

Report No.: EED32I00185903 Page 1 of 53

TEST REPORT

Product : WCDMA Digital Mobile Phone

Trade mark : RugGear

Model/Type reference : RG310, RG310EX, RG320EX

Serial Number : N/A

Report Number : EED32100185903

FCC ID : ZLE-RG310

Date of Issue : Jul. 18, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Power Idea Technology Limited.
4th Floor, A Section, Languang Science&technology Xinxi RD,
Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom-chen

Compiled by:

Kevin yang (Project Engineer)

Tom chen (Test Project)

Sheek Luo (Reviewer)

Approved by:

Sheek Luo (Lab supervisor)

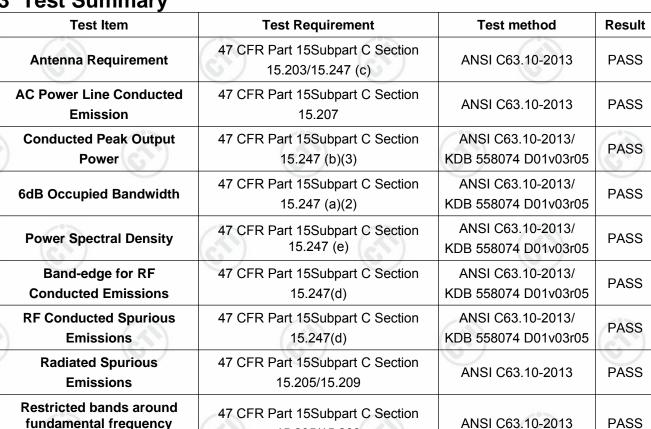
Jul. 18, 2016

Check No.: 2384307786

Page 2 of 53

2 Version

Version No.	Date	Description
00	Jul. 18, 2016	Original



3 Test Summary

Page 3 of 53

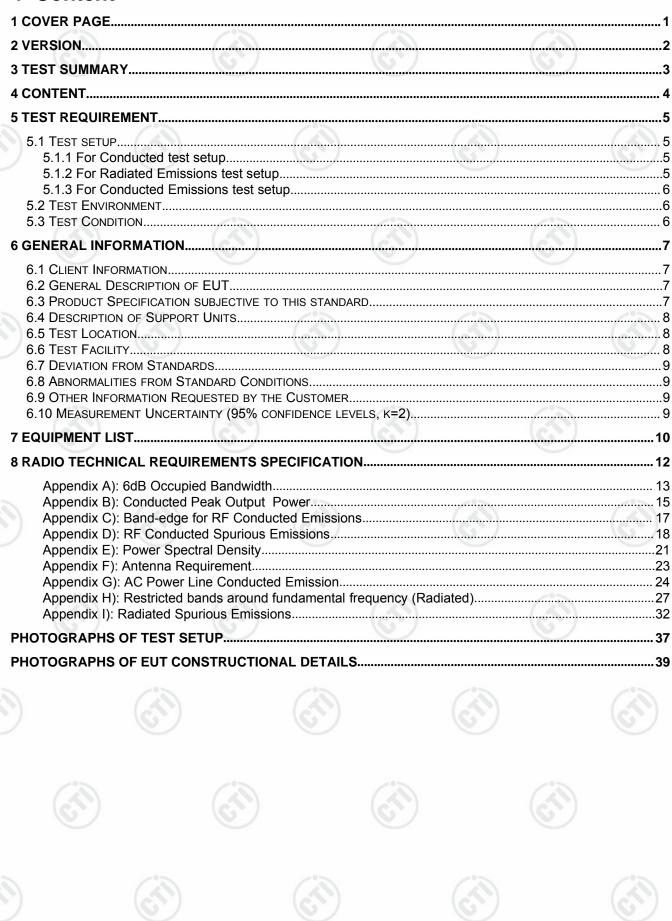
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

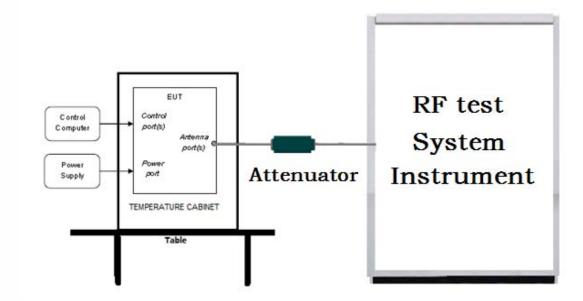
Model No.: RG310, RG310EX, RG320EX

(Radiated Emission)


Only the model RG310 was tested, the PCB, Schematic, Hardware etc were identical for the above models, Only different model name due to difference agent and marketing purposes.

15.205/15.209

Page 4 of 53



Report No. : EED32l00185903 **5 Test Requirement**

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

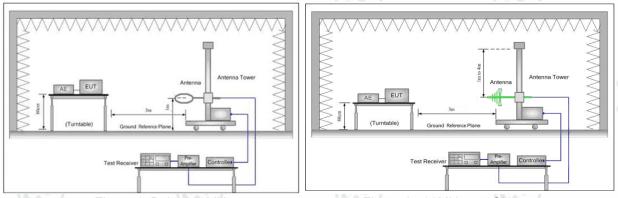
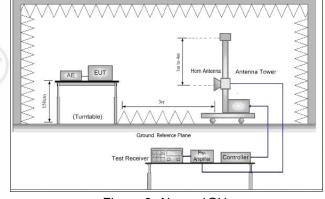
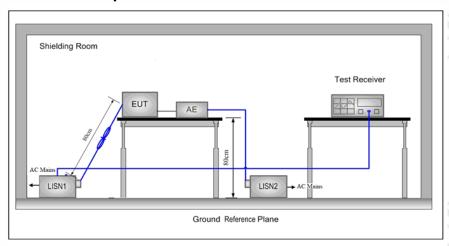


