

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

WIRELESS ADAPTOR

MODEL NUMBER: CECHYA-0081

FCC ID: ZL2CECHYA0081 IC: 409P-CECHYA0081

REPORT NUMBER: 11U13855-1, Revision A

ISSUE DATE: June 30, 2011

Prepared for

Sony Computer Entertainment America 919 East Hillsdale Blvd Foster City, CA, 94404-2175, U.S.A

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

Revision History

DATE: June 30, 2011

Rev.	Issue Date	Revisions	Revised By
	06/29/11	Initial Issue	F. Ibrahim
A	06/30/11	Corrected FCC ID, typo on page 30,update support equipment list, test equipment list	C. Pang

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. CA	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. EG	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	MAXIMUM OUTPUT POWER	6
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.4.	SOFTWARE AND FIRMWARE	6
5.5.	WORST-CASE CONFIGURATION AND MODE	6
5.6.	DESCRIPTION OF TEST SETUP	7
6. TE	ST AND MEASUREMENT EQUIPMENT	9
7. AN	NTENNA PORT TEST RESULTS	10
7.1.	6 dB BANDWIDTH	10
7.2.	99% BANDWIDTH	13
7.3.	OUTPUT POWER	
7.4.	AVERAGE POWER	17
7.5.	POWER SPECTRAL DENSITY	
7.6.	CONDUCTED SPURIOUS EMISSIONS	21
8. R <i>A</i>	ADIATED TEST RESULTS	25
8.1.	LIMITS AND PROCEDURE	25
8.2.	TRANSMITTER ABOVE 1 GHz	26
8.3.	RECEIVER ABOVE 1 GHz	31
8.4.	WORST-CASE BELOW 1 GHz	32
9. AC	POWER LINE CONDUCTED EMISSIONS	35
10. ľ	MAXIMUM PERMISSIBLE EXPOSURE	39
11. 9	SETUP PHOTOS	43

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Sony Computer Entertainment America

919 East Hillsdale Blvd, Foster City, CA, 94404-2175, U.S.A.

DATE: June 30, 2011

IC: 409P-CECHYA0081

EUT DESCRIPTION: Wireless adaptor

MODEL: CECHYA-0081

SERIAL NUMBER: PVT-59, PVT-62, PVT-64, PVT-67

DATE TESTED: June 21 – June 28, 2011

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart C

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

FRANK IBRAHIM EMC SUPERVISOR

UL CCS

CHIN PANG EMC ENGINEER

Chin Pany

UL CCS

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

DATE: June 30, 2011

IC: 409P-CECHYA0081

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is wireless adaptor.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Output Power (dBm)	Output Power (mW)
2405-2477	5.20	3.31

DATE: June 30, 2011

IC: 409P-CECHYA0081

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes diversity printed antennas as follows:

Antenna 1, with a maximum peak gain of -4.32 dBi Antenna 2, with a maximum peak gain of 0.7 dBi

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was AMD7 developer-1_5_1.exe.

The test utility software used during testing was AMD7developer Ver 1.5.1.setup

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

Radiated emission 30-1000 MHz and power line conducted emission was performed with the EUT set to transmit at the channel with highest output power.

Radiated testing was performed in the normal orientation as a desktop unit, based on an input from the client.

There is only a single modulation and data rate for this device, the modulation is Pi/4 DQPSK.

REPORT NO: 11U13855-1A DATE: June 30, 2011 FCC ID: ZL2CECHYA0081 IC: 409P-CECHYA0081

5.6. DESCRIPTION OF TEST SETUP

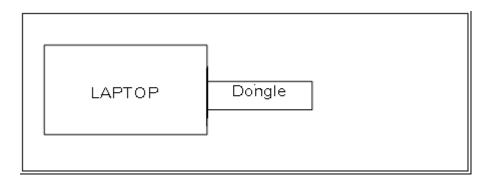
SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Sony	PCG-6F1L	28194630 3110705	DoC		
Wireless Stereo Headset	Sony	CECHYA-0080	PVT-67	ZL2CECHYA0080		

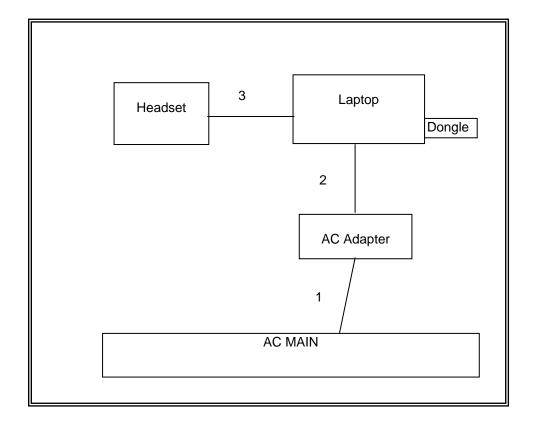
I/O CABLES (RADIATED TEST SETUP)

