 ~ 5800 MHz Brain	5200 ~ 5800 MHz Muscle
				Mixture P	ercentage				
WATER	₹	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
DGBE		-	-	44.45	29.48	7.990	26.54	-	-
SUGAF	7	57.90	48.21	-	ı	-	ı	ı	-
SALT		1.480	0.940	0.310	0.290	0.160	0.060	ı	ı
BACTERIO	CIDE	0.180	0.100	-	ı	-	ı	ı	ı
HEC		0.250	ı	-	ı	-	ı	ı	-
Triton X-	100	ı	1	-	ı	19.97	ı	17.24	-
Diethyleng monohexyle		-	-	-	-	-	-	17.24	-
Polysorbate(Tw	veen) 80	-	-	-	-	-	-	-	20.00
Dielectric Constant	Target	41.5	55.2	40.0	53.3	39.2	52.7	-	
Conductivity (S/m)	Target	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl]

3.8 SAR TEST EQUIPMENT

Table 3.2 Test Equipment Calibration

	Type	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
	Robot	SCHMID	TX60L	N/A	N/A	F12/5LP5A1/A/01
	Robot Controller	SCHMID	C58C	N/A	N/A	F12/5LP5A1/C/01
	Joystick	SCHMID	N/A	N/A	N/A	S-12030401
	Intel Core i7-2600 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
\boxtimes	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
\boxtimes	Mounting Device	SCHMID	SD000H01HA	N/A	N/A	N/A
	Sam Phantom	SCHMID	TP1223	N/A	N/A	N/A
	Sam Phantom	SCHMID	TP1224	N/A	N/A	N/A
\boxtimes	Twin SAM Phantom	SCHMID	QD000P40CD	N/A	N/A	1679
\boxtimes	Head/Body Equivalent Matter(835MHz)	N/A	N/A	2013-01-01	2014-01-01	N/A
\boxtimes	Head/Body Equivalent Matter(1900MHz)	N/A	N/A	2013-01-01	2014-01-01	N/A
	Head/Body Equivalent Matter(2450MHz)	N/A	N/A	2013-01-01	2014-01-01	N/A
	Head/Body Equivalent Matter(5000MHz)	N/A	N/A	2013-01-01	2014-01-01	N/A
\boxtimes	Data Acquisition Electronics	SCHMID	DAE4V1	2012-04-23	2013-04-23	1335
\boxtimes	Dosimetric E-Field Probe	SCHMID	EX3DV4	2012-06-20	2013-06-20	3866
	Dummy Probe	N/A	N/A	N/A	N/A	N/A
	835MHz SAR Dipole	SCHMID	D835V2	2012-03-14	2014-03-14	464
\boxtimes	1900MHz SAR Dipole	SCHMID	D1900V2	2012-03-16	2014-03-16	5d029
\boxtimes	2450MHz SAR Dipole	SCHMID	D2450V2	2012-03-15	2014-03-15	726
	5000MHz SAR Dipole	SCHMID	D5GHzV2	2012-01-20	2014-01-20	1103
\boxtimes	Network Analyzer	Agilent	E5071C	2012-11-02	2013-11-02	MY46106970
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	2012-03-05	2013-03-05	101251
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2012-09-18	2013-09-18	1020
\boxtimes	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2012-11-02	2013-11-02	1005
\boxtimes	Power Meter	HP	EPM-442A	2012-03-05	2013-03-05	GB37170267
	Power Sensor	HP	8481A	2012-03-05	2013-03-05	3318A96566
\boxtimes	Power Sensor	HP	8481A	2012-02-27	2013-02-27	3318A96030
	Dual Directional Coupler	Agilent	778D-012	2013-01-08	2014-01-08	50228
	Directional Coupler	HP	773D	2012-07-01	2013-07-01	2389A00640
\boxtimes	Low Pass Filter 1,5 GHz	Micro LAB	LA-15N	2013-01-08	2014-01-08	N/A
	Low Pass Filter 3,0 GHz	Micro LAB	LA-30N	2012-09-17	2013-09-17	N/A
	Attenuators(3 dB)	Agilent	8491B	2012-07-02	2013-07-02	MY39260700
	Attenuators(10 dB)	WEINSCHEL	23-10-34	2013-01-08	2014-01-08	BP4387
	Step Attenuator	HP	8494A	2012-09-17	2013-09-17	3308A33341
	Dielectric Probe kit	SCHMID	DAK-3.5	2012-04-03	2013-04-03	1046
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	2012-03-05	2013-03-05	GB43461134

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by Digital EMC before each test. The brain and muscle simulating material are calibrated by Digital EMC using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS

Positioner

Robot Stäubli Unimation Corp. Robot Model: TX60L

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i7-2600

Clock Speed 3.40 GHz

Operating System Windows 7 Professional Data Card DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 4

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model EX3DV4 S/N: 3866

Construction Triangular core fiber optic detection system

Frequency 10 MHz to 6 GHz

Linearity ± 0.2 dB (30 MHz to 6 GHz)

Phantom

Phantom SAM Twin Phantom (V5.0)

Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$

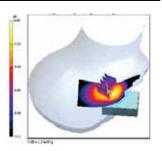


Figure 2.2 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a
 distance no greater than 5.0 mm from the inner surface of the shell. The area covered
 the entire dimension of the device-head and body interface and the horizontal grid
 resolution was determined per FCC KDB Publication 865664 D01v01.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 5.1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Frequency	Maximum Area Scan Resolution (mm) (Δx _{area} , Δy _{area})	Maximum Zoom Scan Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Maximum Zoom Scan Spatial Resolution (mm) Δz _{zoom} (n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤15	≤8	≤5	≥30
2-3 GHz	≤12	≤5	≤5	≥ 30
3-4 GHz	≤12	≤5	≤4	≥ 28
4-5 GHz	≤10	≤4	≤3	≥ 25
5-6 GHz	≤10	≤4	≤2	≥22

Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 5.1). The perimeter side walls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 5.1 Sam Twin Phantom shell

6. DESCRIPTION OF TEST POSITION

6.1 Ear Reference Point

Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate hand set positioning.

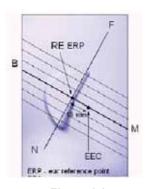


Figure 6.2 Close-up side view

6.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6.1 Front, back and side view SAM Twin Phantom

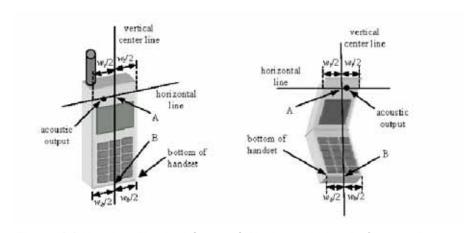


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

6.3 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.4 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6.4 Front. Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 6.5)

6.5 Positioning for Ear / 15 ° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6.6).

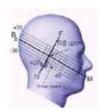


Figure 6.6 Front, Side and Top View of Ear/15°Position

Figure 6.7 Sample Body-Worn Diagram

6.6 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). Per FCC KDB Publication 648474 D04_v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01_v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L \times W \ge 9 cm \times 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7. IEEE P1528 - MEASUREMENT UNCERTAINTIES

835 MHz Head

Form December	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 3.9	Normal	1	0.64	± 3.9 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.0	Normal	1	0.6	± 4.0 %	∞
CombinedStandard Uncertainty					± 12.0 %	330
Expanded Uncertainty (k=2)					± 24.0 %	

835 MHz Body

Comes Description	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System				•		
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.1	Normal	1	0.64	± 4.1 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.3	Normal	1	0.6	± 4.3 %	∞
CombinedStandard Uncertainty					± 12.1 %	330
Expanded Uncertainty (k=2)					± 24.2 %	

1900 MHz Head

Comes Description	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System				•	•	
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 3.8	Normal	1	0.64	± 3.8 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.1	Normal	1	0.6	± 4.1 %	∞
CombinedStandard Uncertainty					± 12.0 %	330
Expanded Uncertainty (k=2)					± 24.0 %	

<u>1900 MHz Body</u>

Comes Description	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System				•		
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.5	Normal	1	0.64	± 4.5 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.8	Normal	1	0.6	± 4.8 %	∞
CombinedStandard Uncertainty					± 12.2 %	330
Expanded Uncertainty (k=2)					± 24.4 %	