Figure 1. Below 30MHz

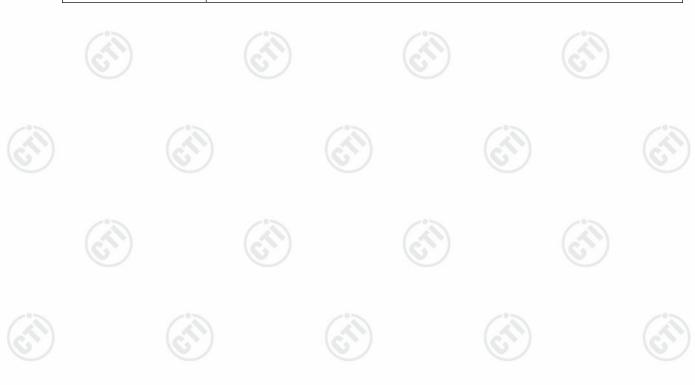
Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

Page 6 of 53

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:		(3)	C'S	(3
Temperature:	21°C	(c, ζ_{2})	(2.53)	(6%)
Humidity:	54% RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

of onarrior.				
Toot Made	Tv		RF Channel	
Test Mode	Tx	Low(L)	Middle(M)	High(H)
GFSK	0400MH - 0400 MH -	Channel 1	Channel 20	Channel 40
Gran	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT at Transmit mode.			

General Information

6.1 Client Information

Applicant:	Power Idea Technology Limited.
Address of Applicant:	4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China
Manufacturer:	Power Idea Technology Limited.
Address of Manufacturer:	4th Floor, A Section, Languang Science&technology Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, China

Page 7 of 53

6.2 General Description of EUT

Product Name:	WCDMA Digital Mobile Phone			
Mode No.(EUT):	RG310, RG310EX, RG320EX		-05	
Test Mode No.:	RG310			
Trade Mark:	RugGear			
EUT Supports Radios application:	Bluetooth V4.0 BLE			
Power Supply:	Model: HKC0055010-2D Input: 100-240V~ 50/60Hz 0.2A Output: 5.0V ==1.0A	Cil		
Battery	Li-ion 3.7V/3600mAh			
Sample Received Date:	Jun. 30, 2016		70~	
Sample tested Date:	Jun. 30, 2016 to Jul. 18, 2016			·

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.0			
Modulation Type:	GFSK	(67)		(0)
Number of Channel:	40			
Sample Type:	Portable production			
Test Power Grade:	N/A	(*)	\cdot\(\)	
Test Software of EUT:	Engineer Mode	(2,5)	(25)	
Antenna Type and Gain:	Integral antenna			
Antenna Gain:	1.8dBi			
Test Voltage:	AC 120V/60Hz	-0-		_0_

Operation F	requency eac	h of channe			(0,)		6,
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz

Report No.: EED32I00185903 Page 8 of 53

8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has

been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer, conducted	0.31dB (30MHz-1GHz)
Z RF	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadistad Courieus amississ tast	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%
	[A 7]	1 4 3 1

Page 10 of 53

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Conducted disturbance Test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

Page	11	of 53
raue	- 1 1	01 00

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

Page 12 of 53

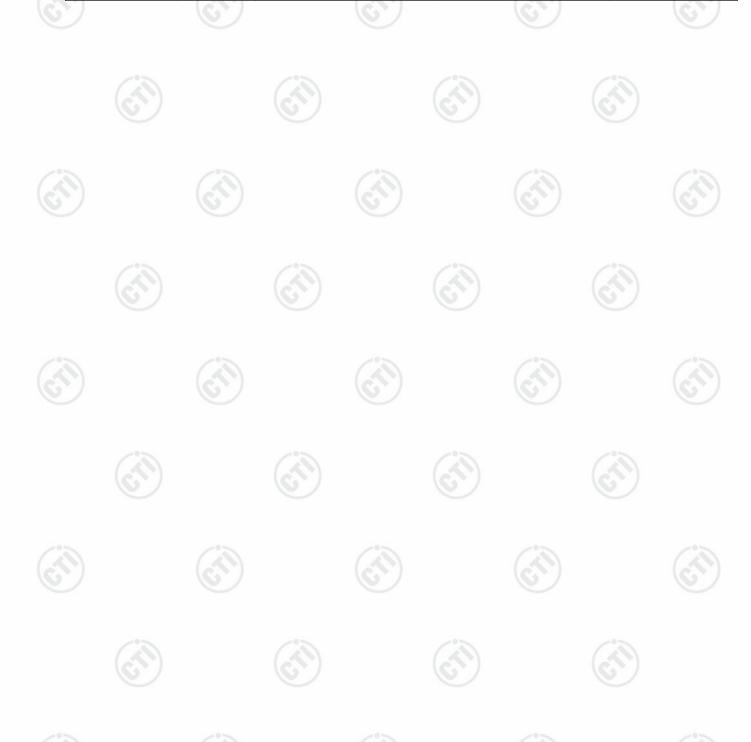
8 Radio Technical Requirements Specification

Reference documents for testing:

	Z**	
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

cot iteodito Elot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Page 13 of 53