	I/O CABLE LIST					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	USB	1	Dongle	Un-shielded	1m	Yes

I/O CABLES (LC TEST SETUP)


	I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks	
1	AC	1	US 115V	Un-shielded	2m	No	
2	DC	1	US 115V	Un-shielded	2m	No	
3	USB	1	Headset	Un-shielded	1m	Yes	

TEST SETUP


The EUT is connected to a host laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

FOR RF RADIATED TEST SETUP

FOR BELOW 1G RADIATED AND LC TEST SETUP

DATE: June 30, 2011

IC: 409P-CECHYA0081

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: June 30, 2011

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01161	2010-12-7	2011-12-7	
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7		2010-7-2	2011-7-2	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	2010-11-10	2011-11-10	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	2010-8-30	2011-8-30	
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	2011-4-13	2012-4-13	
Peak Power Meter	Agilent / HP	E4416A	C00963	2011-3-22	2013-3-22	
Antenna, Horn, 18 GHz	EMCO	3115	C00783	2010-6-29	2011-6-29	
Reject Filter, 2.0-2.9 GHz	Micro-Tronics	BRM50702	N02684		CNR	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	2010-7-14	2011-7-14	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	2010-7-12	2011-7-12	

REPORT NO: 11U13855-1A DATE: June 30, 2011 FCC ID: ZL2CECHYA0081 IC: 409P-CECHYA0081

7. ANTENNA PORT TEST RESULTS

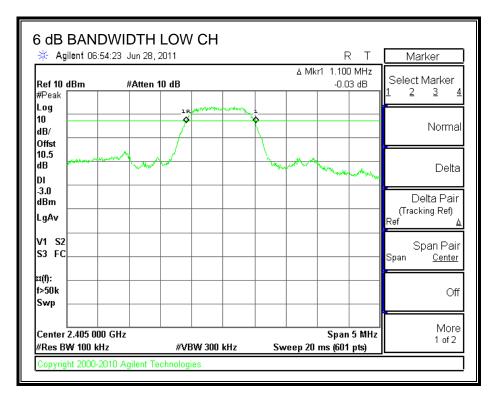
7.1. 6 dB BANDWIDTH

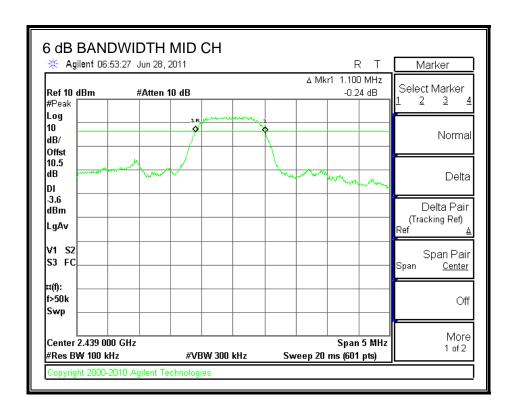
LIMITS

FCC §15.247 (a) (2)

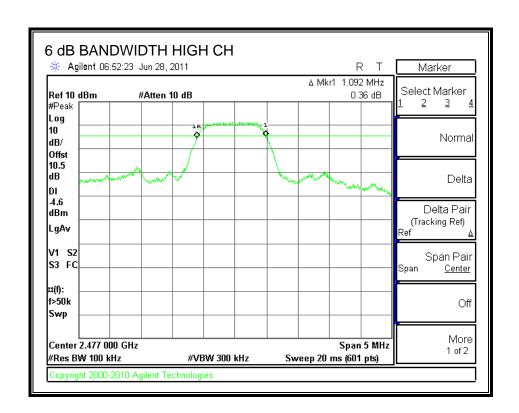
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2405	1.100	0.5
Middle	2439	1.100	0.5
High	2477	1.092	0.5

