

cetecom
advanced

TEST REPORT

Test report no.: 1-8481-24-01-16_TR1-R02

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: <https://cetecomadvanced.com>

e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS).

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

FLIR Systems AB

Antennvägen 6
187 66 Täby / SWEDEN

Phone: +46 87 53 25 00

Contact: Jacob Waernlund

e-mail: Jacob.Waernlund@Teledyne.com

Manufacturer

FLIR Systems AB

Antennvägen 6
187 66 Täby / SWEDEN

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **Infrared Camera**

Model name: **FLIR-I1845**

FCC ID: **ZLV-FLIRI1845**

ISED certification number: **5306A-FLIRI1845**

Frequency: 5150 MHz to 5250 MHz

Technology tested: WLAN

Antenna: Integrated antenna

Power supply: 3.65 V DC by rechargeable battery

Temperature range: -15°C to +45°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

On behalf of

Michael Dorongovski
Lab Manager
Radio Labs

Test performed:

On behalf of

Andreas Curette
Lab Manager
Radio Labs

1 Table of contents

1	Table of contents.....	2
2	General information.....	3
2.1	Notes and disclaimer	3
2.2	Application details	3
2.3	Test laboratories sub-contracted	3
3	Test standard/s, references and accreditations	4
4	Reporting statements of conformity – decision rule	5
5	Test environment	6
6	Test item	6
6.1	General description	6
6.2	Additional information	6
7	Sequence of testing.....	7
7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	7
7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	8
7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	9
7.4	Sequence of testing radiated spurious above 18 GHz.....	10
8	Description of the test setup.....	11
8.1	Shielded semi anechoic chamber	12
8.2	Shielded fully anechoic chamber.....	13
8.3	Radiated measurements > 18 GHz	14
8.4	Conducted measurements system	15
8.5	AC conducted.....	16
9	Measurement uncertainty	17
10	Summary of measurement results	18
11	Additional comments	19
12	Measurement results	21
12.1	Identify worst case data rate.....	21
12.2	Antenna gain	22
12.3	Duty cycle	23
12.4	Maximum output power	24
12.4.1	Maximum output power according to FCC requirements	24
12.4.2	Maximum output power according to ISED requirements	26
12.5	Band edge compliance radiated	28
12.6	Spurious emissions radiated below 30 MHz	30
12.7	Spurious emissions radiated 30 MHz to 1 GHz	33
12.8	Spurious emissions radiated 1 GHz to 40 GHz	35
12.9	Spurious emissions conducted < 30 MHz	40
13	Observations.....	42
14	Glossary.....	43
15	Document history.....	44

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-8481-24-01-16_TR1-R01 and dated 2025-08-08.

2.2 Application details

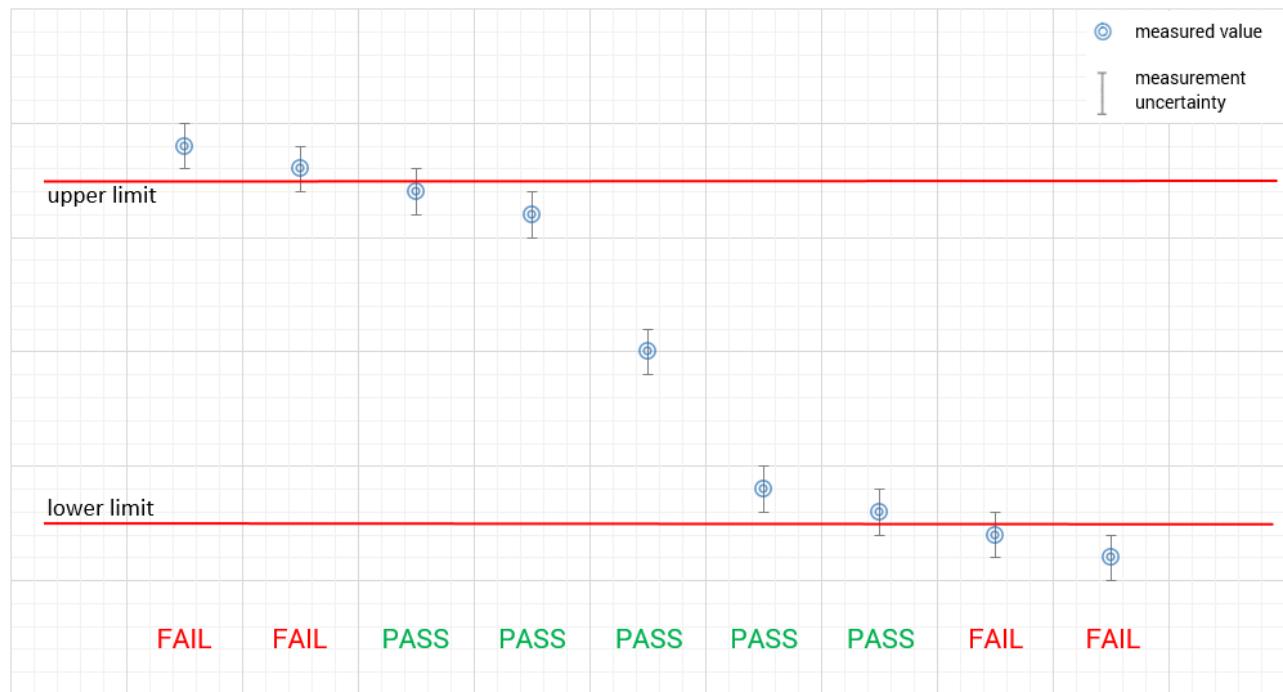
Date of receipt of order:	2025-07-08
Date of receipt of test item:	2025-07-08
Start of test:*	2025-07-15
End of test:*	2025-08-07
Person(s) present during the test:	Mr. Jacob Waernlund, Mr. Jonnie Larsson

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations


Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E
ANSI C63.4a-2017	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2020	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

measured value, measurement uncertainty, verdict

5 Test environment

Temperature	: T _{nom} T _{max} T _{min}	20 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content	: 59 %	
Barometric pressure	: 1021 hpa	
Power supply	: V _{nom} V _{max} V _{min}	3.65 V DC by rechargeable battery No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

6 Test item

6.1 General description

Kind of test item	: Infrared Camera
Model name	: FLIR-I1845
HMN	: -/
PMN	: FLIR i34, FLIR i35, FLIR i64, FLIR i65
HVIN	: FLIR-i1845
FVIN	: ace_14 ace_14_wlan_only
S/N serial number	: Rad.: Prototype 3:3 Cond.: Prototype 3:6
Hardware status	: T300960-A
Software status	: 14-0.5.0-167
Firmware status	: WLAN.TFH.3.6-00157-QCATFSWPZ-2
Frequency band	: 5150 MHz to 5250 MHz
Type of radio transmission	: OFDM
Use of frequency spectrum	: OFDM
Type of modulation	: (D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels	: 4
Antenna	: Integrated antenna
Power supply	: 3.65 V DC by rechargeable battery
Temperature range	: -15°C to +45°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-8481-24-01-01_TR1-A101-R01

1-8481-24-01-01_TR1-A102-R01

1-8481-24-01-01_TR1-A104-R01

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premereasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position $\pm 45^\circ$ and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premereasurement

- The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

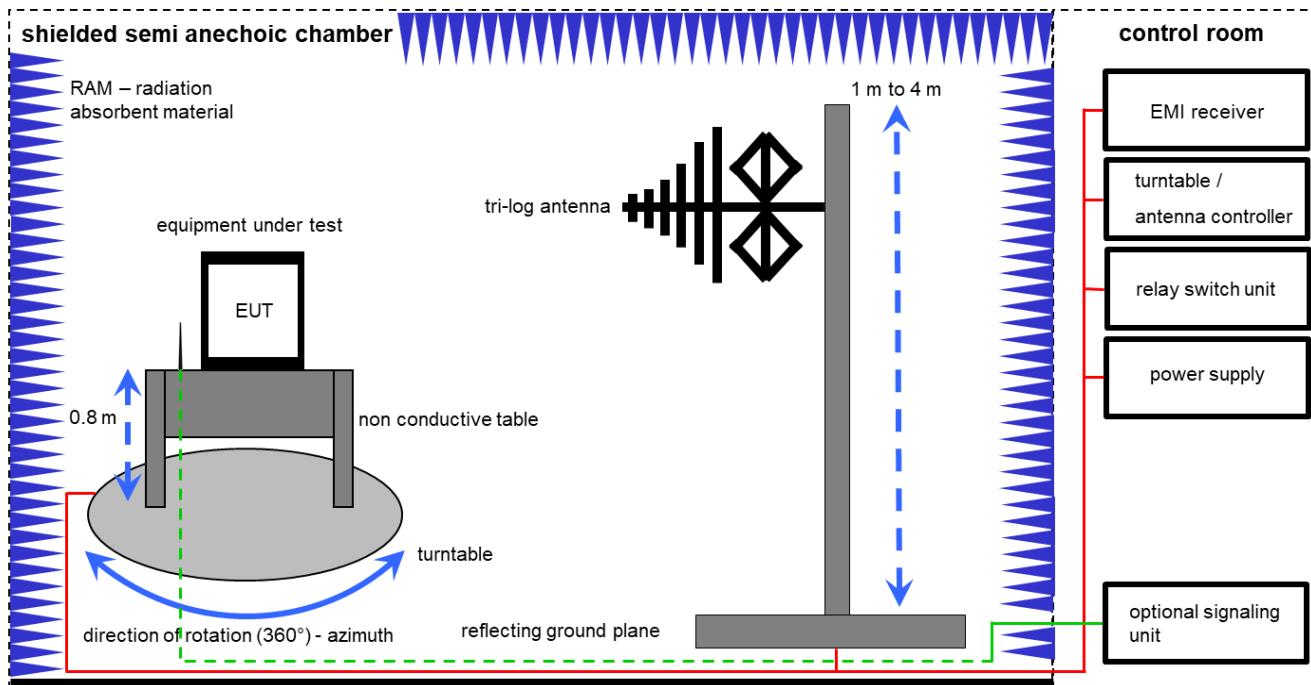
Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

