

Report No. : EED32I00185904 Page 1 of 83

TEST REPORT

Product: WCDMA Digital Mobile Phone

Trade mark : RugGear

Model/Type reference : RG310, RG310EX, RG320EX

Serial Number : N/A

Report Number : EED32I00185904

FCC ID : ZLE-RG310

Date of Issue : Jul. 18, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Power Idea Technology Limited.

4th Floor, A Section, Languang Science&technology Xinxi RD,
Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom-chen

Compiled by:

Approved by:

Kevin yang (Project Engineer)

Tom chen (Test Project)

Sheek Luo (Reviewer)

Sheek Luo (Lab supervisor)

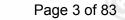
Jul. 18, 2016

Check No.: 2384307786

Page 2 of 83

2 Version

Version No.	Date	Description
00	Jul. 18, 2016	Original
	0.50	



3 Test Summary

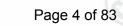
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

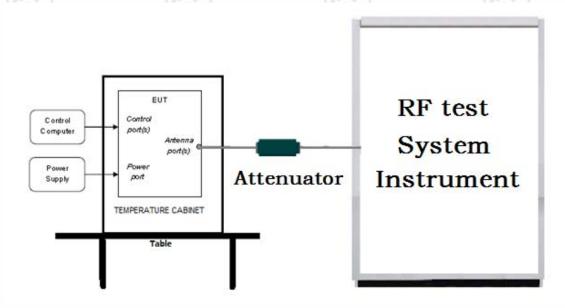
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: RG310, RG310EX, RG320EX


Only the model RG310 was tested, the PCB, Schematic, Hardware etc were identical for the above models, Only different model name due to difference agent and marketing purposes.

4 Content


	PAGE						
2 VERSION	I		•••••	•••••	•••••		2
3 TEST SU	MMARY		•••••	•••••	•••••		3
4 CONTEN	Т		•••••	•••••	•••••	•••••	4
5 TEST RE	QUIREMENT	•••••		•••••		••••••	5
5.1 Test	SETUP						5
	For Conducted test						
	For Radiated Emiss						
	For Conducted Emi						
	ENVIRONMENT						
	L INFORMATION						
	IT INFORMATION						
	T INFORMATION ERAL DESCRIPTION O						
	OUCT SPECIFICATION						
6.4 Desc	RIPTION OF SUPPOR	T UNITS					9
	LOCATION						
	FACILITYSTANDA						
	RMALITIES FROM ST						
6.9 OTHE	R INFORMATION REC	QUESTED BY TH	HE CUSTOMER.				10
	ASUREMENT UNCERT						
7 EQUIPME	ENT LIST		•••••	•••••	•••••	•••••	11
8 RADIO T	ECHNICAL REQUI	REMENTS S	PECIFICATIO	N	•••••	•••••	13
Apper	ndix A): Conducted	Peak Output I	Power				14
Apper	ndix B): 6dB Occupi	ed Bandwidth	1				15
	ndix C): Band-edge						
	ndix D): RF Conduc ndix E): Power Spec	•					
	ndix E): Power Spec ndix F): Antenna Re	•					
	ndix G): AC Power L						
	ndix H): Restricted b						
	ndix I): Radiated Sp						
	APHS OF TEST SE						
PHOTOGR	APHS OF EUT CO	NSTRUCTIO	NAL DETAILS	S	••••••	•••••	69

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

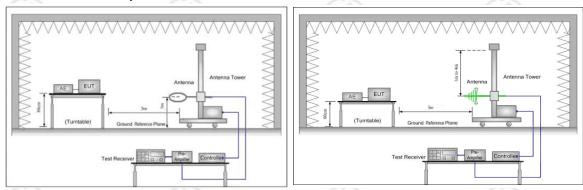


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 83

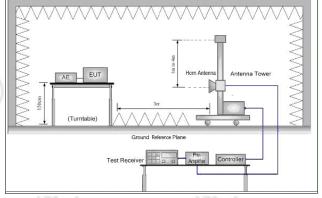
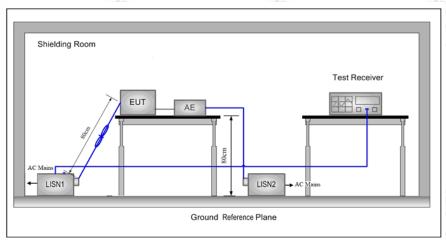


Figure 3. Above 1GHz



Page 6 of 83

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

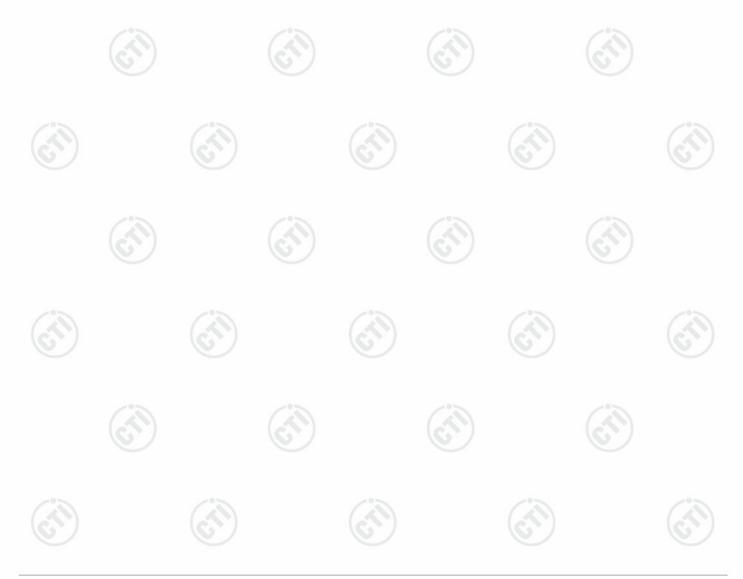
Operating Environment:			
Temperature:	21°C	(6.)	6.
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		

5.3 Test Condition

Test channel:

Took Mode	Tv	RF Channel			
Test Mode	Tx	Low(L)	Middle(M)	High(H)	
000 44h/a/a/LIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)		2412MHz	2437MHz	2462MHz	
902 11p/UT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	Keep the EUT transmitte channel(s).	Keep the EUT transmitted the continuous modulation test signal at the specific channel(s).			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$


Page 7 of 83

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			8	02.11b					
Data Rate		1Mbp	s 2Mbp	s 5.5Mb _l	os 11Mbp	s			
Power(dBm)		16.01	16.1	0 16.14	16.16				
Mode		802.11g							
Data Rate		6Mbp	s 9Mbp	s 12Mbp	s 18Mbp	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm) (14.36	6 14.3	3 14.32	2 14.30	14.30	14.29	14.25	14.22
Mode			·		802.11r	(HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	4.67	14.66	14.61	14.60	14.57	14.55	14.53	14.50
Mode		802.11n (HT40))			
Data Rate	13.	5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	1	4.29	14.27	14.21	14.20	14.19	14.16	14.15	14.15

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

General Information

6.1 Client Information

Applicant:	Power Idea Technology Limited.		
Address of Applicant:	4th Floor, A Section, Languang Science&technology Industrial Park North, Nanshan, ShenZhen, China	Xinxi RD,	Hi-Tech
Manufacturer:	Power Idea Technology Limited.		
Address of Manufacturer:	4th Floor, A Section, Languang Science&technology Industrial Park North, Nanshan, ShenZhen, China	Xinxi RD,	Hi-Tech

Page 8 of 83

6.2 General Description of EUT

Product Name:	WCDMA Digital Mobile Phone		
Mode No.(EUT):	RG310, RG310EX, RG320EX	/°>	
Test Mode No.:	RG310	(8/2)	
Trade Mark:	RugGear		
EUT Supports Radios application:	Wlan 2.4GHz 802.11b/g/n(HT20&HT40)		
Power Supply:	Model: HKC0055010-2D Input: 100-240V~ 50/60Hz 0.2A Output: 5.0V1.0A		(1)
Battery	Li-ion 3.7V/3600mAh		
Sample Received Date:	Jun. 30, 2016	/ 'S	
Sample tested Date:	Jun. 30, 2016 to Jul. 18, 2016	(2)	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz				
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels				
Channel Separation:	tion: 5MHz				
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, QPSK,BPSK)				
Sample Type:	Portable production				
Test Power Grade:	802.11b: 14, 802.11g: 7, 802.11n(HT20): 7, 802.11n(HT40): 7				
Test Software of EUT:	Engineer Mode				
Antenna Type:	Integral antenna				
Antenna Gain:	1.8dBi				
Test Voltage:	AC 120V/60Hz				

Operation	Frequency ea	ch of channe	el(802.11b/g/n	HT20)			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
199	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		_0_

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Operation Fre	quency each of cha	nnel(802.11n HT	40)		-0
Channel	Frequency	Channel	Frequency	Channel	Frequency
	2422MHz	4	2437MHz	7	2452MHz
2	2427MHz	5	2442MHz		
3	2432MHz	6	2447MHz	-0-	

Page 9 of 83

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 10 of 83

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 83

7 Equipment List

	RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017		
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017		
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017		
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017		
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017		

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3	(C)-J	07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017		
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018		
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017		
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017		
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017		
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017		
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017		
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4	(£)	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	<u> </u>	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017		

Page 13 of 83

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test method	Test item	Verdict	Note
ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	ANSI C63.10/ KDB 558074 ANSI C63.10 ANSI C63.10	ANSI C63.10/ KDB 558074 ANSI C63.10/ ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) Radiated Spurious	ANSI C63.10/ KDB 558074 ANSI C63.10/ ANSI C63.10/ ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) ANSI C63.10 Radiated Spurious Radiated Spurious PASS