6 dB BANDWIDTH

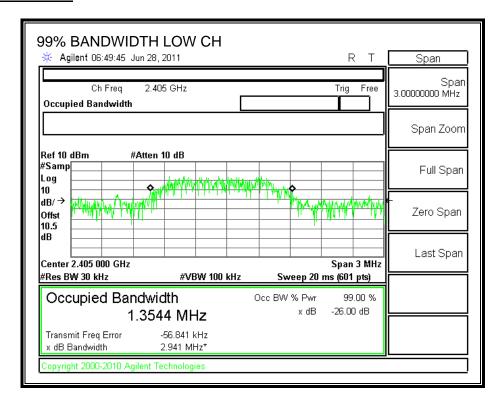
DATE: June 30, 2011

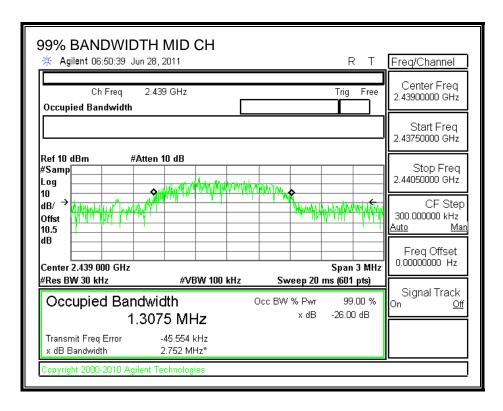
7.2. 99% BANDWIDTH

LIMITS

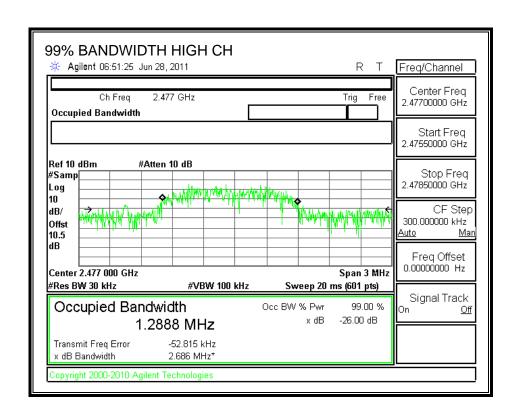
None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


DATE: June 30, 2011 IC: 409P-CECHYA0081

RESULTS


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2405	1.3544
Middle	2439	1.3075
High	2477	1.2888

99% BANDWIDTH

DATE: June 30, 2011

7.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: June 30, 2011

IC: 409P-CECHYA0081

Peak power is measured using wide bandwidth Peak Power Meter.

RESULTS

Channel	Frequency	Peak Power	Attenuator and	Output	Limit	Margin
		Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2405	5.2	0	5.20	30	-24.80
Middle	2439	4.5	0	4.50	30	-25.50
High	2477	3.35	0	3.35	30	-26.65

7.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: June 30, 2011

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2405	3.40
Middle	2439	2.80
High	2477	1.62

7.5. POWER SPECTRAL DENSITY

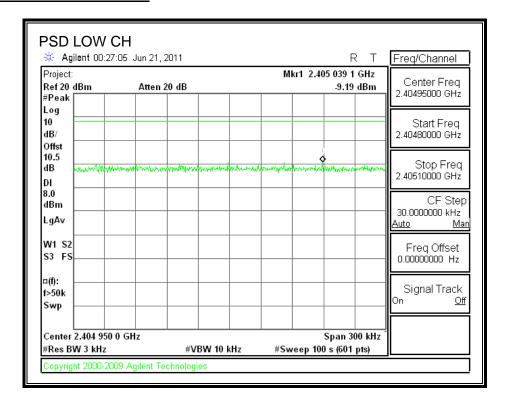
LIMITS

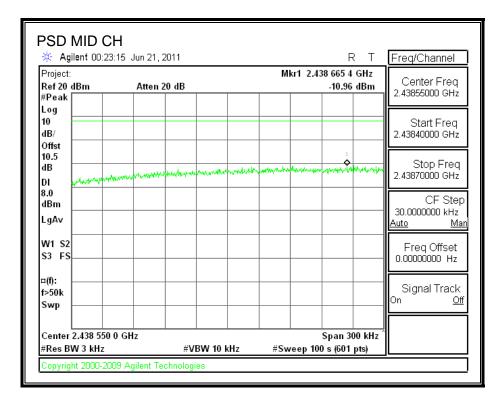
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

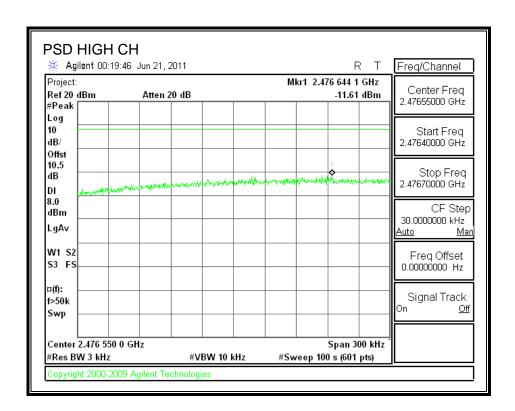
The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: June 30, 2011 IC: 409P-CECHYA0081


