

TEST REPORT

Applicant Name: Dragino Technology Co., Limited.
Address: Room 202, BaoChengTai industrial park, No.8 CaiYun
LongCheng Street, LongGang District, Shenzhen China
Report Number: 2501S19502E-RF-00A
FCC ID: ZHXT68DL

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Temperature Sensor
Model No.: T68DL
Multiple Model(s) No.: N/A
Trade Mark: DRAGINO
Date Received: 2025/04/24
Issue Date: 2025/06/30

Test Result:	Pass▲
--------------	-------

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:Ekko. Wu

Ekko Wu
RF Engineer

Approved By:Nancy. Wang

Nancy Wang
RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China
Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION.....	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
TEST METHODOLOGY	5
MEASUREMENT UNCERTAINTY	6
TEST FACILITY	6
SYSTEM TEST CONFIGURATION.....	7
DESCRIPTION OF TEST CONFIGURATION	7
EQUIPMENT MODIFICATIONS	7
EUT EXERCISE SOFTWARE	7
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE.....	8
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC 1.1307 (B) & §2.1091- MPE-BASED EXEMPTION.....	11
APPLICABLE STANDARD	11
RESULT	11
FCC §15.203 - ANTENNA REQUIREMENT.....	12
APPLICABLE STANDARD	12
ANTENNA CONNECTOR CONSTRUCTION	12
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS.....	13
APPLICABLE STANDARD	13
EUT SETUP.....	13
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	14
TEST PROCEDURE	15
FACTOR & OVER LIMIT/MARGIN CALCULATION	15
TEST DATA	16
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	24
APPLICABLE STANDARD	24
TEST PROCEDURE	24
TEST DATA	24
FCC §15.247(A) (1) (I) - 20 DB EMISSION BANDWIDTH.....	26
APPLICABLE STANDARD	26
TEST PROCEDURE	26
TEST DATA	27
FCC §15.247(F) - TIME OF OCCUPANCY (DWELL TIME).....	30
APPLICABLE STANDARD	30
TEST PROCEDURE	30
TEST DATA	31

FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	33
APPLICABLE STANDARD	33
TEST PROCEDURE	33
TEST DATA	33
FCC §15.247(D) - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE.....	36
APPLICABLE STANDARD	36
TEST PROCEDURE	36
TEST DATA	36
FCC §15.247(F) - POWER SPECTRAL DENSITY.....	39
APPLICABLE STANDARD	39
TEST PROCEDURE	39
TEST DATA	39
C63.10 §11.6- DUTY CYCLE.....	42
TEST PROCEDURE	42
TEST DATA	42
EUT PHOTOGRAPHS.....	44
TEST SETUP PHOTOGRAPHS	45

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501S19502E-RF-00A	Original Report	2025/06/30

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Temperature Sensor
Tested Model	T68DL
Multiple Model(s)	N/A
Frequency Range	902.3-914.9MHz
Maximum Conducted Peak Output Power	7.22dBm
Technique	Lora_Hybrid System
Antenna Specification [#]	-5.76dBi (provided by the applicant)
Voltage Range	DC 3V from battery
Sample serial number	31WH-4 for Radiated Emissions Test 31WH-3 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		109.2kHz(k=2, 95% level of confidence)
RF output power, conducted		0.86dB(k=2, 95% level of confidence)
Unwanted Emission, conducted		1.60dB(k=2, 95% level of confidence)
AC Power Lines Conducted Emissions	9kHz-150kHz	3.63dB(k=2, 95% level of confidence)
	150kHz-30MHz	3.66dB(k=2, 95% level of confidence)
Radiated Emissions	0.009MHz~30MHz	3.60dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)	5.32dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)	5.43dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Horizontal)	5.77dB(k=2, 95% level of confidence)
	200MHz~1000MHz (Vertical)	5.73dB(k=2, 95% level of confidence)
	1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)
	6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)
	18GHz - 40GHz	5.64dB(k=2, 95% level of confidence)
	Temperature	±1°C
Humidity		±1%
Supply voltages		±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

Each test item follows test standards and with no deviation.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

Channel List[#]

Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)
0	902.3	16	905.5	32	908.7	48	911.9
1	902.5	17	905.7	33	908.9	49	912.1
2	902.7	18	905.9	34	909.1	50	912.3
3	902.9	19	906.1	35	909.3	51	912.5
4	903.1	20	906.3	36	909.5	52	912.7
5	903.3	21	906.5	37	909.7	53	912.9
6	903.5	22	906.7	38	909.9	54	913.1
7	903.7	23	906.9	39	910.1	55	913.3
8	903.9	24	907.1	40	910.3	56	913.5
9	904.1	25	907.3	41	910.5	57	913.7
10	904.3	26	907.5	42	910.7	58	913.9
11	904.5	27	907.7	43	910.9	59	914.1
12	904.7	28	907.9	44	911.1	60	914.3
13	904.9	29	908.1	45	911.3	61	914.5
14	905.1	30	908.3	46	911.5	62	914.7
15	905.3	31	908.5	47	911.7	63	914.9

EUT was test with channel 0/32/63.

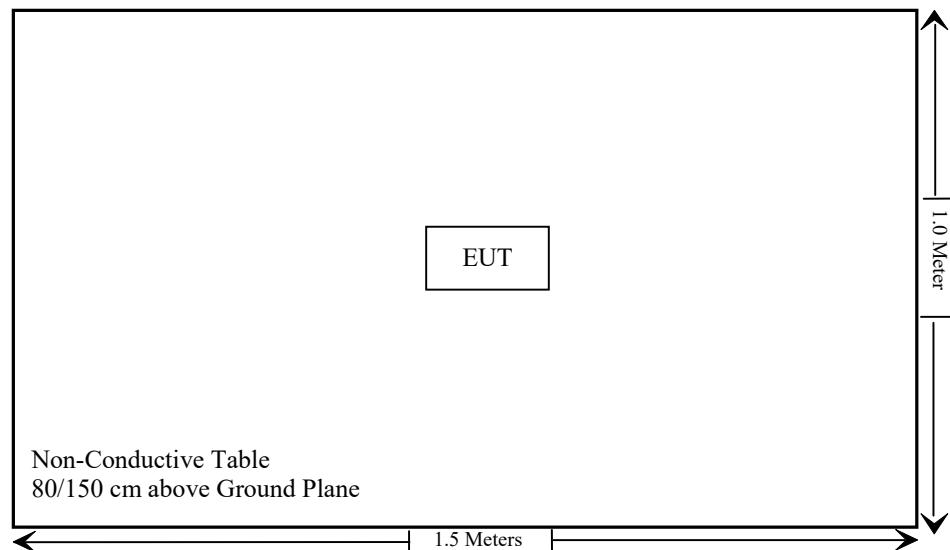
Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

“SerialPortVtility.exe[#]” exercise software was used and the power level is 9[#]. The software and power level was provided by the manufacturer.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	To
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§2.1091	MPE-Based Exemption	Compliant
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Not Applicable
FCC §15.209, §15.205 & §15.247(d)	Spurious Emissions	Compliant
§15.247(a)(1)(i)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(f)	Time of Occupancy (Dwell Time)	Compliant
§15.247(b)(3)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant
§15.247(f)	Power Spectral Density	Compliant
C63.10 §11.6	Duty Cycle	/

Not Applicable: The EUT is powered by battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test_ Below 1GHz					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03
Sonoma instrument	Pre-amplifier	310 N	186238	2025/04/29	2026/04/28
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Radiated Emission Test_ Above 1GHz					
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2025/03/26	2026/03/25
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	735	2024/12/06	2025/12/05
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05
Unknown	RF Cable	XH750A-N	J-10M	2024/12/06	2025/12/05
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2024/12/04	2025/12/03
Rohde & Schwarz	Spectrum Analyzer	FSV40	101942	2024/09/20	2025/09/19
Unknown	3dB Attenuator	Unknown	F-03-EM121	2024/06/27	2025/06/26

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC 1.1307 (B) & §2.1091- MPE-BASED EXEMPTION

Applicable Standard

According to subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 v01 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power (ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	$1,920 R^2$.
1.34-30	$3,450 R^2/f^2$.
30-300	$3.83 R^2$.
300-1,500	$0.0128 R^2 f$.
1,500-100,000	$19.2R^2$.

