

# TEST REPORT



**Dt&C Co., Ltd.**

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042  
Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC2508-0050

2. Customer

- Name (FCC) : KYUNGWOO SYSTECH INC.
- Address (FCC) : #401, Daeryung Post Tower 5, 68, Digital-ro 9, Geumcheon-gu, Seoul, South Korea 08512

3. Use of Report : FCC Original Certification

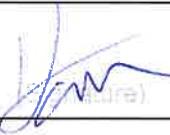
4. Product Name / Model Name : Intelligent Proximity Alert System / PAS2-DZT

FCC ID : ZE8-KWO-PAS2-DZT

5. FCC Regulation(s): Part 15.250

Test Method used: ANSI C63.10-2013

6. Date of Test : 2025.06.13 ~ 2025.07.21


7. Location of Test :  Permanent Testing Lab  On Site Testing

8. Testing Environment : See appended test report.

9. Test Result : Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

|             |                                |                                                                                     |                                        |                                                                                       |
|-------------|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|
| Affirmation | Tested by<br>Name : SeokHo Han |  | Technical Manager<br>Name : JaeJin Lee |  |
|-------------|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|

2025 . 08 . 07 .

**Dt&C Co., Ltd.**

If this report is required to confirmation of authenticity, please contact to [report@dtnc.net](mailto:report@dtnc.net)

## Test Report Version

| <b>Test Report No.</b> | <b>Date</b>   | <b>Description</b> | <b>Revised by</b> | <b>Reviewed by</b> |
|------------------------|---------------|--------------------|-------------------|--------------------|
| DRTFCC2508-0050        | Aug, 07. 2025 | Initial issue      | SeokHo Han        | JaeJin Lee         |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |
|                        |               |                    |                   |                    |

# Table of Contents

|                                                           |           |
|-----------------------------------------------------------|-----------|
| <b>1. General Information .....</b>                       | <b>4</b>  |
| 1.1. Description of EUT .....                             | 4         |
| 1.2. Declaration by the applicant / manufacturer .....    | 4         |
| 1.3. Testing Laboratory .....                             | 5         |
| 1.4. Testing Environment .....                            | 5         |
| 1.5. Measurement Uncertainty.....                         | 5         |
| 1.6. Test Equipment List .....                            | 6         |
| <b>2. Test Methodology .....</b>                          | <b>7</b>  |
| 2.1. EUT Configuration.....                               | 7         |
| 2.2. EUT Exercise.....                                    | 7         |
| 2.3. General Test Procedures .....                        | 7         |
| 2.4. Instrument Calibration .....                         | 7         |
| 2.5. Description of Test Modes.....                       | 7         |
| <b>3. Antenna Requirements .....</b>                      | <b>8</b>  |
| <b>4. Summary of Test Result .....</b>                    | <b>9</b>  |
| <b>5. Test Result.....</b>                                | <b>10</b> |
| 5.1. -10 dB Bandwidth .....                               | 10        |
| 5.2. EIRP (Equivalent Isotropically Radiated Power) ..... | 12        |
| 5.3. Radiated Emissions .....                             | 14        |
| 5.3.1. Radiated Emissions(Below 960 MHz) .....            | 14        |
| 5.3.2. Radiated Emissions(Above 960 MHz).....             | 17        |
| 5.4. AC Power-Line Conducted Emissions .....              | 22        |
| <b>APPENDIX I.....</b>                                    | <b>25</b> |

## 1. General Information

### 1.1. Description of EUT

|                                               |                                                          |
|-----------------------------------------------|----------------------------------------------------------|
| <b>Equipment Class</b>                        | Wideband Transmitter(WBT)                                |
| <b>Product Name</b>                           | Intelligent Proximity Alert System                       |
| <b>Model Name</b>                             | PAS2-DZT                                                 |
| <b>Add Model Name</b>                         | -                                                        |
| <b>Firmware Version Identification Number</b> | v1.0.0.0                                                 |
| <b>EUT Serial Number</b>                      | No Specified                                             |
| <b>Power Supply</b>                           | DC: 12 V, 24 V, 48 V                                     |
| <b>Frequency Range</b>                        | 6.489 6 GHz                                              |
| <b>Max. RF Output Power</b>                   | -13.65 dBm (Peak) / 40 MHz                               |
| <b>Modulation Technique</b>                   | BPM-BPSK                                                 |
| <b>Antenna Specification</b>                  | Antenna Type: PCB Pattern antenna<br>Peak Gain: 5.42 dBi |

### 1.2. Declaration by the applicant / manufacturer

N/A

### 1.3. Testing Laboratory

#### Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The site is constructed in conformance with the requirements.

