

EMC TEST REPORT

Report No.: TS13070144-EME

Model No.: T416

Issued Date: Sep. 04, 2013

Applicant: Kobo Inc

135 Liberty Street, Suite 101, Toronto, Ontario,

M6K1A7 Canada

Test Method / Standard: CFR 47 FCC Part 15.247 & ANSI C63.4 2003

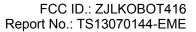
Registration No.: 93910

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:


Jill Chen / Assistant

These measurements were taken by:

Arthur Tsai / Senior Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Engineer

Table of Contents

1. Summary of Test Data	3
2. General Information	4
3 6dB Bandwidth	7
4. Maximum Output Power	13
5. Power Spectral Density	15
6. RF Antenna Conducted Spurious	21
7. Radiated Spurious Emission	36
8. Emission on Band Edge	45
9. AC Power Line Conducted Emission	47
Appendix: Test Equipment List	50

1. Summary of Test Data

Test/Requirement Description	Applicable Rule	Result
- 6dB Bandwidth	15.247(a)(2)	Pass
Maximum Output Power	15.247(b)	Pass
Power Spectral Density	15.247(e)	Pass
RF Antenna Conducted Spurious	15.247(d)	Pass
Radiated Spurious Emission	15.247(d), 15.205, 15.209	Pass
Emission on the Band Edge	15.247(d)	Pass
AC Power Line Conducted Emission	15.207	Pass

2. General Information

Identification of the EUT

Product: Tablet Model No.: T416

FCC ID.: ZJLKOBOT416

Frequency Range: 2412MHz~2462MHz for 802.11b, 802.11g, 802.11n HT20

Channel Number: 11 channels for 2412MHz~2462MHz

Frequency of Each

Channel: 2412+5 k MHz, k=0~10 for 802.11b, 802.11g, 802.11n HT20

Type of Modulation: DSSS, OFDM

Rated Power: 1. DC 5.35 V from adapter

2. DC 3.7 V from battery

Power Cord: N/A

Data Cable: USB shielded cable 1 meter × 1

Sample Received: Jul. 19, 2013

Test Date(s): Jul. 19, 2013~Aug. 19, 2013

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an

Intertek certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

Description of EUT

The EUT is Tablet, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Adapter Information

The EUT will be supplied with a power supply from below list:

No.	Brand	Model no.	Specification
Adapter	kobo	PSAI10R-050Q	I/P: 100-240V~, 0.3A, 50-60Hz O/P: 5.35V, 2.0A

Antenna Description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 0.36dBi

Antenna Type : PIFA Antenna

Connector Type : I-PEX

Operation Mode

The EUT is supplied with DC 3.7 V from battery for all test items except for conducted emission test.

The EUT is supplied with DC 5.35 V from adapter (Test voltage: 120VAC, 60Hz) for conducted emission test.

The EUT executes test by "MS-DOS" and enters the relevant commands provided by Wistron.

The signal is maximized through rotation and placement in the three orthogonal axes (The EUT configuration refers to the "Spurious set-up photo.pdf"). After verifying three axes, we found the maximum electromagnetic field was occurred at X axis. The final test data was executed under this configuration.

With individual verifying, the maximum output power was found out 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11g mode, 7.2 Mbps data rate for 802.11n HT 20 mode.

The final tests were executed under these conditions recorded in this report individually.

Please refer the details below:

Chain 0: 802.11b channel 6			
Data rate (Mbps)	PK(dBm)		
1	18.96		
2	18.90		
5.5	18.88		
11	18.91		

Chain 0: 802.11g channel 6				
Data rate (Mbps)	PK(dBm)			
6	20.59			
9	20.01			
12	19.99			
18	19.9			
24	19.80			
36	19.85			
48	19.81			
54	19.80			

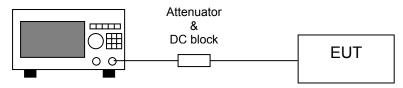
Chain 0: 802.11n HT20 channel 6				
Data rate (Mbps)	PK(dBm)			
7.2	20.47			
14.4	20.41			
21.7	20.39			
28.9	20.35			
43.3	20.39			
57.8	19.22			
65.0	19.29			
72.2	19.20			

3. - 6dB Bandwidth

Name of Test	- 6dB Bandwidth
Base Standard	FCC 15.247 (a)(2)

Test Result: Complies

Measurement Data: See Table & plots below


Test Date: Aug. 19, 2013

Method of Measurement:

Reference FCC document: KDB558074 D01

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1-5 % of the DTS channel bandwidth and not to exceed 100kHz, video bandwidth (VBW) ≥ 3 x RBW. In order to make an accurate measurement, set the span greater than DTS channel bandwidth. The - 6dB bandwidth must be greater than 500 kHz.

Test Diagram:

Spectrum Analyzer


Note: The EUT was tested while in a continuous transmit mode and the worst case data rates are 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11g mode, 7.2 Mbps data rate for 802.11n HT20 mode. The EUT was tuned to a low, middle and high channel.

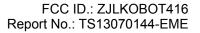
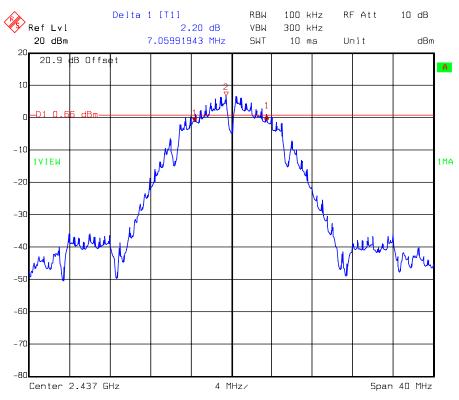
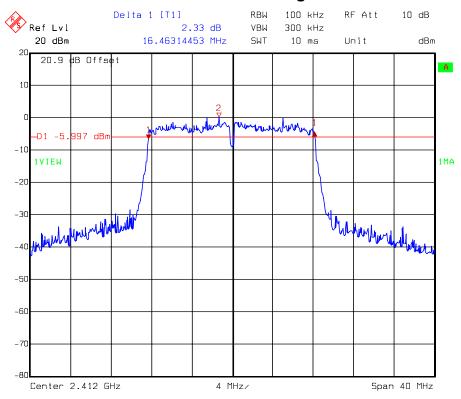


Table: - 6dB Bandwidth

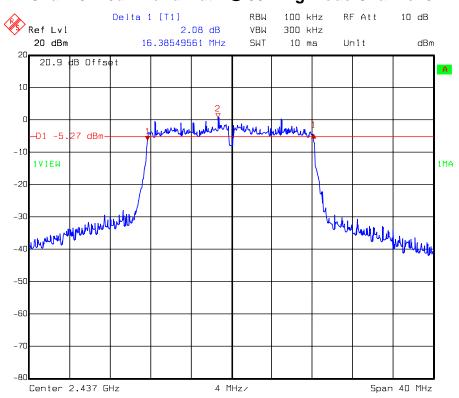
1TX Mode	Channel	Frequency (MHz)	- 6dB Bandwidth (MHz)	Min. Limit (MHz)	Pass/Fail
	1	2412	7.090	0.5	Pass
802.11b	6	2437	7.060	0.5	Pass
	11	2462	8.016	0.5	Pass
	1	2412	16.463	0.5	Pass
802.11g	6	2437	16.385	0.5	Pass
	11	2462	16.421	0.5	Pass
802.11n	1	2412	17.194	0.5	Pass
HT20	6	2437	17.624	0.5	Pass
11120	11	2462	17.286	0.5	Pass