2450 MHz Head

Form Description	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	4.7 Rectangular		1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.7	Normal	1	0.64	± 4.7 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.8	Normal	1	0.6	± 4.8 %	∞
CombinedStandard Uncertainty					± 12.3 %	330
Expanded Uncertainty (k=2)					± 24.6 %	

2450 MHz Body

Farmer December 1	Uncertaint	Probability	Divisor	(Ci)	Standard	vi 2 or	
Error Description	value ±%	Distribution	Divisor	1g	(1g)	Veff	
Measurement System							
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞	
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞	
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞	
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞	
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞	
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞	
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞	
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞	
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞	
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞	
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞	
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞	
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞	
Test Sample Related							
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145	
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5	
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞	
Physical Parameters							
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞	
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞	
Liquid conductivity (Meas.)	± 4.8	Normal	1	0.64	± 4.8 %	∞	
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞	
Liquid permittivity (Meas.)	± 4.9	Normal	1	0.6	± 4.9 %	∞	
CombinedStandard Uncertainty					± 12.3 %	330	
Expanded Uncertainty (k=2)					± 24.6 %		

8. ANSI / IEEE C95.1-2005 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, which have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1.SAR Human	Exposure Spo	ecified in ANS	I/IEEE C95.1-2005

	HUMAN EXPOSURE LIMITS						
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)					
SPATIAL PEAK SAR * (Brain)	1.60	8.00					
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40					
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0					

NOTES:

(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

^{*} The Spatial Peak value of the SAR averaged over any 1 q of tissue

9. SYSTEM VERIFICATION

9.1 Tissue Verification

Dec. 28, 2012 Basis Plead Plead Plead Plead Plead Plead Plead Plead Plea					ARAMETERS	RED TISSUE P	MEASU				
Dec. 28, 2012 835 Head 21.3 21.5 835.0 41.500 0.900 41.487 0.875 -0.03 836.6 41.500 0.902 41.467 0.877 -0.08 48.8 41.500 0.902 41.467 0.877 -0.08 48.8 41.500 0.915 41.310 0.879 -0.46 41.500 0.915 41.310 0.879 -0.46 41.500 0.915 41.310 0.879 -0.46 41.500 0.915 41.310 0.879 -0.46 41.500 0.915 41.310 0.879 -0.46 41.500 0.915 41.310 0.879 -0.46 41.500 0.945 1.43 41.500 0.955 1.35 41.500 0.955 1.35 41.500 0.955 1.35 41.500 0.955 1.35 41.500 0.956 1.18 41.500 0.956 1.18 41.500 0.956 1.18 41.500 0.900 41.523 0.879 0.06 41.500 0.900 41.523 0.879 0.06 41.500 0.900 41.500 0.900 41.500 0.880 0.01 41.500 0.900 41.500 0.880 0.01 0.900 0.900 41.500 0.900	σ Deviation [%]	Deviation [%]	Conductivity, σ (S/m)	Dielectric Constant, εr	Conductivity, σ (S/m)	Dielectric Constant, εr	Frequency [MHz]	Liquid Temp.[°C]			Date(s)
Dec. 29, 2012 Head 21.3 21.5 836.6 41.500 0.902 41.467 0.877 -0.08 848.8 41.500 0.915 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.46 41.310 0.879 -0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.955 1.35 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.34 41.310 0.956 1.35 41.500 0.900 41.523 0.879 0.06 41.500 0.900 41.523 0.879 0.06 41.500 0.900 41.377 0.889 -0.30 41.500 0.912 41.377 0.889 -0.30 41.500 0.912 41.377 0.889 -0.30 41.500 0.912 41.377 0.889 -0.30 41.500 0.912 41.317 0.957 1.51 41.500 4	-3.67										
Dec. 29, 2012 Basis Basi	-2.78							21.5	21.3		Dec 28 2012
Dec. 29, 2012	-2.77				0.00-					Head	200. 20, 2012
Dec. 29, 2012 835 Body 21.7 21.9 835.0 55.200 55.200 55.200 55.945 55.935 5.945 5.935 5.9	-3.93										
Dec. 29, 2012 Body 21.7 21.9 836.6 55.195 0.972 55.935 0.956 1.34 Jan. 02, 2013 835 Head 21.3 21.6 836.6 41.540 0.899 41.625 0.871 0.20 Body 21.3 21.6 835.0 41.500 0.900 41.523 0.879 0.06 Body 41.500 0.900 41.523 0.879 0.06 0.06 Body 41.500 0.900 41.506 0.880 0.01 0.01 0.00	-2.48										
Saciation Saci	-1.55							21 9	21 7		Dec 29 2012
Jan. 02, 2013 835 Head 21.3 21.6 826.4 41.540 0.899 41.625 0.871 0.20 Jan. 02, 2013 835 Head 21.3 21.6 835.0 41.500 0.900 41.523 0.879 0.06 Jan. 02, 2013 835 Body 21.3 21.6 836.6 41.500 0.902 41.506 0.880 0.01 Jan. 02, 2013 835 Body 21.3 21.6 826.4 55.230 0.969 56.100 0.949 1.58 Jan. 02, 2013 835 Body 21.3 21.6 835.0 55.200 0.970 56.031 0.957 1.51 Jan. 02, 2013 1900 Body 21.2 21.6 21.6 835.0 55.200 0.970 56.031 0.957 1.51 Jan. 02, 2013 1900 Body 21.2 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	-1.65							21.0	21.7	Body	DC0. 20, 2012
Jan. 02, 2013 835 Head 21.3 21.6 835.0 41.500 0.900 41.523 0.879 0.06 0.880 0.01 Jan. 02, 2013 835 Head 21.3 21.6 835.0 41.500 0.902 41.506 0.880 0.01 0.880 0.01 Jan. 02, 2013 835 Body 21.3 826.4 55.230 0.969 56.100 0.949 1.58 0.949 1.58 Bass.0 55.195 0.972 56.015 0.958 1.49 846.6 55.195 0.972 56.015 0.958 1.49 0.957 1.51 0.958 1.49 Dec. 30, 2012 1900 Head 21.2 21.5 1880.0 40.000 1.400 39.956 1.365 -0.11 1.39 Dec. 31, 2012 1900 Body 21.4 21.6 21.6 1880.0 53.300 1.520 53.863 1.469 1.06 1.06 1880.0 53.300 1.520 53.742 1.518 0.83	-3.14										
Jan. 02, 2013 Head 21.3 21.6 836.6 41.500 0.902 41.506 0.880 0.01 Jan. 02, 2013 835 Body 21.3 21.6 826.4 55.230 0.969 56.100 0.949 1.58 Bass.0 55.200 0.970 56.031 0.957 1.51 Bass.0 55.195 0.972 56.015 0.958 1.49 Bass.0 55.160 0.984 55.924 0.967 1.39 1880.0 40.000 1.400 39.873 1.392 -0.32 1900 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1880.0 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.742 1.518 0.83	-3.11										
Head S36.6	-2.33							21.6	21.3		lan 02 2013
Jan. 02, 2013 835 Body 21.3 21.6 826.4 55.230 0.969 56.100 0.970 56.031 0.957 1.51 0.957 1.51 0.958 1.49 Dec. 30, 2012 1900 Head 21.2 21.5 1850.2 40.000 1.400 39.956 1.365 -0.11 1.400 39.873 1.392 -0.32 1.400 1.400 39.873 1.392 -0.32 1.400 1.400 39.873 1.392 -0.32 1.400 1.400 39.873 1.392 -0.45 1.400 1.400 39.873 1.392 -0.45 1.400 1.400 39.873 1.392 1.416 1.400 1.400 39.879 1.416 1.400 1.400 39.879 1.416 1.400 1.400 1.400 39.879 1.416 1.400 1.400 1.400 39.879 1.416 1.400	-2.44							21.0	21.0	Head	Jan. 02, 2010
Jan. 02, 2013 835 Body 21.3 21.6 835.0 836.6 55.200 55.195 0.970 0.972 56.031 56.015 0.957 0.958 1.51 1.49 Dec. 30, 2012 1900 Head 21.2 21.5 1850.2 1880.0 1900.0 1900.0 1909.8 40.000 40.000 40.000 40.000 40.000 1.400 1.400 1909.8 1.365 40.000 39.873 39.873 1.392 40.000 1.400 39.819 1.408 39.792 1.416 39.792 39.792 1.416 39.792	-2.52	-0.30	0.889				846.6				
Jan. 02, 2013 Body 21.3 21.6 836.6 55.195 0.972 56.015 0.958 1.49 Dec. 30, 2012 1900 Head 21.2 1850.2 40.000 1.400 39.956 1.365 -0.11 1880.0 40.000 1.400 39.873 1.392 -0.32 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	-2.06							21.6			
Body 836.6 55.195 0.972 56.015 0.958 1.49 Body 21.2 846.6 55.160 0.984 55.924 0.967 1.39 1850.2 40.000 1.400 39.956 1.365 -0.11 1880.0 40.000 1.400 39.873 1.392 -0.32 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	-1.34	1.51	0.957	56.031			835.0		21.3		Jan. 02, 2013
Dec. 30, 2012	-1.44										
Dec. 30, 2012 1900 Head 21.2 21.5 1880.0 40.000 40.000 1.400 39.873 1.392 -0.32 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	-1.73	1.39	0.967	55.924	0.984	55.160	846.6				
Dec. 31, 2012 Head 21.2 21.5 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	-2.50	-0.11	1.365	39.956	1.400	40.000	1850.2				
Head 1900.0 40.000 1.400 39.819 1.408 -0.45 1909.8 40.000 1.400 39.792 1.416 -0.52 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	-0.57	-0.32	1.392	39.873	1.400	40.000	1880.0	21.5	24.2		Doc 20 2012
Dec. 31, 2012 Body 21.4 21.6 1850.2 53.300 1.520 53.863 1.469 1.06 1880.0 53.300 1.520 53.787 1.499 0.91 1900.0 53.300 1.520 53.742 1.518 0.83	0.57	-0.45	1.408	39.819	1.400	40.000	1900.0		21.2		Dec. 30, 2012
Dec. 31, 2012	1.14	-0.52	1.416	39.792	1.400	40.000	1909.8				
Dec. 31, 2012 Body 21.4 21.6 1900.0 53.300 1.520 53.742 1.518 0.83	-3.36	1.06		53.863	1.520	53.300	1850.2	21.6	21.4		
Body 1900.0 53.300 1.520 53.742 1.518 0.83	-1.38	0.91		53.787	1.520	53.300	1880.0				Dog 21 2012
1000.0 50.000 4.500 50.740 4.507 0.70	-0.13	0.83	1.518	53.742			1900.0				Dec. 31, 2012
1 1909.8 <mark>53.300 1.520 </mark> 53.719 1.527 0.79	0.46	0.79	1.527	53.719	1.520	53.300	1909.8				
1852.4 40.000 1.400 40.007 1.368 0.02	-2.29	0.02	1.368	40.007	1.400	40.000	1852.4				
1 ₂₂ 03 2042 1900 24.4 1880.0 40.000 1.400 39.930 1.392 -0.18	-0.57	-0.18	1.392	39.930	1.400	40.000	1880.0	21.4	04.4	1900	I 00 0040
Jan. 03, 2013 Head 21.1 21.4 1000.0 1.400 39.878 1.409 -0.31	0.64	-0.31	1.409	39.878	1.400	40.000	1900.0		21.1	Head	Jan. 03, 2013
1907.6 40.000 1.400 39.856 1.415 -0.36	1.07	1.18	1.415	39.856	1.400	40.000	1907.6				
1852.4 53.300 1.520 53.880 1.475 1.09	-2.96	1.09	1.475	53.880	1.520	53.300	1852.4				
Jan. 03, 2013 1900 21,1 21,4 1880.0 53.300 1.520 53.808 1.502 0.95	-1.18	0.95	1.502	53.808	1.520	53.300	1880.0		24.4	1900	I 00 0040
Jan. 03, 2013 Body 21.1 21.4 1000.0 53.300 1.520 53.767 1.520 0.88	0.00	0.88	1.520	53.767	1.520	53.300	1900.0	21.4	21.1	Body	Jan. 03, 2013
1907.6 53.300 1.520 53.748 1.526 0.84	0.39	0.84	1.526	53.748	1.520	53.300	1907.6				
2412 <u>39.268</u> <u>1.766</u> 38.477 1.782 -2.01	0.91	-2.01	1.782	38.477	1.766	39.268	2412				
2450 2437 39 223 1.788 38 432 1.806 -2.02	1.01							24.0	24.4	2450	lam 04 0040
	0.94				1.800			21.8	21.4		Jan. 04, 2013
	0.88		1.829		1.813		2462			1 Iodu	
	-1.67										
2450 2437 52.747 1.038 52.025 1.014 1.31	-1.24							04.0	04.4	2450	1 04 0040
	-1.03							21.8	21.4		Jan. 04, 2013
	-0.97									Dody	