k/cal	calibration / calibrated	EK	limited calibration
Ne/cnn	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical maintenance)
Ev/chk	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress
cpu	check prior usage		

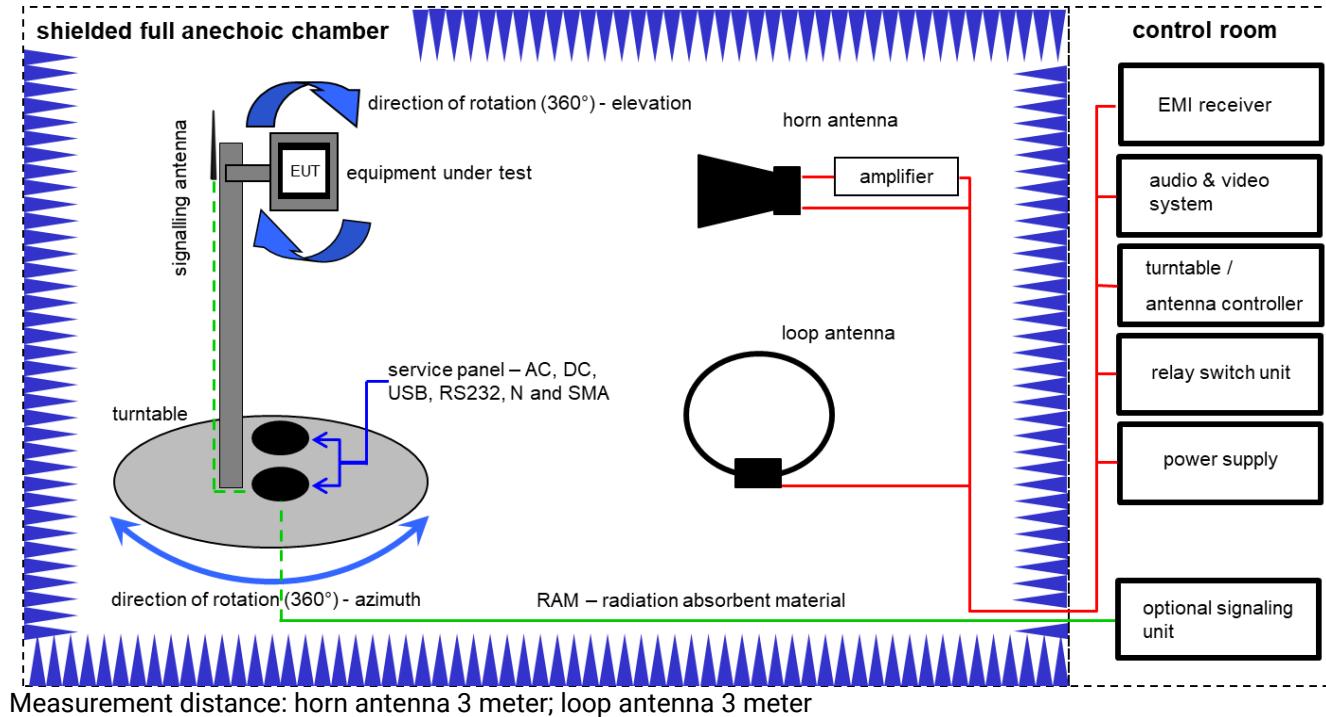
8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dB μ V/m] = 12.35 [dB μ V] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB μ V/m] (35.69 μ V/m) @ distance

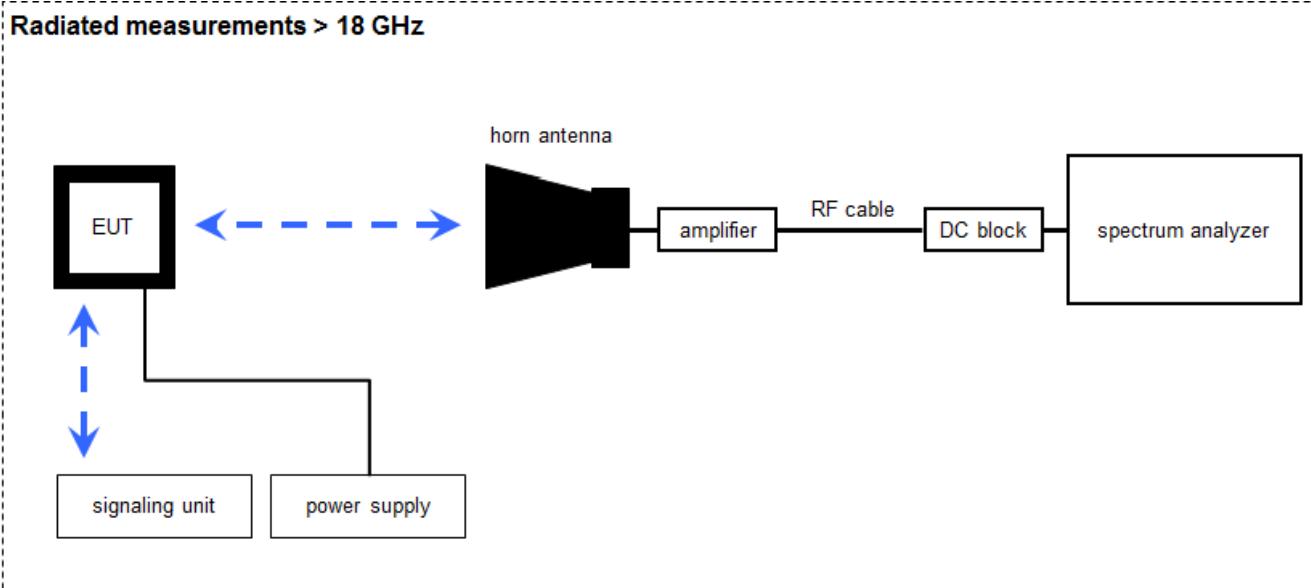
Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Semi anechoic chamber	Semi anechoic chamber 3000023	MEC Import: MWB AG		40797	cnn	-/-	-/-
2	A	Turntable	Turntable 2089-4.0	EMCO Elektronik GmbH / Gilching		40799	cnn	-/-	-/-
3	A	Switch-Unit	Switch-Unit 3488A	Hewlett Packard	2719A14505	50160	cpu	-/-	-/-
4	A	Antenna Tower	Antenna Tower 2175	ETS-Lindgren GmbH / Taufkirchen	64762	50279	cnn	-/-	-/-
5	A	Positioning Controller	Positioning Controller 2090	ETS-Lindgren GmbH / Taufkirchen	64672	50280	cnn	-/-	-/-
6	A	TRILOG Broadband Antenna	TRILOG Broadband Antenna VULB9163	Schwarzbeck Mess-Elektronik OHG / Schönau	1029	50403	cal	25.09.2023	30.09.2025
7	A	EMI Test Receiver	EMI Test Receiver ESR3	Rohde & Schwarz Messgerätebau GmbH / Memmingen	102587	50417	cal	05.12.2024	05.12.2025

8.2 Shielded fully anechoic chamber

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

$$\text{FS [dB}\mu\text{V/m]} = 40.0 \text{ [dB}\mu\text{V]} + (-35.8) \text{ [dB]} + 32.9 \text{ [dB/m]} = 37.1 \text{ [dB}\mu\text{V/m]} (71.61 \mu\text{V/m}) \text{ @ distance}$$

Equipment table:

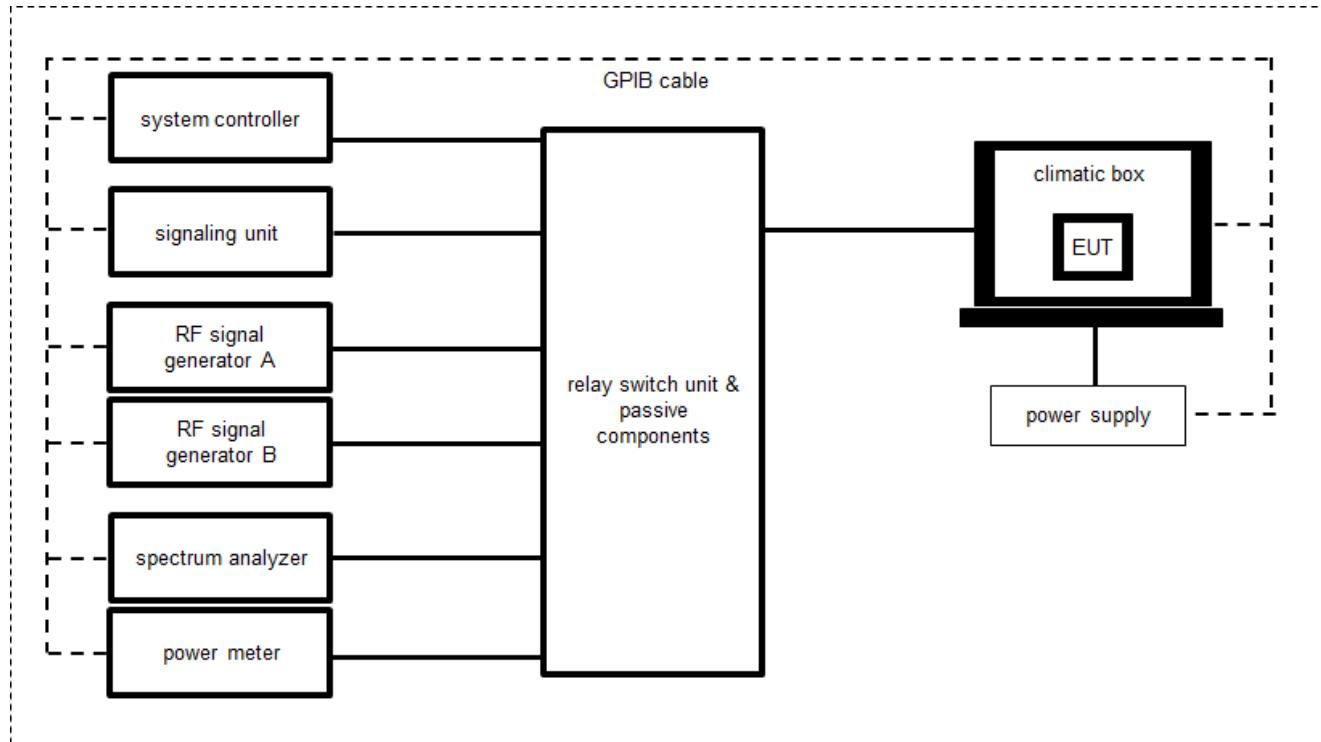
No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	EMI Test Receiver	EMI Test Receiver ESR26	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101376	40301	cal	06.12.2024	06.12.2025
2	A, B	Double-Ridged Waveguide Horn Antenna	Double-Ridged Waveguide Horn Antenna 3115	EMCO Elektronik GmbH / Gilching	8812-3089	40344	cal	09.07.2024	09.07.2026
3	B	Highpass Filter	Highpass Filter WHKX7.0/18G-8SS	Wainwright Instruments GmbH / Andechs	18	40364	cpu	-/-	-/-
4	A, B	Broadband Amplifier 0.5-18 GHz	Broadband Amplifier 0.5-18 GHz CBLU5184540	MEC Import: CERNEX	22050	40374	cpu	-/-	-/-
5	A, B, C	4U RF Switch Platform	4U RF Switch Platform L4491A	Agilent Technologies Deutschland GmbH / Böblingen	MY50000032	40376	cnn	-/-	-/-
6	A, B, C	NEXIO EMV-Software	NEXIO EMV-Software BAT EMC V2022.0.32.0	MEC Import: NEXIO		40383	cnn	-/-	-/-
7	A, B, C	Anechoic chamber	Anechoic chamber	MEC Import: TDK		40385	cnn	-/-	-/-
8	B	Band Reject Filter	Band Reject Filter WRCJV12-5120-5150-5350-5380-40SS	Wainwright Instruments GmbH / Andechs	5	40395	cpu	-/-	-/-
9	C	Active Loop Antenna	Active Loop Antenna 6502	EMCO Elektronik GmbH / Gilching	2210	50044	cal	07.07.2025	07.07.2027
10	B	High Pass Filter	High Pass Filter VHF-3500+	Mini-Circuits / Brooklyn	-/-	40369	cnn	-/-	-/-

8.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

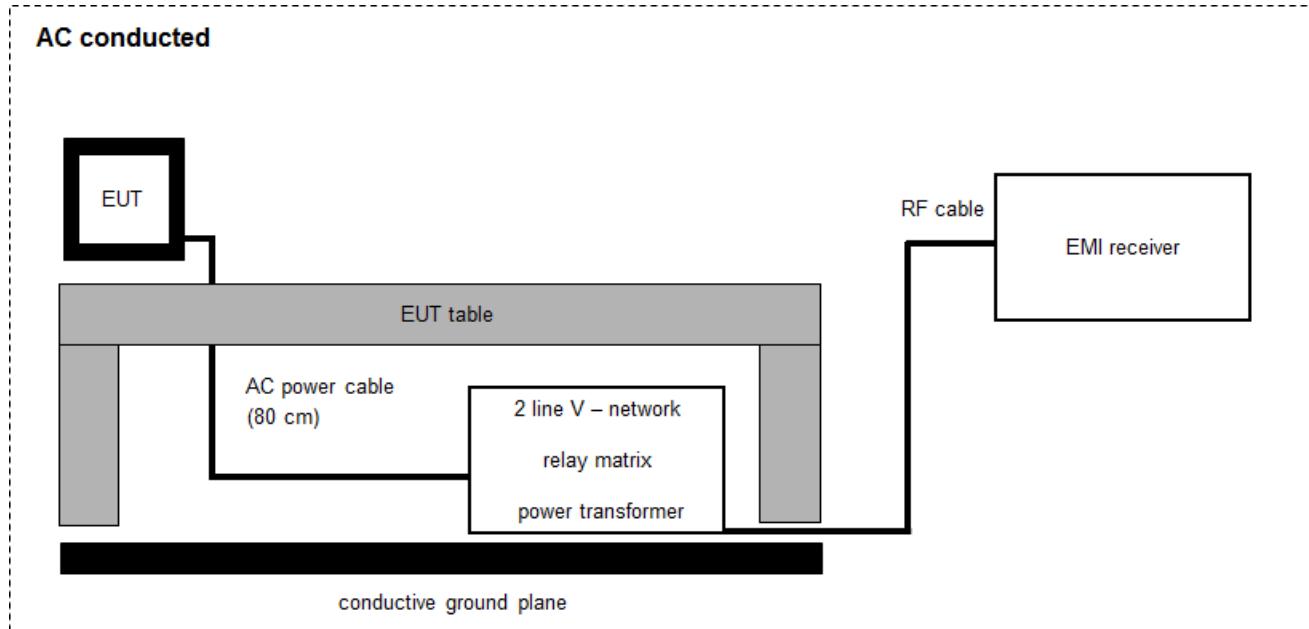

Example calculation:

FS [dB μ V/m] = 40.0 [dB μ V] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB μ V/m] (6.79 μ V/m) @ distance

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Broadband LNA 18-50 GHz	Broadband LNA 18-50 GHz CBL18503070PN	CERNEX	25240	40073	chk	22.04.2024	22.04.2026
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	Std. Gain Horn Antenna 18.0-26.5 GHz 638	Narda Microwave	8205	40085	cal	24.01.2024	31.01.2026
3	A	Std. Gain Horn Antenna 26.5-40.0 GHz	Std. Gain Horn Antenna 26.5-40.0 GHz V637	Narda	82-16	40086	cal	24.01.2024	24.01.2026
4	A	DC-Blocker 0.1-40 GHz	DC-Blocker 0.1-40 GHz 8141A	Inmet		40390	cpu	-/-	-/-
5	A	RF-Cable	RF-Cable ST18/SMAm/SMAm /72	Huber & Suhner GmbH / Unterhaching	Batch no. 699714	40389	cpu	-/-	-/-
6	A	Signal analyzer	Signal analyzer FSV40	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101042	40292	cal	09.12.2024	09.12.2025