Report No. : EED32I00185904 Page 14 of 83

Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	16.16	PASS
11B	MCH	16.44	PASS
11B	нсн	16.44	PASS
11G	LCH	14.36	PASS
11G	MCH	14.83	PASS
11G	НСН	14.78	PASS
11N20SISO	LCH	14.67	PASS
11N20SISO	MCH	14.95	PASS
11N20SISO	HCH	14.97	PASS
11N40SISO	LCH	14.29	PASS
11N40SISO	МСН	14.53	PASS
11N40SISO	НСН	14.59	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 15 of 83

Appendix B): 6dB Occupied Bandwidth

Result Table

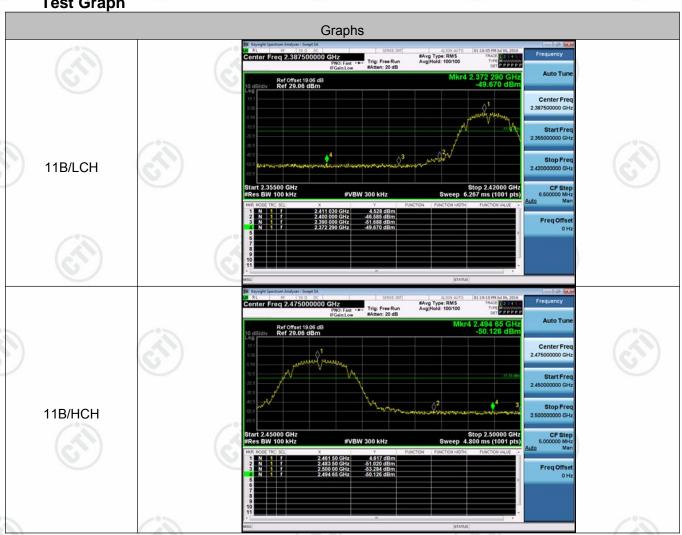
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.02	12.291	PASS	
11B	MCH	9.098	12.319	PASS	
11B	нсн	9.066	12.317	PASS	(0.)
11G	LCH	16.36	16.497	PASS	
11G	MCH	16.38	16.498	PASS	
11G	НСН	16.35	16.500	PASS	Peak
11N20SISO	LCH	17.61	17.659	PASS	detector
11N20SISO	MCH	17.59	17.637	PASS	
11N20SISO	НСН	17.59	17.646	PASS	
11N40SISO	LCH	36.04	36.080	PASS	(65)
11N40SISO	MCH	36.06	36.052	PASS	
11N40SISO	нсн	35.87	36.061	PASS	

Page 16 of 83

Test Graph

Page 18 of 83

Page 19 of 83



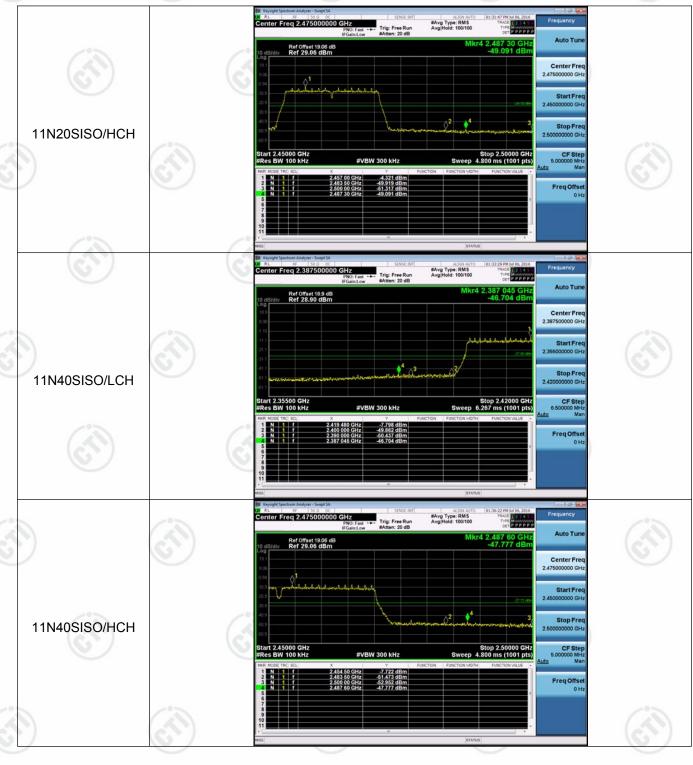
Page 20 of 83 Report No.: EED32I00185904

Appendix C): Band-edge for RF Conducted Emissions **Result Table**


Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	4.528	-49.670	-15.47	PASS
11B	НСН	4.617	-50.126	-15.38	PASS
11G	LCH	-5.183	-49.620	-25.18	PASS
11G	HCH	-4.308	-49.898	-24.31	PASS
11N20SISO	LCH	-4.595	-49.550	-24.6	PASS
11N20SISO	HCH	-4.321	-49.091	-24.32	PASS
11N40SISO	LCH	-7.798	-46.704	-27.8	PASS
11N40SISO	HCH	-7.722	-47.777	-27.72	PASS

Test Graph

Page 21 of 83



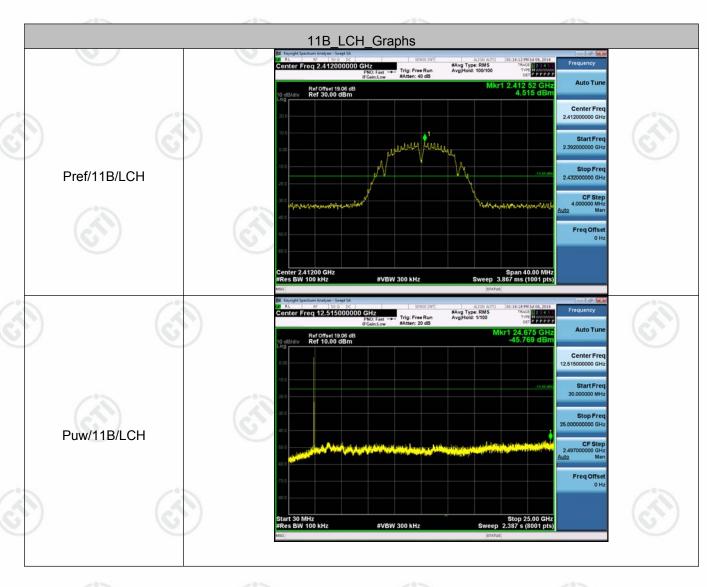
Page 23 of 83

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	4.515	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	4.61	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	4.753	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-4.454	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-4.484	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-4.246	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-4.737	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-4.206	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-4.241	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-7.842	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-7.599	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-7.34	<limit< td=""><td>PASS</td></limit<>	PASS

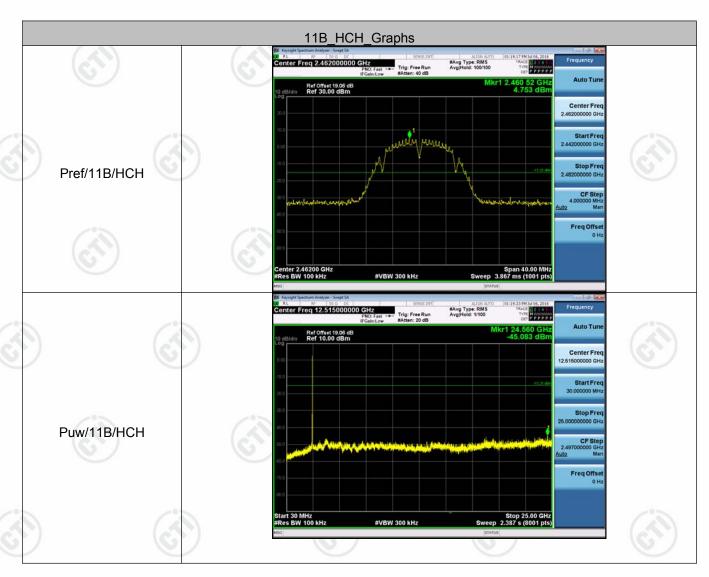
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