Tissue Verification Note

Note: The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container.
 Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

9.2 Test System Verification

Prior to assessment, the system is verified to the \pm 10 % of the specifications at 835 MHz, 1900 MHz and 2450 MHz by using the SAR dipole kit(s). (Graphic Plots Attached)

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED											
Freq. [MHz]	SAR Dipole Kit	Date(s)	Liquid	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]	
835	D835V2, SN:464	Dec. 28, 2012	Head	21.3	21.5	3866	250	9.40	2.30	9.20	-2.13	
835	D835V2, SN:464	Dec. 29, 2012	Body	21.7	21.9	3866	250	9.53	2.48	9.92	4.09	
835	D835V2, SN:464	Jan. 02, 2013	Head	21.3	21.6	3866	250	9.40	2.36	9.44	0.43	
835	D835V2, SN:464	Jan. 02, 2013	Body	21.3	21.6	3866	250	9.53	2.44	9.76	2.41	
1900	D1900V2, SN:5d029	Dec. 30, 2012	Head	21.2	21.5	3866	250	38.4	10.1	40.40	5.21	
1900	D1900V2, SN:5d029	Dec. 31, 2012	Body	21.4	21.6	3866	250	39.6	9.52	38.08	-3.84	
1900	D1900V2, SN:5d029	Jan. 03, 2013	Head	21.1	21.4	3866	250	38.4	9.53	38.12	-0.73	
1900	D1900V2, SN:5d029	Jan. 03, 2013	Body	21.1	21.4	3866	250	39.6	10.6	42.40	7.07	
2450	D2450V2, SN:726	Jan. 04, 2013	Head	21.4	21.8	3866	250	52.0	13.5	54.00	3.85	
2450	D2450V2, SN:726	Jan. 04, 2013	Body	21.4	21.8	3866	250	50.2	13.3	53.20	5.98	

Note1: System verification was measured with input 250 mW and normalized to 1W.

Note2: To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.

Note3: Full system validation status and results can be found in Attachment 3.

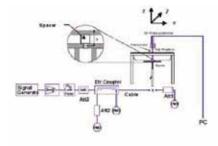


Figure 9.1 Dipole Verification Test Setup

10. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

10.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

10.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 10.1 Estimated SAR

Mode	Frequency	Allo	mum wed wer	Separation Distance (Body)	Estimated SAR (Body)	
	[MHz]	[dBm]	[mW]	[mm]	[W/kg]	
Bluetooth	2441	7.1	5.129	10	0.107	

Note1: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission.

10.3 Simultaneous Transmission Capabilities

		Head	Body-Worn Accessory	Hot Spot	
Ref.	Simultaneous Transmit Configurations	IEEE1528, Supp C	Supple- ment C	FCC KDB 941225 D06 Edges/sides	Note
1	GSM850 Voice + 2.4 GHz WIFI	Yes	Yes	N/A	
2	WCDMA850 Voice + 2.4 GHz WIFI	Yes	Yes	N/A	
3	PCS1900 Voice + 2.4 GHz WIFI	Yes	Yes	N/A	
4	WCDMA1900 Voice + 2.4 GHz WIFI	Yes	Yes	N/A	
5	GPRS850 Data + 2.4 GHz WIFI	Yes	N/A	Yes	GPRS + WIFI Hotspot
6	WCDMA850 Data + 2.4 GHz WIFI	Yes	N/A	Yes	WCDMA + WIFI Hotspot
7	GPRS1900 Data + 2.4 GHz WIFI	Yes	N/A	Yes	GPRS + WIFI Hotspot
8	WCDMA1900 Data + 2.4 GHz WIFI	Yes	N/A	Yes	WCDMA + WIFI Hotspot
9	GSM850 Voice + Bluetooth	N/A	Yes	N/A	
10	WCDMA850 Voice + Bluetooth	N/A	Yes	N/A	
11	PCS1900 Voice + Bluetooth	N/A	Yes	N/A	
12	WCDMA1900 Voice + Bluetooth	N/A	Yes	N/A	

Notes:

- 1. Bluetooth and 2.4 GHz WLAN share the same antenna path and cannot transmit simultaneously.
- 2. GSM and WCDMA share the same antenna path and cannot transmit simultaneously.
- 3. This device supports VoIP.