- FCC & ISED MRA Designation No. : KR0034
- ISED #: 5740A

[www.dtnc.net](http://www.dtnc.net)

|           |   |                  |
|-----------|---|------------------|
| Telephone | : | + 82-31-321-2664 |
| FAX       | : | + 82-31-321-1664 |

### 1.4. Testing Environment

#### Ambient Condition

|                     |                 |
|---------------------|-----------------|
| ▪ Temperature       | +21 °C ~ +23 °C |
| ▪ Relative Humidity | +42 % ~ +44 %   |

 +42 % ~ +44 % |

### 1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of  $k = 2$  to indicate a 95 % level of confidence.

| Parameter                          | Measurement uncertainty                               |
|------------------------------------|-------------------------------------------------------|
| Antenna-port conducted emission    | 1.0 dB (The confidence level is about 95 %, $k = 2$ ) |
| AC power-line conducted emission   | 3.4 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated emission (1 GHz Below)    | 5.0 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated emission (1 GHz ~ 18 GHz) | 4.8 dB (The confidence level is about 95 %, $k = 2$ ) |
| Radiated emission (18 GHz Above)   | 5.0 dB (The confidence level is about 95 %, $k = 2$ ) |

## 1.6. Test Equipment List

| Type                              | Manufacturer           | Model                       | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N               |
|-----------------------------------|------------------------|-----------------------------|------------------------|-----------------------------|-------------------|
| Spectrum Analyzer                 | Rohde Schwarz          | FSW85                       | 25/05/29               | 26/05/29                    | 101778            |
| Spectrum Analyzer                 | Agilent Technologies   | N9020A                      | 24/11/26               | 25/11/26                    | MY50410399        |
| Spectrum Analyzer                 | Agilent Technologies   | N9020A                      | 24/11/27               | 25/11/27                    | MY50410163        |
| Multimeter                        | FLUKE                  | 17B+                        | 24/11/27               | 25/11/27                    | 36390701WS        |
| DC Power Supply                   | Agilent Technologies   | 66332A                      | 25/05/28               | 26/05/28                    | US37474125        |
| DC Power Supply                   | SM technico            | SDP30-5D                    | 25/05/29               | 26/05/29                    | 305DMG288         |
| DC Power Supply                   | Agilent Technologies   | 6654A                       | 25/05/29               | 26/05/29                    | MY40000801        |
| Signal Generator                  | Rohde Schwarz          | SMBV100A                    | 24/12/10               | 25/12/10                    | 255571            |
| Signal Generator                  | ANRITSU                | MG3695C                     | 24/11/29               | 25/11/29                    | 173501            |
| Thermohygrometer                  | BODYCOM                | BJ5478                      | 25/01/13               | 26/01/13                    | 120612-1          |
| Thermohygrometer                  | BODYCOM                | BJ5478                      | 24/12/05               | 25/12/05                    | 120612-2          |
| Loop Antenna                      | ETS-Lindgren           | 6502                        | 24/11/08               | 25/11/08                    | 00060496          |
| Hybrid Antenna                    | Schwarzbeck            | VULB 9160                   | 24/12/13               | 25/12/13                    | 3362              |
| Horn Antenna                      | ETS-Lindgren           | 3117                        | 24/12/11               | 25/12/11                    | 00140394          |
| Horn Antenna                      | Schwarzbeck            | BBHA 9120C                  | 24/12/12               | 25/12/12                    | 9120C-561         |
| Horn Antenna                      | A.H.Systems Inc.       | SAS-574                     | 25/06/12               | 26/06/12                    | 155               |
| PreAmplifier                      | tsj                    | MLA-0118-B01-40             | 24/11/26               | 25/11/26                    | 1852267           |
| PreAmplifier                      | tsj                    | MLA-1840-J02-45             | 25/05/29               | 26/05/29                    | 16966-10728       |
| PreAmplifier                      | H.P                    | 8447D                       | 24/12/11               | 25/12/11                    | 2944A07774        |
| PreAmplifier                      | Agilent Technologies   | 8449B                       | 24/12/11               | 25/12/11                    | 3008A02108        |
| High Pass Filter                  | Wainwright Instruments | WHKX12-935-1000-15000-40SS  | 24/12/11               | 25/12/11                    | 7                 |
| High Pass Filter                  | Wainwright Instruments | WHKX6-6320-8000-26500-40CC  | 24/12/11               | 25/12/11                    | 2                 |
| High Pass Filter                  | Wainwright Instruments | WHKX10-2838-3300-18000-60SS | 24/12/11               | 25/12/11                    | 2                 |
| EMI Test Receiver                 | ROHDE&SCHWARZ          | ESCI7                       | 25/01/20               | 26/01/20                    | 100910            |
| PULSE LIMITER                     | ROHDE&SCHWARZ          | ESH3-Z2                     | 25/07/10               | 26/07/10                    | 101333            |
| LISN                              | SCHWARZBECK            | NSLK 8128 RC                | 24/10/21               | 25/10/21                    | 8128 RC-387       |
| Digital Thermo Hygrometer         | CAS                    | TE-303N                     | 25/02/13               | 26/02/13                    | 220502531         |
| Cable                             | HUBER+SUHNER           | SUCOFLEX100                 | 25/01/02               | 26/01/02                    | M-01              |
| Cable                             | HUBER+SUHNER           | SUCOFLEX100                 | 25/01/02               | 26/01/02                    | M-02              |
| Cable                             | JUNFLON                | MWX241/B                    | 25/01/02               | 26/01/02                    | M-03              |
| Cable                             | Junkosha               | MWX221                      | 25/01/02               | 26/01/02                    | M-04              |
| Cable                             | Junkosha               | MWX211                      | 25/01/02               | 26/01/02                    | M-05              |
| Cable                             | JUNFLON                | J12J101757-00               | 25/01/02               | 26/01/02                    | M-07              |
| Cable                             | HUBER+SUHNER           | SUCOFLEX104                 | 25/01/02               | 26/01/02                    | M-08              |
| Cable                             | HUBER+SUHNER           | SUCOFLEX106                 | 25/01/02               | 26/01/02                    | M-09              |
| Cable                             | Junkosha               | MWX315                      | 25/01/02               | 26/01/02                    | M-10              |
| Cable                             | HUBER+SUHNER           | SUCOFLEX100                 | 25/01/02               | 26/01/02                    | M-11              |
| Cable                             | Junkosha               | MWX241                      | 25/01/02               | 26/01/02                    | mmW-2             |
| Cable                             | Junkosha               | MWX241                      | 25/01/02               | 26/01/02                    | mmW-4             |
| Cable                             | Dt&C                   | Cable                       | 25/01/02               | 26/01/02                    | RFC-69            |
| Test Software (AC Line Conducted) | tsj                    | EMI Measurement             | NA                     | NA                          | Version 2.00.0190 |
| Test Software (Radiated)          | tsj                    | EMI Measurement             | NA                     | NA                          | Version 2.00.0185 |