Chain 0: - 6dB Bandwidth @ 802.11b mode Channel 1

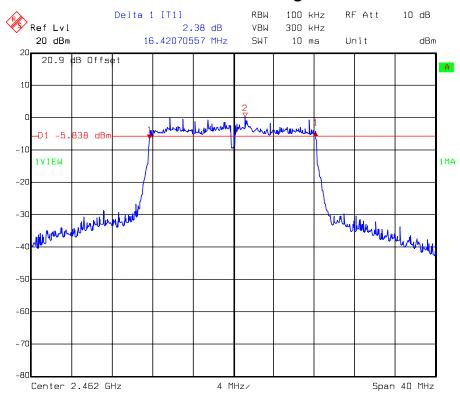
Chain 0: - 6dB Bandwidth @ 802.11b mode Channel 6



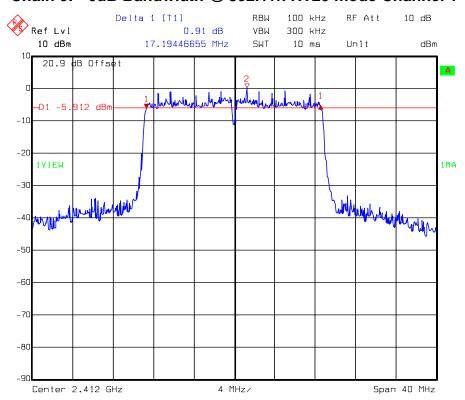
Chain 0: - 6dB Bandwidth @ 802.11b mode Channel 11



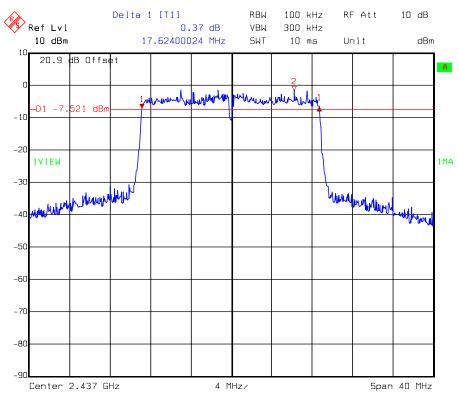
Chain 0: - 6dB Bandwidth @ 802.11g mode Channel 1



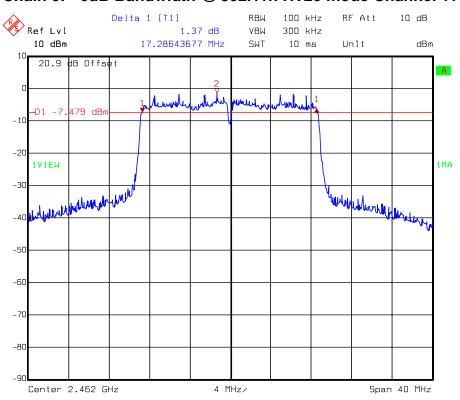
Chain 0: - 6dB Bandwidth @ 802.11g mode Channel 6



Chain 0: - 6dB Bandwidth @ 802.11g mode Channel 11



Chain 0: - 6dB Bandwidth @ 802.11n HT20 mode Channel 1



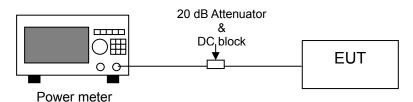
Chain 0: - 6dB Bandwidth @ 802.11n HT20 mode Channel 6

Chain 0: - 6dB Bandwidth @ 802.11n HT20 mode Channel 11

4. Maximum Output Power

Name of Test	Maximum Output Power
Base Standard	FCC 15.247(b)

Measurement Uncertainty: ±0.392 dB (k=2)


Test Result: Complies

Measurement Data: See Table below Test Date: Aug. 15, 2013

Method of Measurement: Peak Power Meter Reference FCC document: KDB558074 D01

The power output was measured on the EUT using a 50 ohm SMA Cable connected to peak and average power meter via power sensor. Connect the 20 dB attenuator and DC block at the input port of the power sensor. Measure the conducted transmitting power at each antenna port. Power output was measured with the maximum rated input level.

Test Diagram:

Note 1: §15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Table: Maximum Output Power

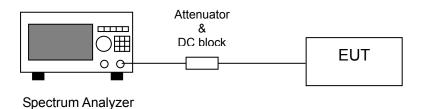
1TX	Channel	Frequency	Output Power (dBm)	Total Calculated Power (mW)	Limit	Margin
Mode		(MHz)	PK	PK	(dBm)	(dB)
	1	2412	18.70	74.13	30	-11.30
802.11b	6	2437	18.96	78.70	30	-11.04
	11	2462	18.29	67.45	30	-11.71
	1	2412	20.52	112.72	30	-9.48
802.11g	6	2437	20.59	114.55	30	-9.41
	11	2462	20.15	103.51	30	-9.85
802.11n HT20	1	2412	20.59	114.55	30	-9.41
	6	2437	20.47	111.43	30	-9.53
11120	11	2462	20.47	111.43	30	-9.53

5. Power Spectral Density

Name of Test	Power Spectral Density
Base Standard	FCC 15.247(e)

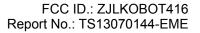
Test Result: Complies

Measurement Data: See Table & plots below

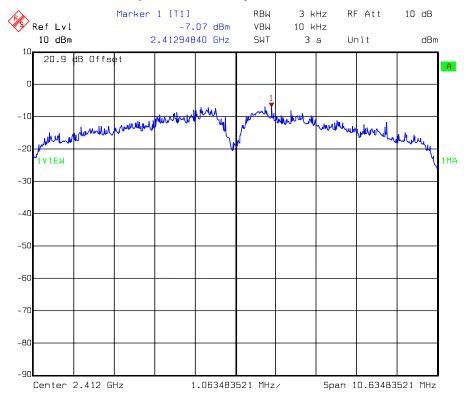

Test Date: Aug. 19, 2013

Method of Measurement: Peak PSD

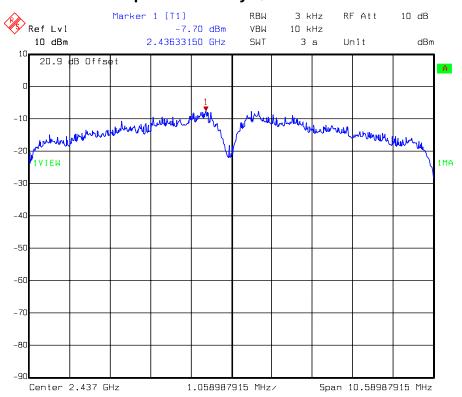
Reference FCC document: KDB558074 D01

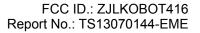

The power spectrum density was measured from the antenna port of the EUT using a 50 ohm spectrum analyzer. Set RBW = 100 kHz, VBW \geq 300 kHz, sweep= auto couple. The peak level measured must be no greater than + 8 dBm. Power spectrum density was read directly and cable loss (1 dB)/external attenuator (20 dB) correction was added to the reading to obtain power at the EUT antenna terminals.