R is the minimum separation distance in meters

f = frequency in MHz

Result

Frequency (MHz)	Tune up conducted power [#] (dBm)	Antenna Gain [#]		ERP		Evaluation Distance (m)	ERP Limit (mW)
		(dBi)	(dBd)	(dBm)	(mW)		
902.3-914.9	8.0	-5.76	-7.91	0.09	1.02	0.2	462

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

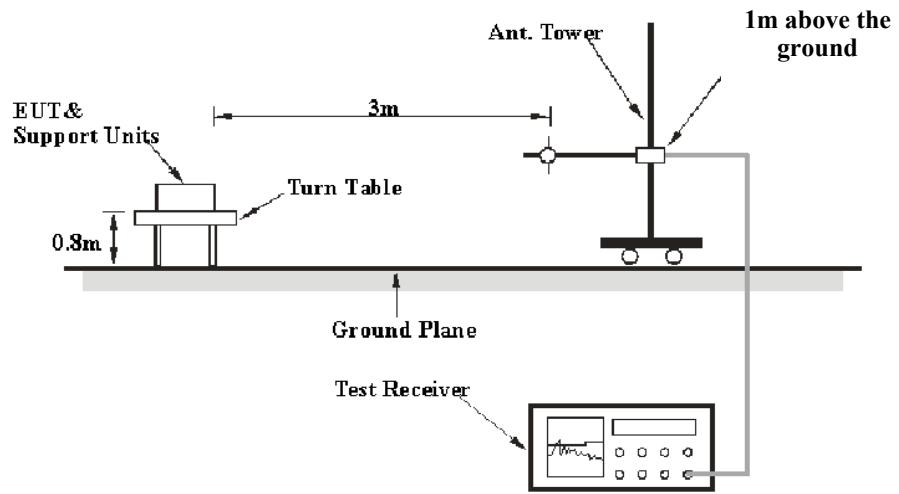
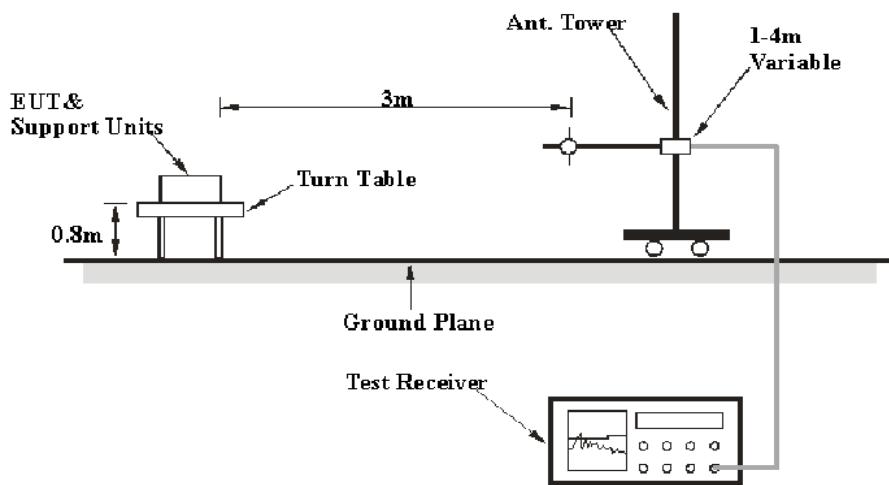
Result: Compliant

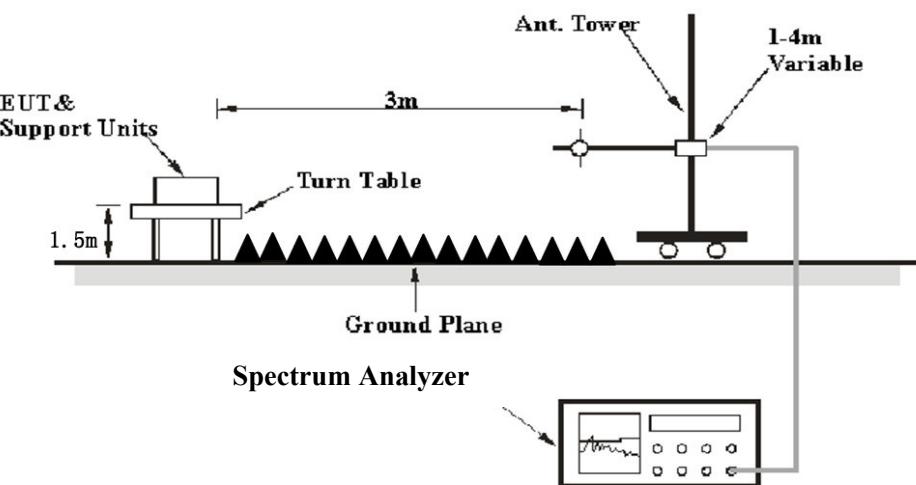
FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.



Antenna Connector Construction


The EUT has one internal antenna arrangement, which was permanently attached, and the maximum antenna gain[#] is -5.76dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS**Applicable Standard**

FCC §15.247 (d); §15.209; §15.205;

EUT Setup**9 kHz-30MHz:****30MHz-1GHz:**

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Detector	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP	QP
	300 Hz	1 kHz	/	PK	PK
150 kHz – 30 MHz	/	/	9 kHz	QP	QP
	10 kHz	30 kHz	/	PK	PK
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	PK

Above 1 GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	PK
	>98%	1MHz	1 kHz	PK
	<98%	1MHz	≥1/Ton or 5 kHz which is larger	PK

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W	Detector
PK	Any	1MHz	3 MHz	PK
AV	>98%	1MHz	10 Hz	PK
	<98%	1MHz	≥1/Ton	PK

Note: Ton is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz–30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “**Over Limit/Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

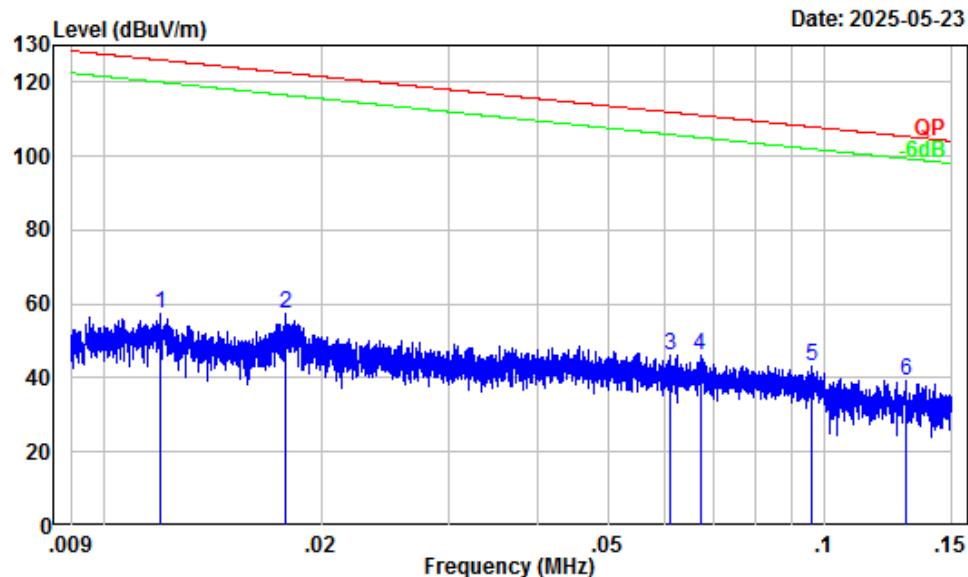
$$\text{Over Limit/Margin} = \text{Level/Corrected Amplitude} - \text{Limit}$$