Note1: The measurement antennas were calibrated in accordance with the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

## 2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 was used in measurement of the EUT.

### 2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

### 2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the FCC rules.

### 2.3. General Test Procedures

#### Conducted Emissions

According to requirements in Section 6.2 of ANSI C63.10-2013, the EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

#### Radiated Emissions

The EUT is placed on a non-conductive table. For emission measurements at or below 960 MHz, the table height is 80 cm. For emission measurements above 960 MHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

### 2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

### 2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics.

#### EUT Operation test setup

- The internal firmware was used for staying in continuous transmitting mode.
- Power setting: default

| Tested Frequency (MHz) |
|------------------------|
| 6 489.6                |

\*This device supports single channel.(CH.5: 6 489.6 MHz)

### 3. Antenna Requirements

#### Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

**The antenna is permanently attached on the device.**

**Therefore this E.U.T complies with the requirement of Part 15.203**

## 4. Summary of Test Result

| FCC part section(s)              | Test Description                              | Limit                                                          | Test Condition    | Status Note 1   |
|----------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------|-----------------|
| 15.250(a)<br>15.250(b)           | -10 dB Bandwidth                              | -10 dB bandwidth $\geq$ 50 MHz<br>Within the 5 925 – 7 250 MHz | Conducted         | <b>C</b>        |
| 15.250(d)(3)                     | EIRP(Equivalent Isotropically Radiated Power) | Peak eirp < 20 log (RBW/50) dBm                                |                   | <b>C Note 2</b> |
| 15.250(d)<br>15.250(e)<br>15.209 | Radiated Emissions<br>(at or below 960 MHz)   | Part 15.209<br>(Refer to section 5.3)                          | Radiated          | <b>C Note 2</b> |
| 15.250(d)                        | Radiated Emissions<br>(above 960 MHz)         | Part 15.250(d)(1), (2)<br>(Refer to section 5.3)               |                   | <b>C Note 2</b> |
| 15.207                           | AC Power-Line Conducted Emissions             | Part 15.207<br>(Refer to Section 5.4)                          | AC Line Conducted | <b>C Note 3</b> |
| 15.203                           | Antenna Requirements                          | Part 15.203<br>(Refer to Section 3)                            | -                 | <b>C</b>        |

Note 1: **C**=Comply   **NC**=Not Comply   **NT**=Not Tested   **NA**=Not Applicable  
Note 2: This test item was performed in three orthogonal EUT positions and the worst case data was reported.  
Note 3: The EUT is a DC-powered device and is powered by an external power source. AC power line conducted measurements were performed using the AC adapter.

## 5. Test Result

### 5.1. -10 dB Bandwidth

#### Test Requirements and limit

##### **Part 15.250(a)**

The  $-10$  dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

##### **Part 15.250(b)**

The  $-10$  dB bandwidth of the fundamental emission shall be at least 50 MHz.

#### Test Configuration

Refer to the APPENDIX I.

#### Test Procedure

##### **ANSI C63.10-2013 Section 10.1**

The frequency at which the maximum power level is measured with the peak detector is designated  $f_M$ . The peak power measurements shall be made using a spectrum analyzer or EMI receiver with a 1 MHz resolution bandwidth and a video bandwidth of 1 MHz or greater. The instrument shall be set to peak detection using the maximum-hold trace mode. The outermost 1 MHz segments above and below  $f_M$ , where the peak power falls by 10 dB relative to the level at  $f_M$ , are designated as  $f_H$  and  $f_L$ , respectively:

- a) For the lowest frequency bound  $f_L$ , the emission is searched from a frequency lower than  $f_M$  that has, by inspection, a peak power much lower than 10 dB less than the power at  $f_M$  and increased toward  $f_M$  until the peak power indicates 10 dB less than the power at  $f_M$ . The frequency of that segment is recorded.
- b) This process is repeated for the highest frequency bound  $f_H$ , beginning at a frequency higher than  $f_M$  that has, by inspection, a peak power much lower than 10 dB below the power at  $f_M$ . The frequency of that segment is recorded.
- c) The two recorded frequencies represent the highest  $f_H$  and lowest  $f_L$  bounds of the UWB transmission, and the  $-10$  dB bandwidth ( $B - 10$ ) is defined as  $(f_H - f_L)$ . The center frequency ( $f_C$ ) is mathematically determined from  $(f_H - f_L) / 2$ .
- d) The fractional bandwidth is defined as  $2(f_H - f_L) / (f_H + f_L)$ .
- e) Determine whether the  $-10$  dB bandwidth ( $f_H - f_L$ ) is  $\geq 500$  MHz, or whether the fractional bandwidth  $2(f_H - f_L) / (f_H + f_L)$  is  $\geq 0.2$ .

■ Test Results: Comply

| Tested Frequency (MHz) | $f_M$ (MHz) | $f_L$ (MHz) | $f_H$ (MHz) | -10 dB Bandwidth(MHz) |
|------------------------|-------------|-------------|-------------|-----------------------|
| 6.4896                 | 6 645.6     | 6 237.6     | 6 768.6     | 623.13                |

-10 dB Bandwidth

Tested Frequency(MHz): 6 489.6



## 5.2. EIRP (Equivalent Isotropically Radiated Power)

### Test Requirements and limit

#### Part 15.250(d)

(3) There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs and this 50 MHz bandwidth must be contained within the 5925-7250 MHz band. The peak EIRP limit is  $20 \log (RBW/50)$  dBm where RBW is the resolution bandwidth in megahertz that is employed by the measurement instrument. RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than RBW. If RBW is greater than 3 MHz, the application for certification filed with the Commission shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

### Test Configuration

Refer to the APPENDIX I.

### Test Procedure:

#### ANSI C63.10-2013 Section 6.6 & 10.1

- 1) These measurements were performed at 3 m test site.
- 2) The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna.
- 3) For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections.
- 4) The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

### Instrument setting

For peak eirp measurement

1. Set the RBW  $\geq 1 \sim 50$  MHz (Actual: 40 MHz)
2. Set VBW  $\geq$  RBW
3. Detector = peak
4. Trace mode = max hold
5. Allow trace to fully stabilize

## ■ Test Results: Comply

### - Test Notes

#### 1. Sample Calculation

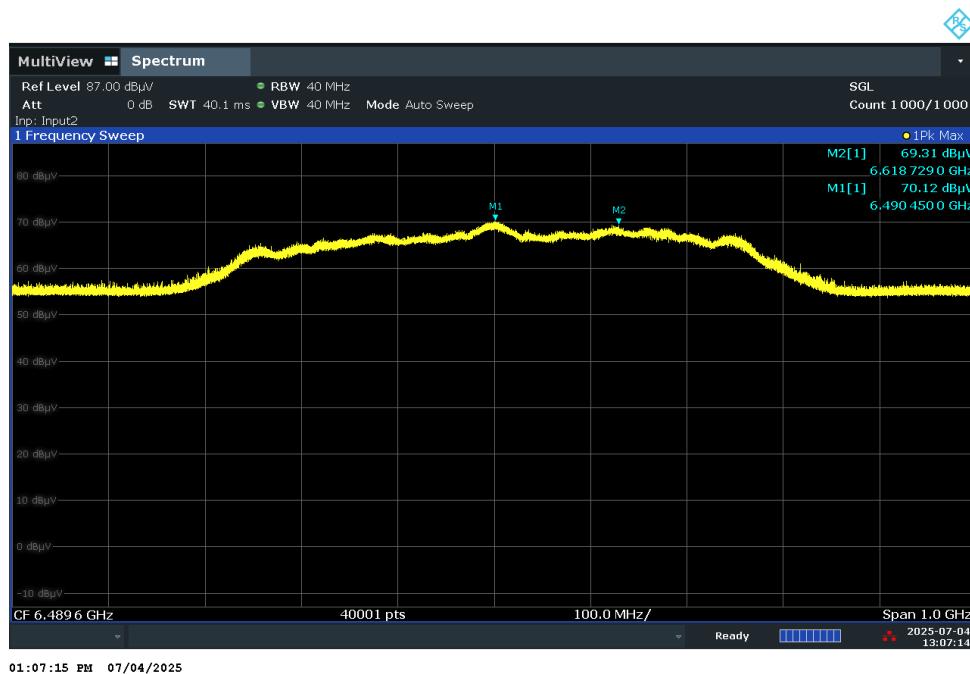
$EIRP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.7$ ; where D is the measurement distance in m.