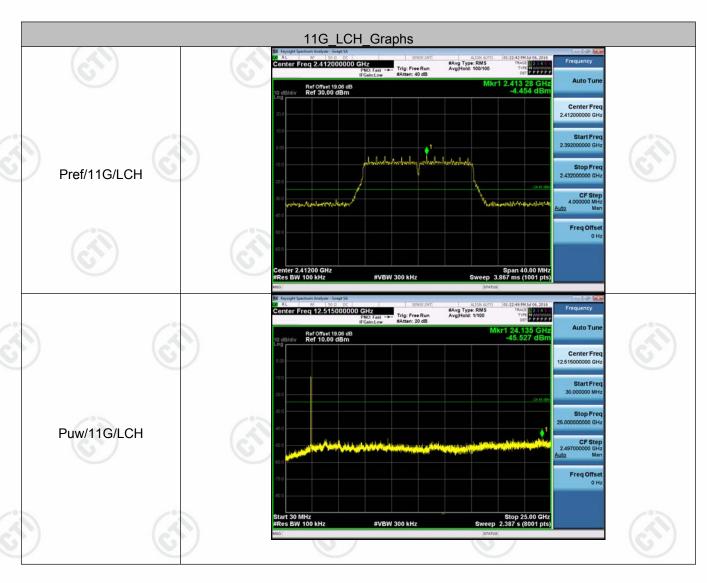
Page 24 of 83

Test Graph

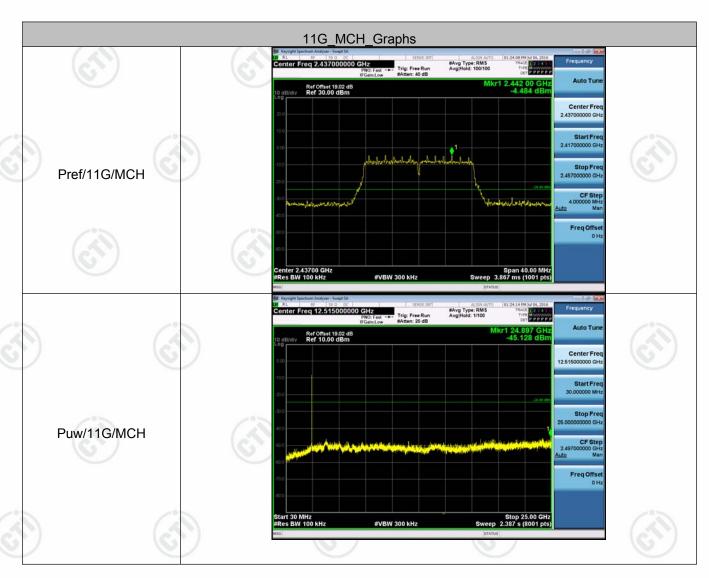
Page 25 of 83



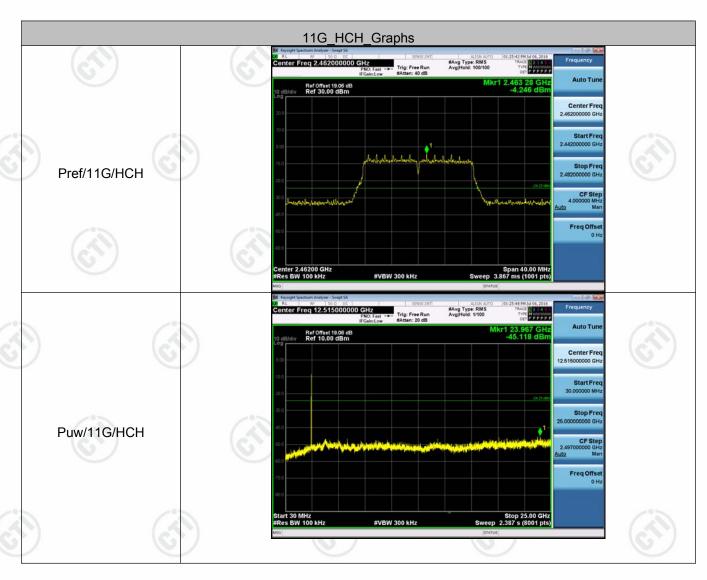
Page 26 of 83



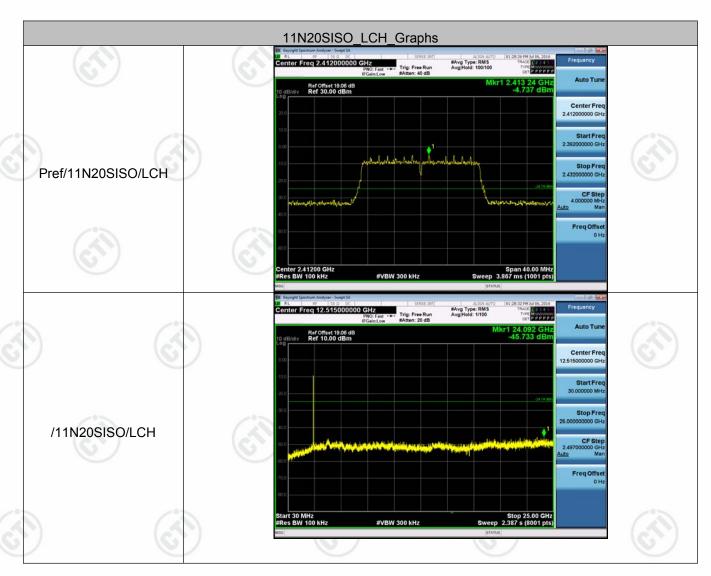
Page 27 of 83



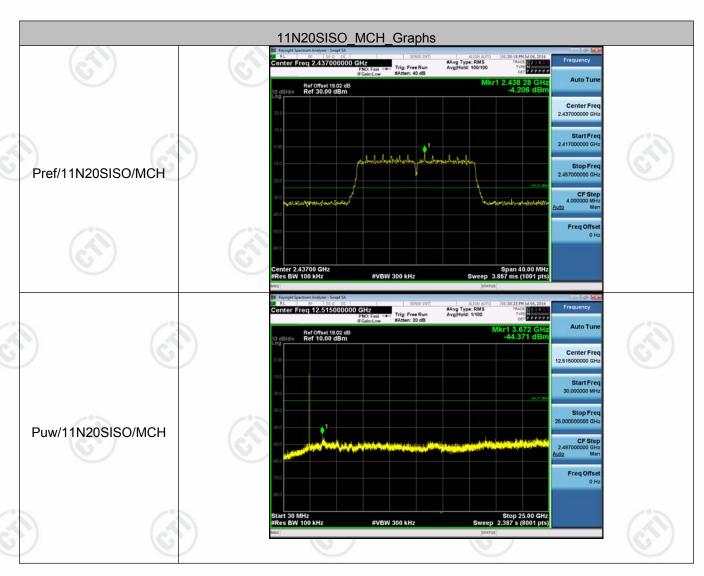
Page 28 of 83



Page 29 of 83

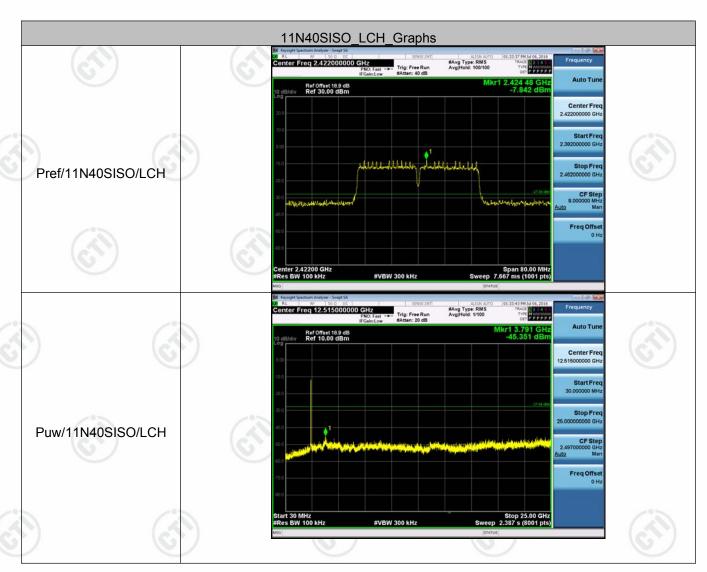


Page 30 of 83



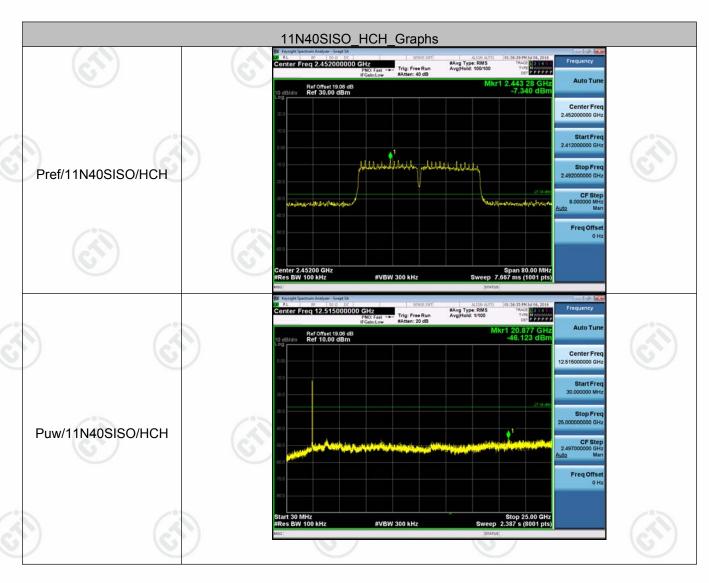
Page 31 of 83

Page 32 of 83

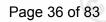


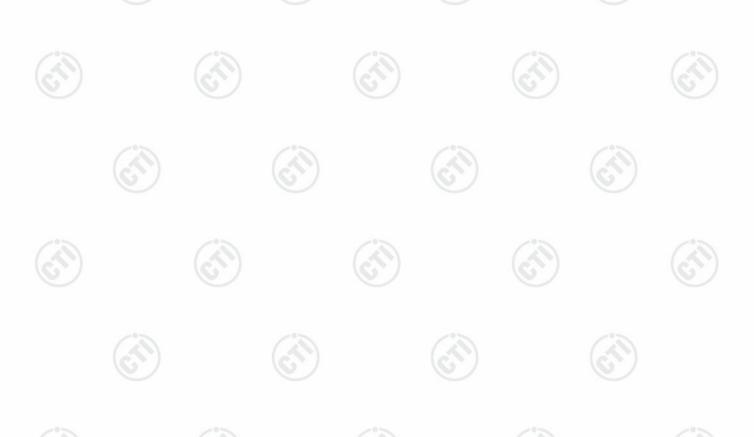
Page 33 of 83

Page 34 of 83



Page 35 of 83

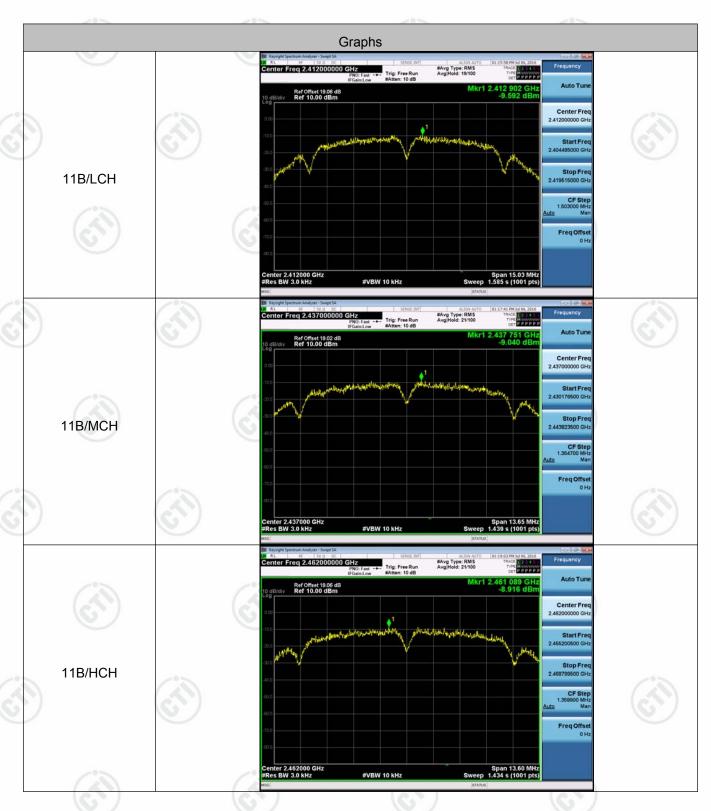




Appendix E): Power Spectral Density

Result Table

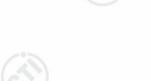
Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-9.592	8	PASS
11B	MCH	-9.040	8	PASS
11B	HCH	-8.916	8	PASS
11G	LCH	-18.725	8	PASS
11G	MCH	-18.002	8	PASS
11G	НСН	-17.834	8	PASS
11N20SISO	LCH	-17.801	8	PASS
11N20SISO	MCH	-17.843	8	PASS
11N20SISO	нсн	-18.645	8	PASS
11N40SISO	LCH	-22.334	8	PASS
11N40SISO	MCH	-21.323	8	PASS
11N40SISO	нсн	-21.741	8	PASS



Page 37 of 83

Test Graph

Page 38 of 83



Page 39 of 83

Page 40 of 83

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

Page 42 of 83

Annendix G). AC Power Line Con

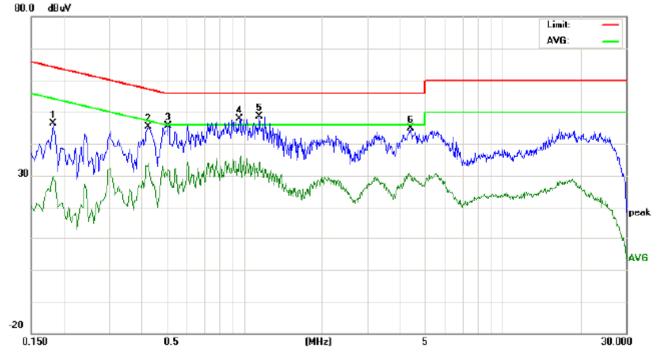
	Test frequency range :150KHz-	JUIVII IZ						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrange		•				
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This							
	distance was between the closest points of the LISN 1 and the EUT. All other units							
	of the EUT and associated equipment was at least 0.8 m from the LISN 2.							
	5) In order to find the maximum the interface cables must measurement.							
_imit:		-0-	/0>					
	Fragues Viscos (MIII-)	Limit (
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* The limit decreases linearly w to 0.50 MHz. NOTE: The lower limit is applic			nge 0.15 MH				
	· · · · · · · · · · · · · · · · · · ·		· · · · ·					
easurement Data								

detected.

Page 43 of 83

Live line:

Ī			Read	ding_Le	vel	Correct	M	leasurem	nent	Lin	nit	Ma	rgin		
	No.	Freq.	(dBuV)		Factor		(dBuV)		(dB	uV)	(0	dB)		
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.1819	38.11	31.30	19.51	9.80	47.91	41.10	29.31	64.39	54.39	-23.29	-25.08	Р	
Ī	2	0.4220	36.29	33.50	24.58	9.90	46.19	43.40	34.48	57.41	47.41	-14.01	-12.93	Р	
Ī	3	0.9100	40.98	36.90	27.62	10.00	50.98	46.90	37.62	56.00	46.00	-9.10	-8.38	Р	
3	4	0.9700	41.10	36.80	27.30	10.00	51.10	46.80	37.30	56.00	46.00	-9.20	-8.70	Р	
6	5	1.0300	41.15	37.00	28.29	10.00	51.15	47.00	38.29	56.00	46.00	-9.00	-7.71	Р	
-	6	1.1500	40.87	36.80	28.09	10.00	50.87	46.80	38.09	56.00	46.00	-9.20	-7.91	Р	



Page 44 of 83

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	36.54	30.30	20.13	9.80	46.34	40.10	29.93	64.39	54.39	-24.29	-24.46	Р	