10.4 Head SAR Simultaneous Transmission Analysis

Table 10.2 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Simult TX	Configuration	GSM850 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)	Simult TX	Configuration	PCS1900 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)
	Left Touch	0.408	0.056	0.464		Left Touch	0.751	0.056	0.807
Head	Right Touch	0.435	0.101	0.536	Head SAR	Right Touch	0.532	0.101	0.633
SAR	Left Tilt	0.260	0.055	0.315		Left Tilt	0.208	0.055	0.263
	Right Tilt	0.225	0.073	0.298		Right Tilt	0.147	0.073	0.220

Table 10.3 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear GPRS)

Simult TX	Configuration	GSM850 GPRS SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)	Simult TX	Configuration	PCS1900 GPRS SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	∑ SAR (W/kg)
	Left Touch	0.409	0.056	0.465	Head	Left Touch	0.888	0.056	0.944
Head	Right Touch	0.464	0.101	0.565		Right Touch	0.585	0.101	0.686
SAR	Left Tilt	0.265	0.055	0.320	SAR	Left Tilt	0.217	0.055	0.272
	Right Tilt	0.260	0.073	0.333		Right Tilt	0.150	0.073	0.223

Table 10.4 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Held to Ear)

Simult TX	Configuration	WCDMA 850 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)	Simult TX	Configuration	WCDMA 1900 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)
	Left Touch	0.365	0.056	0.421		Left Touch	1.113	0.056	1.169
Head	Right Touch	0.452	0.101	0.553	Head SAR	Right Touch	0.832	0.101	0.933
SAR	Left Tilt	0.225	0.055	0.280		Left Tilt	0.309	0.055	0.364
	Right Tilt	0.240	0.073	0.313		Right Tilt	0.205	0.073	0.278

10.5 Body-Worn Simultaneous Transmission Analysis

Table 10.5 Simultaneous Transmission Scenario with 2.4 GHz W-LAN (Body-Worn at 10 mm)

Configuration	Mode	2G/3G SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)
Rear Side	GSM850	0.770	0.078	0.848
Rear Side	WCDMA850	0.510	0.078	0.588
Rear Side	PCS1900	0.733	0.078	0.811
Rear Side	WCDMA1900	1.072	0.078	1.150

Table 10.6 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm)

Configuration	Mode	2G/3G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Rear Side	GSM850	0.770	0.107	0.877
Rear Side	WCDMA850	0.510	0.107	0.617
Rear Side	PCS1900	0.733	0.107	0.840
Rear Side	WCDMA1900	1.072	0.107	1.179

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

10.6 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the device edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 10.7 Simultaneous Transmission Scenario (Hotspot at 10 mm)

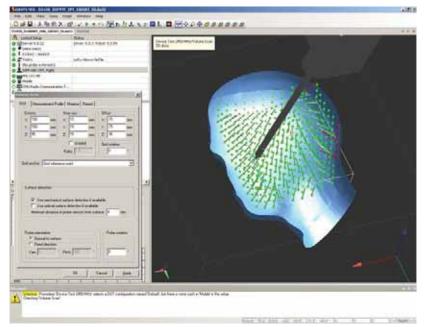
Simult TX	Configuration	GSM850 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)	Simult TX	Configuration	PCS1900 SAR (W/kg)	2.4 G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)
	Тор	-	0.040	0.040		Тор	-	0.040	0.040
	Bottom	0.095	-	0.095	Body	Bottom	0.714	-	0.714
Body	Front	0.401	0.056	0.457		Front	0.519	0.056	0.575
SAR	Rear	0.778	0.078	0.856	SAR	Rear	0.793	0.078	0.871
	Right	0.479	-	0.479		Right	0.126	-	0.126
	Left	0.308	0.055	0.363		Left	0.320	0.055	0.375

Table 10.8 Simultaneous Transmission Scenario (Hotspot at 10 mm)

Simult TX	Configuration	WCDMA 850 SAR (W/kg)	2.4G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)	Simult TX	Configuration	WCDMA 1900 SAR (W/kg)	2.4G W-LAN (802.11b) SAR (W/kg)	Σ SAR (W/kg)
	Тор	-	0.040	0.040		Тор	ı	0.040	0.040
	Bottom	0.060	ı	0.060	Body SAR	Bottom	0.907	-	0.907
Body	Front	0.256	0.056	0.312		Front	0.724	0.056	0.780
SAR	Rear	0.510	0.078	0.588		Rear	1.072	0.078	1.150
	Right	0.295	1	0.295		Right	0.189	-	0.189
	Left	0.196	0.055	0.251		Left	0.397	0.055	0.452

Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01_v05.


10.7 Description of Volume Scan

In order to determine the EM field distribution in a three-dimensional spatial extension, volume scans are required. In free space, these assessments can help to gain more information on the performance of the DUT (e.g., to determine the degree of symmetry of the filed radiated from a horn antenna).

For dosimetric application, it is necessary to assess the peak spatial SAR value averaged over a volume. For this purpose, fine resolution volume scans need to be performed at the peak SAR location(s) determined during the Area Scan. In DASY4 software these scans are called Zoom Scan jobs. The default Zoom Scan measures $7 \times 7 \times 7$ points with a step size of 5 mm. Faster evaluations can be achieved with a reduced number of measurement points. For example, a Zoom Scan with a grid step size in x- and y-directions of 7.5 mm (5 x 5 x 7cube configuration) reduces the measurement time to almost half with only 1-2% difference in SAR reading compared to the fine-resolution $7 \times 7 \times 7$ scan.

For SAR evaluations with larger spatial extensions (e.g., within a complete phantom head section) a Volume Scan job should be used.

The Volume Scan job is compatible with DASY4 SAR, PRO and NEO system levels. Volume Scans are used to assess peak SAR and averaged SAR measurement in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location With an Administrator access mode, the grid can be optionally graded in Z-direction, whereby the smallest grid step and the grading ratio can be defined. Chosen grading ratio is automatically adjusted so that the desired extent in Z-direction is fully covered.

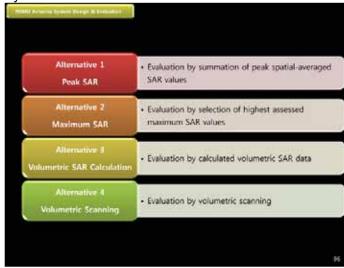
Under the Report page, the quantity to be evaluated for an instant report may be selected. This quantity can be: field magnitude, SAR, interpolated SAR or averaged SAR.

10.8 SAR Assessment

Alternative1

- Evaluation Method
 - Maximum summed SAR Value
- Description
 - Easiest and most conservative method to determine the upper limit of multi-band SAR
 - Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Multi-band SAR Value is 0.9 + 1.3 = 2.2

Alternative2


- Evaluation Method
 - Selection of highest assessed maximum SAR Value
- Description
 - Accurate estimate of the multi-band SAR
 - Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Multi-band SAR Value is 1.3

Alternative3

- Evaluation Method
 - Combining existing Area and Zoom Scan results by Post-Processor
- Description
 - Rapid way of obtaining the multi-band SAR. It is always applicable.
 - Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Combining results by Post-Processor

Alternative4

- Evaluation Method
 - Combining existing Area and Zoom Scan results by Post-Processor
- Description
 - The most accurate way of assessing the multi-band SAR and always applicable.
 - Example
 - F1's SAR Value is 0.9
 - F2's SAR Value is 1.3
 - Combining results by Post-Processor

11. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

11.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units; the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

11.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

11.2.1 SAR Measurement Conditions for UMTS

Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of β c=9 and β d=15, and power offset parameters of Δ ACK= Δ NACK=5 and Δ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

11.2.2 SAR Testing with 802.11 Transmitters

SAR Testing with IEEE 802.11 a/b/g Transmitters

Per KDB publication 248227, normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 for more details.

General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be sued for all measurements.