$$\text{Level / Corrected Amplitude} = \text{Read Level} + \text{Factor}$$

Test Data**Environmental Conditions**

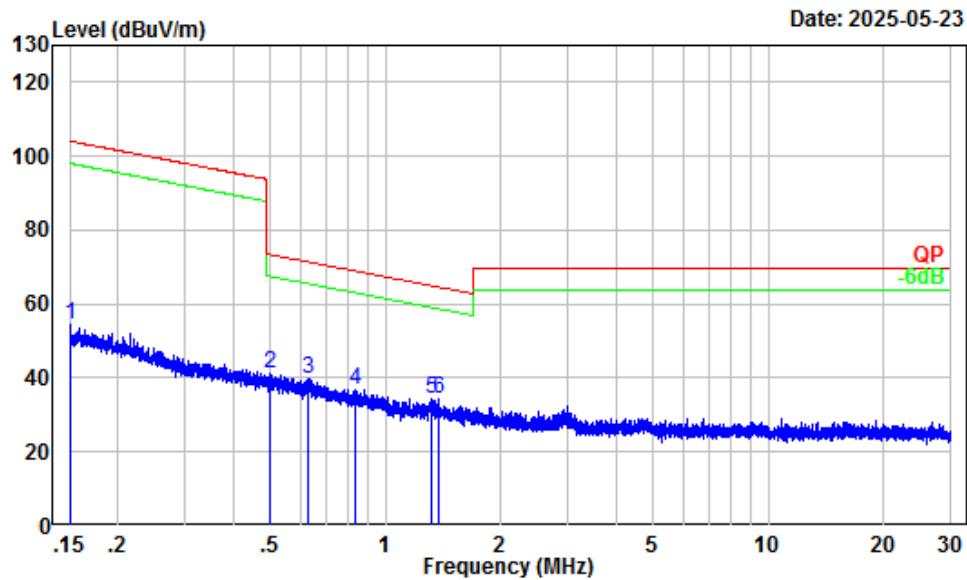
Temperature:	21.4~24.9 °C
Relative Humidity:	48~59 %
ATM Pressure:	100.1~101.1kPa

The testing was performed by Alex Yan on 2025-05-23 for below 1GHz and Wing K Ji on 2025-05-21 for above 1GHz.


EUT operation mode: Transmitting

Note: Pre-scan in the X, Y and Z axes of orientation, the worst case Z-axis of orientation was recorded.

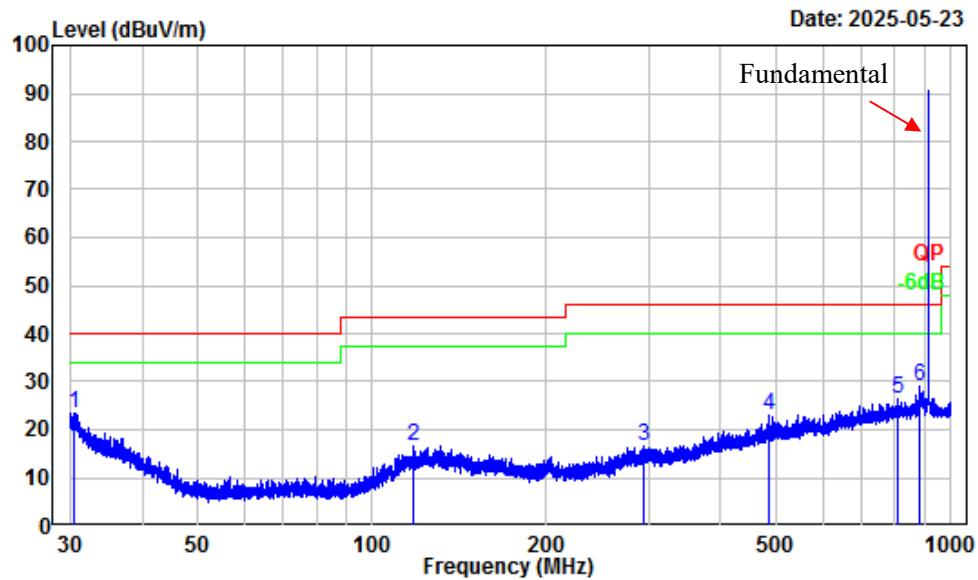
9 kHz-30MHz: (Maximum output power mode, Low channel)


Note: When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.

Parallel (worst case)

Site : Chamber A
Condition : 3m
Project Number : 2501S19502E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 0.3/1kHz
Tester : Alex Yan

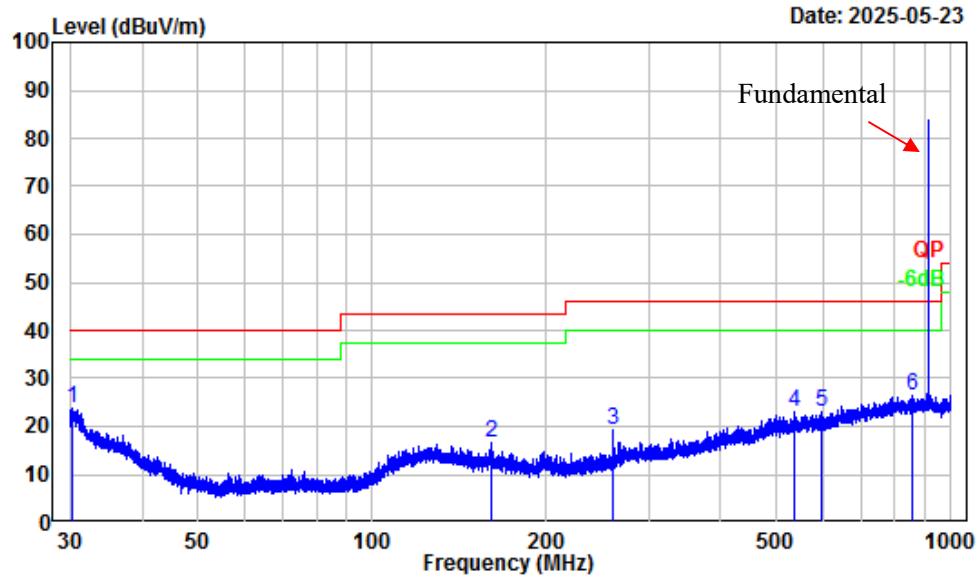
Freq	Factor	Read	Limit	Over	Remark	
		Level	Level	Line		
1	0.012	31.92	25.27	57.19	126.02	-68.83 Peak
2	0.018	30.80	26.40	57.20	122.56	-65.36 Peak
3	0.061	25.31	20.86	46.17	111.91	-65.74 Peak
4	0.067	24.69	21.37	46.06	111.07	-65.01 Peak
5	0.096	22.28	20.66	42.94	107.95	-65.01 Peak
6	0.129	20.27	18.86	39.13	105.37	-66.24 Peak



Site : Chamber A
Condition : 3m
Project Number : 2501S19502E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 10/30kHz
Tester : Alex Yan

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	0.151	19.00	35.63	54.63	104.04	-49.41	Peak
2	0.502	6.38	34.85	41.23	73.58	-32.35	Peak
3	0.628	4.82	34.93	39.75	71.59	-31.84	Peak
4	0.837	2.43	34.28	36.71	69.06	-32.35	Peak
5	1.316	0.32	34.12	34.44	65.04	-30.60	Peak
6	1.384	0.13	34.43	34.56	64.59	-30.03	Peak