2	0.4260	35.43	32.60	24.05	9.90	45.33	42.50	33.95	57.33	47.33	-14.83	-13.38	Р	
3	0.5100	35.81	31.00	21.86	9.90	45.71	40.90	31.76	56.00	46.00	-15.10	-14.24	Р	
4	0.9620	37.99	32.40	24.39	10.00	47.99	42.40	34.39	56.00	46.00	-13.60	-11.61	Р	
5	1.1460	38.60	31.40	24.22	10.00	48.60	41.40	34.22	56.00	46.00	-14.60	-11.78	Р	
6	4.4140	34.77	28.40	19.88	10.00	44.77	38.40	29.88	56.00	46.00	-17.60	-16.12	Р	

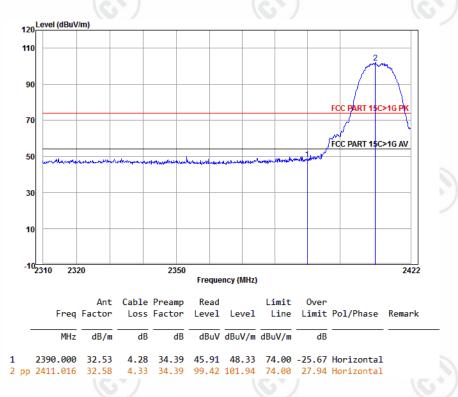
Notes:

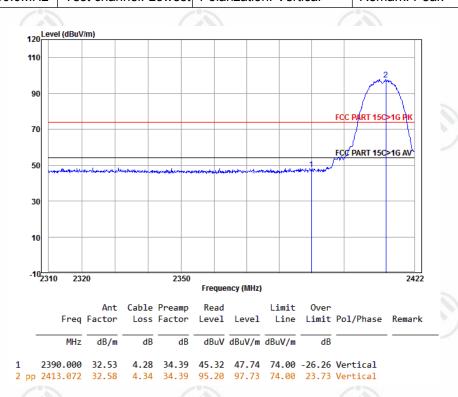
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32I00185904 Page 45 of 83

Appendix H): Restricted bands around fundamental frequency (Radiated)

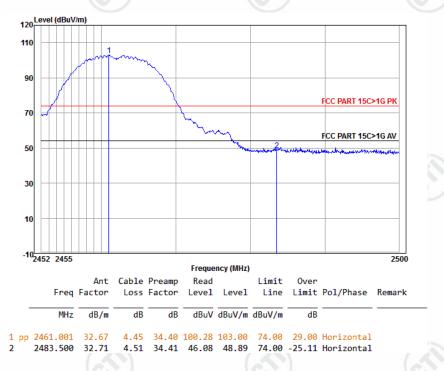
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Above 10Uz	Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	a. T a d b. T w c. T d p d. F tr w e. T B f. P	w 1GHz test procedure a 3 meter semi-and etermine the position he EUT was set 3 mass mounted on the he antenna height is etermine the maximolarizations of the aron each suspected on eantenna was tuned as turned from 0 defined test-receiver system and width with Maximace a marker at the equency to show common and and save the spectral of the second of	on the top of a receptoric camber. To of the highest raneters away from top of a variable-les varied from one num value of the fintenna are set to emission, the EUTed to heights from egrees to 360 degreem was set to Permum Hold Mode. The end of the restrict ompliance. Also moture analyzer planeter to the end of the restrict ompliance. Also moture analyzer planeter of the restrict	he table was adiation. the interfer neight ante meter to for eld strength make the range of meter to rees to find eak Detect cted band one asure any	rence-receinna tower. Our meters h. Both hor measurement ged to its 4 meters I the maxin Function a	ving antenna, w above the groun rizontal and verti ent. worst case and t and the rotatable num reading. nd Specified the transmit is in the restricted	which nd the the e
	g. D to 1, h. 1 i. T	re 1GHz test proce bifferent between ab of fully Anechoic Cha 8GHz the distance if the EUT in the he radiation measuransmitting mode, a depeat above process.	ove is the test site amber change form is 1 meter and table lowest channel, the rements are perfound found the X as	m table 0.8 ble is 1.5 m he Highest brmed in X, kis position	meter to 1 eter). channel Y, Z axis p ing which i	.5 meter(Above positioning for t is worse case.	
₋imit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark	
		30MHz-88MHz	40.		Quasi-pe	eak Value	
		88MHz-216MHz	43.	5	Quasi-pe	eak Value	
		216MHz-960MHz	46.	0	Quasi-pe	eak Value	
		960MHz-1GHz	54.	0	Quasi-pe	eak Value	
	-0		54.	0	Averag	je Value	
		Above 1GHz	V 11.				