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2405	-9.19	8	-17.19
Middle	2439	-10.96	8	-18.96
High	2477	-11.61	8	-19.61

POWER SPECTRAL DENSITY

DATE: June 30, 2011

7.6. CONDUCTED SPURIOUS EMISSIONS

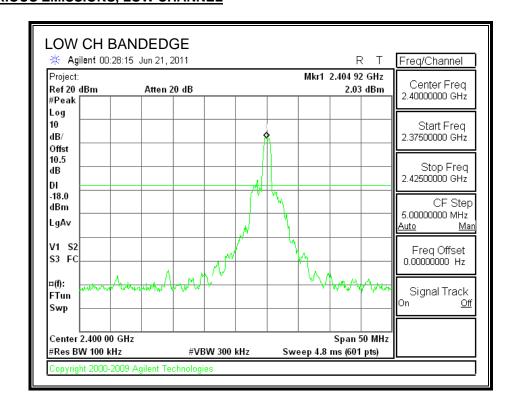
LIMITS

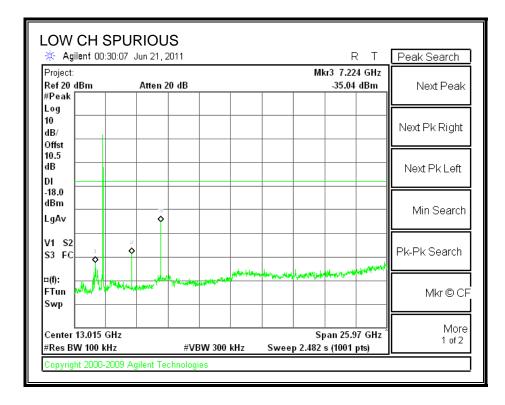
FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

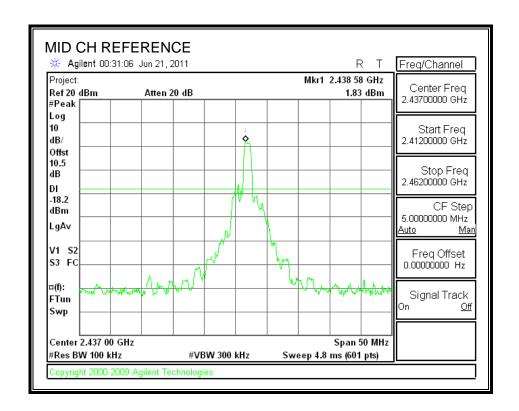
DATE: June 30, 2011

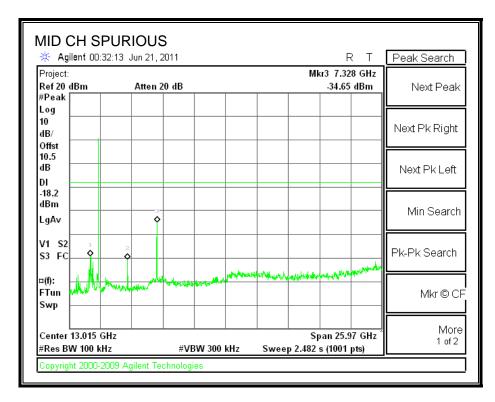

IC: 409P-CECHYA0081


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

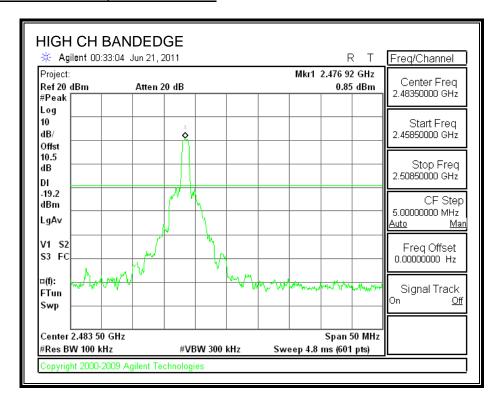
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