8.4 Conducted measurements system


OP = AV + CA
(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:
OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Signal analyzer	Signal analyzer FSV30	Rohde & Schwarz Messgerätebau GmbH / Memmingen	1321.3008K30/103170	18373	cal	15.01.2025	15.01.2027
2	A	Switch Matrix	USM Switch Matrix	cetecom advanced GmbH / Saarbrücken	A001	40338	chk	30.01.2024	31.01.2025
3	A	Tester Software RadioStar (C.BER2 for BT LE Conformance) System V 5.x, C.BER2 V 1.2.x.x	Tester Software RadioStar (C.BER2 for BT LE Conformance) System V 5.x, C.BER2 V 1.2.x.x	cetecom advanced GmbH / Saarbrücken	1	40407	cnn	-/-	-/-

8.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS [dB μ V/m] = 37.62 [dB μ V] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB μ V/m] (244.06 μ V/m) @ distance

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	EMI Test Receiver	EMI Test Receiver ESR3	Rohde & Schwarz Messgerätebau GmbH / Memmingen	102981	40332	cal	03.12.2024	03.12.2025
2	A	Analyzer-Impedance-System	Analyzer-Impedance-System AIS16/1	MEC Import: Spitzenerberger + Spies GmbH & Co. KG	U02076 07/0 1023	40808	cal	19.10.2023	31.10.2025
3	A	Two-Line V-Network (LISN)	Two-Line V-Network (LISN) ESH3-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	892475/017	50005	cal	12.12.2023	31.12.2025
4	A	Power Supply	Power Supply 6032A	Hewlett Packard	2920A04466	50161	cnn	-/-	-/-
5	A	Hochpass 150 kHz	Hochpass 150 kHz EZ-25	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100010	50286	cpu	-/-	-/-

9 Measurement uncertainty

Measurement uncertainty		
Test case	Uncertainty	
Antenna gain	± 3 dB	
Power spectral density	± 1.56 dB	
DTS bandwidth	± 100 kHz (depends on the used RBW)	
Occupied bandwidth	± 100 kHz (depends on the used RBW)	
Maximum output power conducted	± 1.56 dB	
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB	
Band edge compliance radiated	± 3 dB	
Spurious emissions conducted	> 3.6 GHz	± 1.56 dB
	> 7 GHz	± 1.56 dB
	> 18 GHz	± 2.31 dB
	≥ 40 GHz	± 2.97 dB
Spurious emissions radiated below 30 MHz	± 3 dB	
Spurious emissions radiated 30 MHz to 1 GHz	± 4.1 dB	
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB	
Spurious emissions radiated above 12.75 GHz	± 4.5 dB	
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB	

10 Summary of measurement results

<input type="checkbox"/>	No deviations from the technical specifications were ascertained
<input type="checkbox"/>	There were deviations from the technical specifications ascertained
<input checked="" type="checkbox"/>	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 3	See table	2025-09-23	Tests according to customer demand

Test specification clause	Test case	C	NC	NA	NP	Remark
-/-	Output power verification (cond.)		-/-			Declared
-/-	Antenna gain		-/-			Declared
U-NII Part 15	Duty cycle		-/-			-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted)	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-/-			-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.407 RSS - 247 (6.3)	DFS		-/-			-/-

Notes:

C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed
----	-----------	-----	---------------	-----	----------------	-----	---------------

11 Additional comments

Reference documents: -/-

Special test descriptions: None

Configuration descriptions: All tests have been performed with power setting 15.

EUT selection:

- Only one device available
- Devices selected by the customer
- Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 (5150 MHz to 5250 MHz) channel number & center frequency				
channel	36	40	44	48
f _c / MHz	5180	5200	5220	5240

Note: The channels used for the tests were marked in bold in the list.

Test mode:

- No test mode available.
Iperf is used to transmit data to a companion device
- Special software is used.
EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

- Operating mode 1 (single antenna)
 - Equipment with 1 antenna,
 - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,
 - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
- Operating mode 2 (multiple antennas, no beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
- Operating mode 3 (multiple antennas, with beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.
In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter to identify the maximum transmission power on mid channel. In the case that only one or two channels are available, only these will be measured.

In further tests only the identified worst case modulation scheme or bandwidth will be measured.

Measurement parameters:

Measurement parameter	
Detector:	Peak
Sweep time:	Auto
Resolution bandwidth:	3 MHz
Video bandwidth:	3 MHz
Trace mode:	Max hold
Used test setup:	See chapter 8.4 – A
Measurement uncertainty:	See chapter 9

Results:

OFDM – mode	Modulation scheme / bandwidth
	U-NII-1
a – mode	6 Mbit/s
n HT20 – mode	MCS0
ac VHT20 – mode	MCS0

12.2 Antenna gain

Limits:

Antenna Gain	
6 dBi / > 6 dBi output power and power density reduction required	

Results:

U-NII-1 (5150 MHz to 5250 MHz)	Antenna gain		
	Lowest channel	Middle channel	Highest channel
Gain ^{*)} / dBi (Declared by customer)			3.2

NOTE: ^{*)}Peak gain for given sub-band.

Refer to document "3-3-TR-587 982-01 Flir i1845 - Antenna characterization_A.pdf"

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter	
According to: KDB789033 D02, B.	
External result file(s)	1-8481-24-01-16_TR1-A201-R01.pdf FCC Part 15.407 Max Output Power and PSD
Used test setup:	See chapter 8.4 – A
Measurement uncertainty:	See chapter 9

Results:

Duty cycle and correction factor:

OFDM – mode	Calculation method			
	$T_{on} (D2_{plot}) * 100 / T_{complete} (D3_{plot}) = \text{duty cycle}$ $10 * \log(\text{duty cycle}) = \text{correction factor}$			
	$T_{on} (D2_{plot})$	$T_{complete} (D3_{plot})$	Duty cycle	Correction factor
a – mode	2.054 ms	2.304ms	89.0 %	0.51 dB
n HT20 – mode	1915 μ s	2137 μ s	89.6 %	0.48 dB
ac VHT20 – mode	1915 μ s	2137 μ s	89.6 %	0.48 dB

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter	
According to: KDB789033 D02, E.2.e.	
External result file(s)	1-8481-24-01-16_TR1-A201-R01.pdf FCC Part 15.407 Max Output Power and PSD
Used test setup:	See chapter 8.4 – A
Measurement uncertainty:	See chapter 9
Standard parts:	FCC: § 15.407 (a)

Limits:

Limits	
Radiated output power	Conducted output power
Band 5150 MHz – 5250 MHz	
For an outdoor access point: Conducted power + 6 dBi antenna gain	For an outdoor access point: output power \leq 1W/30dBm The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)
For an indoor access point: Conducted power + 6 dBi antenna gain	For an indoor access point output power \leq 1W/30dBm
For fixed point-to-point access points Conducted power + 23 dBi antenna gain	For fixed point-to-point access points output power \leq 1W/30dBm
For client devices Conducted power + 6 dBi antenna gain	For client devices output power \leq 250 mW/24dBm

Results:

a	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	15.1	15.4	14.5

n HT20	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	14.9	15.2	14.2

ac VHT20	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	14.6	15.2	14.2

12.4.2 Maximum output power according to ISED requirements

Description:

Measurement of the maximum output power conducted + radiated

Measurement:

Measurement parameter	
External result file(s)	1-8481-24-01-16_TR1-A201-R01.pdf ISED Max Output Power and PSD
Used test setup:	See chapter 8.4 – A
Measurement uncertainty:	See chapter 9

Limits:

Radiated output power	Conducted output power for mobile equipment
The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz 1 W or 17 dBm + 10 log Bandwidth 5.250-5.350 GHz 1 W or 17 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) Conducted power + 6dBi antenna gain 5.725-5.825 GHz	The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) 1W 5.725-5.825 GHz

Results:

a	Maximum output power [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	Conducted		
	14.9	15.3	14.5
	Radiated (calculated – see chapter antenna gain)		
	18.1	18.5	17.7

n HT20	Maximum output power [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	Conducted		
	14.9	15.1	14.1
	Radiated (calculated – see chapter antenna gain)		
	18.1	18.3	17.3

ac VHT20	Maximum output power [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	Conducted		
	15.3	15.1	14.2
	Radiated (calculated – see chapter antenna gain)		
	18.5	18.3	17.4