Test Diagram:


Table: Power Spectral Density

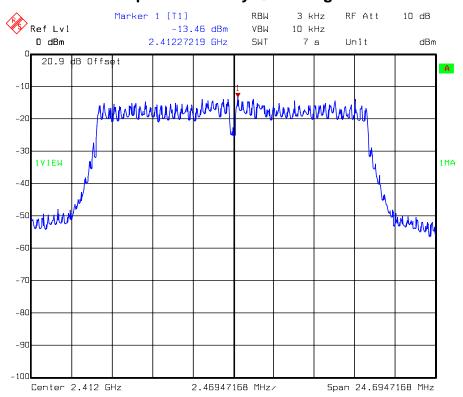
1TX Mode	Channel	Frequency (MHz)	PSD (dBm)	PSD (mW)	Limit (dBm)	Margin (dB)
	1	2412	-7.07	0.20	8	-15.07
802.11b	6	2437	-7.70	0.17	8	-15.70
	11	2462	-6.78	0.21	8	-14.78
	1	2412	-13.46	0.05	8	-21.46
802.11g	6	2437	-14.00	0.04	8	-22.00
	11	2462	-14.09	0.04	8	-22.09
802.11n HT20	1	2412	-14.98	0.03	8	-22.98
	6	2437	-14.25	0.04	8	-22.25
	11	2462	-15.58	0.03	8	-23.58

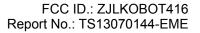




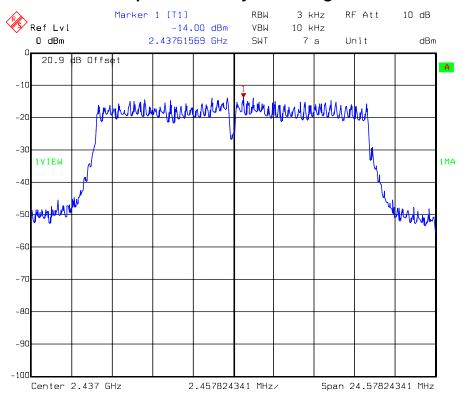
Chain 0: Power Spectral Density @ 802.11b mode Channel 1

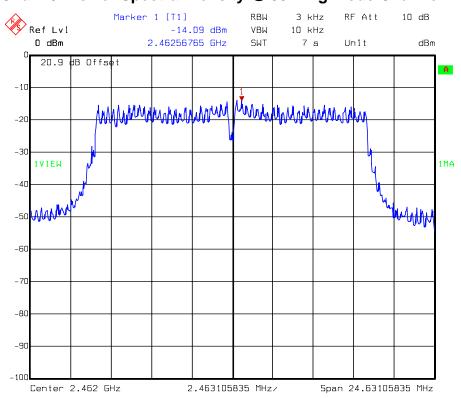
Chain 0: Power Spectral Density @ 802.11b mode Channel 6

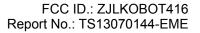




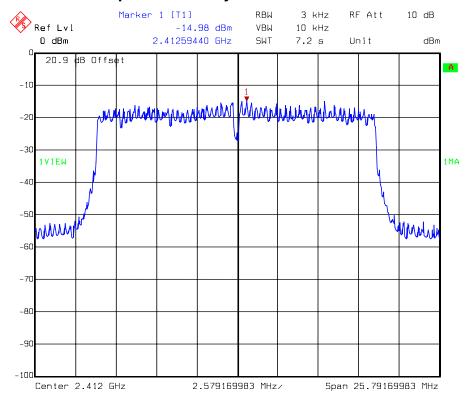
Chain 0: Power Spectral Density @ 802.11b mode Channel 11

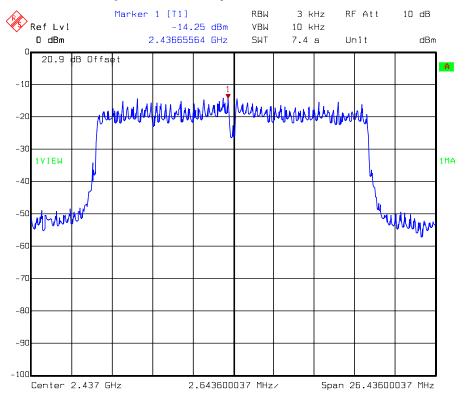

Chain 0: Power Spectral Density @ 802.11g mode Channel 1

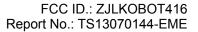




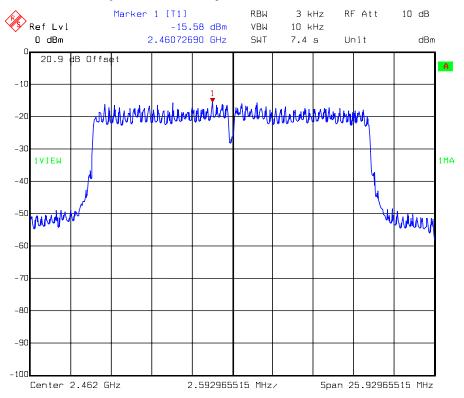
Chain 0: Power Spectral Density @ 802.11g mode Channel 6


Chain 0: Power Spectral Density @ 802.11g mode Channel 11





Chain 0: Power Spectral Density @ 802.11n HT20 mode Channel 1

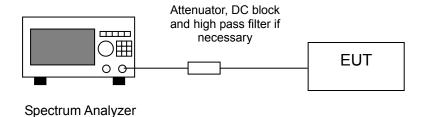

Chain 0: Power Spectral Density @ 802.11n HT20 mode Channel 6

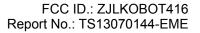
Chain 0: Power Spectral Density @ 802.11n HT20 mode Channel 11

6. RF Antenna Conducted Spurious

Name of Test	RF Antenna Conducted Spurious
Base Standard	FCC 15.247(d)

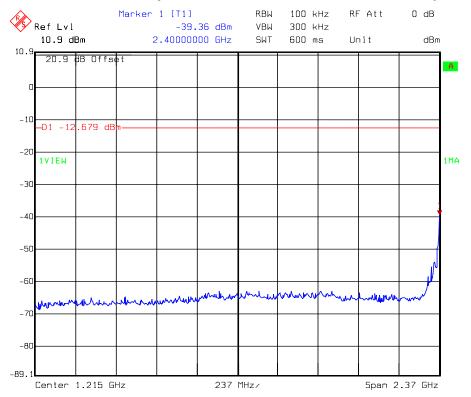
Test Result: Complies

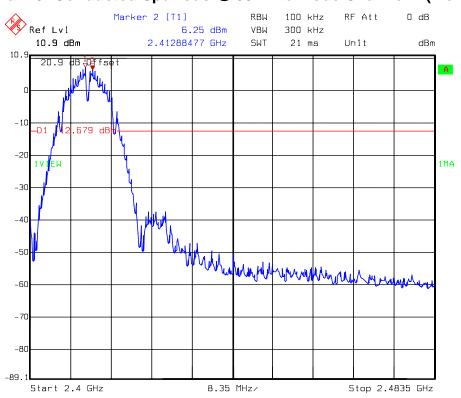

Measurement Data: See plots below Test Date: Aug. 19, 2013

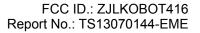

Method of Measurement:

Reference FCC document: KDB558074 D01

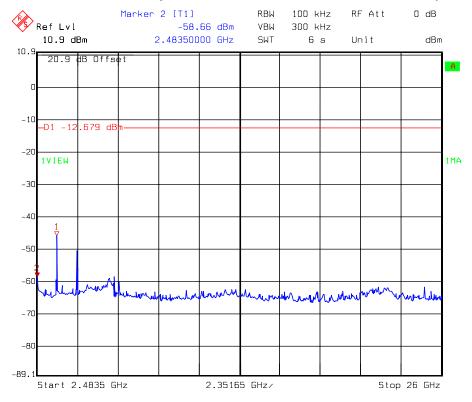
The measurements were performed from 12 MHz to 25 GHz RF antenna conducted per FCC 15.247 (d) was measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. Harmonics and spurious noise must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. If maximum (average) conducted output power was used to demonstrate compliance to 15.247(b)(3) requirements, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

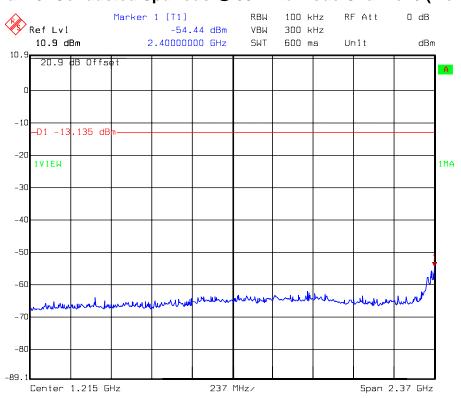

Test Diagram:

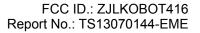




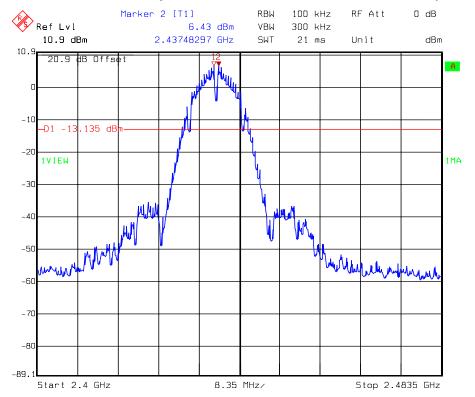
Chain 0: Conducted Spurious @ 802.11b mode Channel 1 (1 of 3)

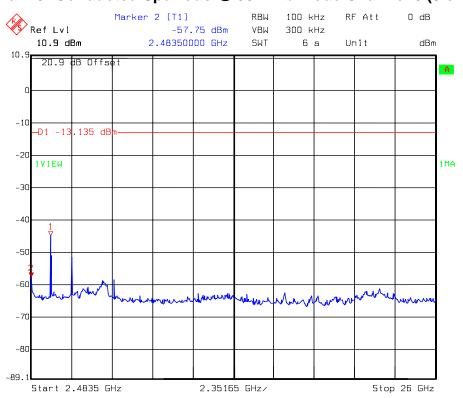

Chain 0: Conducted Spurious @ 802.11b mode Channel 1 (2 of 3)



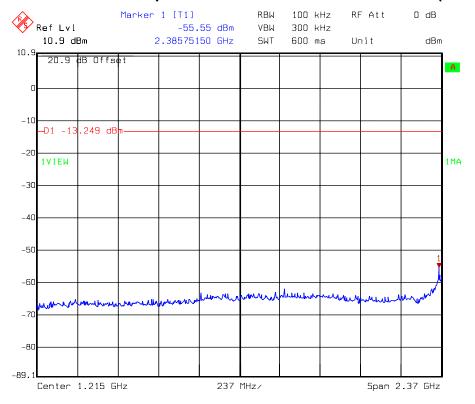


Chain 0: Conducted Spurious @ 802.11b mode Channel 1 (3 of 3)

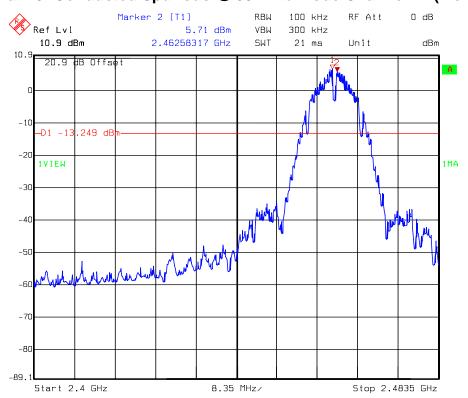

Chain 0: Conducted Spurious @ 802.11b mode Channel 6 (1 of 3)



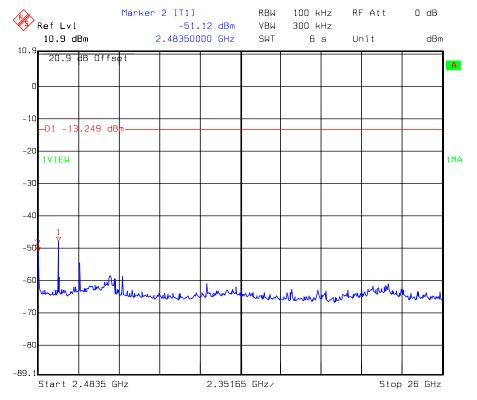
Chain 0: Conducted Spurious @ 802.11b mode Channel 6 (2 of 3)



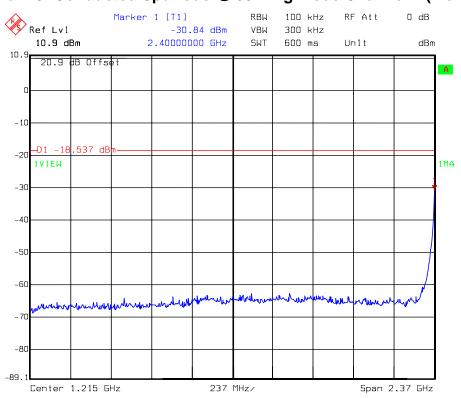
Chain 0: Conducted Spurious @ 802.11b mode Channel 6 (3 of 3)

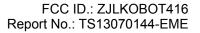


Chain 0: Conducted Spurious @ 802.11b mode Channel 11 (1 of 3)



