

shenzhen bogesi communication technology co., Itd

产品规格书

客户:	深圳市广和通无线股份有限公司
客户编码:	
产品描述:	WIFI 7 (2400-2500MHz, 5100-5800MHz, 5925-7125 MHz)外置天约
制造商编码:	BGS-050E
产品制造商:	深圳市博格斯通信技术有限公司
承认日期:	2022年11月25日

供应商签章	客户签章

注: 博格斯已经盖章的电子档或是纸质档提供给需求方后,若需求方在下达正式订单给博格斯前没有将承认书回签给博格斯,也没有正式的变更或是更改通知,则博格斯默认为需求方认可并接受规格书所述产品。

2、本产品相关知识产权归深圳市博格斯通信技术有限公司所有 , 未经我司许可, 请不要以其他名义就本产品进行专利权的申请,请不要将本产品及相关资料泄露给他人或提供第三方阅览使用。

shenzhen bogesi communication technology co., Itd

使用范围:

适用于WiFi 6E 外置天线方案。

电气规格:

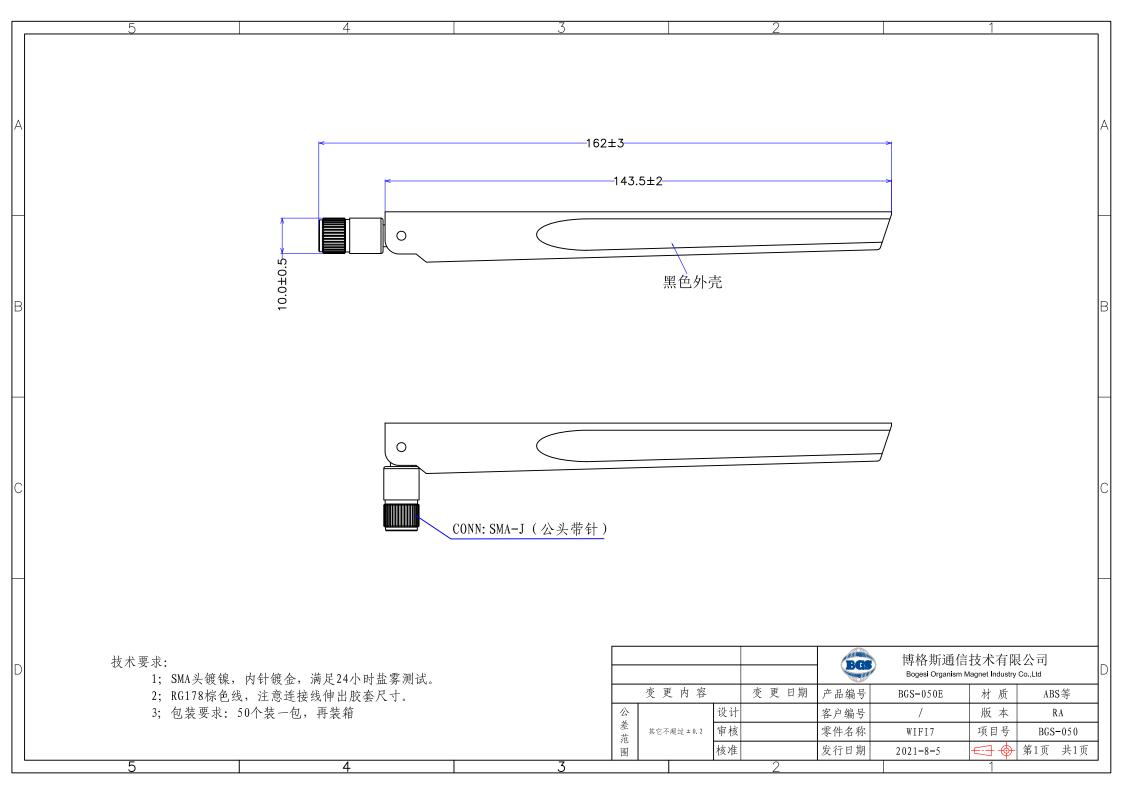
频率范围	WIFI 7(2400-2500MHz, 5100-5800MHz,5925-7125 MHz)	金属材质	铜
输入阻抗	50 Ω	塑胶材质	胶套: TPE/TPR
驻波比	≤4	空 放构 灰	转接头1: ABS
增益	>3dBi	射频线规格	RG-178
极化方式	线极化	连接器规格	SMA-J
操作温度	$-40~\degree C~^{\sim}+65~\degree C$	接头拉力实验	SMA≥3 Kg

测试仪器与方法:

测试仪器	测试方法	测试结果
7×4×3微波暗室 Aglient E5071B网 络分析仪	1. 将待测天线装配在样机上, 做无源测试治具 2. 把无源治具放在暗室内的测试夹具上, 并与网络分析仪建立连接 3. 用测试软件测试天线无源数据	见测试数据

测试数据:

Freq	Effi	Gain	Freq	Effi	Gain	Freq	Effi	Gain
(MHz)	(%)	(dBi)	(MHz)	(%)	(dBi)	(\mathtt{MHz})	(%)	(dBi)
2400	67.81	2.69	5100	50.85	1.95	5460	77.63	4.55
2410	76. 51	3.15	5120	51.98	2.65	5480	77.69	4.17
2420	72.76	2. 89	5140	57.11	3.24	5500	76.1	3.93
2430	75. 75	2. 98	5160	64	3.55	5520	80.54	4.39
2440	73.33	2. 28	5180	62. 24	3.34	5540	84.22	4.55
2450	70.07	2.34	5200	67.04	3.96	5560	81.83	4.27
2460	69.16	2.16	5220	72.44	4.41	5580	80.52	3.97
2470	72. 26	2.19	5240	67.62	3.64	5600	80.42	4
2480	68.63	1.83	5260	72.69	3.68	5620	78.15	3.92
2490	68.35	1.86	5280	66.47	3.58	5640	80.48	3.91
2500	70. 92	2. 23	5300	67.88	3.88	5660	86.12	4.25
			5320	68	3.82	5680	83. 21	3.93
			5340	67.17	3.07	5700	86.2	4.27
			5360	73.2	3.78	5720	89.46	4.57
			5380	74.88	4.12	5740	84.94	4.32
			5400	74.88	4.13	5760	85. 71	4.19
			5420	76.73	4.09	5780	81.33	4.04
			5440	77.5	4.3	5800	77.39	4.15


Freq	Effi	Gain	Freq	Effi	Gain	Freq	Effi	Gain
(\mathtt{MHz})	(%)	(dBi)	(\mathtt{MHz})	(%)	(dBi)	(\mathtt{MHz})	(%)	(dBi)
5900	75.36	4.23	6340	78.7	5.78	6780	74.3	4.48
5920	73.87	3.98	6360	84.53	6.03	6800	76. 21	3.97
5940	74.65	4.15	6380	79. 25	5.59	6820	74.3	3.82
5960	76.72	4.52	6400	83. 56	5.65	6840	83.18	4.6
5980	79. 58	5.08	6420	79.43	5.65	6860	74.99	4.33
6000	80.35	5.3	6440	77. 27	5. 61	6880	76. 91	4.36
6020	79.07	4.37	6460	75. 51	5.64	6900	74.82	4.03
6040	70. 79	3.99	6480	85.11	5.91	6920	87.5	4.74
6060	64.12	3.55	6500	86.1	6.12	6940	78.7	4.46
6080	66.07	3.71	6520	83.75	5. 79	6960	69.34	4.1
6100	66.37	3.97	6540	76.03	5.87		70.15	4.13
6120	72.95	4.6	6560	83.18	6.02		83.75	4.66
6140	73.96	4.73	6580	83. 37	5.92	7020	76. 91	4.51
6160	69.5	4.51	6600	74.64	4.85	4.85 7040	78.16	4.84
6180	65.01	4.05	6620	70.79	4.66	7060	74.64	4.68
6200	79. 25	5.03	6640	79.62	5.33	5.33 7080	77.27	4.75
6220	87.3	5.78	6660	76.74	5.07	7100	75.16	4.64
6240	74.82	5.18	6680	69.34	4.34	7120	78.7	4.64
6260	70.79	4.86	6700	76.03	4.62		81.1	4.66
6280	74.13	4.86	6720	80.54	4.6		75. 68	4.25
6300	87.1	5.73	6740	78.7	4.88	7180	74.13	4.08
6320	84.92	5. 91	6760	71.45	4.18	7200	89.74	4.78

shenzhen bogesi communication technology co.,Itd

样品图片:

shenzhen bogesi communication technology co., Itd

天线包装说明

一、外包装:纸箱包装

正面图:

侧面图:

二、内包装(PE袋包装,包装袋尺寸依产品尺寸而定)

shenzhen bogesi communication technology co., Itd

产品材料成份宣告表

产	品名称	WIFI 7 外置天线	产品型号			BGS-050E		宣告日期		2022/11/25
公司	名称(盖章)	深圳市博格斯通信技术有限公司	联系人		周学兵			电话	0755-86083452	
È □	序号 部件名称		均质物料内含有RoHS限制物质的量值(ppm)							
		均质材料名称	Cd	Pb	Hg	Cr+6	PBB	PBDE	检测报告编号	检测日期
1	並日 17六	PA-757	ND	ND	ND	ND	ND	ND	238495049d2 001	2020/12/4
2	塑胶	TPE/TPR	ND	ND	ND	ND	ND	ND	CANML2105797909	2021/4/18
3	PCB	FR4	ND	9	ND	ND	ND	ND CANML2020258402		2020/11/24

制订人:梁静华 审核人: 梁德流

说明:

材质分析展开表类似于我们公司的机种 BOM,就供应商提供的每个物料进行组成说明,然后就每一种组成进行 RoHS控制(或者说供应商要对他的供应商进行 RoHS符合性管理,提供每三方检测证明)。

一份完整的材质分析展开表,它包括:

1 材质展开表:零件组成分解

2 各组成的第三方验证报告