$E(dB\mu V/m) = \text{Measured level (dB}\mu V) + \text{TF(dB/m)}$

where, E = field strength, TF = Total Factor, TF = Antenna Factor(dB/m) + Cable Loss(dB) – Amplifier Gain(dB)

#### 3. Peak eirp limit = $20 \times \log (RBW/50) = -1.94$ dBm

4. All rated power configurations were investigated, and the worst-case data was reported.


### Peak eirp

#### - DC 48 V

| Tested frequency (MHz) | Frequency (MHz) | ANT Pol | Measured Level(dB\mu V) | TF (dB/m) | E (dB\mu V/m) | EIRP (dBm) | Limit (dBm) | Margin (dB) |
|------------------------|-----------------|---------|-------------------------|-----------|---------------|------------|-------------|-------------|
| 6 489.6                | 6 490.45        | H       | 70.12                   | 11.39     | 81.51         | -13.65     | -1.94       | 11.71       |
|                        | 6 618.73        | H       | 69.31                   | 11.24     | 80.55         | -14.61     | -1.94       | 12.67       |

### Worst case-Plot(Measured Level)

### 6 489.6 MHz & Z axis & Hor



01:07:15 PM 07/04/2025

## 5.3. Radiated Emissions

### 5.3.1. Radiated Emissions(Below 960 MHz)

#### ■ Test Requirements and limit

##### Part 15.250(d)

(4) Radiated emissions at or below 960 MHz shall not exceed the emission levels in § 15.209.

(5) Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in § 15.209 provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B of this part. Emissions from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

##### Part 15.250(e)

(1) All emissions at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Unless otherwise specified, all RMS average emission levels specified in this section are to be measured utilizing a 1 MHz resolution bandwidth with a one millisecond dwell over each 1 MHz segment. The frequency span of the analyzer should equal the number of sampling bins times 1 MHz and the sweep rate of the analyzer should equal the number of sampling bins times one millisecond. The provision in § 15.35(c) that allows emissions to be averaged over a 100 millisecond period does not apply to devices operating under this section. The video bandwidth of the measurement instrument shall not be less than the resolution bandwidth and trace averaging shall not be employed. The RMS average emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

##### Part 15.209

Part 15.209(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | FCC Limit (uV/m) | Measurement Distance (m) |
|-----------------|------------------|--------------------------|
| 0.009 - 0.490   | 2 400 / F (kHz)  | 300                      |
| 0.490 - 1.705   | 24 000 / F (kHz) | 30                       |
| 1.705 - 30.0    | 30               | 30                       |

| Frequency (MHz) | FCC Limit (uV/m) | Measurement Distance (m) |
|-----------------|------------------|--------------------------|
| 30 - 88         | 100 **           | 3                        |
| 88 - 216        | 150 **           | 3                        |
| 216 - 960       | 200 **           | 3                        |
| Above 960       | 500              | 3                        |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

**■ Test Configuration**

Refer to the APPENDIX I.

**■ Test Procedure****ANSI C63.10-2013 Section 6.4 & 6.5**

- 1) These measurements were performed at 3 m test site.
- 2) The equipment under test is placed on a non-conductive table 0.8 meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna.
- 3) The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

**Instrument setting:**

RBW = As specified in below table,  $VBW \geq 3 \times RBW$ , Sweep = Auto, Detector = Peak or quasi-peak

(Note: Measurements were performed using the peak detector. The data measured using the peak detector of a spectrum analyzer or EMI receiver will represent the worst-case results.)

Trace mode = Max Hold until the trace stabilizes.

| Frequency      | RBW           |
|----------------|---------------|
| 9 - 150 kHz    | 200 – 300 Hz  |
| 0.15- 30 MHz   | 9 – 10 kHz    |
| 30 – 1 000 MHz | 100 – 120 kHz |
| > 1000 MHz     | 1 MHz         |

## Test Results: Comply

### - Test Notes

1. The radiated emissions below 960 MHz were investigated 9 kHz to 960 MHz and the worst case data was reported.

2. Information of Distance Correction Factor (DCF)

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz =  $40 \log(\text{tested distance} / \text{specified distance})$

At frequencies at or above 30 MHz =  $20 \log(\text{tested distance} / \text{specified distance})$

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

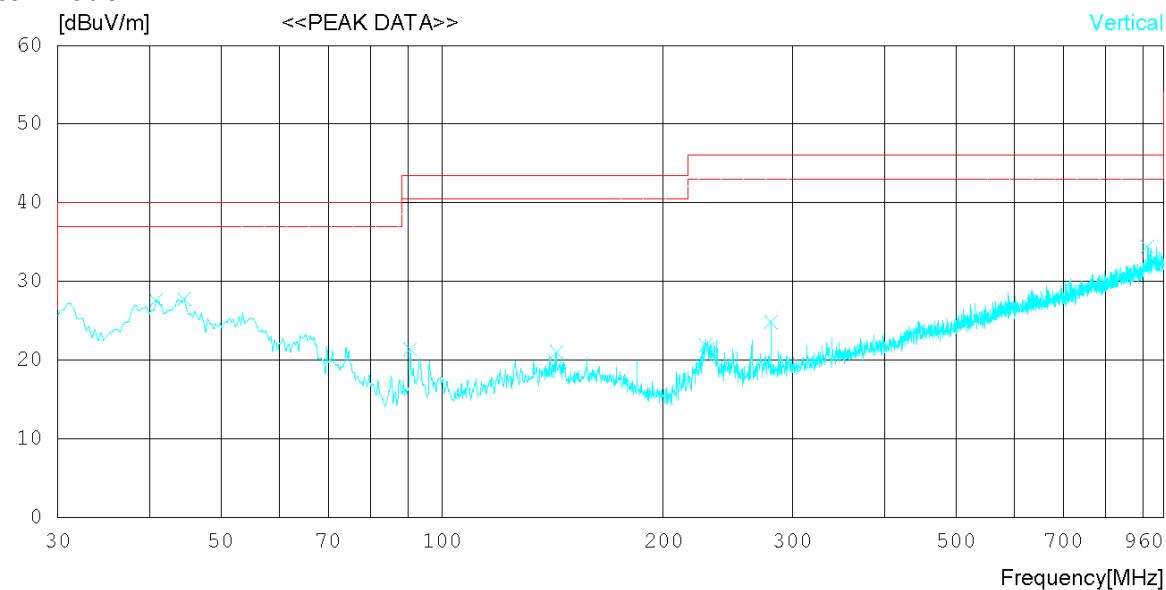
Margin = Limit – Result / Result = Reading + TF + DCF / TF = AF + CL – AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