30 MHz~1 GHz: (Maximum output power mode, Low channel)


Horizontal

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501S19502E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.49	-6.21	29.73	23.52	40.00	-16.48	Peak
2	118.03	-11.68	28.35	16.67	43.50	-26.83	Peak
3	293.98	-11.22	27.74	16.52	46.00	-29.48	Peak
4	486.25	-6.13	28.97	22.84	46.00	-23.16	Peak
5	809.91	-2.04	28.42	26.38	46.00	-19.62	Peak
6	883.34	-1.44	30.40	28.96	46.00	-17.04	Peak

Vertical

Site : Chamber A
Condition : 3m Vertical
Project Number : 2501S19502E-RF
Test Mode : Transmitting
Detector: Peak RBW/VBW: 100/300kHz
Tester : Alex Yan

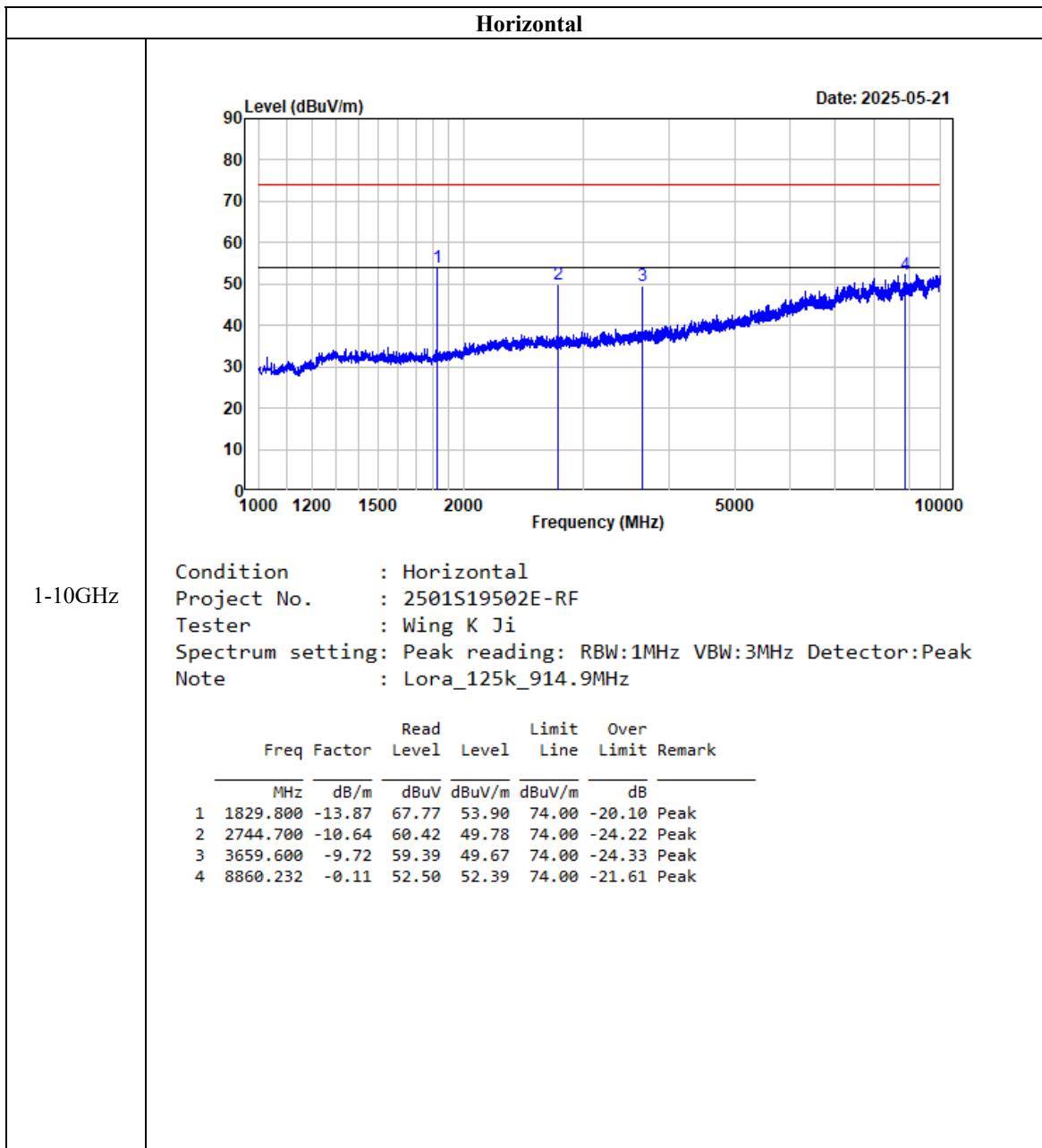
	Freq	Factor	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dB _{UV}	dB _{UV} /m	dB _{UV} /m	dB	
1	30.21	-6.07	29.74	23.67	40.00	-16.33	Peak
2	161.05	-12.72	29.19	16.47	43.50	-27.03	Peak
3	261.06	-12.66	31.90	19.24	46.00	-26.76	Peak
4	536.41	-5.68	28.64	22.96	46.00	-23.04	Peak
5	596.70	-5.28	28.42	23.14	46.00	-22.86	Peak
6	854.77	-1.72	28.15	26.43	46.00	-19.57	Peak

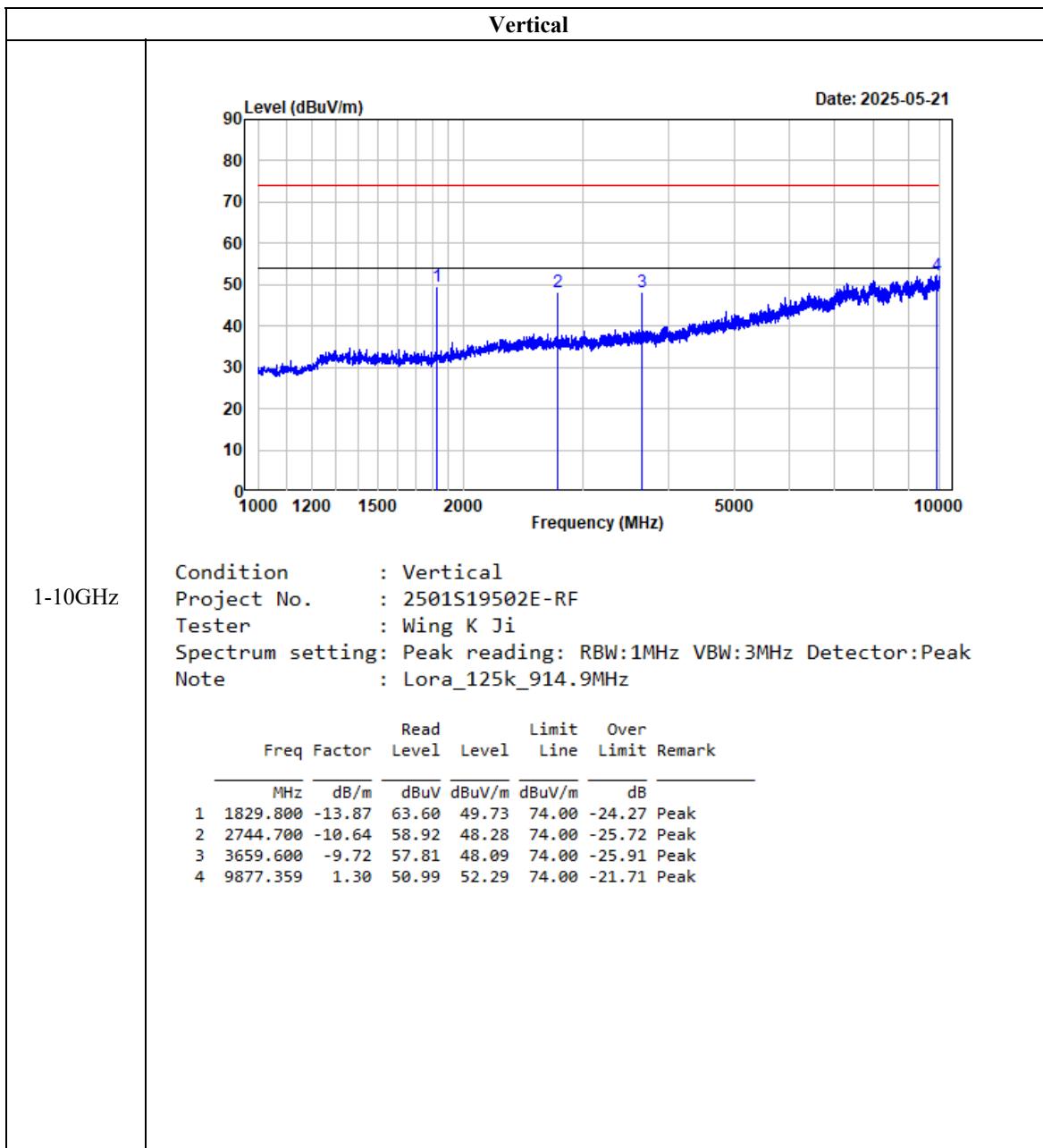
Above 1 GHz:

Frequency (MHz)	Reading (dB μ V)	PK/Ave	Polar (H/V)	Factor (dB/m)	Absolute Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Low Channel 902.3MHz							
1804.60	62.15	PK	H	-13.99	48.16	74	-25.84
1804.60	59.20	PK	V	-13.99	45.21	74	-28.79
2706.90	60.57	PK	H	-10.53	50.04	74	-23.96
2706.90	59.90	PK	V	-10.53	49.37	74	-24.63
3609.20	58.67	PK	H	-10.09	48.58	74	-25.42
3609.20	58.30	PK	V	-10.09	48.21	74	-25.79
Middle Channel 908.7MHz							
1817.40	67.15	PK	H	-13.93	53.22	74	-20.78
1817.40	63.58	PK	V	-13.93	49.65	74	-24.35
2726.10	60.97	PK	H	-10.58	50.39	74	-23.61
2726.10	59.48	PK	V	-10.58	48.90	74	-25.10
3634.80	59.54	PK	H	-9.90	49.64	74	-24.36
3634.80	58.53	PK	V	-9.90	48.63	74	-25.37
High Channel 914.9 MHz							
1829.80	67.77	PK	H	-13.87	53.90	74	-20.10
1829.80	63.60	PK	V	-13.87	49.73	74	-24.27
2744.70	60.42	PK	H	-10.64	49.78	74	-24.22
2744.70	58.92	PK	V	-10.64	48.28	74	-25.72
3659.60	59.39	PK	H	-9.72	49.67	74	-24.33
3659.60	57.81	PK	V	-9.72	48.09	74	-25.91

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor


Corrected Amplitude/Level = Corrected Factor + Reading


Margin = Corrected Amplitude/Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

The test result of peak was less than the limit of average, so just peak values were recorded.

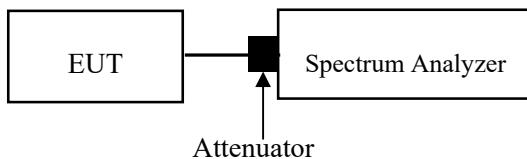
Listed with the harmonic margin test plot (worst case, High channel):

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

FCC § 15.247(a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

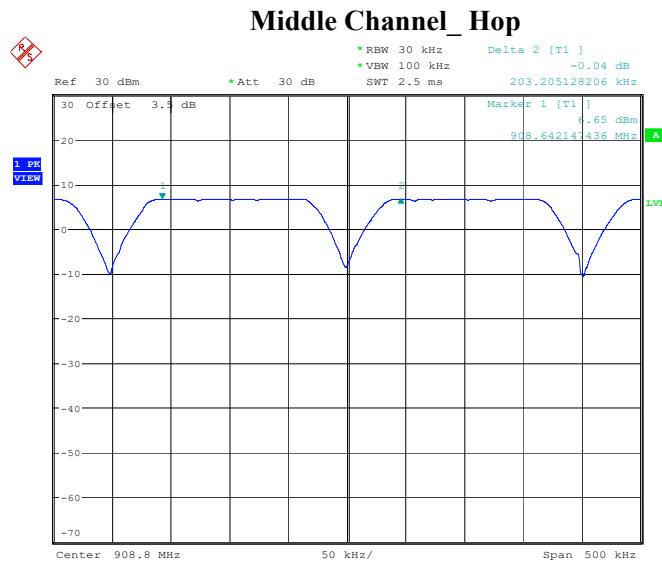
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined.

Test Data

Environmental Conditions

Temperature:	25.3 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa


The testing was performed by Cheeb Huang on 2025-06-06.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to following table and plots

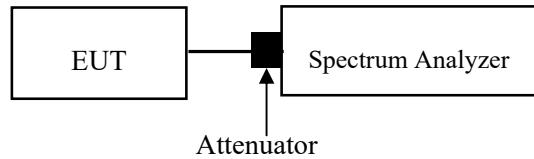
Test Channel	Test Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Verdict
Middle_Hop	908.7	0.203	0.139	Pass

Note: Limit \geq 20 dB bandwidth

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 6.JUN.2025 10:36:57

FCC §15.247(a) (1) (i) - 20 dB EMISSION BANDWIDTH

Applicable Standard


According to §15.247(a) (1) (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

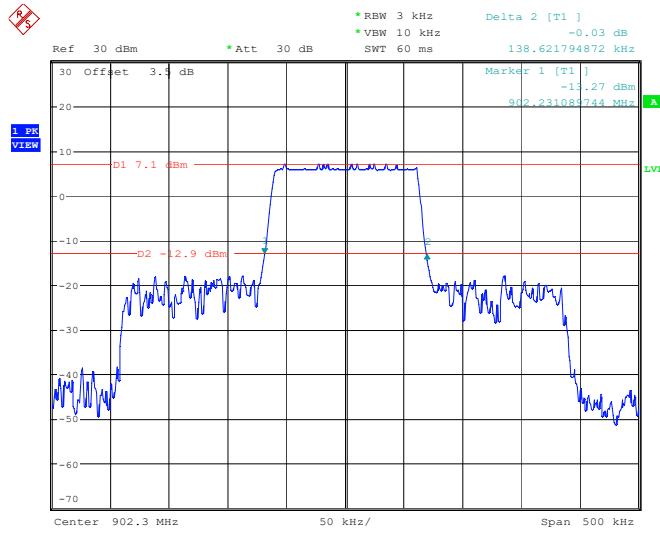
- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “-xx dB down” requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max hold.
- g) Determine the reference value: Set the EUT to transmit an un-modulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the “-xx dB down amplitude” using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an un-modulated carrier, then turn the EUT modulation on, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “- xx dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “- xx dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