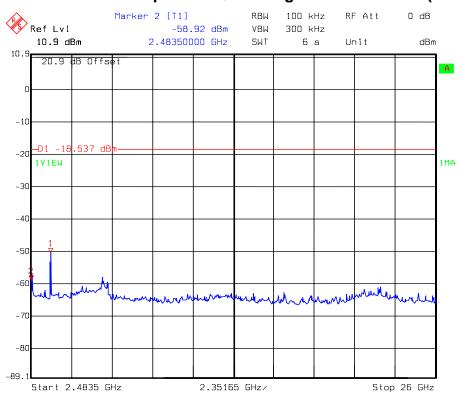
Chain 0: Conducted Spurious @ 802.11b mode Channel 11 (2 of 3)

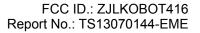




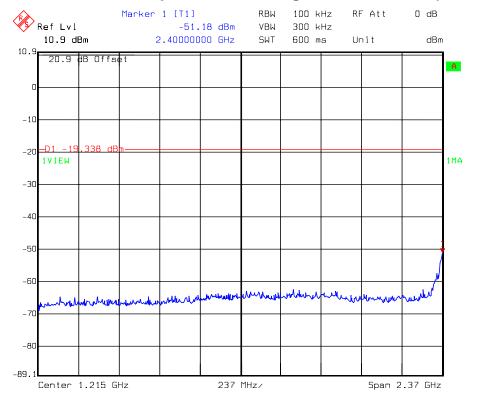
Chain 0: Conducted Spurious @ 802.11b mode Channel 11 (3 of 3)

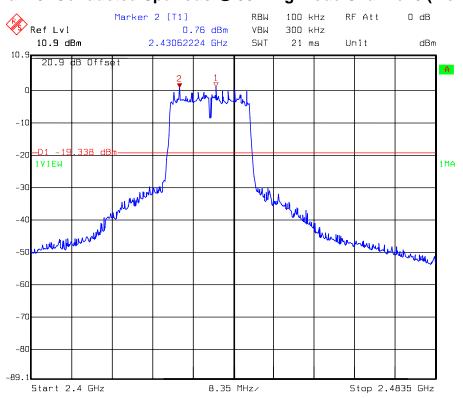
Chain 0: Conducted Spurious @ 802.11g mode Channel 1 (1 of 3)

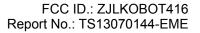




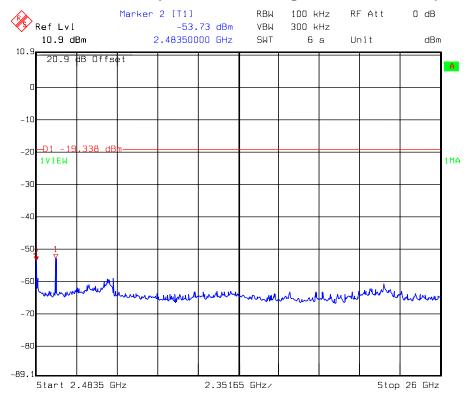
Chain 0: Conducted Spurious @ 802.11g mode Channel 1 (2 of 3)

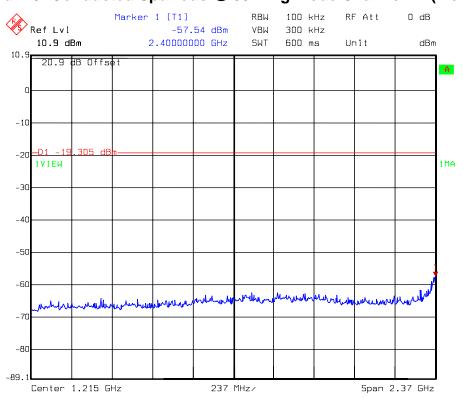

Chain 0: Conducted Spurious @ 802.11g mode Channel 1 (3 of 3)



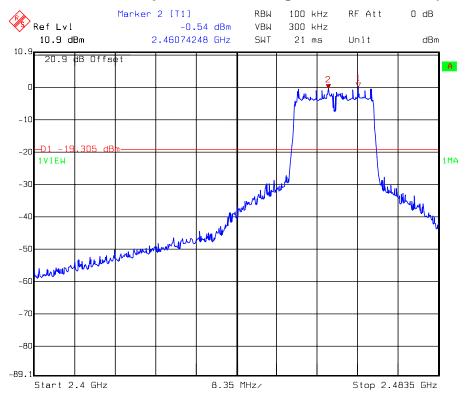


Chain 0: Conducted Spurious @ 802.11g mode Channel 6 (1 of 3)

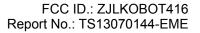

Chain 0: Conducted Spurious @ 802.11g mode Channel 6 (2 of 3)



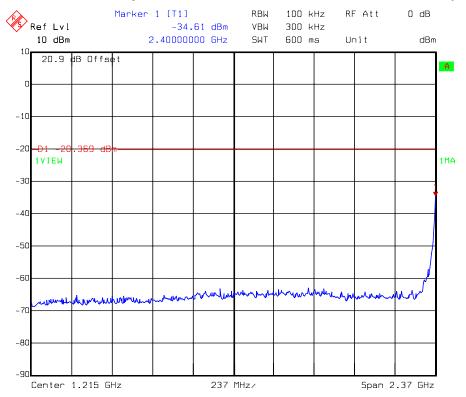
Chain 0: Conducted Spurious @ 802.11g mode Channel 6 (3 of 3)

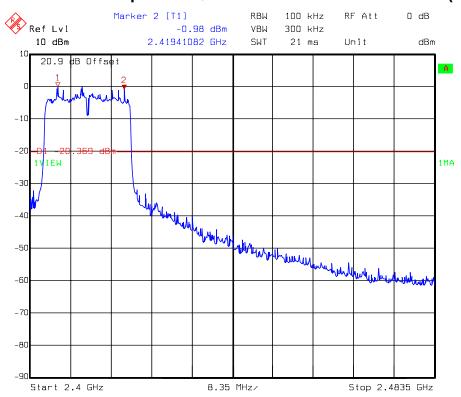


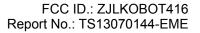
Chain 0: Conducted Spurious @ 802.11g mode Channel 11 (1 of 3)



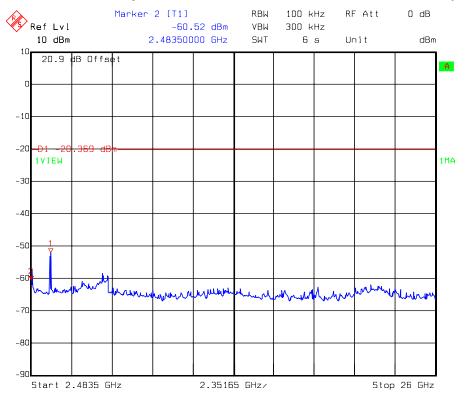
Chain 0: Conducted Spurious @ 802.11g mode Channel 11 (2 of 3)