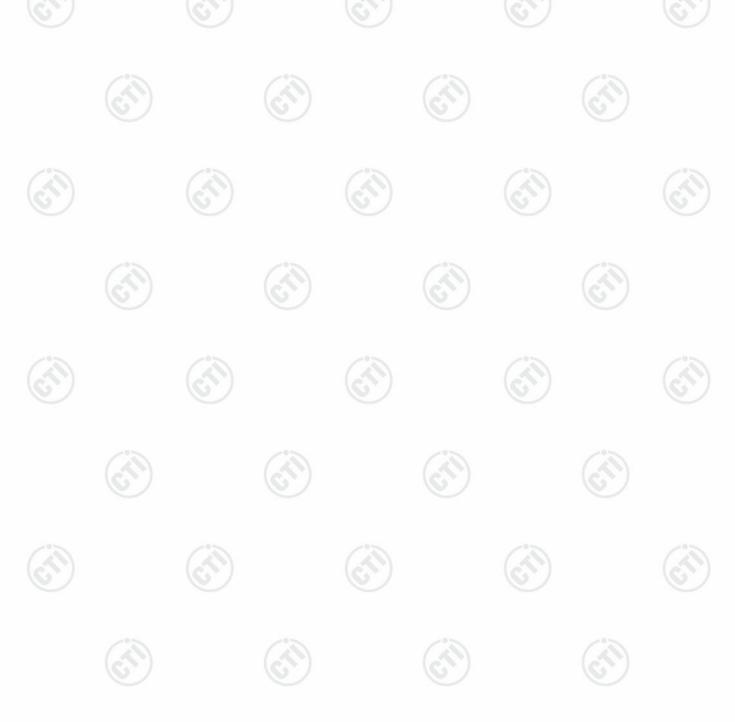
Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6898	1.0273	PASS	
BLE	MCH	0.6873	1.0287	PASS	Peak
BLE	HCH	0.6842	1.0306	PASS	detector

Page 14 of 53

Test Graphs



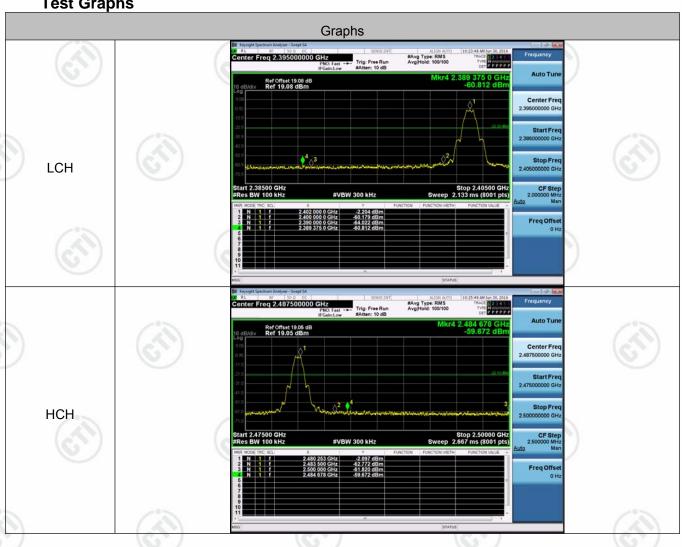
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.498	PASS
BLE	MCH	-1.005	PASS
BLE	НСН	-1.278	PASS

Page 16 of 53

Test Graphs

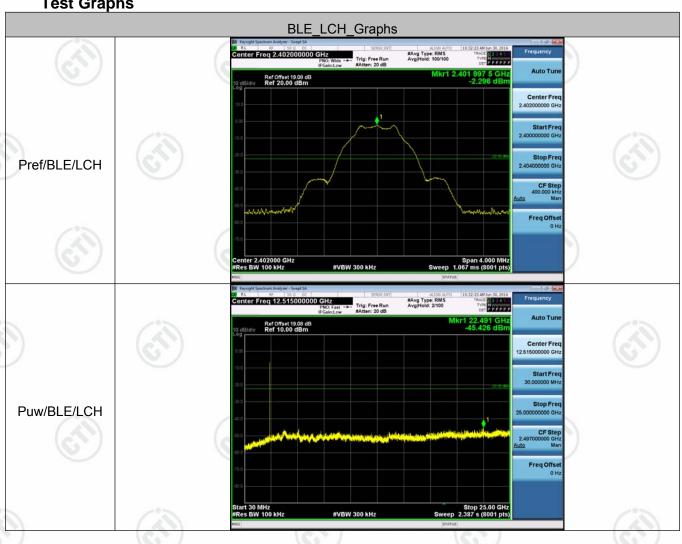

Page 17 of 53 Report No.: EED32I00185903

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-2.204	-60.812	-22.2	PASS
BLE	HCH	-2.097	-59.672	-22.1	PASS

Test Graphs

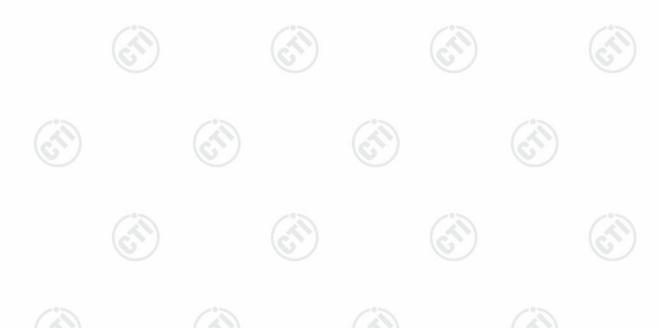

Page 18 of 53

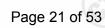
Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-2.296	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.826	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-2.094	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs




Page 20 of 53

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-16.845	8	PASS
BLE	MCH	-16.437	8	PASS
BLE	НСН	-16.629	8	PASS

Page 22 of 53

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

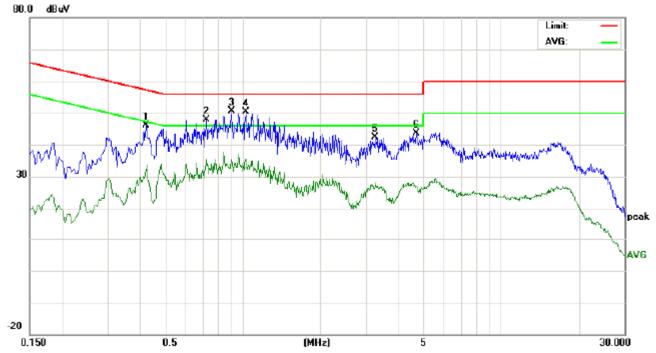
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.8dBi.