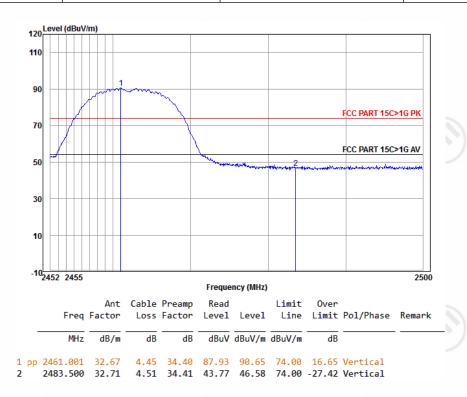



Page 46 of 83

Test plot as follows:

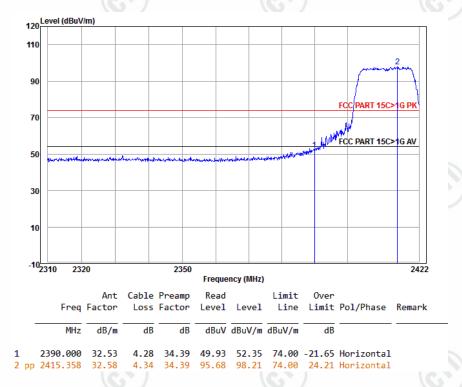
Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

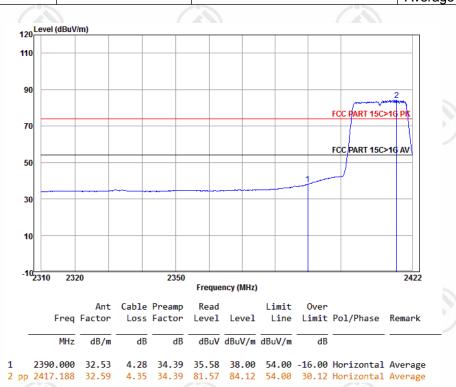

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Page 47 of 83	Page	47	of	83	
---------------	------	----	----	----	--

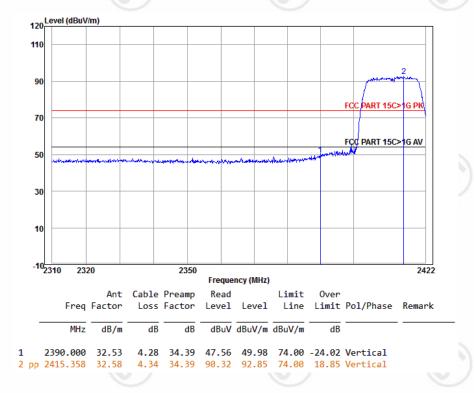
Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

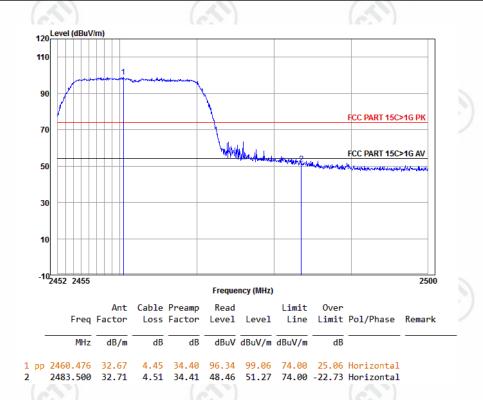

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page	48	of 8	3
raue	40	UI O	,

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

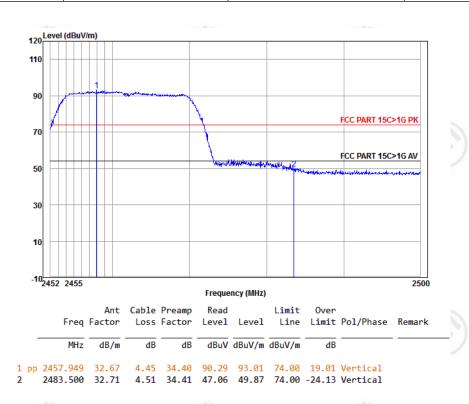

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark:



Page	49	of	83	
------	----	----	----	--

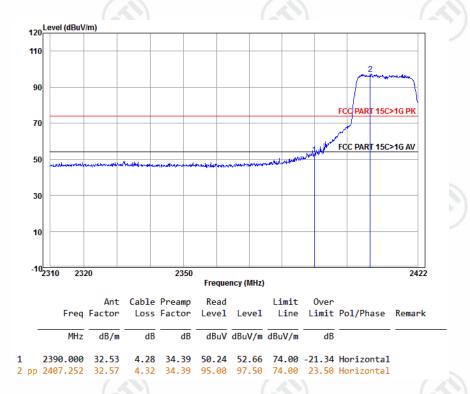
Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

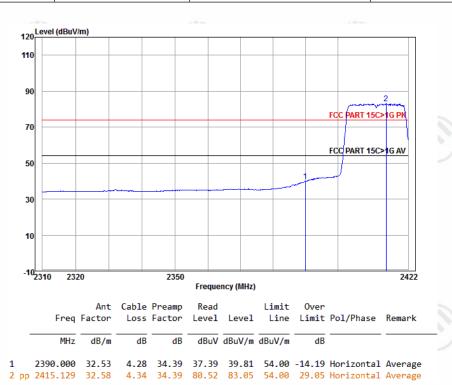
Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak



Page 50 of 83

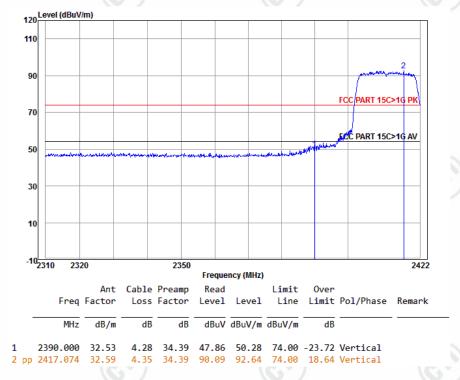
Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

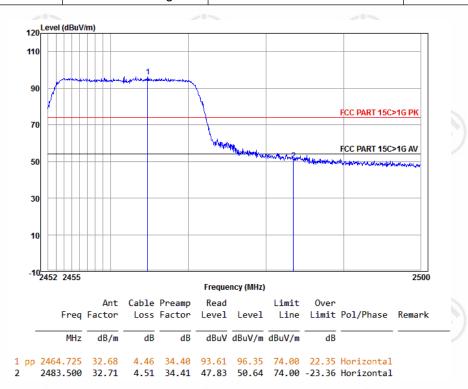

Worse case mode:	802.11g (6Mbps)	0	(0)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page 51 of 83

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

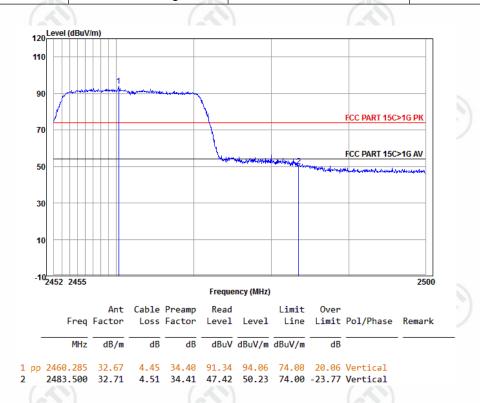

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Page 52 of 83

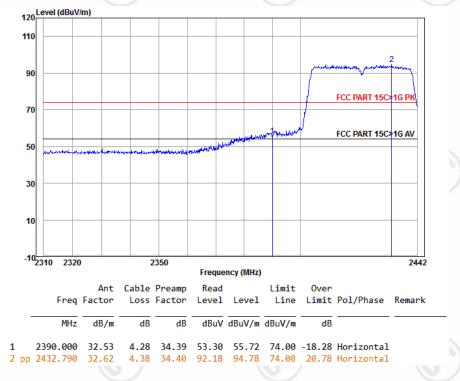
Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

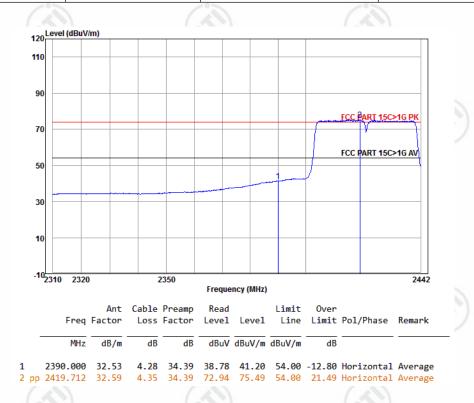

Worse case mode:	802.11n(HT20) (6.5Mbp	os)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak



Page 53 of 83	Page	53	of	83
---------------	------	----	----	----

Worse case mode:	802.11n(HT20) (6.5Mb)	os)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

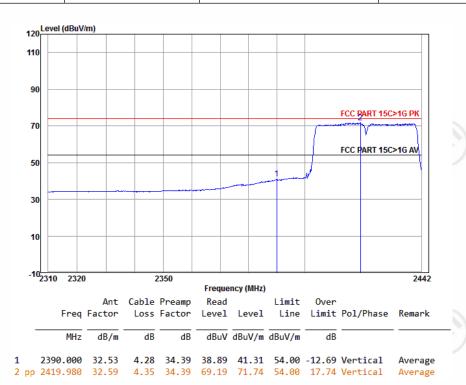

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page	54	of	83	
------	----	----	----	--

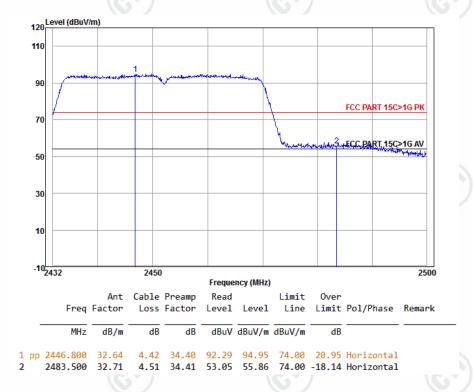
Worse	case mode:	802.11n(HT40) (13.5N	Mbps)	
Freque	ency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

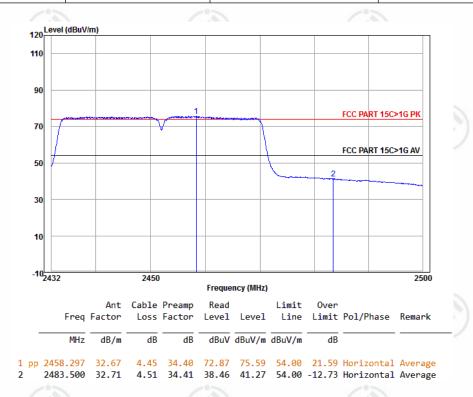

Worse case mode:	802.11n(HT40) (13.5N	Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average