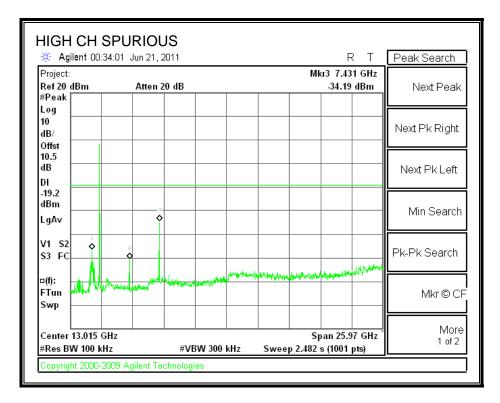

SPURIOUS EMISSIONS, LOW CHANNEL



DATE: June 30, 2011

SPURIOUS EMISSIONS, MID CHANNEL




DATE: June 30, 2011

IC: 409P-CECHYA0081

TEL: (510) 771-1000

SPURIOUS EMISSIONS, HIGH CHANNEL

TEL: (510) 771-1000

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

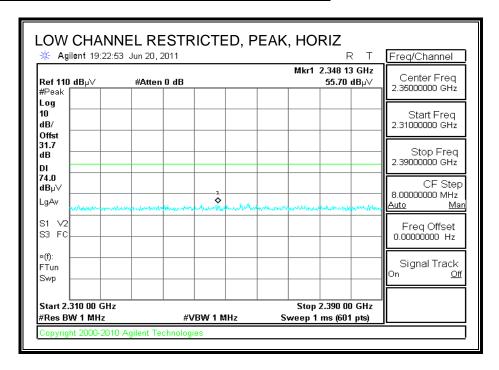
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

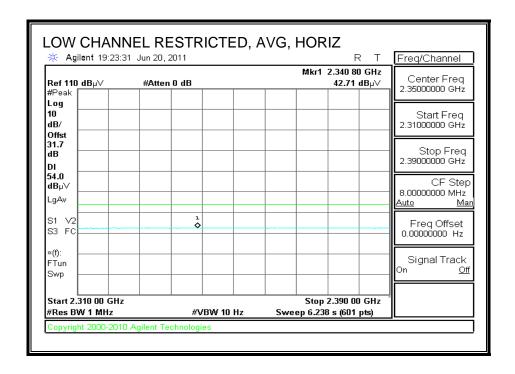
DATE: June 30, 2011

IC: 409P-CECHYA0081

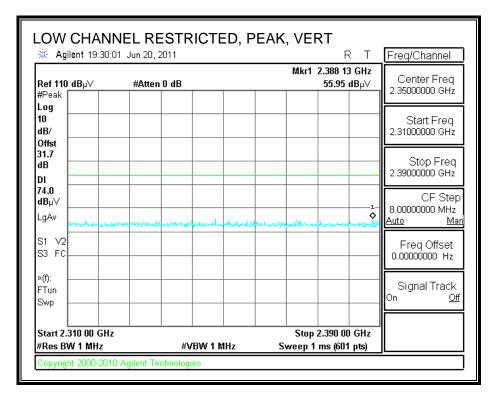
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

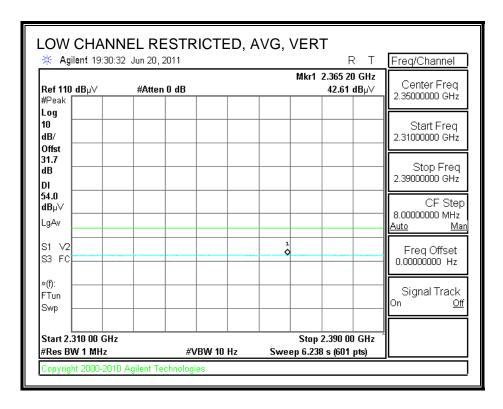

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

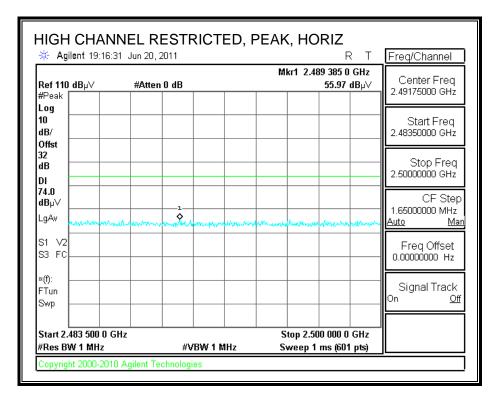

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

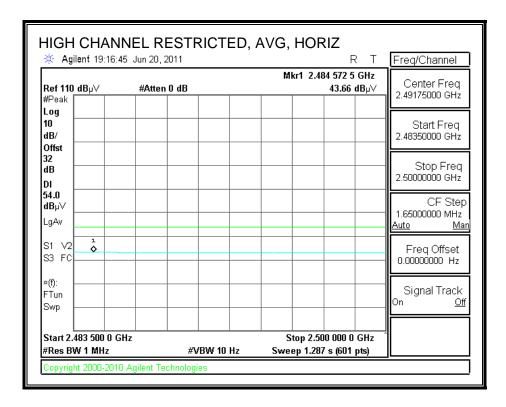
8.2. TRANSMITTER ABOVE 1 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