12.5 Band edge compliance radiated

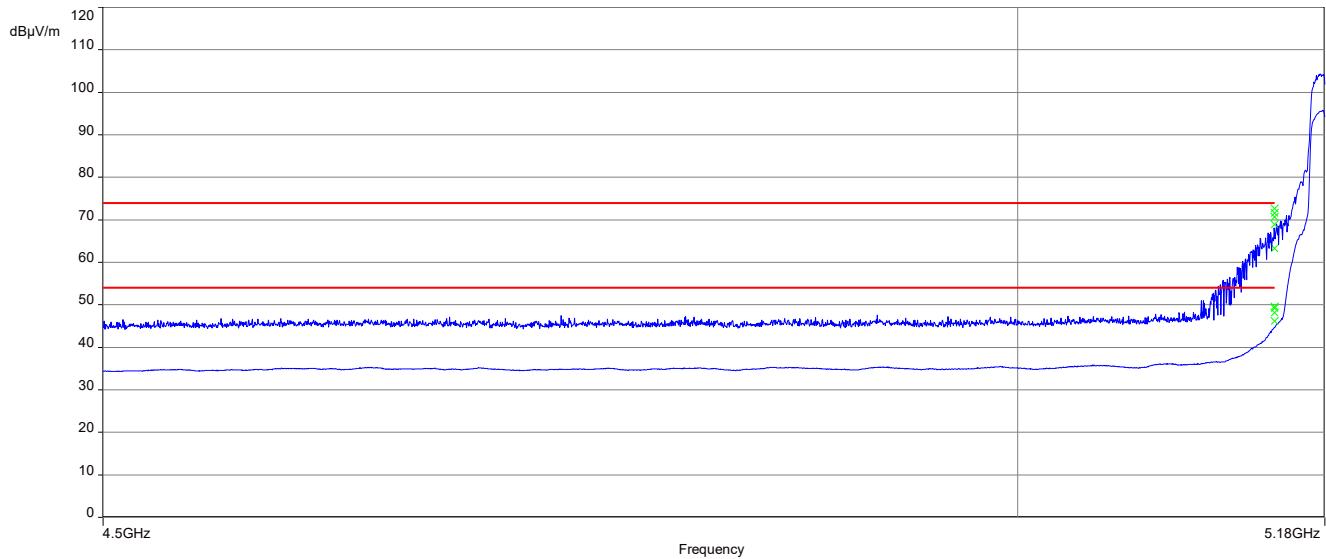
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

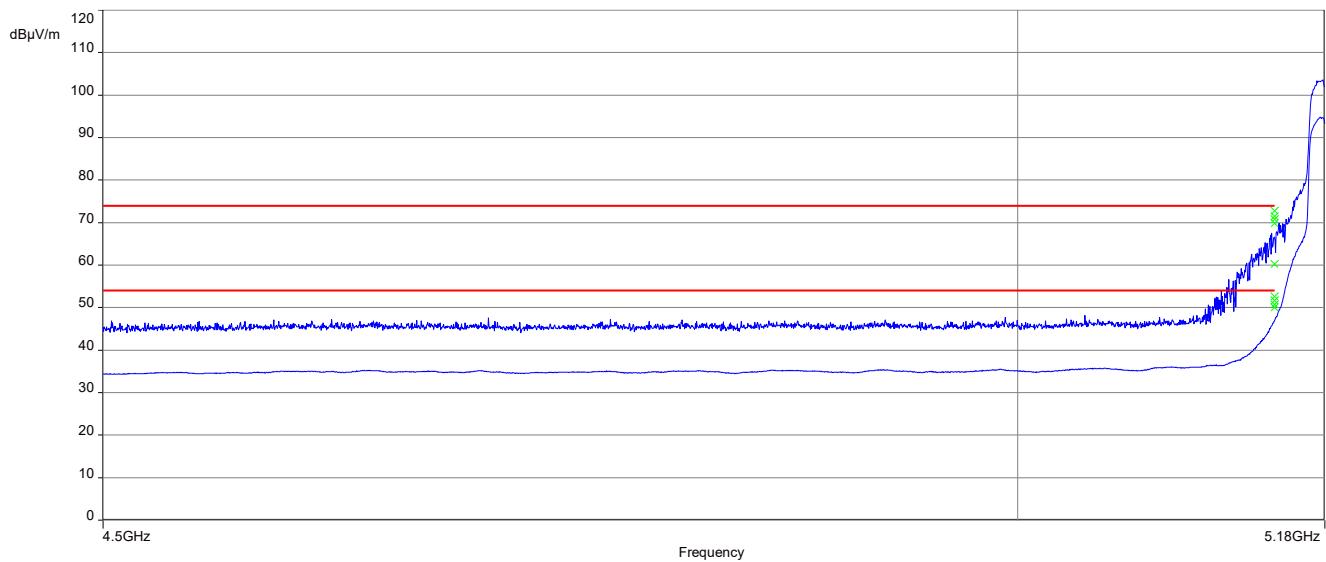
Measurement:

Measurement parameter	
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	$\geq 3 \times \text{RBW}$
Span:	See plots!
Trace mode:	Max Hold
Test setup:	See sub clause 8.2 – A
Measurement uncertainty:	See chapter 9

Limits:


Band Edge Compliance Radiated	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).	
74 dB μ V/m (peak)	54 dB μ V/m (average)

Result:


Scenario	Band Edge Compliance Radiated [dB μ V/m]
a - mode	72.7 dB μ V/m (peak) 49.6 dB μ V/m (average)
n HT20 – mode	72.8 dB μ V/m (peak) 52.6 dB μ V/m (average)

Plots:

Plot 1: lower band edge; U-NII-1; lowest channel; a-mode

Plot 2: lower band edge; U-NII-1; lowest channel; n20-mode

12.6 Spurious emissions radiated below 30 MHz

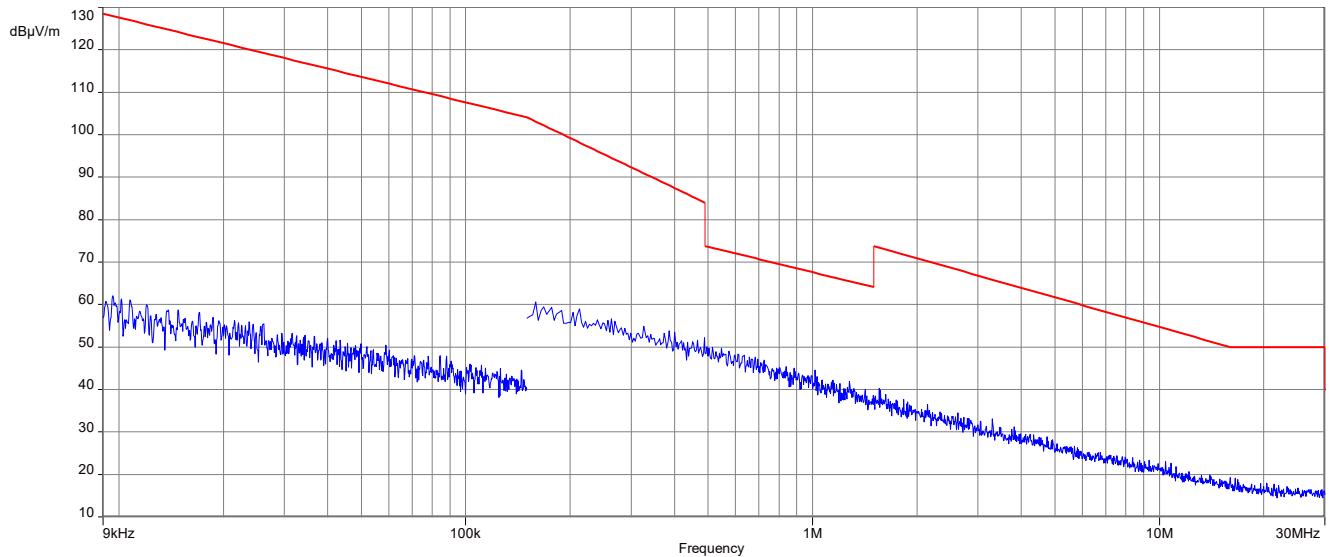
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

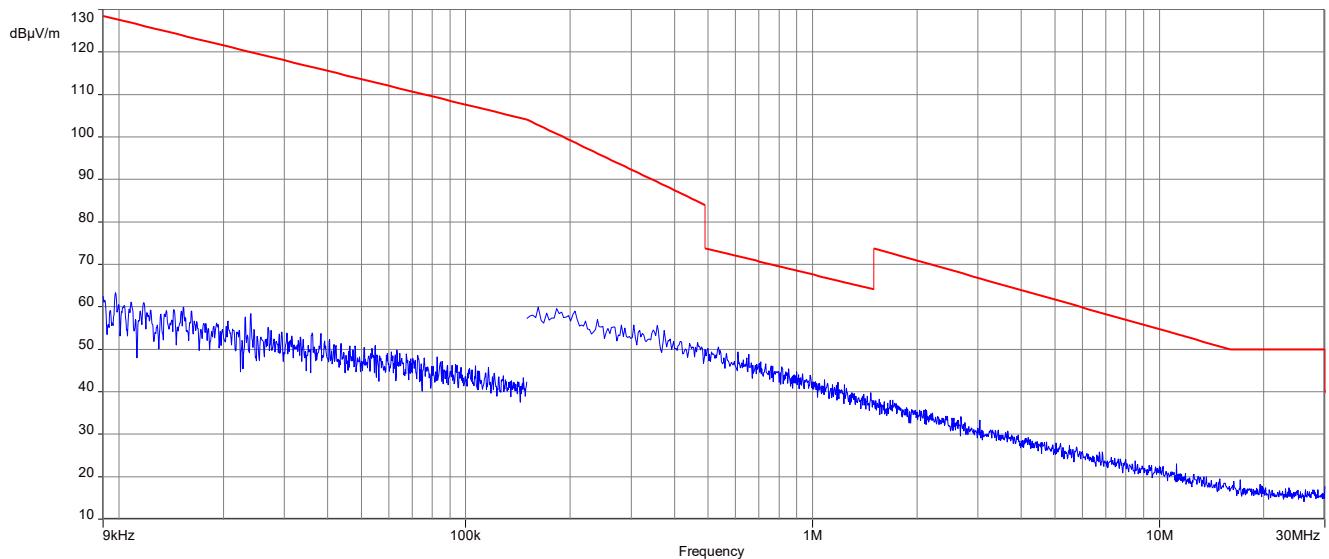
Measurement:

Measurement parameter	
Detector:	Peak / Quasi Peak
Sweep time:	Auto
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz
Span:	9 kHz to 30 MHz
Trace mode:	Max Hold
Test setup:	See sub clause 8.2 – C
Measurement uncertainty:	See chapter 9

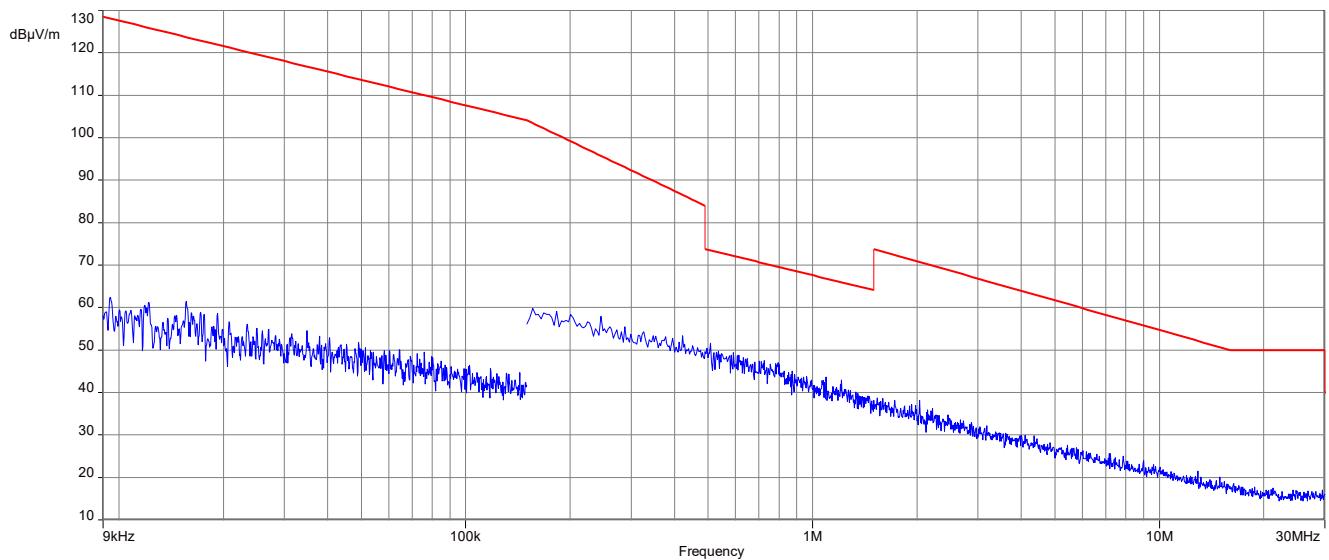
Limits:


Spurious Emissions Radiated < 30 MHz		
Frequency (MHz)	Field Strength (μ V/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

Results:


Spurious Emissions Radiated < 30 MHz [$\text{dB}\mu\text{V/m}$]		
F [MHz]	Detector	Level [$\text{dB}\mu\text{V/m}$]
All detected emissions are more than 20 dB below the limit.		

Plots: 20 MHz channel bandwidth


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel

Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel

12.7 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter	
Detector:	Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	120 kHz
Video bandwidth:	500 kHz
Span:	30 MHz to 1 GHz
Test setup:	See sub clause 8.1 – A See sub clause 8.2 – B See sub clause 8.3 – A
Measurement uncertainty:	See chapter 9

Limits:

TX Spurious Emissions Radiated		
§15.209 / RSS-247		
Frequency (MHz)	Field Strength (dB μ V/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3
§15.407		
Outside the restricted bands!	-27 dBm / MHz	

Plots: 20 MHz channel bandwidth

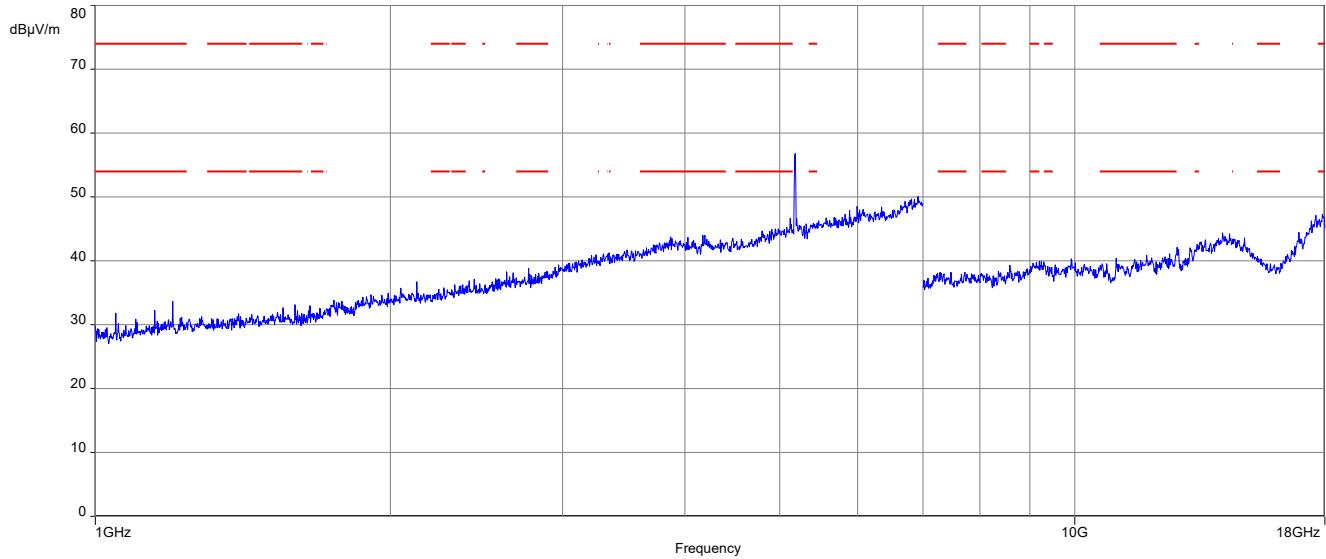
Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; valid for all channels

Results:

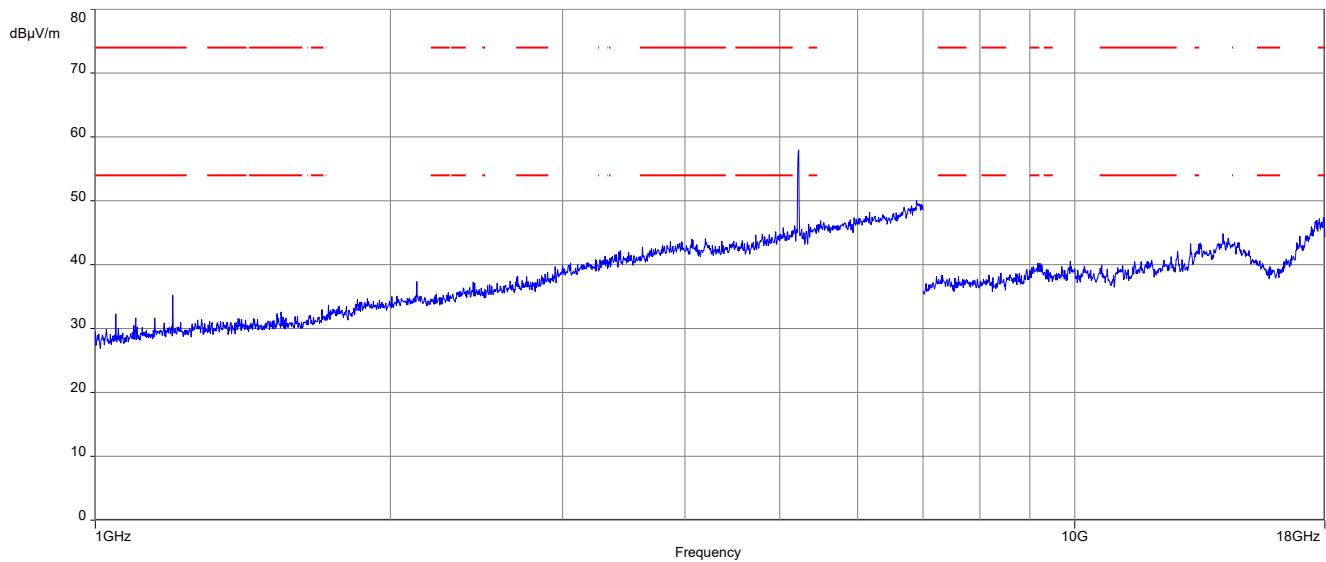
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
349.997	31.64	36.0	4.4	1000	120.0	270.0	H	26	17
426.037	24.61	36.0	11.4	1000	120.0	100.0	V	45	19
449.996	24.75	36.0	11.3	1000	120.0	100.0	V	305	18
693.208	11.93	36.0	24.1	1000	120.0	400.0	H	40	22
850.021	23.63	36.0	12.4	1000	120.0	246.0	H	10	24
950.218	15.36	36.0	20.6	1000	120.0	141.0	H	225	25