4. \* = Noise floor

5. All rated power configurations were investigated, and the worst-case data was reported.

### Tested frequency: 6 489.6 MHz


#### - DC 48 V

| Frequency (MHz) | EUT Axis | ANT Pol | Detector Mode | Measured Level(dBuV) | TF (dB/m) | DCF (dB) | Result (dBuV/m) | Limit (dBuV/m) | Margin (dB) |
|-----------------|----------|---------|---------------|----------------------|-----------|----------|-----------------|----------------|-------------|
| 40.85           | X        | V       | PK            | 36.40                | -8.80     | NA       | 27.60           | 40.00          | 12.40       |
| 44.57           | X        | V       | PK            | 36.30                | -8.49     | NA       | 27.81           | 40.00          | 12.19       |
| 90.45           | X        | V       | PK            | 33.60                | -12.15    | NA       | 21.45           | 43.50          | 22.05       |
| 143.15          | X        | V       | PK            | 27.70                | -6.64     | NA       | 21.06           | 43.50          | 22.44       |
| 228.40          | X        | V       | PK            | 28.80                | -6.83     | NA       | 21.97           | 46.00          | 24.03       |
| 280.17          | X        | V       | PK            | 29.80                | -4.95     | NA       | 24.85           | 46.00          | 21.15       |
| 912.25          | X        | V       | PK            | 25.80                | 8.63      | NA       | 34.43           | 46.00          | 11.57       |

### Radiated Emissions (Graph)

Detector Mode : PK

6 489.6 MHz & X & Ver



### 5.3.2. Radiated Emissions(Above 960 MHz)

#### Test Requirements and limit

##### Part 15.250(d)

(1) The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 960 – 1 610      | -75.3       |
| 1 610 – 1 990    | -63.3       |
| 1 990 – 3 100    | -61.3       |
| 3 100 – 5 925    | -51.3       |
| 5 925 – 7 250    | -41.3       |
| 7 250 – 10 600   | -51.3       |
| Above 10 600     | -61.3       |

(2) In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 1 164 - 1 240    | -85.3       |
| 1 559 - 1 610    | -85.3       |

##### Part 15.250(d)

(5) Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in § 15.209 provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in § 15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B of this part. Emissions from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

**□ Test Configuration**

Refer to the APPENDIX I.

**□ Test Procedure****ANSI C63.10-2013 Section 6.6**

- 1) These measurements were performed at 3 m test site.
- 2) The equipment under test is placed on a non-conductive table 1.5 meters above a turntable which is flush with the ground plane and 3 meters from the receive antenna.
- 3) For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections.
- 4) The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

**Instrument setting:**

1. Set the RBW = 1 MHz
2. Set VBW  $\geq$  1 MHz (a VBW of 3MHz is desirable)
3. Detector = RMS (power averaging)
4. Sweep time  $\leq$  Sweep point x 1 ms
5. Trace mode = max hold
6. Allow trace to fully stabilize

Unwanted emissions in 1 164 - 1 240MHz and 1 559 - 1 610MHz

1. Set the RBW = 1 kHz (Actual: 5.1 kHz)
2. Set VBW  $\geq$  3 kHz
3. Detector = RMS (power averaging)
4. Sweep time  $\leq$  Sweep point x 1 ms
5. Trace mode = max hold
6. Allow trace to fully stabilize

## □ Test Results: Comply

### - Test Notes

1. The radiated emissions above 960MHz were investigated up to 40 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

### 2. Sample Calculation

$EIRP (\text{dBm}) = E (\text{dB}\mu\text{V/m}) + 20\log(D) - 104.7$ ; where D is the measurement distance in m.