Frequency Channel Configurations

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

12. RF CONDUCTED POWERS

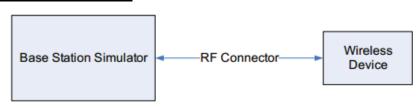
Max. Burst-Averaged Output Power Table for LG-E435g (GSM) - SIM1

					Tes	t Result(d	lBm)			
		Voice	GPI	RS/EDGE	(GMSK) [)ata		EDGE(8-F	PSK) Data	
Band	Channel	GSM CS 1 Slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1TX Slot	EDGE 2TX Slot	EDGE 3TX Slot	EDGE 4TX Slot
0014	128	34.2	34.2	30.7	29.2	27.7	N/A	N/A	N/A	N/A
GSM	190	34.2	34.2	30.7	29.2	27.7	N/A	N/A	N/A	N/A
850	251	34.2	34.2	30.7	29.2	27.7	N/A	N/A	N/A	N/A
DOO	512	30.6	30.6	27.7	26.2	24.7	N/A	N/A	N/A	N/A
PCS	661	30.7	30.7	27.7	26.2	24.7	N/A	N/A	N/A	N/A
1900	810	30.7	30.7	27.7	26.2	24.7	N/A	N/A	N/A	N/A

Table 12.1 The power was measured by E5515C

Calculated Max Frame-Averaged Output Table for LG-E435g (GSM) - SIM1

			Test Result(dBm)										
		Voice	GPI	RS/EDGE	(GMSK) E	ata		EDGE(8-F	PSK) Data				
Band	Channel	GSM CS	GPRS 1 TX	GPRS 2 TX	GPRS 3 TX	GPRS 4 TX	EDGE 1TX	EDGE 2TX	EDGE 3TX	EDGE 4TX			
		1 Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot			
0011	128	25.17	25.17	24.68	24.94	24.69	N/A	N/A	N/A	N/A			
GSM	190	25.17	25.17	24.68	24.94	24.69	N/A	N/A	N/A	N/A			
850	251	25.17	25.17	24.68	24.94	24.69	N/A	N/A	N/A	N/A			
DOO	512	21.57	21.57	21.68	21.94	21.69	N/A	N/A	N/A	N/A			
PCS	661	21.67	21.67	21.68	21.94	21.69	N/A	N/A	N/A	N/A			
1900	810	21.67	21.67	21.68	21.94	21.69	N/A	N/A	N/A	N/A			


Note:

- Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was
 calculated from the measured burst-averaged power by converting the slot powers into linear units and
 calculating the energy over 8 timeslots.
- The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D03v01.
- GPRS (GMSK) output powers were measured with CS1.

This device does not support evolved EDGE (eEDGE).

GSM Class: B
GPRS Multislot class: 12 (max 4 TX Uplink slots)
EDGE Multislot class: Rx Only
DTM Multislot Class: N/A

GSM and WCDMA Power Measurement Setup

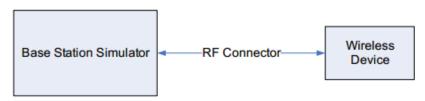
Max. Burst-Averaged Output Power Table for LG-E435g (GSM) - SIM2

					Tes	t Result(d	lBm)				
		Voice	GPI	RS/EDGE	(GMSK)	ata	EDGE(8-PSK) Data				
Band	Channel	GSM CS 1 Slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1TX Slot	EDGE 2TX Slot	EDGE 3TX Slot	EDGE 4TX Slot	
0014	128	34.1	34.1	30.7	29.2	27.6	N/A	N/A	N/A	N/A	
GSM	190	34.2	34.2	30.7	29.2	27.7	N/A	N/A	N/A	N/A	
850	251	34.2	34.2	30.6	29.1	27.7	N/A	N/A	N/A	N/A	
DOO	512	30.6	30.6	27.7	26.2	24.6	N/A	N/A	N/A	N/A	
PCS	661	30.7	30.7	27.7	26.2	24.7	N/A	N/A	N/A	N/A	
1900	810	30.7	30.7	27.7	26.2	24.7	N/A	N/A	N/A	N/A	

Table 12.2 The power was measured by E5515C

Calculated Max Frame-Averaged Output Table for LG-E435g (GSM) – SIM2

					Tes	t Result(d	Bm)				
		Voice	GPI	RS/EDGE	(GMSK) E	ata	EDGE(8-PSK) Data				
Band	Channel	GSM CS 1 Slot	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1TX Slot	EDGE 2TX Slot	EDGE 3TX Slot	EDGE 4TX Slot	
0011	128	25.07	25.07	24.68	24.94	24.59	N/A	N/A	N/A	N/A	
GSM 850	190	25.17	25.17	24.68	24.94	24.69	N/A	N/A	N/A	N/A	
650	251	25.17	25.17	24.58	24.84	24.69	N/A	N/A	N/A	N/A	
DOO	512	21.57	21.57	21.68	21.94	21.59	N/A	N/A	N/A	N/A	
PCS	661	21.67	21.67	21.68	21.94	21.69	N/A	N/A	N/A	N/A	
1900	810	21.67	21.67	21.68	21.94	21.69	N/A	N/A	N/A	N/A	


Note:

- Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was
 calculated from the measured burst-averaged power by converting the slot powers into linear units and
 calculating the energy over 8 timeslots.
- The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D03v01.
- GPRS (GMSK) output powers were measured with CS1.

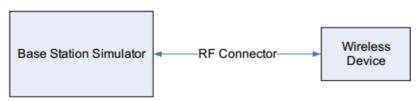
This device does not support evolved EDGE (eEDGE).

GSM Class: B
GPRS Multislot class: 12 (max 4 TX Uplink slots)
EDGE Multislot class: Rx Only
DTM Multislot Class: N/A

GSM and WCDMA Power Measurement Setup

Max. Power Output Table for LG-E435g (WCDMA - HSDPA) - SIM1

3GPP Release	Mod	le	P	ower (dBn	n)	MPR	Bc	0.	D 10.	Sub-Test
Version	Chan	nel	4132	4183	4233	IVIPK	Dc	βa	Bc/βd	Sub-1621
99	WCDMA	RMC	23.64	23.70	23.67	-	-	-	-	-
99	WCDIVIA	ARM	23.64	23.68	23.66	-	-	-	-	-
5			23.63	23.65	23.63	0	2/15	15/15	2/15	1
5	HSDPA		23.61	23.63	23.63	0	12/15	15/15	12/15	2
5	(Cellular)		23.13	23.16	23.12	0.5	15/15	8/15	15/8	3
5			23.11	23.15	23.11	0.5	15/15	4/15	15/4	4
-	Chan	nel	9262	9400	9538	-	-	-	-	-
99	WCDMA	RMC	22.65	22.69	22.68	-	-	-	-	-
99	WCDIVIA	ARM	22.64	22.67	22.67	-	-	-	-	
5			22.63	22.65	22.64	0	2/15	15/15	2/15	1
5	HSDPA		22.63	22.63	22.61	0	12/15	15/15	12/15	2
5	(PCS)		22.09	22.15	22.19	0.5	15/15	8/15	15/8	3
5			22.08	22.13	22.13	0.5	15/15	4/15	15/4	4


Table 14.3 The power was measured E5515C

Max. Power Output Table for LG-E435g (WCDMA - HSDPA) - SIM2

3GPP	Mod	le	P	ower (dBn	n)	MDD	В	0	D /0	Sub Toot
Release Version	Chan	nel	4132	4183	4233	MPR	Bc	βa	B₀/β⋴	Sub-Test
99	WCDMA	RMC	23.65	23.69	23.60	-	-	-	-	-
99	VVCDIVIA	ARM	23.64	23.64	23.58	-	-	-	-	-
5			23.63	23.64	23.56	0	2/15	15/15	2/15	1
5	HSDI	PA	23.61	23.62	23.55	0	12/15	15/15	12/15	2
5	(Cellular)		23.11	23.12	23.09	0.5	15/15	8/15	15/8	3
5			23.08	23.11	23.08	0.5	15/15	4/15	15/4	4
-	Chan	nel	9262	9400	9538	-	-	-	-	-
99	WCDMA	RMC	22.62	22.69	22.68	-	-	-	-	-
99	VVCDIVIA	ARM	22.62	22.63	22.61	-	-	-	-	
5			22.60	22.61	22.59	0	2/15	15/15	2/15	1
5	HSDPA		22.58	22.61	22.58	0	12/15	15/15	12/15	2
5	(PCS)		22.08	22.13	22.13	0.5	15/15	8/15	15/8	3
5			22.05	22.10	22.12	0.5	15/15	4/15	15/4	4