12.8 Spurious emissions radiated 1 GHz to 40 GHz

Measurement:

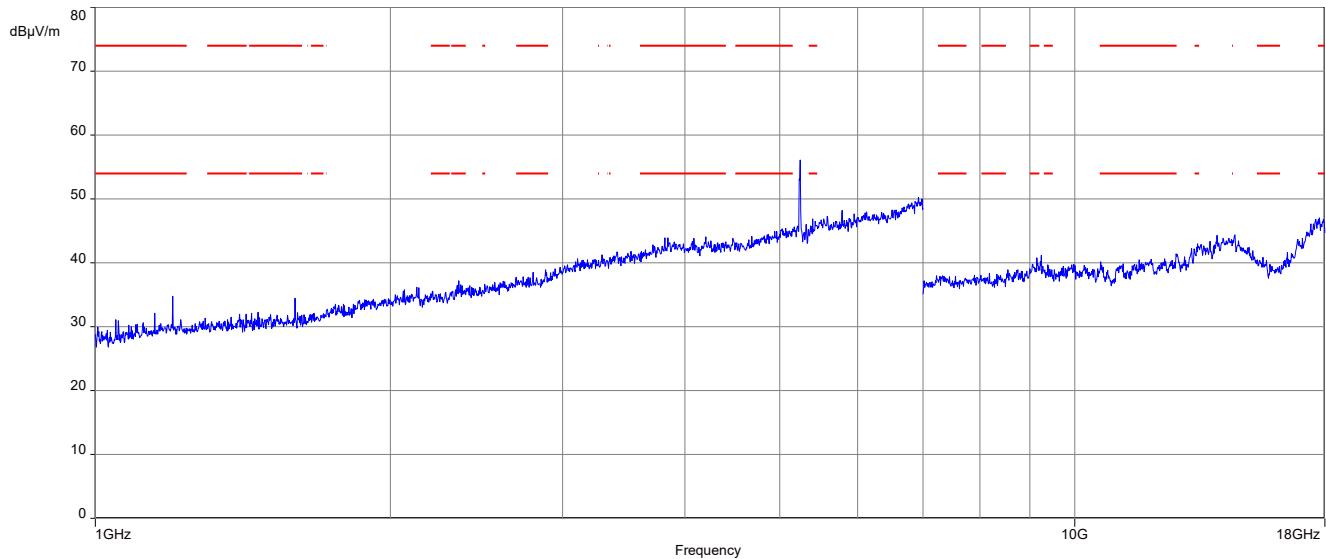

Measurement parameter	
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Test setup:	See sub clause 8.2 – B See sub clause 8.3 – A
Measurement uncertainty:	See chapter 9

Limits:


TX Spurious Emissions Radiated		
§15.209 / RSS-247		
Frequency (MHz)	Field Strength (dB μ V/m)	Measurement distance
Above 960	54.0	3
§15.407		
Outside the restricted bands!	-27 dBm / MHz	

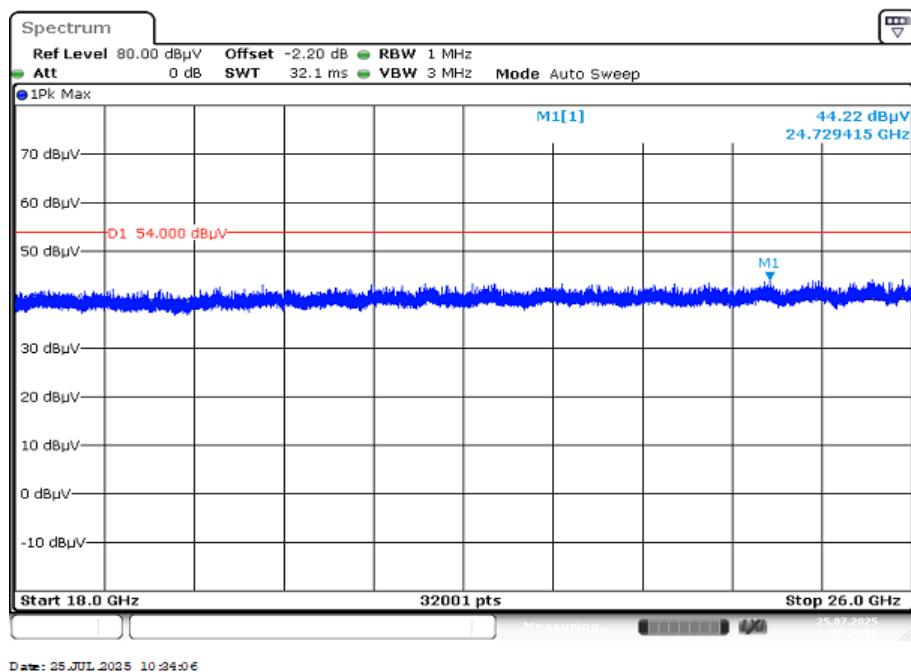
Results: 20 MHz channel bandwidth

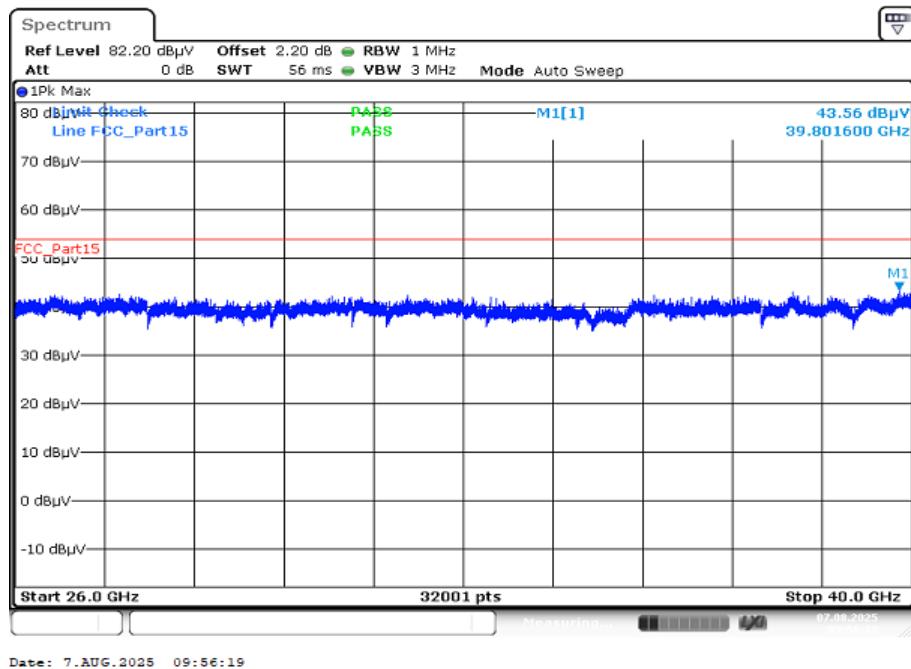
TX Spurious Emissions Radiated [dB μ V/m] / dBm								
U-NII-1 (5150 MHz to 5250 MHz)								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dB μ V/m]	F [MHz]	Detector	Level [dB μ V/m]	F [MHz]	Detector	Level [dB μ V/m]
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
	AVG	-/-		AVG	-/-		AVG	-/-
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-
	AVG	-/-		AVG	-/-		AVG	-/-
For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.		


Plots: 20 MHz channel bandwidth**Plot 1:** 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

NOTE: The carrier signal is notched.

Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel


NOTE: The carrier signal is notched.


Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

NOTE: The carrier signal is notched.

Plot 4: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; valid for all channels

Plot 5: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; valid for all channels

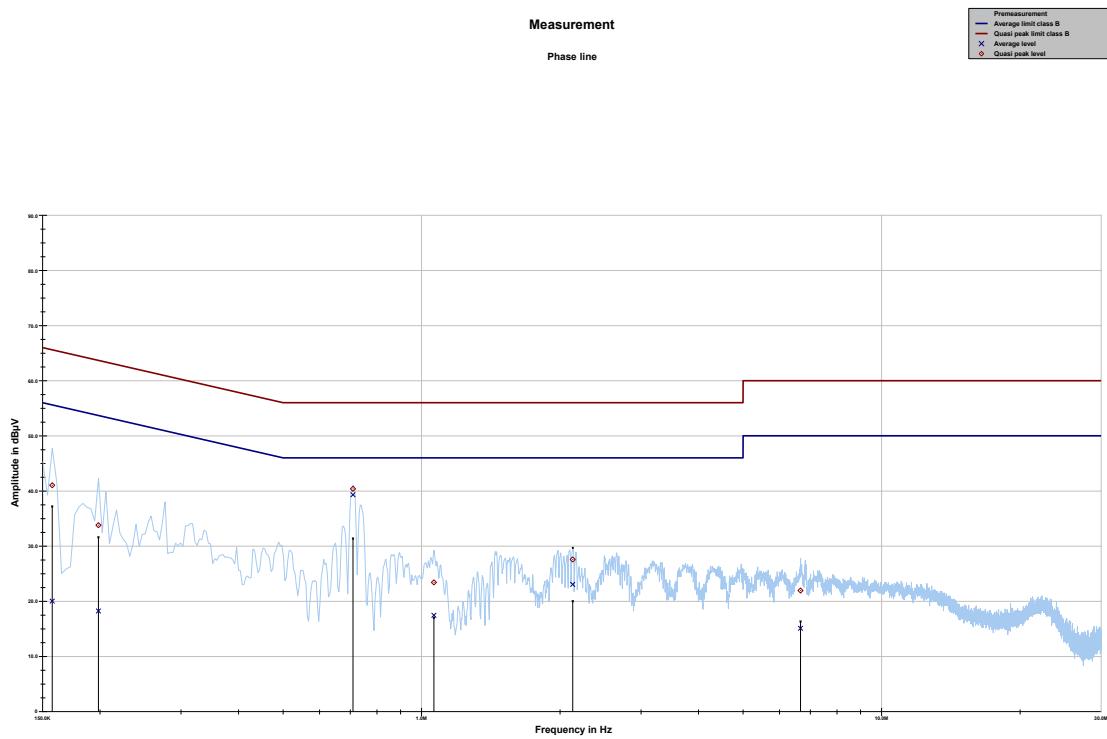
12.9 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

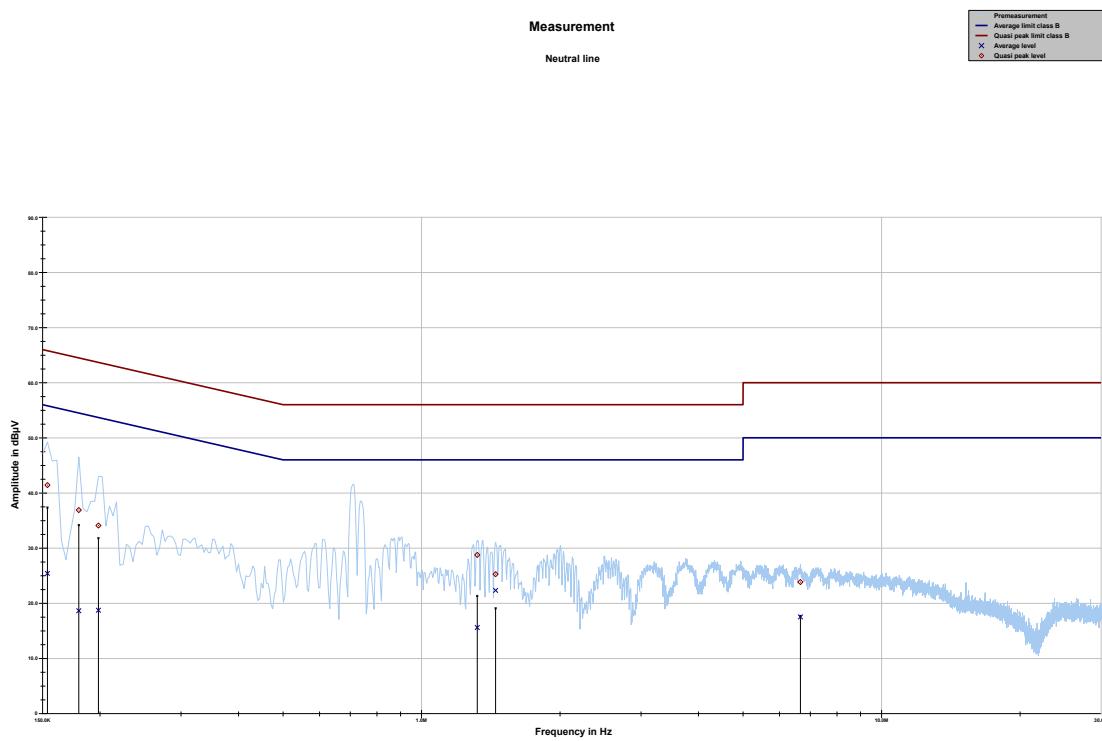
Measurement:

Measurement parameter	
Detector:	Peak - Quasi Peak / Average
Sweep time:	Auto
Video bandwidth:	9 kHz
Resolution bandwidth:	100 kHz
Span:	150 kHz to 30 MHz
Trace mode:	Max Hold
Test setup:	See sub clause 8.5 – A
Measurement uncertainty:	See chapter 9


Limits:

Spurious Emissions Conducted < 30 MHz		
Frequency (MHz)	Quasi-Peak (dB μ V/m)	Average (dB μ V/m)
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30.0	60	50

*Decreases with the logarithm of the frequency


Results:

Spurious Emissions Conducted < 30 MHz [dB μ V/m]		
F [MHz]	Detector	Level [dB μ V/m]
All detected emissions are more than 20 dB below the limit.		

Plots:
Plot 1: 150 kHz to 30 MHz, phase line

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dB μ V	dB	dB μ V	dB μ V	dB	dB μ V
0.157463	41.03	24.56	65.597	20.03	35.76	55.787
0.198506	33.80	29.87	63.673	18.23	36.38	54.614
0.709688	40.38	15.62	56.000	39.31	6.69	46.000
1.064156	23.41	32.59	56.000	17.46	28.54	46.000
2.131294	27.57	28.43	56.000	23.05	22.95	46.000
6.664763	21.93	38.07	60.000	15.10	34.90	50.000

Plot 2: 150 kHz to 30 MHz, neutral line

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dB μ V	dB	dB μ V	dB μ V	dB	dB μ V
0.153731	41.41	24.38	65.796	25.41	30.48	55.893
0.179850	36.90	27.59	64.493	18.64	36.51	55.147
0.198506	34.09	29.58	63.673	18.73	35.88	54.614
1.321613	28.75	27.25	56.000	15.58	30.42	46.000
1.448475	25.26	30.74	56.000	22.33	23.67	46.000
6.661031	23.85	36.15	60.000	17.51	32.49	50.000

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

AVG	Average
C	Compliant
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz
CAC	Channel availability check
CW	Clean wave
DC	Duty cycle
DFS	Dynamic frequency selection
DSSS	Dynamic sequence spread spectrum
DUT	Device under test
EN	European Standard
ETSI	European Telecommunications Standards Institute
EMC	Electromagnetic Compatibility
EUT	Equipment under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
FHSS	Frequency hopping spread spectrum
FVIN	Firmware version identification number
GNSS	Global Navigation Satellite System
GUE	GNSS User Equipment
HMN	Host marketing name
HVIN	Hardware version identification number
HW	Hardware
IC	Industry Canada
Inv. No.	Inventory number
MC	Modulated carrier
NA	Not applicable
NC	Not compliant
NOP	Non occupancy period
NP	Not performed
OBW	Occupied bandwidth
OC	Operating channel
OCW	Operating channel bandwidth
OFDM	Orthogonal frequency division multiplexing
OOB	Out of band
OP	Occupancy period
PER	Packet error rate
PMN	Product marketing name
PP	Positive peak
QP	Quasi peak
RLAN	Radio local area network
S/N or SN	Serial number
SW	Software
UUT	Unit under test
WLAN	Wireless local area network

15 Document history

Version	Applied changes	Date of release
R01	Initial release	2025-08-08
R02	Added FVIN information	2025-09-23

END OF TEST REPORT