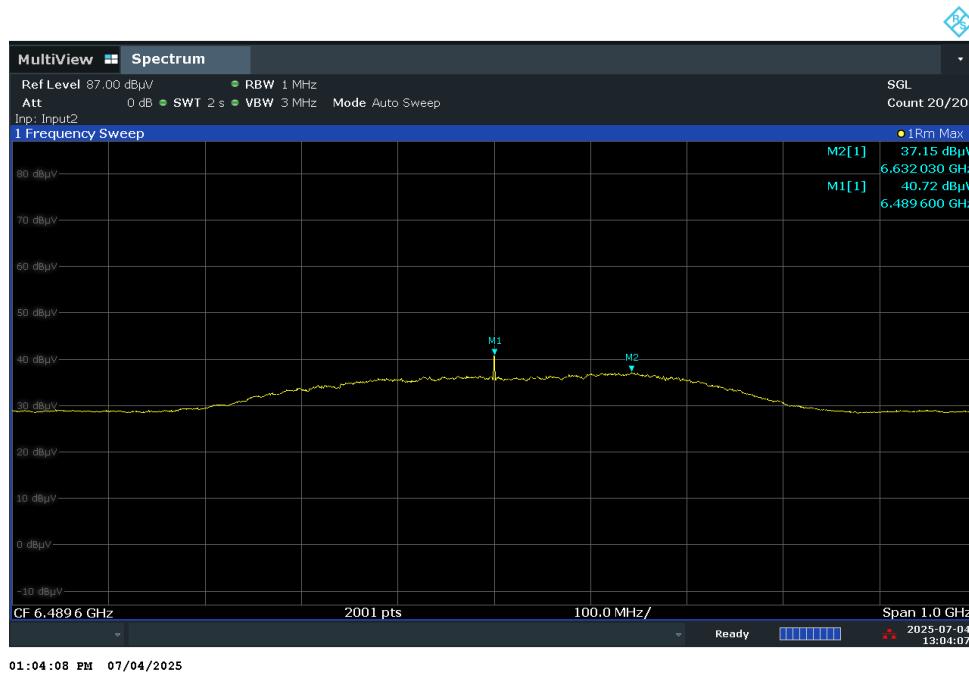
$E(\text{dBuV/m}) = \text{Measured level } (\text{dBuV}) + \text{TF}(\text{dB/m})$

where, E = field strength, TF = Total Factor, TF = Antenna Factor(dB/m) + Cable Loss(dB) – Amplifier Gain(dB)

3. # = Fundamental, \* = Noise floor

**Tested frequency:** 6 489.6 MHz

### - DC 48 V


| Measurement Distance(m) | Frequency (MHz)  | ANT Pol  | Measured Level(dBuV) | TF (dB/m)    | E (dBuV/m)   | Result (dBm)  | FCC Limit(dBm) | FCC Margin(dB) |
|-------------------------|------------------|----------|----------------------|--------------|--------------|---------------|----------------|----------------|
| 0.5                     | *967.84          | H        | 23.85                | 7.16         | 31.01        | -79.71        | -75.30         | 4.41           |
| 3                       | *3 187.55        | H        | 31.37                | 5.44         | 36.81        | -58.35        | -41.30         | 17.05          |
| <b>3</b>                | <b>#6 489.60</b> | <b>H</b> | <b>40.72</b>         | <b>11.39</b> | <b>52.11</b> | <b>-43.05</b> | <b>-41.30</b>  | <b>1.75</b>    |
| 3                       | *7 898.26        | H        | 28.42                | 12.55        | 40.97        | -54.19        | -41.30         | 12.89          |
| <b>0.5</b>              | <b>12 979.17</b> | <b>H</b> | <b>35.39</b>         | <b>8.36</b>  | <b>43.75</b> | <b>-66.97</b> | <b>-61.30</b>  | <b>5.67</b>    |
| 0.5                     | *17 960.00       | H        | 35.44                | 8.13         | 43.57        | -67.15        | -61.30         | 5.85           |
| 0.5                     | *24 817.27       | H        | 36.23                | 0.59         | 36.82        | -73.90        | -61.30         | 12.60          |
| 0.5                     | 25 958.45        | H        | 39.11                | 0.34         | 39.45        | -71.27        | -61.30         | 9.97           |
| 0.5                     | *34 801.77       | H        | 39.29                | 1.36         | 40.65        | -70.07        | -61.30         | 8.77           |
| 0.5                     | *38 979.35       | H        | 39.49                | 3.18         | 42.67        | -68.05        | -61.30         | 6.75           |

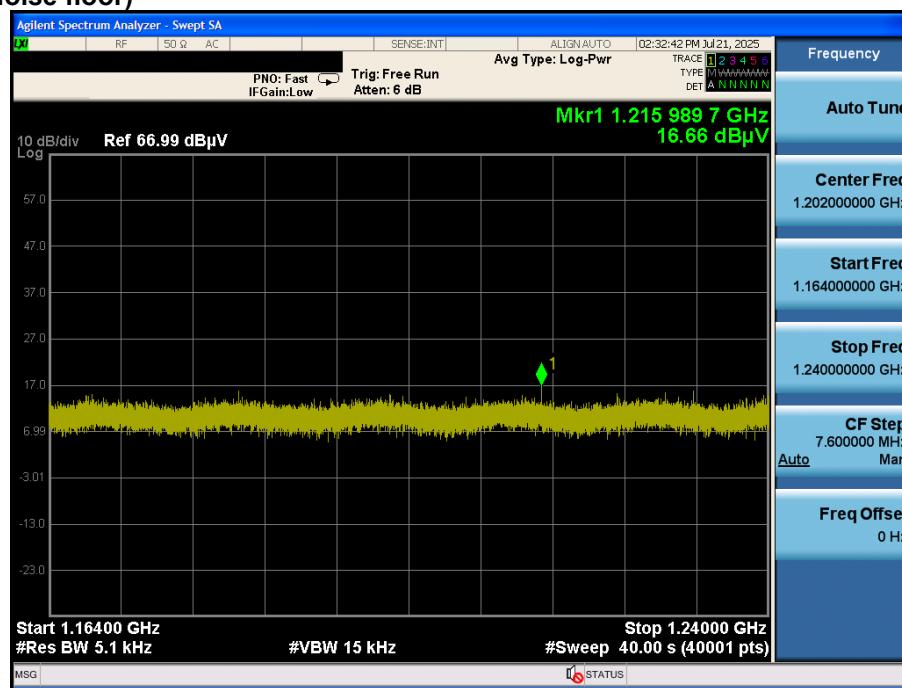
Unwanted emissions in 1 164 – 1 240MHz and 1 559 - 1 610MHz (RBW = 5.1 kHz)