Table 14.4 The power was measured E5515C

GSM and WCDMA Power Measurement Setup

Max. Power Output Table for LG-E435g (2.4G W-LAN)

			Conducted I	Power (dBm)	
Band	Channel		Data Rat	e (Mbps)	
		1	2	5.5	11
	1	<u>15.72</u>	15.51	15.65	15.31
802.11b	6	15.21	15.13	15.17	14.91
	11	15.30	15.03	15.21	15.07

				(Conducted	Power (dBn	1)						
Band	Channel		Data Rate (Mbps)										
		6	9	12	18	24	36	48	54				
	1	12.84	12.79	12.49	12.42	12.34	12.3	12.1	12.03				
802.11g	6	13.25	13.16	13.13	12.66	12.63	12.52	12.16	12.07				
	11	13.19	13.09	13.00	12.91	12.76	12.7	12.56	12.47				

				(Conducted	Power (dBn	1)		
Band	Channel				Data Ra	te (Mbps)			
		6.5	13	19.5	26	39	52	58.5	65
802.11n	1	12.36	11.93	11.67	11.48	11.27	11.12	11.03	10.99
(HT-20)	6	12.12	12.06	11.94	11.87	11.69	11.49	11.23	11.07
	11	12.04	11.97	11.83	11.70	11.57	11.42	11.28	11.22

Table 12.5 The power was measured by the Average Power Meter

Max. Power Output Table for LG-E435g (Bluetooth)

Channel	Frequency	Output Pov	ver(1Mbps)	Output pow	ver (2Mbps)	Output power (3Mbps)		
Channel	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	
Low	2402	5.42	3.483	5.12	3.251	5.03	3.184	
Mid	2441	7.08	5.105	5.74	3.750	5.75	3.758	
High	2480	5.54	3.581	5.21	3.319	5.11	3.243	

Table 12.6 The power was measured by the Average Power Meter

W-LAN Notes

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The underlined data rate and channel above were tested for SAR.

W-LAN and Bluetooth Power Measurement Setup

13. SAR TEST RESULTS

13.1 Head SAR Results

Table 13.1 GSM850 Head SAR

FREQ	UENCY	Mode/		Maximum Allowed	Conducted	Drift	Phantom	Device	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.050	Left Touch	LG-03-A	1:8.3	0.408	1.000	0.408
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.170	Right Touch	LG-03-A	1:8.3	0.435	1.000	0.435
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.180	Left Tilt	LG-03-A	1:8.3	0.260	1.000	0.260
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.180	Right Tilt	LG-03-A	1:8.3	0.225	1.000	0.225
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.170	Right Touch	LG-03-A	1:8.3	0.431	1.000	0.431

ANSI / IEEE C95.1-2005- SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure

Head 1.6 W/kg (mW/g) averaged over 1 gram

Note: Orange entries represent Sim2 measurements.

Table 13.2 GSM850 GPRS Head SAR

FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Phantom	Device	# of	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Time Slots	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.020	Left Touch	LG-03-A	1	1:8.3	0.409	1.000	0.409
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	0.070	Right Touch	LG-03-A	1	1:8.3	0.464	1.000	0.464
836.6	190(Mid)	GSM850	GPRS	30.7	30.7	0.030	Right Touch	LG-03-A	2	1:4.15	0.400	1.000	0.400
836.6	190(Mid)	GSM850	GPRS	29.2	29.2	0.130	Right Touch	LG-03-A	3	1:2.77	0.426	1.000	0.426
836.6	190(Mid)	GSM850	GPRS	27.7	27.7	-0.200	Right Touch	LG-03-A	4	1:2.075	0.399	1.000	0.399
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.000	Left Tilt	LG-03-A	1	1:8.3	0.265	1.000	0.265
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.060	Right Tilt	LG-03-A	1	1:8.3	0.260	1.000	0.260
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.070	Right Touch	LG-03-A	1	1:8.3	0.415	1.000	0.415
	_	ANS	I / IEEE C95	.1-2005- SAF	ETY LIMIT	-			-	Н	ead		

ANSI / IEEE C95.1-2005— SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure/General Population Exposure

1.6 W/kg (mW/g) averaged over 1 gram

Note: Orange entries represent Sim2 measurements.

Table 13.3 WCDMA850 Head SAR

FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Phantom	Device	Duty	1g	10g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Cycle	SAR (W/kg)	SAR (W/kg)	Factor	SAR (W/kg)
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	0.190	Left Touch	LG-03-A	1:1	0.365	0.268	1.000	0.365
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	-0.180	Right Touch	LG-03-A	1:1	0.452	0.340	1.000	0.452
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	0.140	Left Tilt	LG-03-A	1:1	0.225	0.171	1.000	0.225
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	0.190	Right Tilt	LG-03-A	1:1	0.240	0.183	1.000	0.240
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.68	-0.190	Right Touch	LG-03-A	1:1	0.447	0.334	1.005	0.449
		ANSI		.1-2005– SAF atial Peak	ETY LIMIT					ead a (mW/a)			

Spatial Peak
Uncontrolled Exposure/General Population Exposure
EN50360

RF EXPOSIRE LIMITS

1.6 W/kg (mW/g) averaged over 1 gram

Head 2.0W/kg (mW/g) Averaged over 10 gram

Note: Orange entries represent Sim2 measurements.

Table 13.4 PCS1900 Head SAR

FREQU	JENCY	Mode/		Maximum Allowed	Conducted	Drift	Phantom	Device	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	-0.100	Left Touch	LG-03-A	1:8.3	0.751	1.000	0.751
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	-0.020	Right Touch	LG-03-A	1:8.3	0.532	1.000	0.532
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	-0.040	Left Tilt	LG-03-A	1:8.3	0.208	1.000	0.208
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	0.120	Right Tilt	LG-03-A	1:8.3	0.147	1.000	0.147
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	0.020	Left Touch	LG-03-A	1:8.3	0.723	1.000	0.723
		ANSI /		1-2005– SAFE itial Peak	-		1.	Head .6 W/kg (m	W/g)			

Uncontrolled Exposure/General Population Exposure Note: Orange entries represent Sim2 measurements. 1.6 W/kg (mW/g) averaged over 1 gram

Table 13.5 PCS1900 GPRS Head SAR

FREC	QUENCY			Maximum	Conducted	Drift	PRS Head S	Device	# of		1g		1g
MHz	Ch	- Mode/ Band	Service	Allowed Power [dBm]	Power [dBm]	Power [dB]	Phantom Position	Serial Number	Time Slots	Duty Cycle	SAR (W/kg)	Scaling Factor	Scaled SAR (W/kg)
1880.0	661(Mid)	PCS1900	GPRS	30.7	30.7	-0.180	Left Touch	LG-03-A	1	1:8.3	0.752	1.000	0.752
1880.0	661(Mid)	PCS1900	GPRS	27.7	27.7	-0.030	Left Touch	LG-03-A	2	1:4.15	0.747	1.000	0.747
1850.2	512(Low)	PCS1900	GPRS	26.2	26.2	0.110	Left Touch	LG-03-A	3	1:2.77	0.681	1.000	0.681
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.070	Left Touch	LG-03-A	3	1:2.77	0.821	1.000	0.821
1909.8	810(High)	PCS1900	GPRS	26.2	26.2	-0.120	Left Touch	LG-03-A	3	1:2.77	0.888	1.000	0.888
1880.0	661(Mid)	PCS1900	GPRS	24.7	24.7	-0.120	Left Touch	LG-03-A	4	1:2.075	0.776	1.000	0.776
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	0.090	Right Touch	LG-03-A	3	1:2.77	0.585	1.000	0.585
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.180	Left Tilt	LG-03-A	3	1:2.77	0.217	1.000	0.217
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	0.080	Right Tilt	LG-03-A	3	1:2.77	0.150	1.000	0.150
1850.2	512(Low)	PCS1900	GPRS	26.2	26.2	-0.120	Left Touch	LG-03-A	3	1:2.77	0.668	1.000	0.668
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.140	Left Touch	LG-03-A	3	1:2.77	0.792	1.000	0.792
1909.8	810(High)	PCS1900	GPRS	26.2	26.2	-0.130	Left Touch	LG-03-A	3	1:2.77	0.876	1.000	0.876
1909.8	810(High)	PCS1900	GPRS	26.2	26.2	-0.120	Left Touch	LG-03-A	3	1:2.77	0.870	1.000	0.870
1909.8	810(High)	PCS1900	GPRS	26.2	26.1	Left Touch	LG-03-A	3	1:2.77	0.848	1.023	0.868	
	l		Sp	.1-2005– SAF atial Peak /General Pop	ETY LIMIT					ead g (mW/g) over 1 grar	n		

Note: Green entries represent repeatability measurements. / Blue entries represent repeatability measurements of Sim2. / Orange entries represent Sim2 measurements.