Page 55 of 83

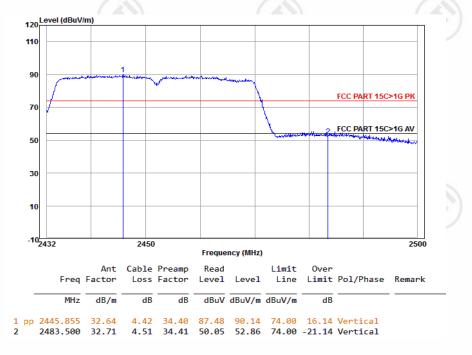
Worse case mode:	802.11n(HT40) (13.5N	Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

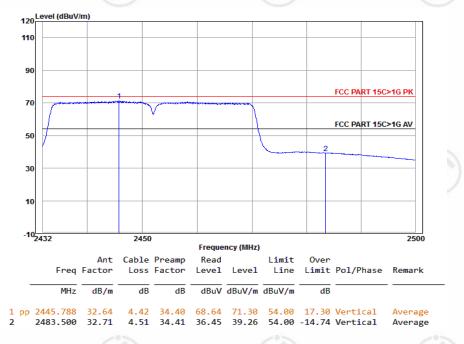

Worse case mode:	802.11n(HT40) (13.5N	Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average



	Page	56	of	83	
--	------	----	----	----	--

Worse case mode:	802.11n(HT40) (13.5MI	ops)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak


Worse case mode:	802.11n(HT40) (13.5M	bps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average



Page 57 of 83

Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT40) (13.5Mbps)		(2)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Remark:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Page 58 of 83

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1011	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

m	mit

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

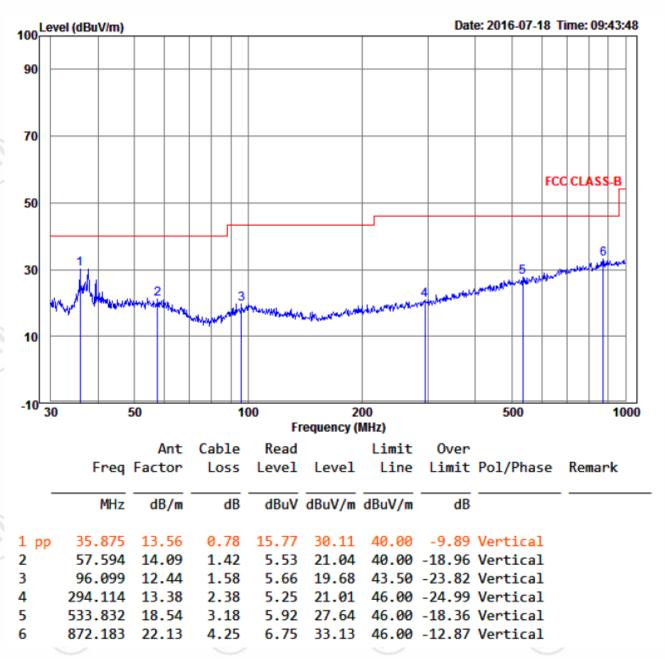
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

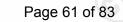
Page 59 of 83

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz 30MHz~1GHz (QP) 100 Level (dBuV/m) Date: 2016-07-18 Time: 09:42:22 90 70 FCC CLASS 50 30 10 30 **50** 100 200 500 1000 Frequency (MHz) Cable Read Limit 0ver Freq Factor Loss Limit Pol/Phase Level

1	48.502	14.98	1.28	5.17	21.43	40.00	-18.57	Horizontal
2	66.499	11.53	1.44	7.25	20.22	40.00	-19.78	Horizontal
3	99.878	13.18	1.57	4.93	19.68	43.50	-23.82	Horizontal
4	285.978	13.21	2.37	5.59	21.17	46.00	-24.83	Horizontal
5	522.718	18.49	3.17	6.09	27.75	46.00	-18.25	Horizontal
6 pp	938.833	22.40	4.32	6.51	33.23	46.00	-12.77	Horizontal

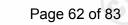




Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1476.193	30.82	2.81	34.69	45.29	44.23	74	-29.77	Pass	Horizontal
2055.225	31.83	3.39	34.31	44.71	45.62	74	-28.38	Pass	Horizontal
3893.520	32.88	5.46	34.59	43.28	47.03	74	-26.97	Pass	Horizontal
4824.000	34.73	5.10	34.35	44.41	49.89	74	-24.11	Pass	Horizontal
7236.000	36.42	6.69	34.90	42.26	50.47	74	-23.53	Pass	Horizontal
9648.000	37.93	7.70	35.07	38.59	49.15	74	-24.85	Pass	Horizontal
1357.254	30.58	2.69	34.80	43.47	41.94	74	-32.06	Pass	Vertical
1880.038	31.52	3.14	34.38	45.91	46.19	74	-27.81	Pass	Vertical
3616.451	33.08	5.50	34.56	44.60	48.62	74	-25.38	Pass	Vertical
4824.000	34.73	5.10	34.35	45.09	50.57	74	-23.43	Pass	Vertical
7236.000	36.42	6.69	34.90	42.19	50.40	74	-23.60	Pass	Vertical
9648.000	37.93	7.70	35.07	38.91	49.47	74	-24.53	Pass	Vertical

	Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1364.182	30.60	2.69	34.80	44.08	42.57	74	-31.43	Pass	Horizontal
	2055.225	31.83	3.39	34.31	44.91	45.82	74	-28.18	Pass	Horizontal
8	3709.691	33.01	5.49	34.57	44.18	48.11	74	-25.89	Pass	Horizontal
	4874.000	34.84	5.09	34.33	43.64	49.24	74	-24.76	Pass	Horizontal
	7311.000	36.43	6.76	34.90	41.74	50.03	74	-23.97	Pass	Horizontal
	9748.000	38.03	7.61	35.05	39.92	50.51	74	-23.49	Pass	Horizontal
	1364.182	30.60	2.69	34.80	44.22	42.71	74	-31.29	Pass	Vertical
	1773.127	31.35	3.06	34.46	42.93	42.88	74	-31.12	Pass	Vertical
	3598.087	33.09	5.51	34.56	45.17	49.21	74	-24.79	Pass	Vertical
	4874.000	34.84	5.09	34.33	43.25	48.85	74	-25.15	Pass	Vertical
2.5	7311.000	36.43	6.76	34.90	41.72	50.01	74	-23.99	Pass	Vertical
1	9748.000	38.03	7.61	35.05	39.11	49.70	74	-24.30	Pass	Vertical



Test mode:	802.11b(11	Mbps)	Test Fred	juency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1428.142	30.73	2.76	34.74	45.92	44.67	74	-29.33	Pass	Horizontal
2086.856	31.90	3.48	34.32	45.76	46.82	74	-27.18	Pass	Horizontal
4924.000	34.94	5.07	34.32	44.83	50.52	74	-23.48	Pass	Horizontal
6561.030	36.19	6.87	34.65	41.39	49.80	74	-24.20	Pass	Horizontal
7386.000	36.44	6.83	34.90	39.74	48.11	74	-25.89	Pass	Horizontal
9848.000	38.14	7.53	35.03	39.29	49.93	74	-24.07	Pass	Horizontal
1479.955	30.83	2.81	34.69	43.94	42.89	74	-31.11	Pass	Vertical
1978.230	31.67	3.21	34.31	42.22	42.79	74	-31.21	Pass	Vertical
4014.288	32.84	5.43	34.60	42.51	46.18	74	-27.82	Pass	Vertical
4924.000	34.94	5.07	34.32	42.52	48.21	74	-25.79	Pass	Vertical
7386.000	36.44	6.83	34.90	41.78	50.15	74	-23.85	Pass	Vertical
9848.000	38.14	7.53	35.03	39.07	49.71	74	-24.29	Pass	Vertical

	Test mode:	802.11g(6M	1bps)	Test Freq	uency: 24	12MHz	Remark: Peak			
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	1457.523	30.79	2.79	34.71	46.04	44.91	74	-29.09	Pass	Horizontal
	1870.490	31.51	3.14	34.39	45.94	46.20	74	-27.80	Pass	Horizontal
à	3883.622	32.88	5.46	34.59	44.43	48.18	74	-25.82	Pass	Horizontal
	4824.000	34.73	5.10	34.35	43.93	49.41	74	-24.59	Pass	Horizontal
	7236.000	36.42	6.69	34.90	40.38	48.59	74	-25.41	Pass	Horizontal
	9648.000	37.93	7.70	35.07	39.80	50.36	74	-23.64	Pass	Horizontal
	1621.985	31.10	2.94	34.57	46.23	45.70	74	-28.30	Pass	Vertical
	3384.850	33.26	5.54	34.54	43.70	47.96	74	-26.04	Pass	Vertical
	4824.000	34.73	5.10	34.35	43.56	49.04	74	-24.96	Pass	Vertical
	6235.364	36.02	7.19	34.45	39.93	48.69	74	-25.31	Pass	Vertical
2 10	7236.000	36.42	6.69	34.90	42.06	50.27	74	-23.73	Pass	Vertical
(9648.000	37.93	7.70	35.07	38.83	49.39	74	-24.61	Pass	Vertical