Page 24 of 53

Appendix G): AC Power Line Conducted Emission

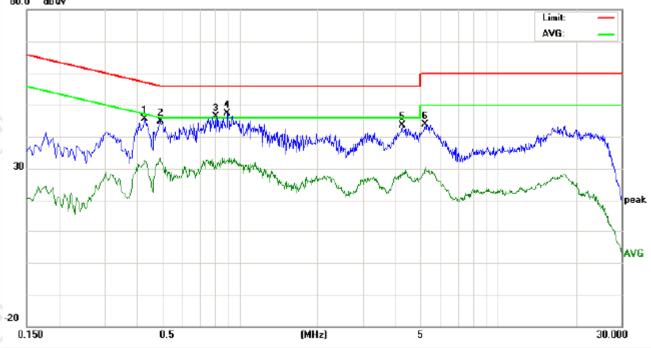
Γest Procedure:	Test from	equency range :150	OKHz-30MHz		
	1)The	mains terminal dist	urbance voltage tes	t was conducted in a s	hielded room.
				rce through a LISN 1	
				$50\Omega/50\mu$ H + 5Ω linear	
				T were connected to a se plane in the same w	
				socket outlet strip was	
				ovided the rating of the	
	1.00.0	ceeded.			
	refe	erence plane. And t	for floor-standing ar	n-metallic table 0.8m a rangement, the EUT w	•
		izontal ground refe	· · · · · · · · · · · · · · · · · · ·	63	Th
				round reference plane nd reference plane. Th	
				ontal ground reference	
				of the unit under test	
	gro	und reference pla	ne for LISNs mou	nted on top of the g	round reference
				sest points of the LISN	
			EUT and associated	equipment was at least	st 0.8 m from the
		SN 2.			audiam and and all
				e relative positions of enged according to A	
	l	nducted measurement		iged according to A	11401 000.10 011
nit:				(2)	
		(NALL	(6)	Limit (dBµV))
	Fre	quency range (MHz	Quasi-pea	ak Average	
		0.15-0.5	66 to 56	* 56 to 46*	
		0.5-5	56	46	(*)
	(25)	5-30	60	50	(~11)
	MH	limit decreases line Iz to 0.50 MHz.		thm of the frequency i	n the range 0.15
	NOTE	: The lower limit is	applicable at the tra	ansition frequency	
	a was performed	I on the live and ne	utral lines with peak	(3	ak emission we
ected.	verage measar	ement were perion	ned at the hequenc	wes with maximized pe	an cimosion were



Page 25 of 53

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4220	36.24	31.50	22.11	9.90	46.14	41.40	32.01	57.41	47.41	-16.01	-15.40	Р	
2	0.7260	37.92	32.50	25.40	9.90	47.82	42.40	35.30	56.00	46.00	-13.60	-10.70	Р	
3	0.9060	40.59	34.30	25.72	10.00	50.59	44.30	35.72	56.00	46.00	-11.70	-10.28	Р	
4	1.0300	40.29	33.70	25.59	10.00	50.29	43.70	35.59	56.00	46.00	-12.30	-10.41	Р	
5	3.2659	32.37	24.70	18.17	10.00	42.37	34.70	28.17	56.00	46.00	-21.30	-17.83	Р	
6	4.7060	33.72	25.20	16.98	10.00	43.72	35.20	26.98	56.00	46.00	-20.80	-19.02	Р	



Page 26 of 53

Neutral line: 80.0 dBuV

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	easurem (dBuV)		Lin (dB			rgin dB)		
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.4300	35.84	31.60	22.79	9.90	45.74	41.50	32.69	57.25	47.25	-15.75	-14.56	Р	
Ī	2	0.4940	35.03	31.00	23.55	9.90	44.93	40.90	33.45	56.10	46.10	-15.20	-12.65	Р	
	3	0.8100	36.57	28.40	20.30	9.91	46.48	38.31	30.21	56.00	46.00	-17.69	-15.79	Р	
Ī	4	0.8980	37.30	29.90	22.67	10.00	47.30	39.90	32.67	56.00	46.00	-16.10	-13.33	Р	
8	5	4.2540	33.68	26.20	18.12	10.00	43.68	36.20	28.12	56.00	46.00	-19.80	-17.88	Р	
1	6	5.2420	33.84	27.60	20.30	10.00	43.84	37.60	30.30	60.00	50.00	-22.40	-19.70	Р	

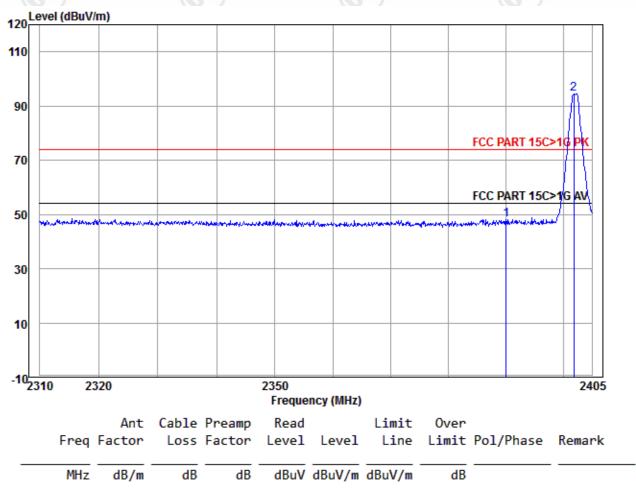
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32I00185903 Page 27 of 53