Table 13.6 WCDMA1900 Head SAR

FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Phantom	Device	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.65	0.100	Left Touch	LG-03-A	1:1	0.949	1.012	0.960
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.050	Left Touch	LG-03-A	1:1	1.110	1.002	1.113
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	0.170	Left Touch	LG-03-A	1:1	0.969	1.005	0.973
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.65	0.030	Right Touch	LG-03-A	1:1	0.747	1.012	0.756
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.120	Right Touch	LG-03-A	1:1	0.830	1.002	0.832
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	0.000	Right Touch	LG-03-A	1:1	0.683	1.005	0.686
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.100	Left Tilt	LG-03-A	1:1	0.308	1.002	0.309
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.110	Right Tilt	LG-03-A	1:1	0.205	1.002	0.205
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.62	0.040	Left Touch	LG-03-A	1:1	0.947	1.019	0.965
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.110	Left Touch	LG-03-A	1:1	1.100	1.002	1.103
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	-0.040	Left Touch	LG-03-A	1:1	0.944	1.005	0.948
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.140	Left Touch	LG-03-A	1:1	1.110	1.002	1.113
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	Left Touch	LG-03-A	1:1	1.090	1.002	1.093		
	U		Spa	1-2005– SAFE Itial Peak General Popu	TY LIMIT lation Exposu	re				Head .6 W/kg (m raged over	Ο,	

Note: Green entries represent repeatability measurements. / Blue entries represent repeatability measurements of Sim2. / Orange entries represent Sim2 measurements.

Table 13.7 W-LAN Head SAR

FREC	QUENCY			Maximum Allowed	Conducted	Drift	Phantom	Device	Data	Duty	1g	Scaling	1g Scaled
MHz	Ch	Mode	Service	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.170	Left Touch	LG-03-A	1	1:1	0.042	1.343	0.056
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.060	Right Touch	LG-03-A	1	1:1	0.075	1.343	0.101
2437	6(Mid)	802.11b	DSSS	17.0	15.21	0.120	Right Touch	LG-03-A	1	1:1	0.050	1.510	0.076
2462	11(High)	802.11b	DSSS	17.0	15.30	0.070	Right Touch	LG-03-A	1	1:1	0.043	1.479	0.064
2412	1(Low)	802.11b	DSSS	17.0	15.72	0.100	Left Tilt	LG-03-A	1	1:1	0.041	1.343	0.055
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.030	Right Tilt	LG-03-A	1	1:1	0.054	1.343	0.073
				95.1-2005– S <i>l</i> Spatial Peak Ire/General Pe	AFETY LIMIT	osure				1.6 W/	lead kg (mW/g) I over 1 grar	n	

13.2 Body-Worn SAR Results

Table 13.8 GSM/WCDMA/PCS Body-Worn SAR

FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	# of	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Time Slots	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
836.6	190(Mid)	GSM850	GSM	34.2	34.2	-0.030	10 mm [Rear]	LG-03-A	1	1:8.3	0.770	1.000	0.770
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	-0.060	10 mm [Rear]	LG-03-A	N/A	1:1	0.510	1.000	0.510
1880.0	661(Mid)	PCS1900	PCS	30.7	30.7	-0.040	10 mm [Rear]	LG-03-A	1	1:8.3	0.733	1.000	0.733
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.65	0.030	10 mm [Rear]	LG-03-A	N/A	1:1	1.000	1.012	1.012
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.050	10 mm [Rear]	LG-03-A	N/A	1:1	1.070	1.002	1.072
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	-0.000	10 mm [Rear]	LG-03-A	N/A	1:1	0.996	1.005	1.001
	Unc		Spat	2005– SAFE ial Peak eneral Popul	TY LIMIT ation Exposur			a	Bod 1.6 W/kg (everaged ov	(mW/g)			

Table 13.9 W-LAN Body-Worn SAR

FREQ	UENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	Data	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.150	10 mm [Rear]	LG-03-A	1	1:1	0.058	1.343	0.078
	U		Spa	-2005– SAFE tial Peak Seneral Popu	TY LIMIT ation Exposur	·e			a	Bod 1.6 W/kg averaged ov	(mW/g)		

13.3 Wireless router SAR Results

Table 13.10 GSM850 GPRS Hotspot SAR

FREC	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	# of	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Time Slots	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	0.140	10 mm [Bottom]	LG-03-A	1	1:8.3	0.095	1.000	0.095
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	0.090	10 mm [Front]	LG-03-A	1	1:8.3	0.401	1.000	0.401
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.080	10 mm [Rear]	LG-03-A	1	1:8.3	0.778	1.000	0.778
836.6	190(Mid)	GSM850	GPRS	30.7	30.7	-0.070	10 mm [Rear]	LG-03-A	2	1:4.15	0.718	1.000	0.718
836.6	190(Mid)	GSM850	GPRS	29.2	29.2	-0.060	10 mm [Rear]	LG-03-A	3	1:2.77	0.731	1.000	0.731
836.6	190(Mid)	GSM850	GPRS	27.7	27.7	-0.010	10 mm [Rear]	LG-03-A	4	1:2.075	0.685	1.000	0.685
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	-0.180	10 mm [Right]	LG-03-A	1	1:8.3	0.479	1.000	0.479
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	10 mm [Left]	LG-03-A	1	1:8.3	0.308	1.000	0.308	
836.6	190(Mid)	GSM850	GPRS	34.2	34.2	10 mm [Rear]	LG-03-A	1	1:8.3	0.749	1.000	0.749	
	Ur		Spat	-2005– SAFE ial Peak Seneral Popul	TY LIMIT lation Exposur	e	-		a	Bod 1.6 W/kg (overaged over	(mW/g)	-	

Note: Orange entries represent Sim2 measurements.

Table 13.11 WCDMA850 Hotspot SAR

							meter en					
FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	0.160	10 mm [Bottom]	LG-03-A	1:1	0.060	1.000	0.060
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	0.000	10 mm [Front]	LG-03-A	1:1	0.256	1.000	0.256
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	-0.060	10 mm [Rear]	LG-03-A	1:1	0.510	1.000	0.510
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	-0.010	10 mm [Right]	LG-03-A	1:1	0.295	1.000	0.295
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.70	-0.010	10 mm [Left]	LG-03-A	1:1	0.196	1.000	0.196
836.6	4183(Mid)	WCDMA 850	RMC	23.7	23.69	10 mm [Rear]	LG-03-A	1:1	0.509	1.002	0.510	
		ANS	I / IEEE C95.	1-2005- SAFE	TY LIMIT				Body			
			Spa	tial Peak					1.6	W/kg (mW/	'g)	
		Uncontrolle	d Exposure/	General Popu	lation Exposur	·e			avera	ged over 1	gram	

Note: Orange entries represent Sim2 measurements.

Table 13.12 PCS1900 GPRS Hotspot SAR

FREC	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	# of	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Time Slots	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.020	10 mm [Bottom]	LG-03-A	3	1:2.77	0.714	1.000	0.714
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	0.060	10 mm [Front]	LG-03-A	3	1:2.77	0.519	1.000	0.519
1880.0	661(Mid)	PCS1900	GPRS	30.7	30.7	-0.010	10 mm [Rear]	LG-03-A	1	1:8.3	0.737	1.000	0.737
1880.0	661(Mid)	PCS1900	GPRS	27.7	27.7	-0.020	10 mm [Rear]	LG-03-A	2	1:4.15	0.732	1.000	0.732
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	0.020	10 mm [Rear]	LG-03-A	3	1:2.77	0.793	1.000	0.793
1880.0	661(Mid)	PCS1900	GPRS	24.7	24.7	-0.070	10 mm [Rear]	LG-03-A	4	1:2.075	0.765	1.000	0.765
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	0.020	10 mm [Right]	LG-03-A	3	1:2.77	0.126	1.000	0.126
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.130	10 mm [Left]	LG-03-A	3	1:2.77	0.320	1.000	0.320
1880.0	661(Mid)	PCS1900	GPRS	26.2	26.2	-0.000	10 mm [Rear]	LG-03-A	3	1:2.77	0.786	1.000	0.786
	Un		Spatia	2005– SAFET al Peak eneral Popula	Y LIMIT ation Exposure	•				Bo 1.6 W/kg averaged o	(mW/g)		

Note: Orange entries represent Sim2 measurements.