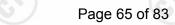
Test mode:	802.11g(6M	1bps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.69	34.80	43.83	42.31	74	-31.69	Pass	Horizontal
2018.928	31.74	3.29	34.30	43.02	43.75	74	-30.25	Pass	Horizontal
3738.129	32.99	5.48	34.58	44.36	48.25	74	-25.75	Pass	Horizontal
4874.000	34.84	5.09	34.33	42.90	48.50	74	-25.50	Pass	Horizontal
7311.000	36.43	6.76	34.90	42.39	50.68	74	-23.32	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.70	50.29	74	-23.71	Pass	Horizontal
1483.727	30.84	2.81	34.69	43.40	42.36	74	-31.64	Pass	Vertical
1894.450	31.54	3.15	34.37	44.82	45.14	74	-28.86	Pass	Vertical
3757.208	32.97	5.48	34.58	44.02	47.89	74	-26.11	Pass	Vertical
4874.000	34.84	5.09	34.33	42.97	48.57	74	-25.43	Pass	Vertical
7311.000	36.43	6.76	34.90	42.46	50.75	74	-23.25	Pass	Vertical
9748.000	38.03	7.61	35.05	39.39	49.98	74	-24.02	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1406.496	30.68	2.74	34.76	46.37	45.03	74	-28.97	Pass	Horizontal
1978.230	31.67	3.21	34.31	41.62	42.19	74	-31.81	Pass	Horizontal
3325.070	33.31	5.56	34.54	44.62	48.95	74	-25.05	Pass	Horizontal
4924.000	34.94	5.07	34.32	43.71	49.40	74	-24.60	Pass	Horizontal
7386.000	36.44	6.83	34.90	42.10	50.47	74	-23.53	Pass	Horizontal
9848.000	38.14	7.53	35.03	39.15	49.79	74	-24.21	Pass	Horizontal
1472.440	30.82	2.80	34.70	45.49	44.41	74	-29.59	Pass	Vertical
2024.074	31.76	3.30	34.31	44.27	45.02	74	-28.98	Pass	Vertical
3953.443	32.83	5.45	34.60	42.89	46.57	74	-27.43	Pass	Vertical
4924.000	34.94	5.07	34.32	42.87	48.56	74	-25.44	Pass	Vertical
7386.000	36.44	6.83	34.90	41.33	49.70	74	-24.30	Pass	Vertical
9848.000	38.14	7.53	35.03	39.40	50.04	74	-23.96	Pass	Vertical



Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2412M	lHz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lim (dBµ\	-	Over Limit (dB)	Result	Antenna Polaxis
1395.796	30.66	2.73	34.77	45.63	44.25	74	1	-29.75	Pass	Horizontal
2070.980	31.86	3.44	34.32	45.31	46.29	74		-27.71	Pass	Horizontal
3815.033	32.93	5.47	34.58	43.46	47.28	74	1 (2	-26.72	Pass	Horizontal
4824.000	34.73	5.10	34.35	43.07	48.55	74	16	-25.45	Pass	Horizontal
7236.000	36.42	6.69	34.90	41.49	49.70	74	ļ	-24.30	Pass	Horizontal
9648.000	37.93	7.70	35.07	40.28	50.84	74	ļ	-23.16	Pass	Horizontal
1413.674	30.70	2.74	34.75	46.62	45.31	74	ļ	-28.69	Pass	Vertical
1933.424	31.60	3.18	34.34	42.11	42.55	74	ļ	-31.45	Pass	Vertical
3480.968	33.19	5.53	34.55	43.31	47.48	74	ļ	-26.52	Pass	Vertical
4824.000	34.73	5.10	34.35	43.19	48.67	74	ļ	-25.33	Pass	Vertical
7236.000	36.42	6.69	34.90	41.57	49.78	74		-24.22	Pass	Vertical
9648.000	37.93	7.70	35.07	40.01	50.57	74	16	-23.43	Pass	Vertical

Test mode:	: 802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2437M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	7.1	mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1232.117	30.30	2.55	34.93	45.66	43.58	7	4	-30.42	Pass	Horizontal
1837.456	31.46	3.11	34.41	46.06	46.22	7	4	-27.78	Pass	Horizontal
3410.797	33.24	5.54	34.54	44.34	48.58	7	4	-25.42	Pass	Horizontal
4874.000	34.84	5.09	34.33	42.34	47.94	7	4	-26.06	Pass	Horizontal
7311.000	36.43	6.76	34.90	42.30	50.59	7	4	-23.41	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.56	50.15	7	4	-23.85	Pass	Horizontal
1247.899	30.34	2.57	34.91	45.40	43.40	7	4	-30.60	Pass	Vertical
1659.574	31.16	2.97	34.54	46.59	46.18	7	4	-27.82	Pass	Vertical
3507.652	33.17	5.52	34.55	43.55	47.69	7	4	-26.31	Pass	Vertical
4874.000	34.84	5.09	34.33	43.62	49.22	7	4	-24.78	Pass	Vertical
7311.000	36.43	6.76	34.90	41.58	49.87	7	4	-24.13	Pass	Vertical
9748.000	38.03	7.61	35.05	39.13	49.72	7	4	-24.28	Pass	Vertical



Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2462M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lin (dBµ\	-	Over Limit (dB)	Result	Antenna Polaxis
1402.920	30.68	2.73	34.76	46.78	45.43	74	4	-28.57	Pass	Horizontal
2102.853	31.93	3.53	34.32	46.66	47.80	74	1	-26.20	Pass	Horizontal
3534.541	33.14	5.52	34.56	43.55	47.65	74	1 (4	-26.35	Pass	Horizontal
4924.000	34.94	5.07	34.32	43.05	48.74	74	1	-25.26	Pass	Horizontal
7386.000	36.44	6.83	34.90	41.65	50.02	74	4	-23.98	Pass	Horizontal
9848.000	38.14	7.53	35.03	38.62	49.26	74	4	-24.74	Pass	Horizontal
1350.362	30.57	2.68	34.81	43.88	42.32	74	1	-31.68	Pass	Vertical
1973.201	31.66	3.21	34.32	41.82	42.37	74	1	-31.63	Pass	Vertical
3552.582	33.13	5.51	34.56	42.66	46.74	74	4	-27.26	Pass	Vertical
4924.000	34.94	5.07	34.32	43.11	48.80	74	4	-25.20	Pass	Vertical
7386.000	36.44	6.83	34.90	41.78	50.15	74	1	-23.85	Pass	Vertical
9748.000	38.03	7.61	35.05	38.42	49.01	74	1 (-24.99	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5I	Mbps)	Test Freq	uency: 2422l	MHz	Rema	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1238.405	30.32	2.56	34.92	44.83	42.79	74	-31.21	Pass	Horizontal	
1737.384	31.29	3.03	34.48	42.48	42.32	74	-31.68	Pass	Horizontal	
3498.735	33.17	5.52	34.55	43.82	47.96	74	-26.04	Pass	Horizontal	
4844.000	34.77	5.10	34.34	42.09	47.62	74	-26.38	Pass	Horizontal	
7266.000	36.43	6.72	34.90	42.06	50.31	74	-23.69	Pass	Horizontal	
9688.000	37.97	7.66	35.06	39.51	50.08	74	-23.92	Pass	Horizontal	
1689.410	31.21	2.99	34.52	44.74	44.42	74	-29.58	Pass	Vertical	
2229.645	32.21	3.87	34.35	43.13	44.86	74	-29.14	Pass	Vertical	
3728.625	33.00	5.48	34.58	44.11	48.01	74	-25.99	Pass	Vertical	
4844.000	34.77	5.10	34.34	42.09	47.62	74	-26.38	Pass	Vertical	
7266.000	36.43	6.72	34.90	41.24	49.49	74	-24.51	Pass	Vertical	
9688.000	37.97	7.66	35.06	40.27	50.84	74	-23.16	Pass	Vertical	

Test mode: 802.11n(HT40)(13.5Mbps)				Test Freq	MHz	Rema	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1381.656	30.63	2.71	34.78	45.29	43.85	74	-30.15	Pass	Horizontal
1814.218	31.42	3.09	34.43	43.21	43.29	74	-30.71	Pass	Horizontal
3333.545	33.31	5.55	34.54	44.46	48.78	74	-25.22	Pass	Horizontal
4874.000	34.84	5.09	34.33	42.31	47.91	74	-26.09	Pass	Horizontal
7311.000	36.43	6.76	34.90	41.63	49.92	74	-24.08	Pass	Horizontal
9748.000	38.03	7.61	35.05	39.13	49.72	74	-24.28	Pass	Horizontal
1270.334	30.39	2.59	34.89	44.38	42.47	74	-31.53	Pass	Vertical
1988.327	31.68	3.22	34.31	42.43	43.02	74	-30.98	Pass	Vertical
3342.042	33.30	5.55	34.54	43.82	48.13	74	-25.87	Pass	Vertical
4874.000	34.84	5.09	34.33	41.55	47.15	74	-26.85	Pass	Vertical
7311.000	36.43	6.76	34.90	41.68	49.97	74	-24.03	Pass	Vertical
9748.000	38.03	7.61	35.05	39.06	49.65	74	-24.35	Pass	Vertical

Test mode: 802.11n(HT40)(13.5Mbps)				Test Frequency: 2452MHz				Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1235.257	30.31	2.56	34.93	45.96	43.90	74	-30.10	Pass	Horizontal	
1851.542	31.48	3.12	34.40	46.97	47.17	74	-26.83	Pass	Horizontal	
3299.775	33.34	5.56	34.53	44.34	48.71	74	-25.29	Pass	Horizontal	
4904.000	34.90	5.07	34.33	42.08	47.72	74	-26.28	Pass	Horizontal	
7356.000	36.44	6.80	34.90	42.45	50.79	74	-23.21	Pass	Horizontal	
9808.000	38.10	7.56	35.04	39.23	49.85	74	-24.15	Pass	Horizontal	
1698.033	31.23	3.00	34.51	44.10	43.82	74	-30.18	Pass	Vertical	
2003.569	31.71	3.24	34.30	42.11	42.76	74	-31.24	Pass	Vertical	
3376.244	33.27	5.55	34.54	44.69	48.97	74	-25.03	Pass	Vertical	
4904.000	34.90	5.07	34.33	42.37	48.01	74	-25.99	Pass	Vertical	
7356.000	36.44	6.80	34.90	41.07	49.41	74	-24.59	Pass	Vertical	
9808.000	38.10	7.56	35.04	40.02	50.64	74	-23.36	Pass	Vertical	
Damanda										