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 120kHz	300kHz	Quasi-peak		
	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the fix determine the maxim polarizations of the and d. For each suspected of the antenna was tune was turned from 0 de e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show co bands. Save the spect for lowest and highes Above 1GHz test proced g. Different between abot to fully Anechoic Cha 18GHz the distance is h. Test the EUT in the i. The radiation measur Transmitting mode, a j. Repeat above proced	on the top of a rocechoic camber. The of the highest rate ters away from top of a variable-top of the finance are set to emission, the EUT of to heights from grees to 360 degiter was set to Permum Hold Mode. The end of the restrict mpliance. Also much an analyzer plot to channel of the test site of the test	the table was adiation. The interfer neight ante meter to four the interfer make the result of the was arrand and the meter to feel the table of t	ence-receinna tower. Four meters a the maximum the maximum the maximum the maximum the maximum the missions for each point the maximum the meter to 1 ter). The channel and the maximum the maximum the missions for each point the meter to 1 ter). The channel and the maximum the meter to 1 ter and the meters are the meters and the me	above the gro- rizontal and versent. worst case and the rotata num reading. nd Specified ne transmit in the restrict ower and mod Anechoic Cha.5 meter(About 15 meter (About 15 meter) as complete.	whice whice was a serious dertical dertical dertical ted ulation
	Frequency 30MHz-88MHz	Limit (dBµV			mark eak Value	
	88MHz-216MHz	43.9	4	- 1	eak Value	
	216MHz-960MHz	46.0	/		eak Value	
	960MHz-1GHz	54.0		· ·	eak Value	
		54.0		Average Value		
	Above 1GHz	A1-1			- /	
	7,5070 10112	74.0) [%	Peak	Value	

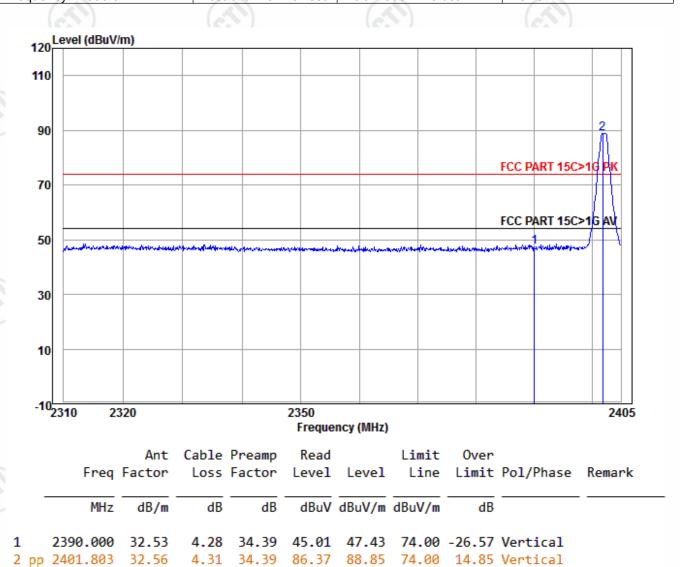


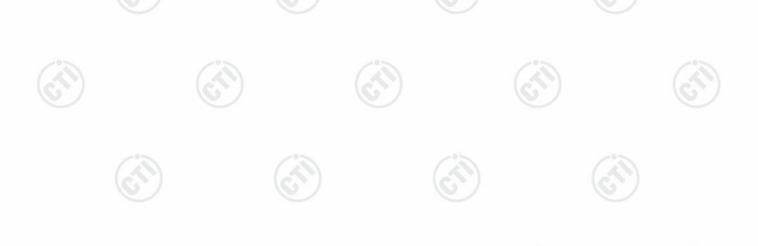
Page 28 of 53

Test plot as follows:

Worse case mode:	GFSK				
Frequency: 2390 0MH	17	Test channel: Lowest	Polarization: Horizontal	Remark: PK	٦

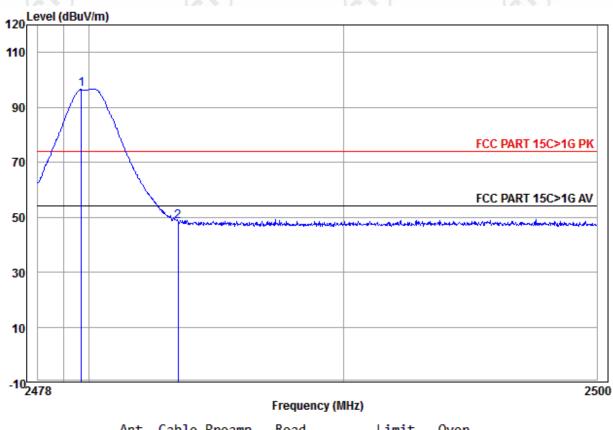
1 2390.000 32.53 4.28 34.39 45.59 48.01 74.00 -25.99 Horizontal 2 pp 2401.803 32.56 4.31 34.39 91.92 94.40 74.00 20.40 Horizontal





Page 29 of 53

Worse case mode:	GFSK			
Frequency: 2390.0MH	lz	Test channel: Lowest	Polarization: Vertical	Remark: PK



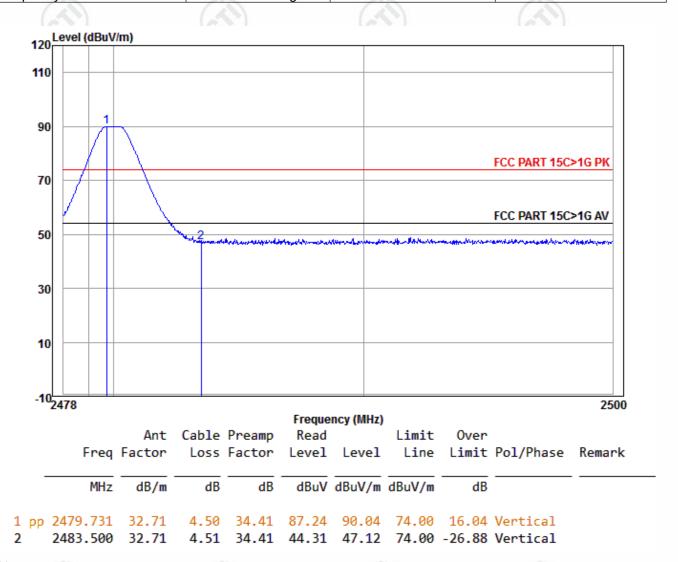
Page 30 of 53

Worse case mode: GFSK				
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Horizontal	Remark: PK