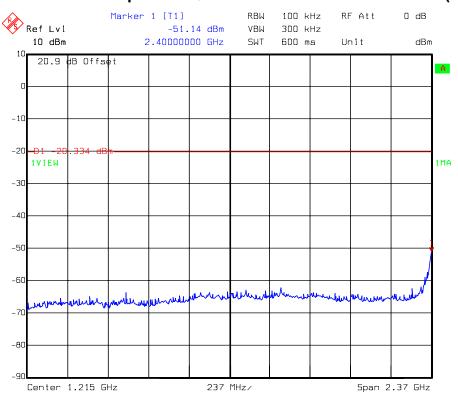

Chain 0: Conducted Spurious @ 802.11g mode Channel 11 (3 of 3)

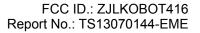




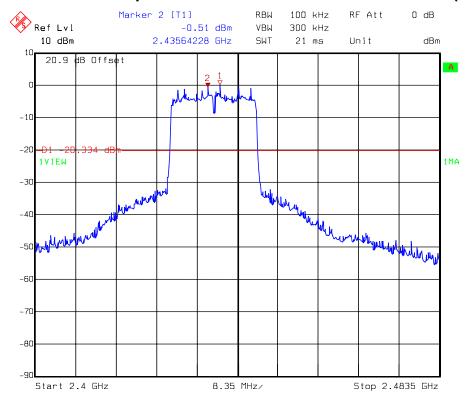
Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 1 (1 of 3)

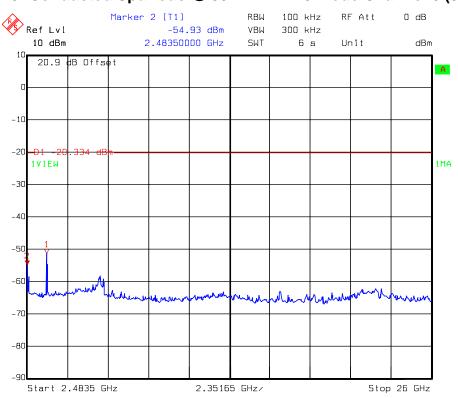

Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 1 (2 of 3)

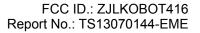




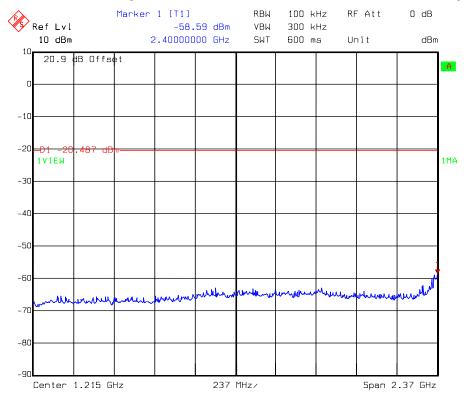
Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 1 (3 of 3)


Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 6 (1 of 3)

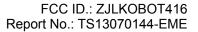




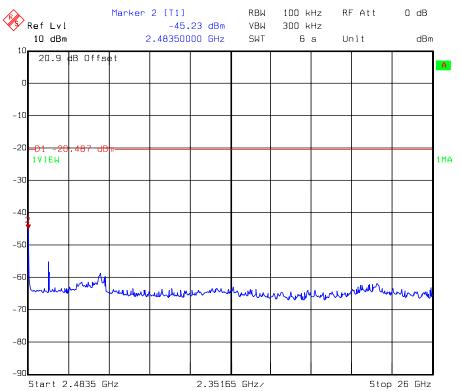
Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 6 (2 of 3)


Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 6 (3 of 3)





Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 11 (1 of 3)


Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 11 (2 of 3)

Chain 0: Conducted Spurious @ 802.11n HT20 mode Channel 11 (3 of 3)

7. Radiated Spurious Emission

Name of Test	Radiated Spurious Emission
Base Standard	FCC 15.247(d), 15.209, 15.205, 15.33(a)

Test Result: Complies

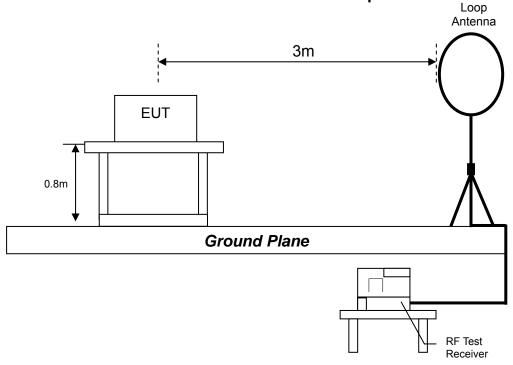
Measurement Data: See Tables below

Test Date: Aug. 15, 2013~Aug. 19, 2013

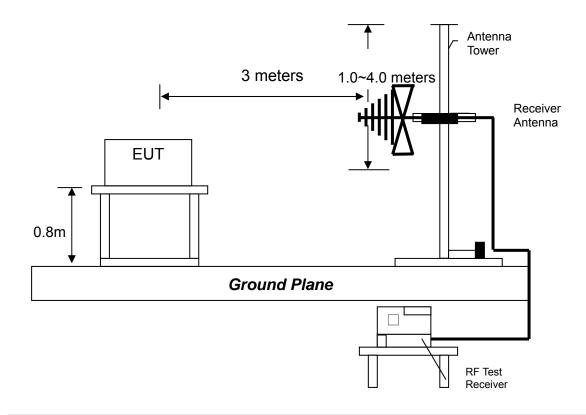
Method of Measurement:

Reference FCC document: KDB558074 D01, ANSI C63.4

The signal is maximized through rotation and placement in the three orthogonal axes. According to §15.33(a), the spectrum shall be investigated from the lowest radio frequency signal generated in the device, to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Spectrum Analyzer Resolution Bandwidth is 100kHz or greater for frequencies 30MHz to 1GHz, 1MHz – for frequencies above 1GHz.

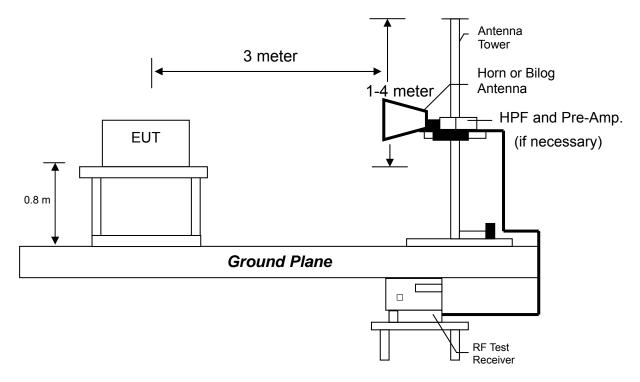

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter. The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent 3 meters reading using inverse scaling with distance.

The EUT configuration refers to the "Spurious set-up photo.pdf".



Test Diagram:

Radiated emission from 9kHz to 30MHz uses Loop Antenna:



Radiated emission from 30MHz to 1GHz uses Bilog Antenna:

Radiated emission above 1GHz uses Horn Antenna:

Emission Limit:

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field Strength (microvolts/meter)
0.009~0.490	2400/F(kHz)
0.490~1.705	2400/F(kHz)
1.705~30	30
30-88	100
88-216	150
216-960	200
Above 960	500

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Note: (1) The EUT was tested while in a continuous transmit mode and the worst case data rates are 1 Mbps data rate for 802.11b mode, 6 Mbps data rate for 802.11g mode, 7.2 Mbps data rate for 802.11n HT20 mode. The EUT was tuned to a low, middle and high channel.