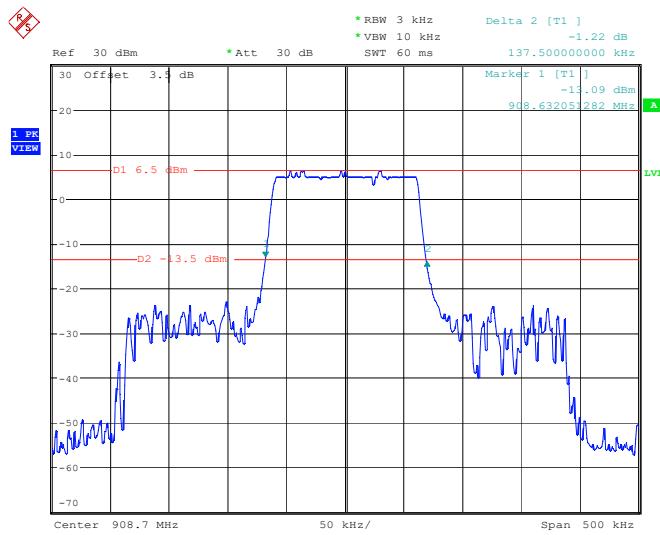
Test Data

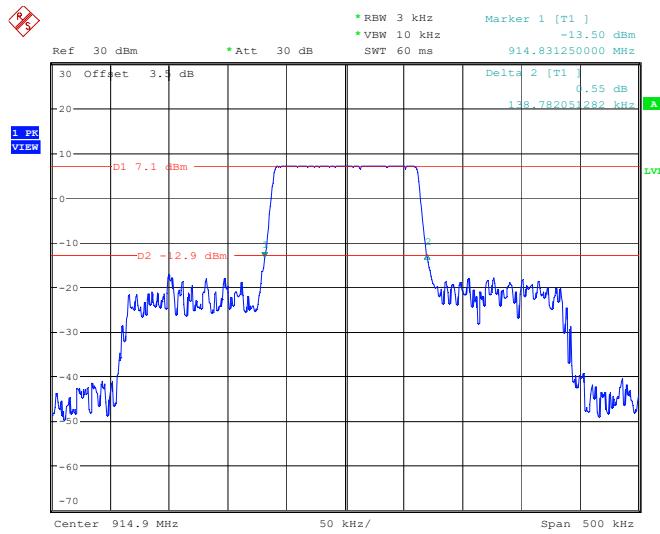
Environmental Conditions

Temperature:	25.3~26.5 °C
Relative Humidity:	49~52 %
ATM Pressure:	101~101.1 kPa


The testing was performed by Cheeb Huang from 2025-05-15 to 2025-06-05.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the following table and plots.


Test Channel	Test Frequency (MHz)	20 dB Bandwidth (MHz)	Limit (MHz)
Low	902.3	0.139	<0.25
Middle	908.7	0.138	<0.25
High	914.9	0.139	<0.25

Low Channel

Middle Channel

High Channel

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 15:46:01

FCC §15.247(f) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

FCC §15.247(f)

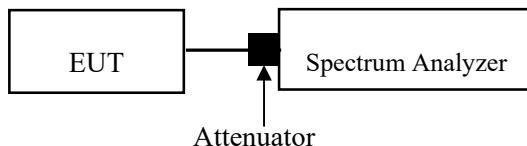
For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set $\gg 1 / T$, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.


Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

$$\text{(Number of hops in the period specified in the requirements)} = \text{(number of hops on spectrum analyzer)} \times \text{(period specified in the requirements / analyzer sweep time)}$$

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

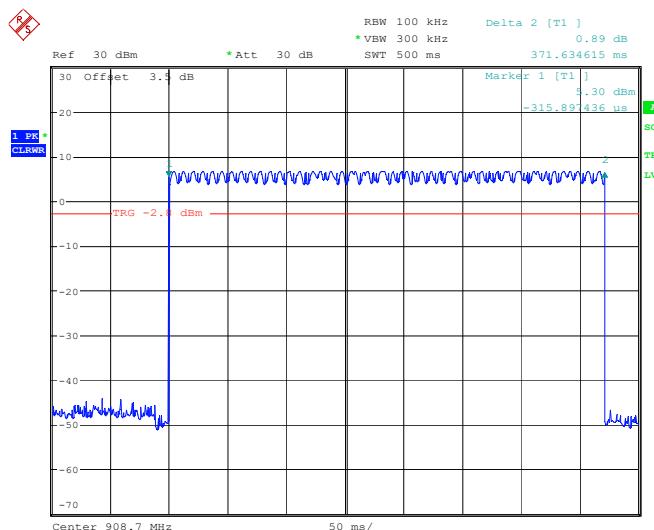
The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Test Data

Environmental Conditions

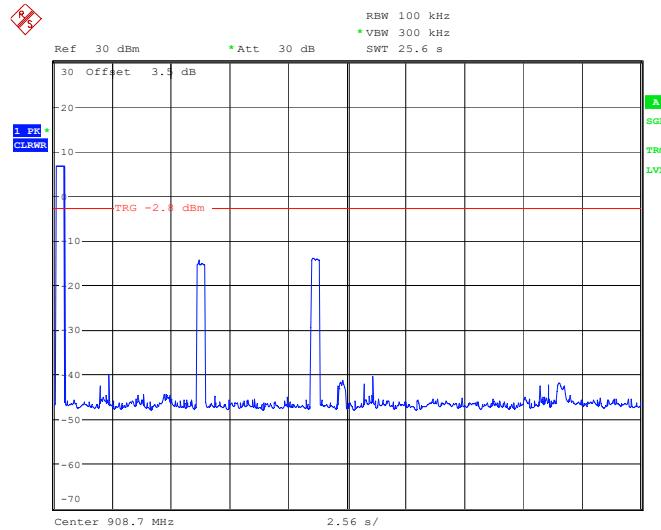
Temperature:	25.3 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Cheeb Huang on 2025-06-06.


EUT operation mode: Transmitting

Test Result: Compliant. Please refer to following table and plots.

Mode	Frequency (MHz)	Pulse Time (ms)	Hopping Number	Period Time (s)	Total of Dwell Time(ms)	Limit (ms)	Result
Hopping	908.7	371.63	1	25.6	371.63	400	Pass


Note: A period time=0.4*64= 25.6(s), Total of Dwell Time=Pulse Width*Hopping Number

Pulse Width

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 6.JUN.2025 11:06:39

Hopping Numbers in Observation time

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 6.JUN.2025 11:13:56

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

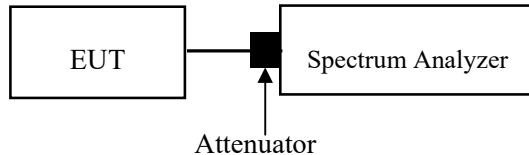
FCC §15.247(b) (3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:


a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW \geq RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.

b) Allow trace to stabilize.

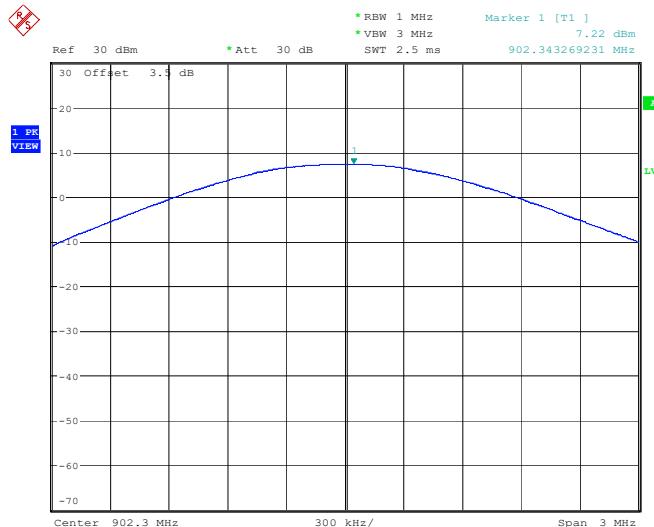
c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