Ant Cable Preamp Read Limit Over
Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark

MHz dB/m dB dB dBuV dBuV/m dBuV/m dB

1 pp 2479.709 32.71 4.50 34.41 93.81 96.61 74.00 22.61 Horizontal 2 2483.500 32.71 4.51 34.41 45.51 48.32 74.00 -25.68 Horizontal



Page 31 of 53

Worse case mode: GFSK					
Frequency: 2483.5MH	lz	Test channel: Highest	Polarization: Vertical	Remark: PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 32 of 53

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(25)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h a a 4 O l l =	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

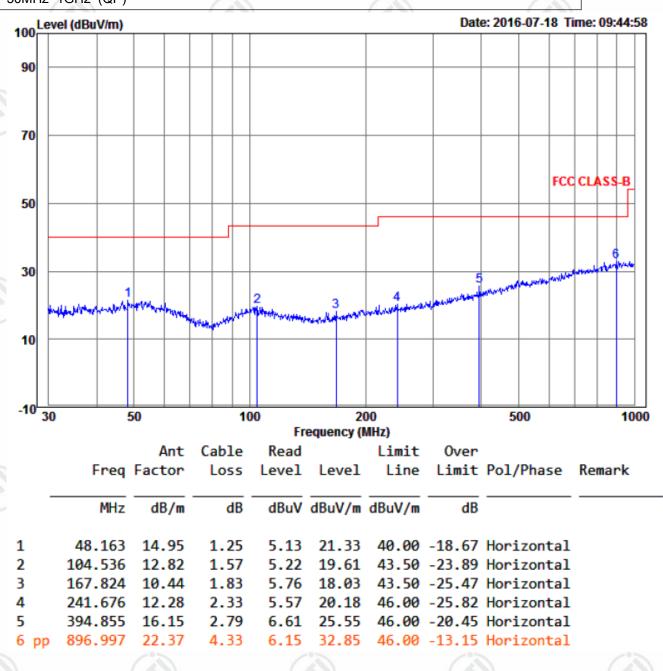
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

•			
	n	١ı:	٠.
		ш	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u></u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	1	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

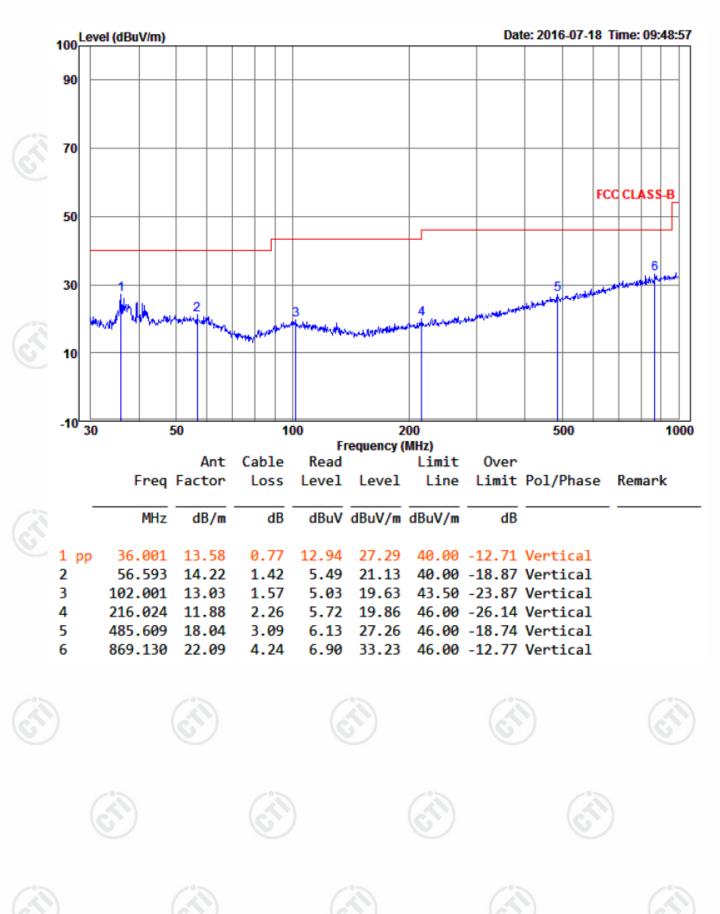


Page 33 of 53

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)



Page 34 of 53

Page 35 of 53

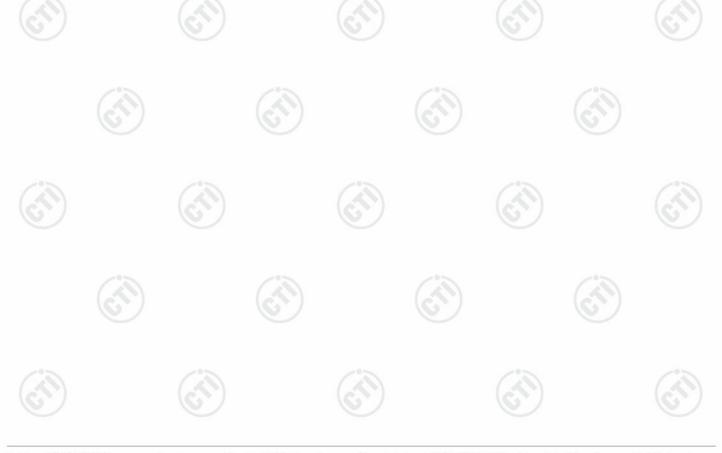
Transmitter Emission above 1GHz

Worse case	Worse case mode: GFSK			Test char	nnel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.69	34.80	45.98	44.46	74	-29.54	Pass	Horizontal
1894.450	31.54	3.15	34.37	43.87	44.19	74	-29.81	Pass	Horizontal
3225.037	33.40	5.57	34.53	43.60	48.04	74	-25.96	Pass	Horizontal
4804.000	34.69	5.11	34.35	42.93	48.38	74	-25.62	Pass	Horizontal
7206.000	36.42	6.66	34.90	40.15	48.33	74	-25.67	Pass	Horizontal
9608.000	37.88	7.73	35.08	39.04	49.57	74	-24.43	Pass	Horizontal
1129.964	30.05	2.43	35.04	46.06	43.50	74	-30.50	Pass	Vertical
1510.402	30.89	2.84	34.66	44.50	43.57	74	-30.43	Pass	Vertical
3616.451	33.08	5.50	34.56	44.18	48.20	74	-25.80	Pass	Vertical
4804.000	34.69	5.11	34.35	43.07	48.52	74	-25.48	Pass	Vertical
7206.000	36.42	6.66	34.90	40.88	49.06	74	-24.94	Pass	Vertical
9608.000	37.88	7.73	35.08	38.32	48.85	74	-25.15	Pass	Vertical