(2) The EUT operating at 2.4 GHz ISM band. Frequency Range scanned from 32.768 kHz to 25 GHz.

Measurement Results: Frequencies Equal to or Less than 1 GHz

The test was performed on EUT under 802.11b, 802.11g and 802.11n HT20 continuously transmitting mode. The worst case occurred at 802.11b TX Channel 1.

EUT : T416

Worst Case : 802.11b TX at Channel 1

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polariz.			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
V	30.70	QP	12.60	8.31	20.90	40.00	-19.10
V	487.84	QP	18.43	8.12	26.54	46.00	-19.46
V	518.88	QP	18.56	9.54	28.09	46.00	-17.91
V	586.78	QP	20.71	8.45	29.16	46.00	-16.84
V	656.62	QP	21.50	8.16	29.66	46.00	-16.34
V	788.54	QP	23.19	8.50	31.69	46.00	-14.31
Н	142.52	QP	13.24	7.42	20.65	43.50	-22.85
Н	218.18	QP	11.10	8.59	19.68	46.00	-26.32
Н	270.56	QP	13.21	7.92	21.12	46.00	-24.88
Н	445.16	QP	18.12	6.84	24.96	46.00	-21.04
Н	485.90	QP	18.64	7.43	26.07	46.00	-19.93
Н	534.40	QP	19.65	7.34	26.99	46.00	-19.01

Remark: 1. Corr. Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Corr. Factor

Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Measurement Results: Frequency above 1GHz

EUT : T416

Test Condition : 802.11b TX at Channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4824	PK	V	35.1	38.54	40.67	44.11	54	-9.89
3600	PK	Н	33.9	36.16	45.91	48.17	54	-5.83
4824	PK	Н	35.1	38.54	35.02	38.46	54	-15.54

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Correction Factor – Preamp. Gain

3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11b TX at Channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3630	PK	V	33.9	36.16	39.97	42.23	54	-11.77
4874	PK	V	35.1	38.54	39.07	42.51	54	-11.49
3630	PK	Н	33.9	36.16	45.42	47.68	54	-6.32
4874	PK	Н	35.1	38.54	37.97	41.41	54	-12.59

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11b TX at Channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3690	PK	V	33.9	36.16	41.59	43.85	54	-10.15
4924	PK	V	35.1	38.54	37.97	41.41	54	-12.59
3690	PK	Н	33.9	36.16	45.90	48.16	54	-5.84
4924	PK	Н	35.1	38.54	36.98	40.42	54	-13.58

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Correction Factor – Preamp. Gain

3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11g TX at Channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3600	PK	V	33.9	36.16	38.20	40.46	54	-13.54
4824	PK	V	35.1	38.54	37.61	41.05	54	-12.95
3600	PK	Н	33.9	36.16	43.31	45.57	54	-8.43
4824	PK	Н	35.1	38.54	38.43	41.87	54	-12.13

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11g TX at Channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	35.1	38.54	36.73	40.17	54	-13.83
3660	PK	Н	33.9	36.16	42.62	44.88	54	-9.12
4874	PK	Н	35.1	38.54	36.85	40.29	54	-13.71

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Correction Factor – Preamp. Gain

3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11g TX at Channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3690	PK	V	33.9	36.16	39.71	41.97	54	-12.03
4924	PK	V	35.1	38.54	35.76	39.20	54	-14.80
3690	PK	Н	33.9	36.16	45.51	47.77	54	-6.23
4924	PK	Н	35.1	38.54	35.77	39.21	54	-14.79

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11n HT20 TX at Channel 1

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4824	PK	V	35.1	38.54	37.20	40.64	54	-13.36
4824	PK	Н	35.1	38.54	37.18	40.62	54	-13.38

Remark:

1. Correction Factor = Antenna Factor + Cable Loss

2. Corrected Level = Reading + Correction Factor – Preamp. Gain

3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11n HT20 TX at Channel 6

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
4874	PK	V	35.1	38.54	38.03	41.47	54	-12.53
3660	PK	Н	33.9	36.16	41.14	43.40	54	-10.60
4874	PK	Н	35.1	38.54	36.46	39.90	54	-14.10

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : T416

Test Condition : 802.11n HT20 TX at Channel 11

Frequency	Spectrum	Antenna	Preamp.	Correction	Reading	Corrected	Limit	Margin
	Analyzer	Polariz.	Gain	Factor		Level	@ 3 m	
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
3690	PK	V	33.9	36.16	38.94	41.20	54	-12.80
4924	PK	V	35.1	38.54	36.46	39.90	54	-14.10
3690	PK	Н	33.9	36.16	40.91	43.17	54	-10.83
4924	PK	Н	35.1	38.54	36.76	40.20	54	-13.80

- 1. Correction Factor = Antenna Factor + Cable Loss
- 2. Corrected Level = Reading + Correction Factor Preamp. Gain
- 3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

8. Emission on Band Edge

Name of Test	Emission on Band Edge
Base Standard	FCC 15.247(d)

Test Result: Complies

Measurement Data: See Tables & plots below

Test Date: Aug. 15, 2013

Method of Measurement:

Reference FCC document: KDB558074 D01, ANSI C63.4

Radiated emissions were invested cover the frequency range from 30 MHz to 1000 MHz using a receiver RBW of 120 kHz record QP reading, and the frequency over 1 GHz using a spectrum analyzer RBW of 1 MHz and 10 Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz / 3MHz; RBW / VBW) recorded also on the report.

	Restricted	Freq.	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	Band		Analyzer	Pol.	Gain	Factor		Level	@ 3 m	
	(MHz)	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
	2310~	2389.44	PK	V	38.021	31.847	66.934	60.76	74	-13.24
	2390	2389.44	AV	V	38.021	31.847	56.294	50.12	54	-3.88
		2412.00	PK	V	38.027	31.955	117.733	111.66	-	111.66
802.11b	-	2412.00	AV	V	38.027	31.955	112.513	106.44	-	106.44
002.110		2462.00	PK	>	38.040	32.192	116.338	110.49	ı	110.49
	-	2462.00	AV	V	38.040	32.192	111.298	105.45	-	105.45
	2483.5~	2484.80	PK	V	38.046	32.301	67.696	61.95	74	-12.05
	2500	2484.80	AV	V	38.046	32.301	58.976	53.23	54	-0.77