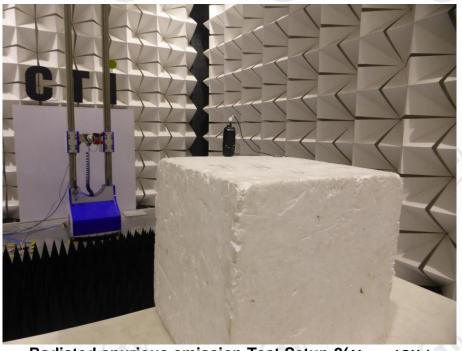
Remark:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Page 67 of 83

PHOTOGRAPHS OF TEST SETUP

Test mode No.: RG310

Radiated spurious emission Test Setup-1(Below 1GHz)

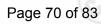
Radiated spurious emission Test Setup-2(Above 1GHz)

Page 68 of 83

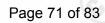
Page 69 of 83

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: RG310


View of Product-1

View of Product-4



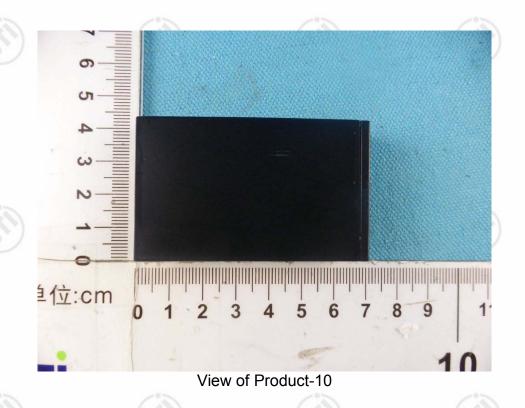
View of Product-5

View of Product-6

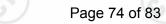


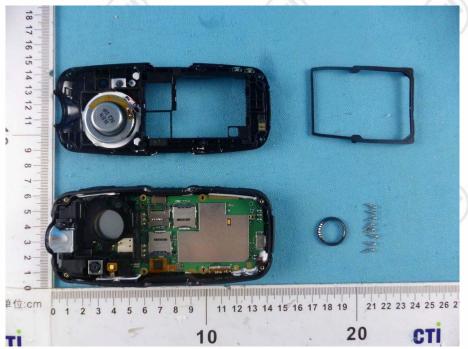
View of Product-7

View of Product-8



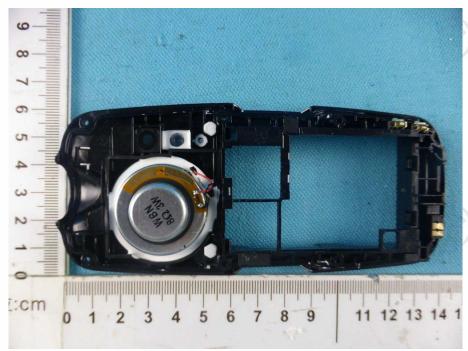
View of Product-9





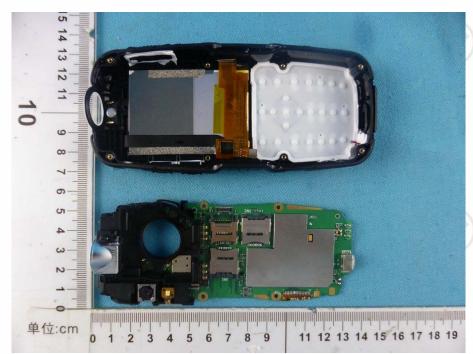
View of Product-11

View of Product-12



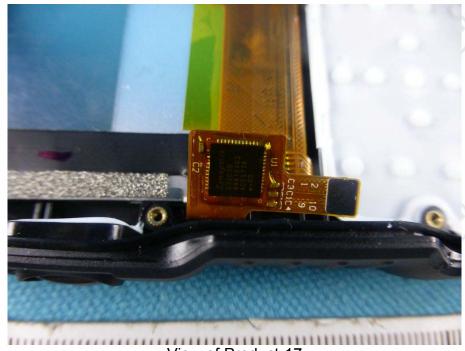
View of Product-13

View of Product-14



View of Product-15

View of Product-16



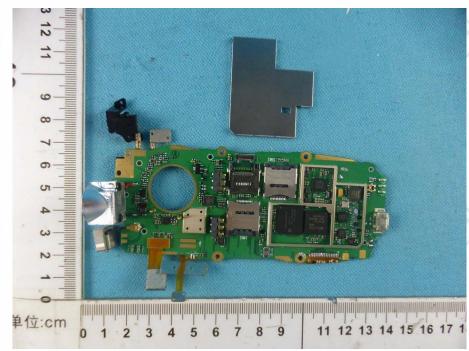
View of Product-17

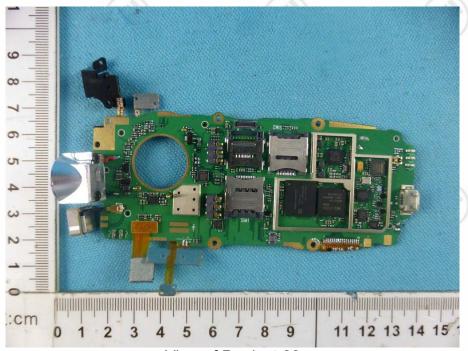
View of Product-18



View of Product-19

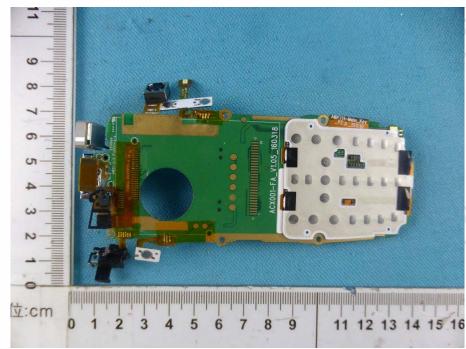
View of Product-20





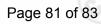
View of Product-21

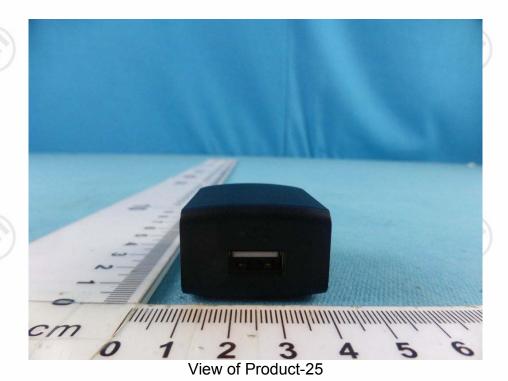
View of Product-22

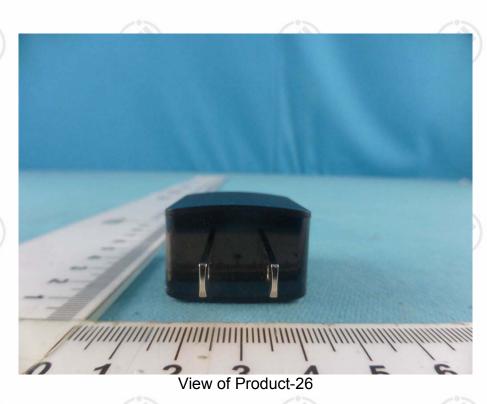


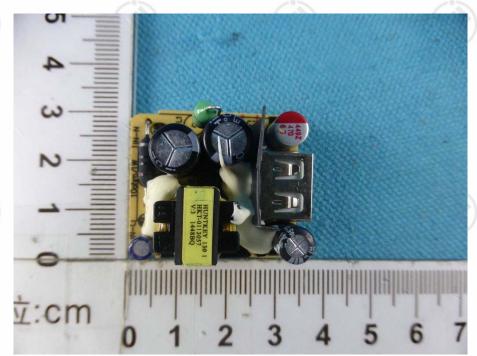
View of Product-23

View of Product-24



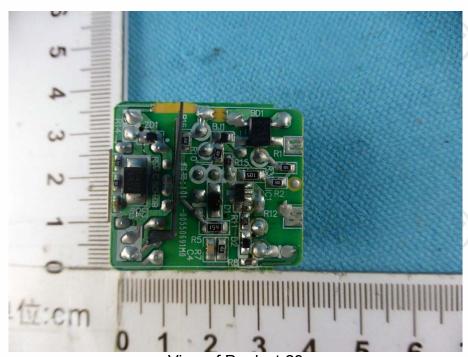


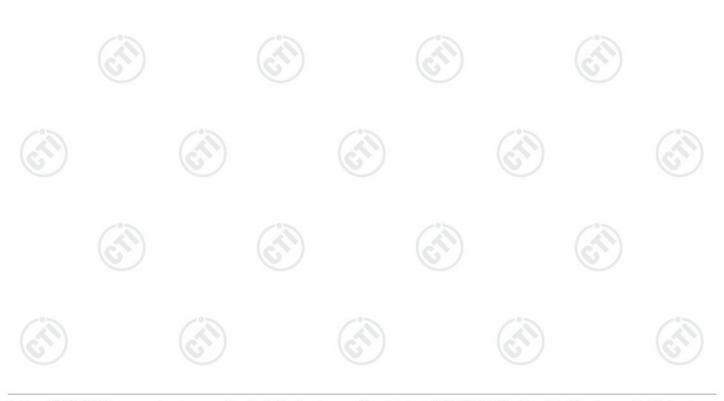




View of Product-27

View of Product-28





View of Product-29

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