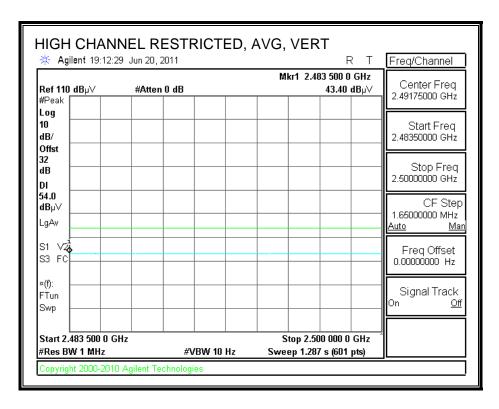


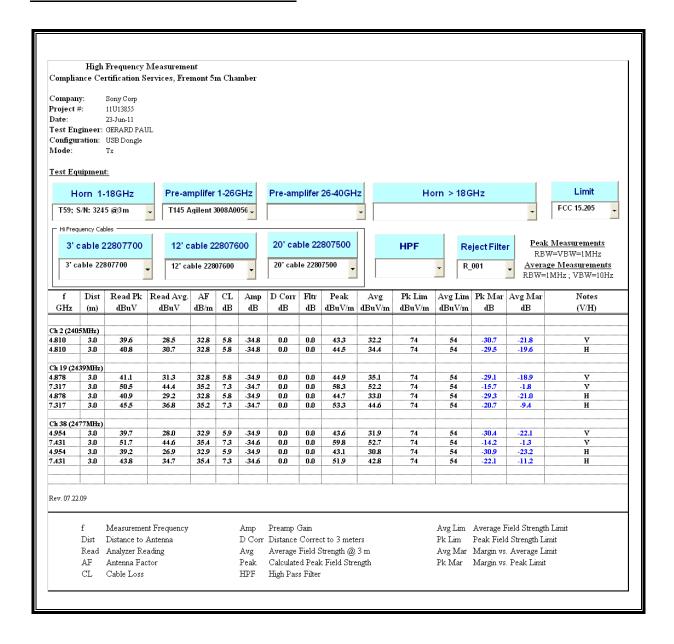
DATE: June 30, 2011


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

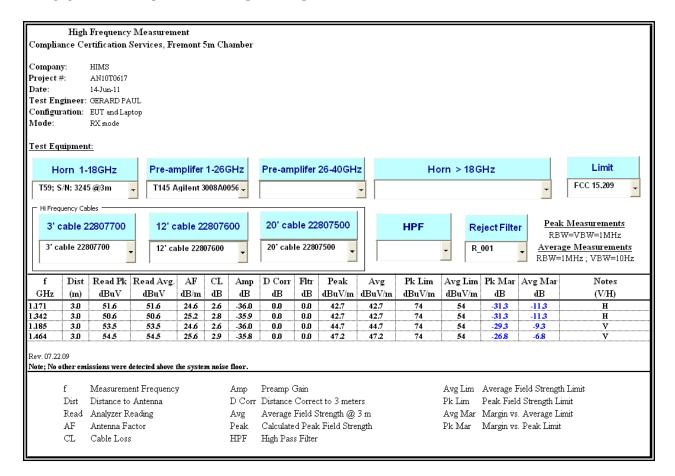


DATE: June 30, 2011


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

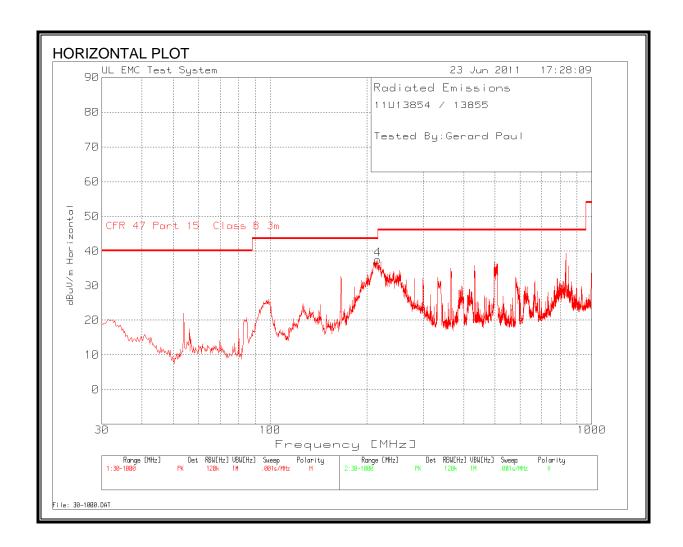


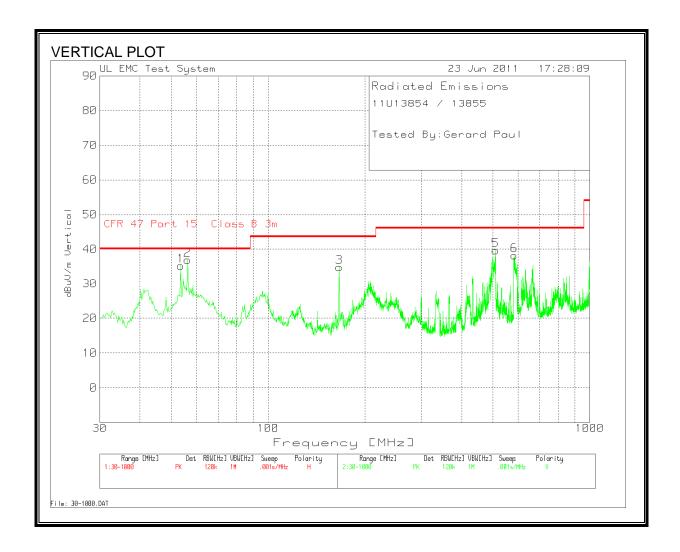
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS

DATE: June 30, 2011


RECEIVER ABOVE 1 GHz 8.3.


DATE: June 30, 2011

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: June 30, 2011

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

DATE: June 30, 2011

IC: 409P-CECHYA0081

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

VERTICAL AND HORIZONTAL DATA

11U13854 /	13855										
Tested By:	Gerard Pa	aul									
Range 1 30	- 1000MH	lz									
Test Frequency	Meter Reading	Detector	Cable (dB)	PreAmp (dB)	Bilog [dB]	Corrected Measurement dBuV/m	Limit Class B 3m	Margin	Height [cm]	Polarity	
216.3427	52.59	PK	2	-28.9	11.9	37.59	46	-8.41	91	Horz	
Range 2 30	- 1000MH	łz									