	Restricted	Freq.	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode	Band		Analyzer	Pol.	Gain	Factor		Level	@ 3 m	
	(MHz)	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
	2310 ~	2389.68	PK	٧	38.021	31.849	78.433	72.26	74	-1.74
	2390	2389.68	AV	>	38.021	31.849	59.773	53.60	54	-0.40
		2412.00	PK	>	38.027	31.955	118.213	112.14	-	112.14
802.11g	-	2412.00	AV	>	38.027	31.955	99.483	93.41	-	93.41
802.11g		2462.00	PK	V	38.040	32.192	115.308	109.46	-	109.46
	-	2462.00	AV	V	38.040	32.192	97.798	91.95	-	91.95
	2483.5 ~	2483.50	PK	V	38.046	32.294	77.301	71.55	74	-2.45
	2500	2483.50	AV	٧	38.046	32.294	59.331	53.58	54	-0.42
	2310 ~	2389.68	PK	Н	38.021	31.849	75.743	69.57	74	-4.43
	2390	2389.68	AV	Н	38.021	31.849	58.113	51.94	54	-2.06
		2412.00	PK	Н	38.027	31.955	115.743	109.67	-	109.67
802.11n	-	2412.00	AV	Н	38.027	31.955	97.833	91.76	-	91.76
HT20		2462.00	PK	Н	38.040	32.192	114.698	108.85	-	108.85
	-	2462.00	AV	Н	38.040	32.192	96.508	90.66	-	90.66
	2483.5 ~	2483.50	PK	Н	38.046	32.294	79.231	73.48	74	-0.52
	2500	2483.50	AV	Н	38.046	32.294	59.171	53.42	54	-0.58

9. AC Power Line Conducted Emission

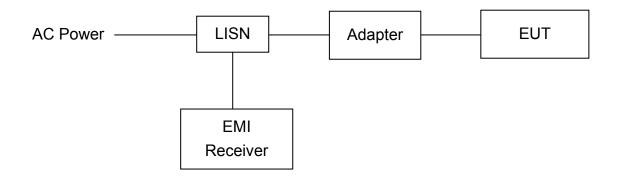
Name of Test	AC Power Line Conducted Emission
Base Standard	FCC 15.207

Test Result: Complies

Measurement Data: See Tables & plots below

Test Date: Jul. 19, 2013

Method of Measurement:


Reference FCC document: ANSI C63.4

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/ 50 uH coupling impedance with 50 ohm termination. Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9 kHz.

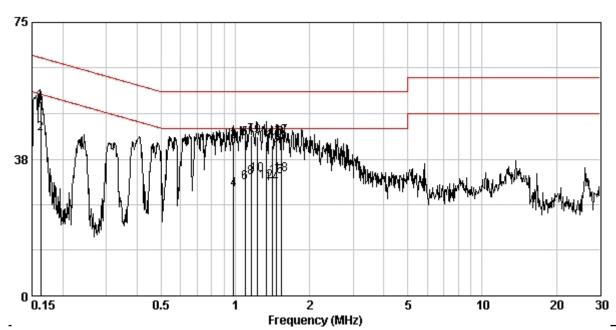
The EUT configuration refers to the "Conducted set-up photo.pdf".

Test Diagram:

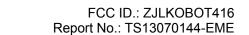
Emission Limit:

Freq.	Conducted Limit (dBuV)					
(MHz)	Q.P.	Ave.				
0.15~0.50	66 – 56*	56 – 46*				
0.50~5.00	56	46				
5.00~30.0	60	50				

^{*}Decreases with the logarithm of the frequency.


Note: The EUT was tested while in normal communication mode.

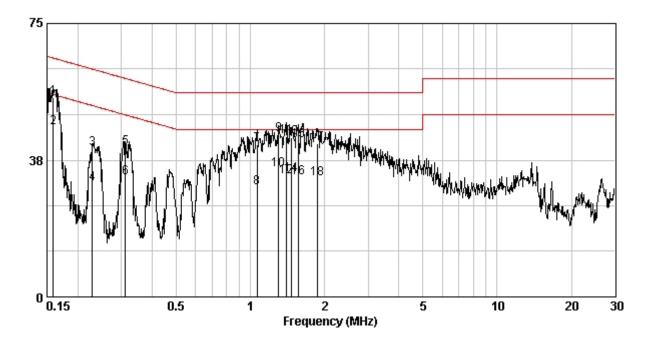
Phase : Line EUT : T416


Test Condition : Adapter mode

Frequency	Corr. Factor	Level Op	Limit Qp	Level Av	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp `	Av
0.162	0.13	53.43	65.34	44.63	55.34	-11.91	-10.71
0.984	0.20	42.22	56.00	29.23	46.00	-13.78	-16.77
1.094	0.21	43.11	56.00	31.15	46.00	-12.89	-14.85
1.160	0.21	44.08	56.00	32.38	46.00	-11.92	-13.62
1.229	0.22	43.66	56.00	33.15	46.00	-12.34	-12.85
1.331	0.23	42.21	56.00	31.23	46.00	-13.79	-14.77
1.411	0.23	41.11	56.00	30.74	46.00	-14.89	-15.26
1.472	0.24	43.07	56.00	32.80	46.00	-12.93	-13.20
1.544	0.24	43.59	56.00	33.26	46.00	-12.41	-12.74

- 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Page 48 of 50



Phase : Neutral EUT : T416

Test Condition : Adapter mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level Av	Limit Av		rgin dB)
(MHz)	(dB)	(dBu∀)	(dBuV)	(dBuV)	(dBuV)	Qp `	Av
0.159	0.10	54.81	65.52	46.39	55.52	-10.71	-9.12
0.229	0.11	40.79	62.48	31.01	52.48	-21.69	-21.47
0.312	0.12	40.87	59.93	32.66	49.93	-19.06	-17.26
1.065	0.17	41.72	56.00	30.06	46.00	-14.28	-15.94
1.303	0.19	44.60	56.00	34.89	46.00	-11.40	-11.11
1.396	0.19	43.96	56.00	32.96	46.00	-12.04	-13.04
1.472	0.20	43.54	56.00	33.63	46.00	-12.46	-12.37
1.560	0.21	42.81	56.00	32.81	46.00	-13.19	-13.19
1.878	0.22	41.92	56.00	32.30	46.00	-14.08	-13.70

- 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Appendix: Test Equipment List

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2012/11/30	2013/11/29
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/20
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2013/01/23	2014/01/22
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2013/09/02
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2013/09/04
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2013/08/08	2014/08/07
Loop Antenna	RolfHeine	LA-285	02/10033	2013/03/20	2014/03/19
Pre-Amplifier	MITEQ	AFS44-0010265 042-10P-44	1495287	2011/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-26004000 27-8A	828825	2012/9/18	2014/9/17
Power Meter	Anritsu	ML2495A	0844001	2012/10/09	2013/10/08
Power Senor	Anritsu	MA2411B	0738452	2012/10/09	2013/10/08
Temperature& Humidity Test Chamber	TERCHY	MHU-225LRU (SA)	950838	2013/06/14	2014/06/13
Two-Line V-Network	Rohde&schwarz	ESH3-Z5	838979/014	2012/10/29	2013/10/28

Note: The above equipments are within the valid calibration period.

Measurement Uncertainty:

Measurement uncertainty was calculated in accordance with TR 100 028-1.

Parameter	Uncertainty					
	Below 1 GHz	Vertical	3.90 dB			
Radiated Emission	below I GHZ	Horizontal	3.86 dB			
Radiated Emission	Ab 4 OH-	Vertical	5.74 dB			
	Above 1 GHz	Horizontal	5.55 dB			
Conducted Emission	2.08 dB					

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.