Table 13.13 WCDMA1900 Hotspot SAR

FRE	QUENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.65	-0.010	10 mm [Bottom]	LG-03-A	1:1	0.879	1.012	0.889
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.020	10 mm [Bottom]	LG-03-A	1:1	0.905	1.002	0.907
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	0.020	10 mm [Bottom]	LG-03-A	1:1	0.749	1.005	0.752
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.020	10 mm [Front]	LG-03-A	1:1	0.722	1.002	0.724
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.65	0.030	10 mm [Rear]	LG-03-A	1:1	1.000	1.012	1.012
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.050	10 mm [Rear]	LG-03-A	1:1	1.070	1.002	1.072
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	-0.000	10 mm [Rear]	LG-03-A	1:1	0.996	1.005	1.001
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.030	10 mm [Right]	LG-03-A	1:1	0.189	1.002	0.189
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.120	10 mm [Left]	LG-03-A	1:1	0.396	1.002	0.397
1852.4	9262(Low)	WCDMA 1900	RMC	22.7	22.62	0.040	10 mm [Rear]	LG-03-A	1:1	0.992	1.019	1.010
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	0.060	10 mm [Rear]	LG-03-A	1:1	1.050	1.002	1.052
1907.6	9538(High)	WCDMA 1900	RMC	22.7	22.68	0.030	10 mm [Rear]	LG-03-A	1:1	0.993	1.005	0.998
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	22.69	-0.060	10 mm [Rear]	LG-03-A	1:1	1.060	1.002	1.062
1880.0	9400(Mid)	WCDMA 1900	RMC	22.7	10 mm [Rear]	LG-03-A	1:1	1.050	1.002	1.052		
	U		Spa	I-2005– SAFE tial Peak General Popu	TY LIMIT lation Exposur				Body W/kg (mW/ ged over 1 g			

Note: Green entries represent repeatability measurements. / Blue entries represent repeatability measurements of Sim2. / Orange entries represent Sim2 measurements.

Table 13.14 W-LAN Hotspot SAR

FREQ	UENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	Data	Duty	1g	Scaling	1g Scaled
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	SAR (W/kg)
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.080	10 mm [Top]	LG-03-A	1	1:1	0.030	1.343	0.040
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.010	10 mm [Front]	LG-03-A	1	1:1	0.042	1.343	0.056
2412	1(Low)	802.11b	DSSS	17.0	15.72	-0.150	10 mm [Rear]	LG-03-A	1	1:1	0.058	1.343	0.078
2437	6(Mid)	802.11b	DSSS	17.0	15.21	-0.020	10 mm [Rear]	LG-03-A	1	1:1	0.037	1.510	0.056
2462	11(High)	802.11b	DSSS	17.0	15.30	0.150	10 mm [Rear]	LG-03-A	1	1:1	0.025	1.479	0.037
2412	1(Low)	802.11b	DSSS	17.0	15.72	0.120	10 mm [Left]	LG-03-A	1	1:1	0.041	1.343	0.055
	U		Spat	-2005– SAFE ial Peak General Popul	TY LIMIT lation Exposur			а	Bod 1.6 W/kg (veraged ov	mW/g)			

13.4 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.

- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis.
- 9. Sim2 was tested on worst case of Sim1 tests.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.

WCDMA Test Notes:

- 1. WCDMA mode was tested under RMC 12.2 kbps configured in Test Loop Mode 1.
- 2. Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WIFI transmission was verified using an uncelebrated spectrum analyzer.
- 3. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.

14. SAR MEASUREMENT VARIABILITY

Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 14.1 Head SAR Measurement Variability Results

Frequency		Mode	Service	# of Time Slots	Phantom Position	Measured SAR (1g)	1st Repeated SAR(1g)	Ratio	2nd Repeated SAR(1g)	Ratio	3rd Repeated SAR(1g)	Ratio
MHz	Ch.			Ciots		(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1909.8	810(High)	PCS1900	GPRS	3	Left Touch	0.888	0.870	1.02	N/A	N/A	N/A	N/A
1909.8	810(High)	PCS1900	GPRS	3	Left Touch	0.876	0.848	1.03	N/A	N/A	N/A	N/A
1880.0	9400(Mid)	WCDMA 1900	RMC	N/A	Left Touch	1.110	1.110	1.00	N/A	N/A	N/A	N/A
1880.0	9400(Mid)	WCDMA 1900	RMC	N/A	Left Touch	1.100	1.090	1.01	N/A	N/A	N/A	N/A
ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure						Head 1.6 W/kg (mW/g) averaged over 1 gram						

Table 14.2 Body SAR Measurement Variability Results

Frequency		Mode	Service	# of Time Slots	Spacing [Side]	Measured SAR (1g)	1st Repeated SAR(1g)	Ratio	2nd Repeated SAR(1g)	Ratio	3rd Repeated SAR(1g)	Ratio	
MHz	Ch.			Siots		(W/kg)	(W/kg)		(W/kg)		(W/kg)		
1880.0	9400(Mid)	WCDMA 1900	RMC	N/A	10 mm [Rear]	1.070	1.060	1.01	N/A	N/A	N/A	N/A	
1880.0	9400(Mid)	WCDMA 1900	RMC	N/A	10 mm [Rear]	1.050	1.050	1.00	N/A	N/A	N/A	N/A	
	ANSI / IEEE C95.1-2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Exposure							Body 1.6 W/kg (mW/g) averaged over 1 gram					

Measurement Uncertainty

The measured SAR was < 1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the standard measurement uncertainty analysis per IEEE 1528-2003 was not required.

15. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s)tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

16. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

- [2] ANSI/IEEE C95.1 1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, April 2006.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [5] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb, 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [9] K. Polovċ, T.Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids. Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10,Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [19] CENELEC CLC/SC111B, European Pre standard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgen Össische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

TRF-RF-601(00)120709 Page50 / 90

- [21] 941225 D01 FCC SAR Measurement Procedures for 3G Devices v02, October 2007
- [22] 941225 D02 Guidance PBA for 3GPP R6 HSPA v02r01, Dec. 14, 2009
- [23] 941225 D03 SAR Test Reduction GSM GPRS EDGE vo1, Dec. 2008
- [24] 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01, Jan. 27, 2010
- [25] 941225 D05 SAR for LTE Devices v01, Dec. 15, 2010
- [26] 941225 D05 SAR for LTE Devices v02, Oct. 24, 2012
- [27] 941225 D06 Hot Spot SAR v01, April 4, 2011
- [28] 941225 D07 UMPC Mini Tablet Devices v01, April 4, 2011
- [29] SAR Measurement procedures for IEEE 802.11 a/b/g KDB Publication 248227
- [30] FCC SAR Considerations for Cell Phones with Multiple Transmitters v01r05 #648474, Sept 2008
- [31] FCC SAR Polcy Handsts Multi Xmiter Ant v01r01 #648474, Sept, 2008
- [32] Handset Wireless Battery Chargers v01r01 #648474, March, 2012
- [33] SAR Handsets Multi xmiter and Ant v01 #648474, Oct. 24, 2012
- [34] 447498 D01 Mobile Portable RF Exposure v04, Published on: Nov. 13, 2009
- [35] 447498 D01 General RF Exposure Guidance v05, Published on: Oct. 24, 2012
- [36] 447498 D02 SAR Procedures for Dongle Xmtr v02, Published on: Nov. 13, 2009
- [37] 615223 D01 802 16e WiMax SAR Guidance v01, Nov. 13, 2009
- [38] SAR Measurement Requirements for 100 MHz to 6 GHz v01, KDB Publication 865664 D01: Oct. 24, 2012
- [39] RF Exposure compliance Reporting and Documentation Considerations, KDB Publication 865664 D02: Oct. 24, 2012
- [40] SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664, October, 2006
- [41] Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at
- 150 MHz 3 GHz, KDB Publication 450824