Test Frequency	Meter Reading	Detector	Cable (dB)	PreAmp (dB)	Bilog [dB]	Corrected Measurement dBuV <i>l</i> m	Limit Class B 3m	Margin	Height [cm]	Polarity	
53.5049	55.76	PK	1	-29.4	7.9	35.26	40	-4.74	109	Vert	
56.1704	57.37	PK	1.1	-29.4	7.9	36.97	40	-3.03	109	Vert	
166.4252	51.77	PK	1.8	-29.1	10.4	34.87	43.5	-8.63	109	Vert	
509.7902	49.07	PK	3.1	-29.4	16.9	39.67	46	-6.33	109	Vert	
582.9703	46.24	PK	3.4	-29.4	18	38.24	46	-7.76	109	Vert	
Range 1 30	- 1000MH	lz									
Test Frequency	Meter Reading	Detector	Cable (dB)	PreAmp (dB)	Bilog (dB)	Corrected Measurement dBuV/m	Limit Class B 3m	Margin	Azimuth [Degs]	Height [cm]	Polarity
213.2376	48.69	QP	2	-28.9	11.9	33.69	43.5	-9.81	223	160	Horz
Range 2 30	- 1000MH	łz				Corrected	Limit				
Test Frequency	Meter Reading	Detector	Cable (dB)	PreAmp (dB)	Bilog [dB]	Measurement dBuV/m	Class B 3m	Margin	Azimuth [Degs]	Height [cm]	Polarity
54.8001	44.73	QP	1.1	-29.4	7.9	24.33	40	-15.67	158	101	Vert
55.3116	44.29	QP	1.1	-29.4	7.9	23.89	40	-16.11	190	106	Vert
168.003	32.8	QP	1.8	-29.1	10.3	15.8	43.5	-27.7	11	105	Vert
PK - Peak d	etector										