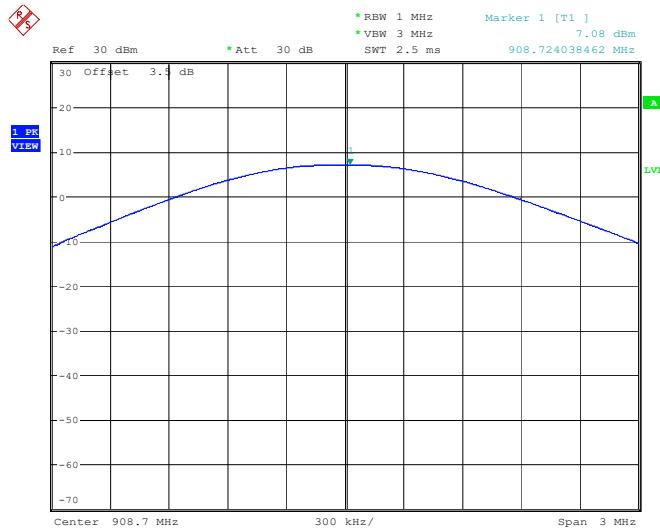
Test Data

Environmental Conditions

Temperature:	25.3~26.5 °C
Relative Humidity:	49~52 %
ATM Pressure:	101~101.1 kPa

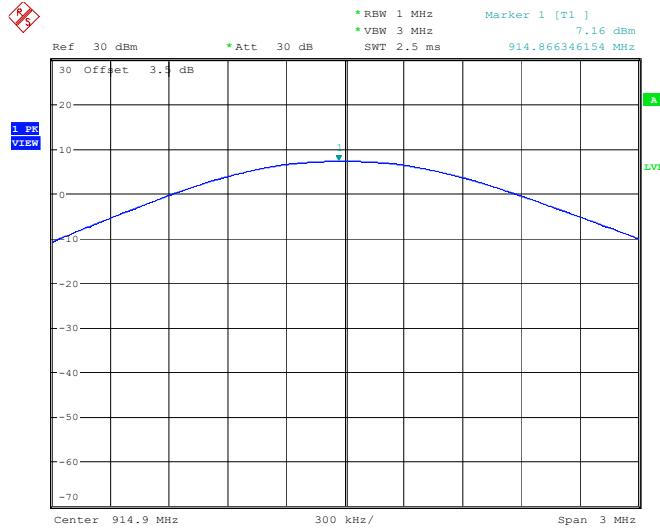

The testing was performed by Cheeb Huang from 2025-05-15 to 2025-06-06.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the following table and plots.

Test Channel	Test Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)
Low	902.3	7.22	≤30
Middle	908.7	7.08	≤30
High	914.9	7.16	≤30

Low Channel



Middle Channel

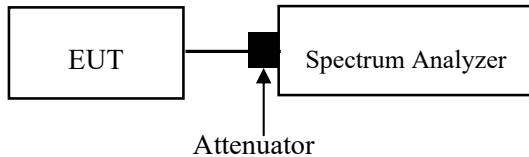
ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 6.JUN.2025 10:30:01

High Channel

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 16:15:29

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

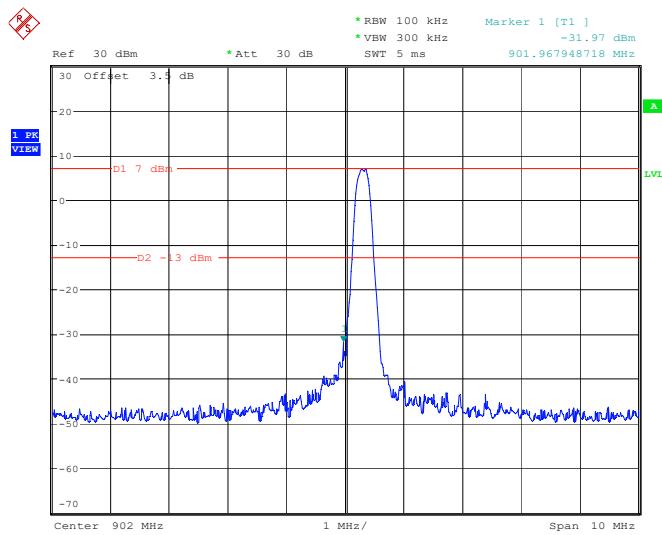
Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

For band-edge measurements, use the band-edge procedure in 6.10. Band-edge measurements shall be tested both on single channels, and with the EUT hopping

- a) Set the center frequency and span to encompass frequency range to be measured.
 - b) Set the RBW = 100 kHz.
 - c) Set the VBW $\geq [3 \times \text{RBW}]$.
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the peak marker function to determine the maximum amplitude level.
- Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

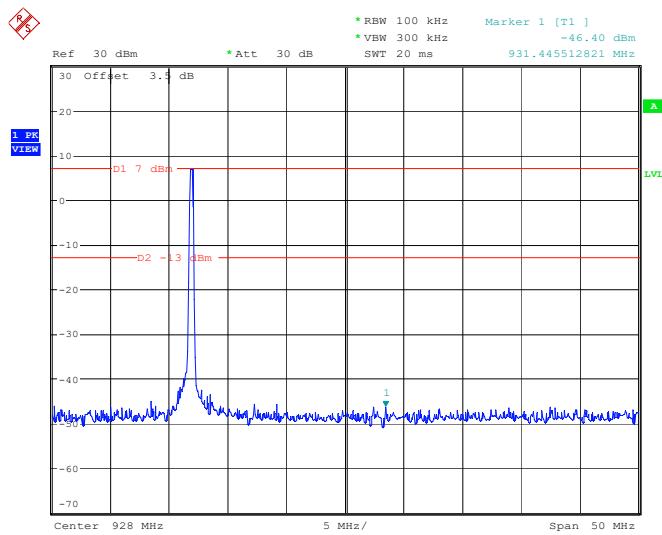
Test Data

Environmental Conditions

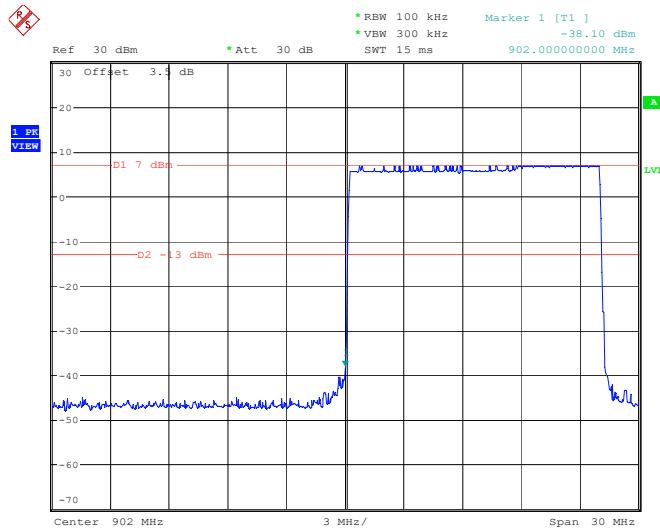

Temperature:	26.5 °C
Relative Humidity:	49 %
ATM Pressure:	101 kPa

The testing was performed by Cheeb Huang on 2025-05-15.

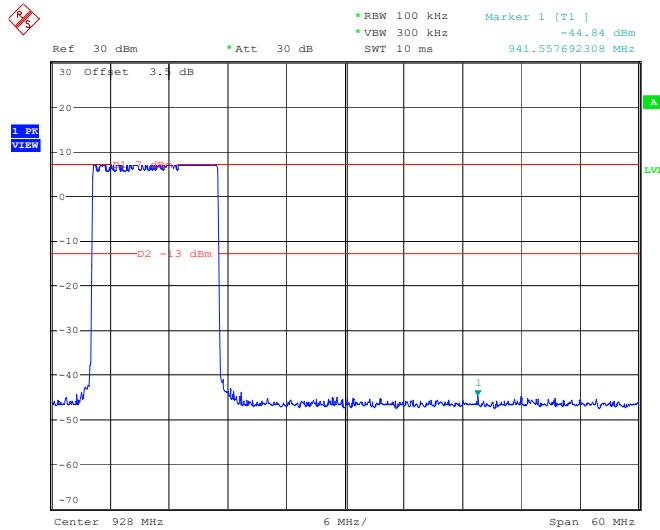
EUT operation mode: Transmitting


Test Result: Compliant. Please refer to the following plots.