Worse case mode:		GFSK		Test chai	nnel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1521.981	30.91	2.85	34.65	45.79	44.90	74	-29.10	Pass	Horizontal
3662.775	33.04	5.50	34.57	44.40	48.37	74	-25.63	Pass	Horizontal
4880.000	34.85	5.08	34.33	43.71	49.31	74	-24.69	Pass	Horizontal
6094.137	35.95	7.33	34.36	40.26	49.18	74	-24.82	Pass	Horizontal
7320.000	36.43	6.77	34.90	41.68	49.98	74	-24.02	Pass	Horizontal
9760.000	38.05	7.60	35.05	38.89	49.49	74	-24.51	Pass	Horizontal
1464.963	30.80	2.79	34.70	44.64	43.53	74	-30.47	Pass	Vertical
3662.775	33.04	5.50	34.57	44.08	48.05	74	-25.95	Pass	Vertical
4880.000	34.85	5.08	34.33	42.28	47.88	74	-26.12	Pass	Vertical
6017.064	35.91	7.41	34.31	40.58	49.59	74	-24.41	Pass	Vertical
7320.000	36.43	6.77	34.90	41.67	49.97	74	-24.03	Pass	Vertical
9760.000	38.05	7.60	35.05	38.69	49.29	74	-24.71	Pass	Vertical

		20.00.00
D	20	of 53
Pane	.30	()1 ().5

Worse case mode: GFSK			Test ch	nannel:	Highest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1589.289	31.04	2.91	34.60	44.17	43.52	74	-30.48	Pass	Horizontal
2013.795	31.73	3.27	34.30	44.12	44.82	74	-29.18	Pass	Horizontal
4034.777	32.89	5.42	34.59	42.61	46.33	74	-27.67	Pass	Horizontal
4960.000	35.02	5.05	34.31	41.65	47.41	74	-26.59	Pass	Horizontal
7440.000	36.45	6.88	34.90	41.44	49.87	74	-24.13	Pass	Horizontal
9920.000	38.22	7.47	35.02	39.29	49.96	74	-24.04	Pass	Horizontal
1502.732	30.88	2.83	34.67	46.52	45.56	74	-28.44	Pass	Vertical
2060.463	31.84	3.41	34.31	44.31	45.25	74	-28.75	Pass	Vertical
4181.159	33.26	5.36	34.54	42.56	46.64	74	-27.36	Pass	Vertical
4960.000	35.02	5.05	34.31	42.10	47.86	74	-26.14	Pass	Vertical
7440.000	36.45	6.88	34.90	41.34	49.77	74	-24.23	Pass	Vertical
9920.000	38.22	7.47	35.02	39.69	50.36	74	-23.64	Pass	Vertical

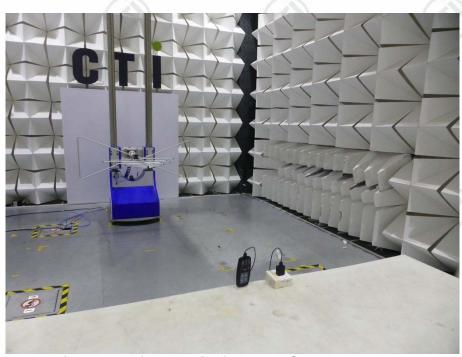

Note:

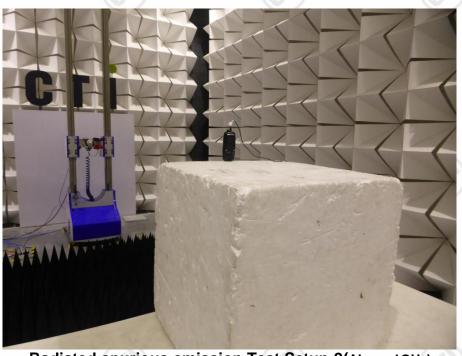
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