DATE: June 30, 2011

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

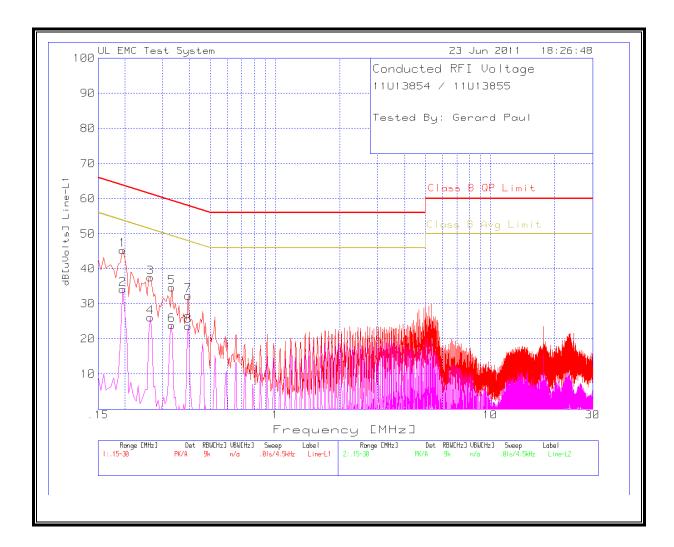
DATE: June 30, 2011

IC: 409P-CECHYA0081

TEST PROCEDURE

ANSI C63.4

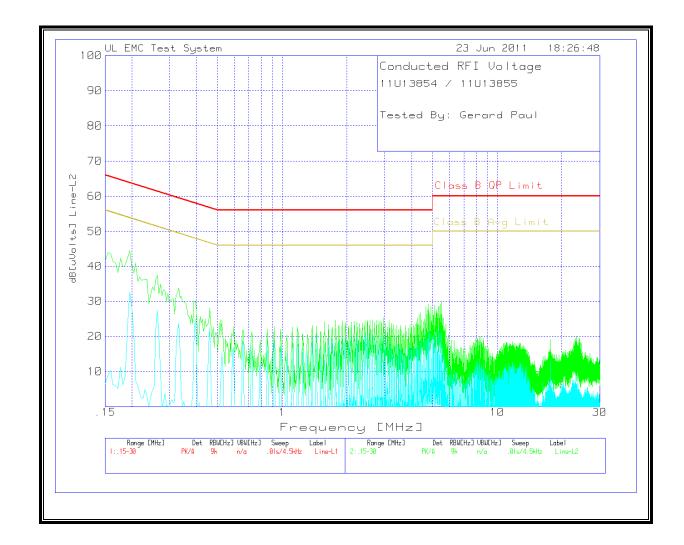
Decreases with the logarithm of the frequency.


REPORT NO: 11U13855-1A DATE: June 30, 2011 FCC ID: ZL2CECHYA0081 IC: 409P-CECHYA0081

RESULTS

6 WORST EMISSIONS

11U13854 / 11U1	3855								
Tested By: Gerar	Tested By: Gerard Paul								
Line-L1 .15 - 30M	Hz								
	Meter			Cable	Corrected Measurement	Class B		Class B	
Test Frequency	Reading	Detector	LISN [dB]	[dB]	dB[uVolts]	QP Limit	Margin	Avg Limit	Margin
0.195	45.35	PK	0	0	45.35	63.8	-18.45	53.8	-8.45
0.195	34.13	Av	0	0	34.13	63.8	-29.67	53.8	-19.67
0.2625	37.49	PK	0	0	37.49	61.4	-23.91	51.4	-13.91
0.2625	26.05	Av	0	0	26.05	61.4	-35.35	51.4	-25.35
0.33	34.65	PK	0	0	34.65	59.5	-24.85	49.5	-14.85
0.33	23.87	Av	0	0	23.87	59.5	-35.63	49.5	-25.63
0.393	32.26	PK	0	0	32.26	58	-25.74	48	-15.74
0.393	23.59	Av	0	0	23.59	58	-34.41	48	-24.41
PK - Peak detecto	or								
QP - Quasi-Peak	detector								
Av - Average det	ector								


LINE 1 RESULTS

DATE: June 30, 2011 IC: 409P-CECHYA0081

TEL: (510) 771-1000

LINE 2 RESULTS

DATE: June 30, 2011

IC: 409P-CECHYA0081

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

DATE: June 30, 2011 IC: 409P-CECHYA0081

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 6
,	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposured or the potential for exposure or can part exercise control over their exposure.

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: June 30, 2011

IC: 409P-CECHYA0081

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

DATE: June 30, 2011

IC: 409P-CECHYA0081

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply, a fraction of the exposure limit is established for each band, such that the sum of the fractions is less than or equal to one.

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency, as $824 \text{ MHz} / 1500 = 0.55 \text{ mW/cm}^2$ (FCC) and $824 \text{ MHz} / 150 = 5.5 \text{ W/m}^2$ (IC).

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

REPORT NO: 11U13855-1A FCC ID: ZL2CECHYA0081

RESULTS

Single Chain and non-colocated transmitters										
Band	Mode	Separation	AV Output	Antenna	EIRP	EIRP	IC Power	FCC Power		
		Distance	Power	Gain			Density	Density		
		(m)	(dBm)	(dBi)	(dBm)	(W)	(W/m^2)	(mW/cm^2)		

DATE: June 30, 2011