Single Mode Band Edge, Left Side



ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 15:35:52


Single Mode Band Edge, Right Side

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 15:49:08

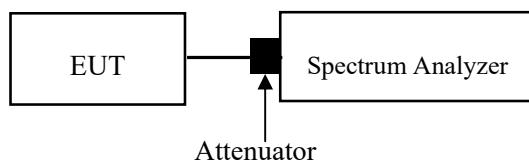
Hopping mode Band Edge, Left Side

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 16:02:37

Hopping mode Band Edge, Right Side

ProjectNo.:2501S19502E-RF Tester:Cheeb Huang
Date: 15.MAY.2025 15:56:09

FCC §15.247(f) - POWER SPECTRAL DENSITY


Applicable Standard

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

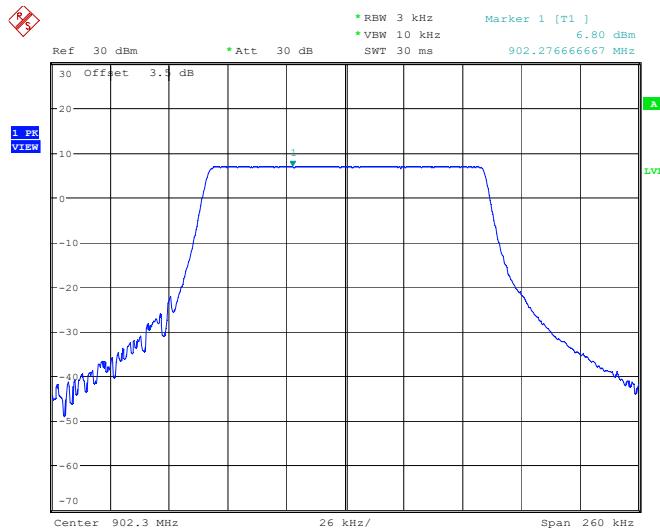
Test Method: ANSI C63.10-2013 Clause 11.10.2

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. Set the RBW to: $3\text{kHz} \leq \text{RBW} \leq 100\text{ kHz}$.
3. Set the VBW $\geq 3 \times \text{RBW}$.
4. Set the span to 1.5 times the DTS bandwidth.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum amplitude level within the RBW.
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

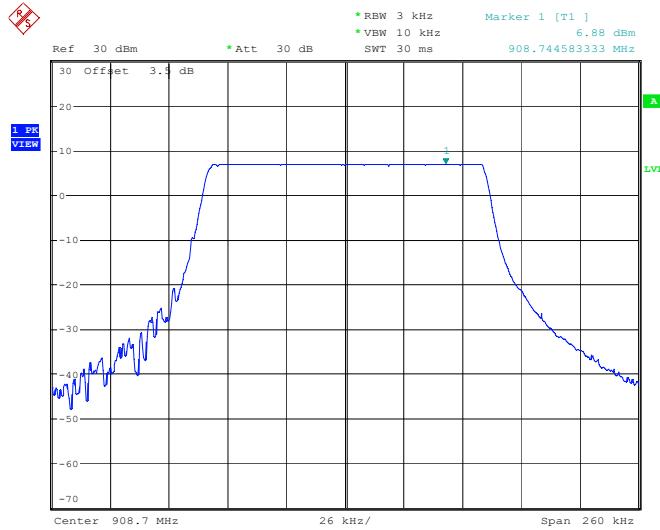
Test Data

Environmental Conditions

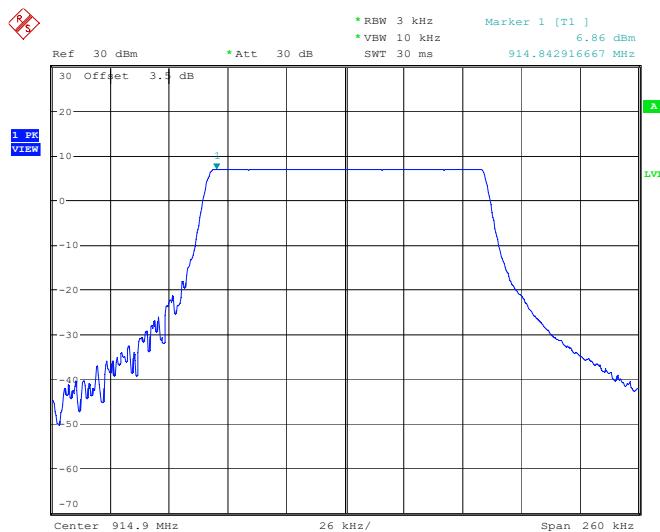
Temperature:	25.3 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa


The testing was performed by Cheeb Huang on 2025-06-06.

EUT operation mode: Transmitting

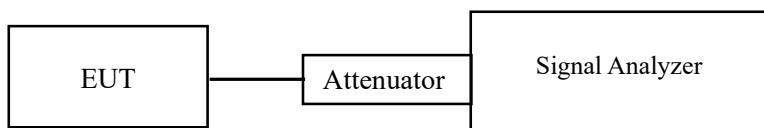

Test Result: Compliant. Please refer to the following table and plots.

Test Channel	Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
Low	902.3	6.80	≤8.00
Middle	908.7	6.88	≤8.00
High	914.9	6.86	≤8.00


Low Channel

Middle Channel

High Channel


C63.10 §11.6- DUTY CYCLE

Test Procedure

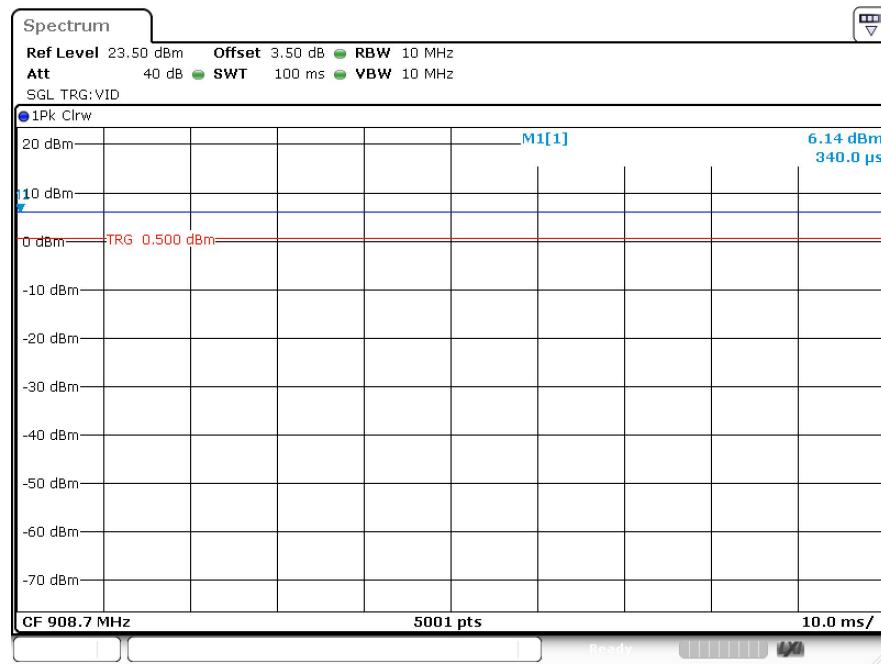
According to ANSI C63.10-2013 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \geq RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \leq 16.7 \mu s$.)

Test Data

Environmental Conditions


Temperature:	25.3 °C
Relative Humidity:	47 %
ATM Pressure:	101.1 kPa

The testing was performed by Cheeb Huang on 2025-06-13.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Frequency (MHz)	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)	1/T _{on} (Hz)	VBW Setting (kHz)
908.7	100	100	100.00	/	0.01

EUT PHOTOGRAPHS

Please refer to the attachment 2501S19502E-RF External photo and 2501S19502E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501S19502E-RF Test Setup photo.

******* END OF REPORT *******