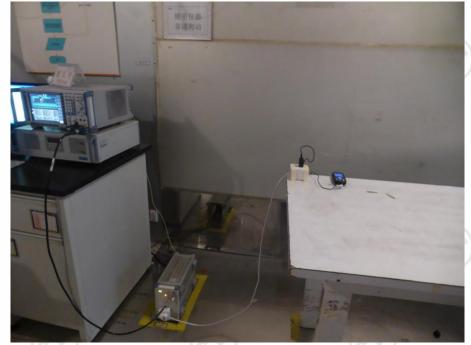

Page 37 of 53

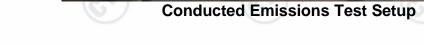
PHOTOGRAPHS OF TEST SETUP

Test mode No.: RG310

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



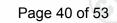


Report No. : EED32I00185903 Page 39 of 53

PHOTOGRAPHS OF EUT Constructional Details

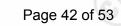
Test mode No.: RG310

View of Product-1

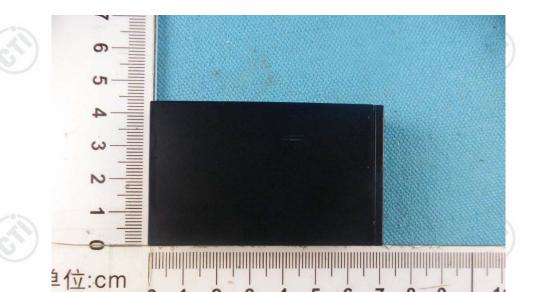


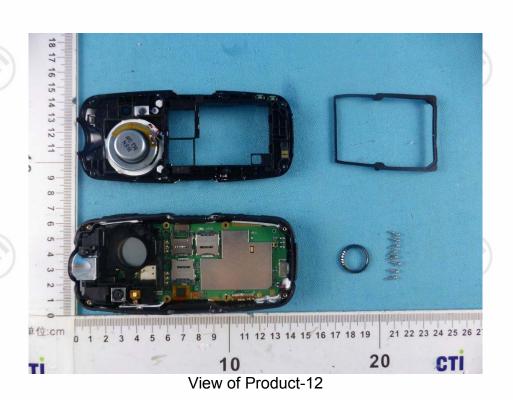
View of Product-5

View of Product-6

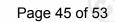


View of Product-8



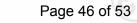

8





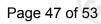
View of Product-13

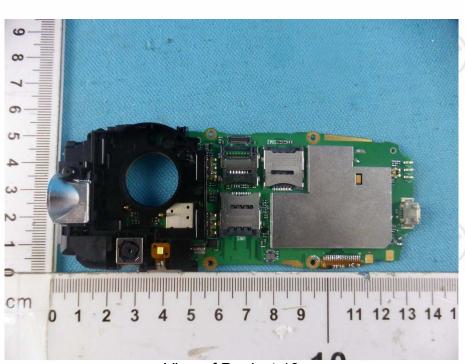
View of Product-14

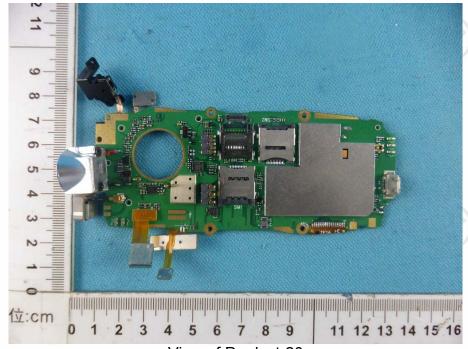


View of Product-15

View of Product-16



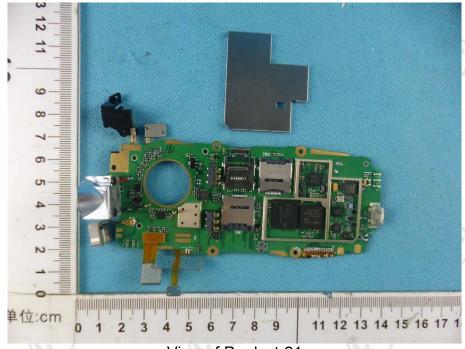


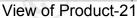


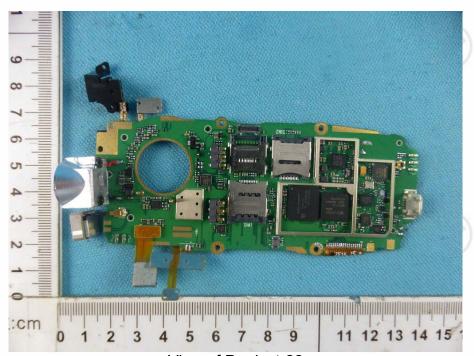
View of Product-19

View of Product-20



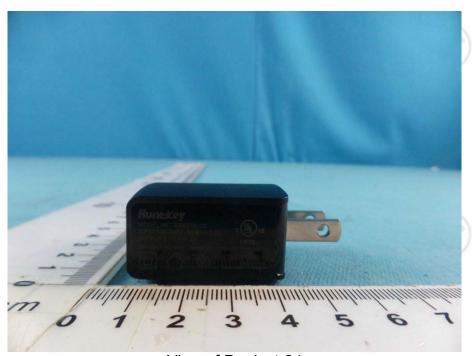




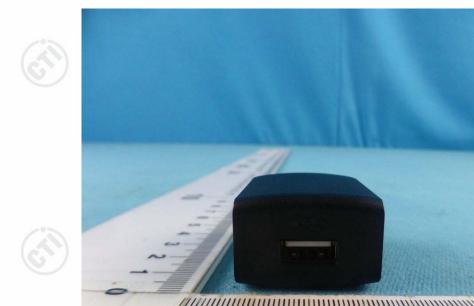


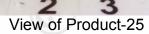
View of Product-22

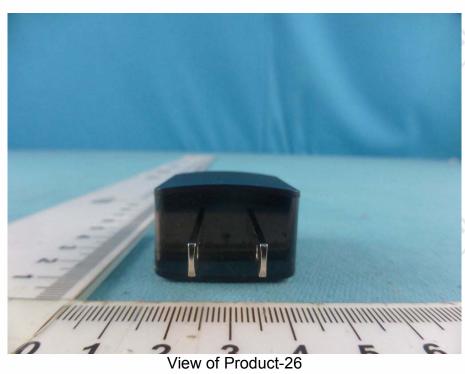




View of Product-24

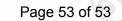


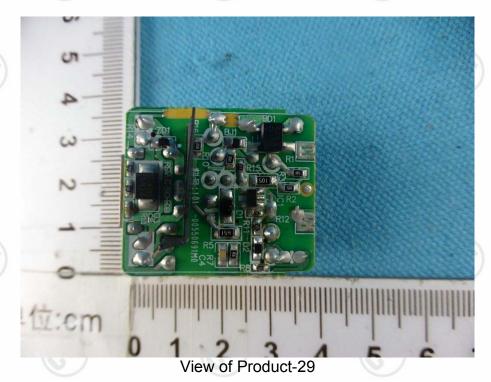




Page 51 of 53

View of Product-28





*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