| Measurement Distance(m) | Frequency (MHz) | ANT Pol | Measured Level(dBuV) | TF (dB/m) | E (dBuV/m) | Result (dBm) | FCC Limit(dBm) | FCC Margin(dB) |
|-------------------------|-----------------|---------|----------------------|-----------|------------|--------------|----------------|----------------|
| 0.5                     | 1 215.99        | H       | 16.66                | -0.93     | 15.73      | -94.99       | -85.30         | 9.69           |
| 0.5                     | 1 567.99        | H       | 16.96                | -0.45     | 16.51      | -94.21       | -85.30         | 8.91           |

**Worst case plot(Fundamental emission)  
Measured Level**

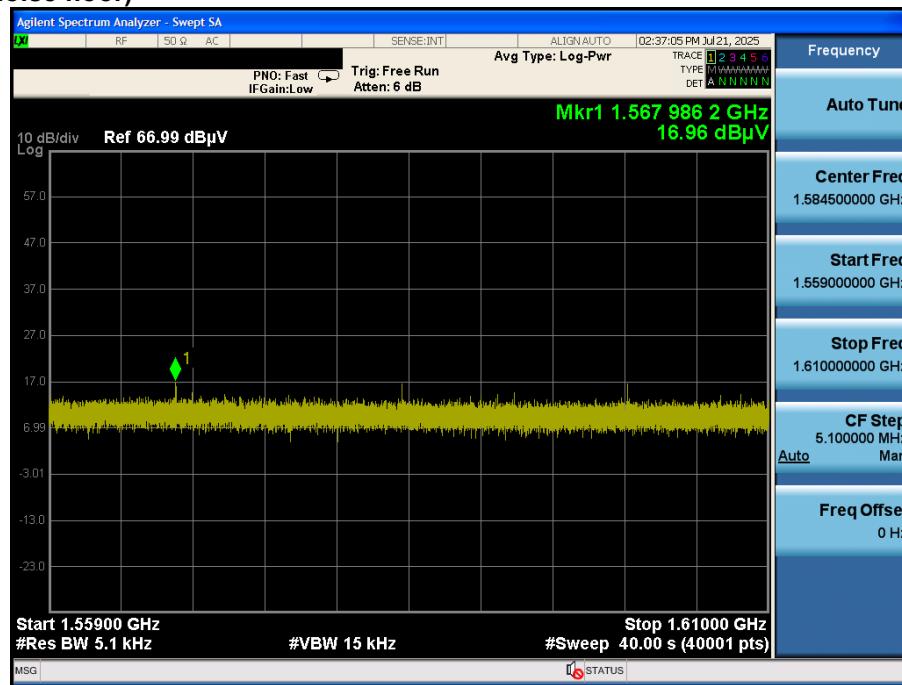
**6.489 6 MHz & Z axis & Hor**




**Worst case plot(Unwanted emission) excluding noise floor  
Measured Level**

**6.489 6 MHz & Z axis & Hor**




**Unwanted emissions in 1 164 – 1 240MHz  
Measured Level(Noise floor)**

**6.489 6 MHz & Z axis & Hor**



**Unwanted emissions in 1 559 – 1 610 MHz  
Measured Level(Noise floor)**

**6.489 6 MHz & Z axis & Hor**



## 5.4. AC Power-Line Conducted Emissions

### □ Test Requirements and limit, Part 15.207

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

| Frequency Range (MHz) | Conducted Limit (dBuV) |            |
|-----------------------|------------------------|------------|
|                       | Quasi-Peak             | Average    |
| 0.15 ~ 0.5            | 66 to 56 *             | 56 to 46 * |
| 0.5 ~ 5.0             | 56                     | 46         |
| 5 ~ 30                | 60                     | 50         |

\* Decreases with the logarithm of the frequency

### □ Test Configuration

See test photographs for the actual connections between EUT and support equipment.

### □ Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

1. The test procedure is performed in a 6.5 m x 3.5 m x 3.5 m (L x W x H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) x 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

### □ Test Results

Refer to the next page. The worst case data(DC 12 V) was reported.

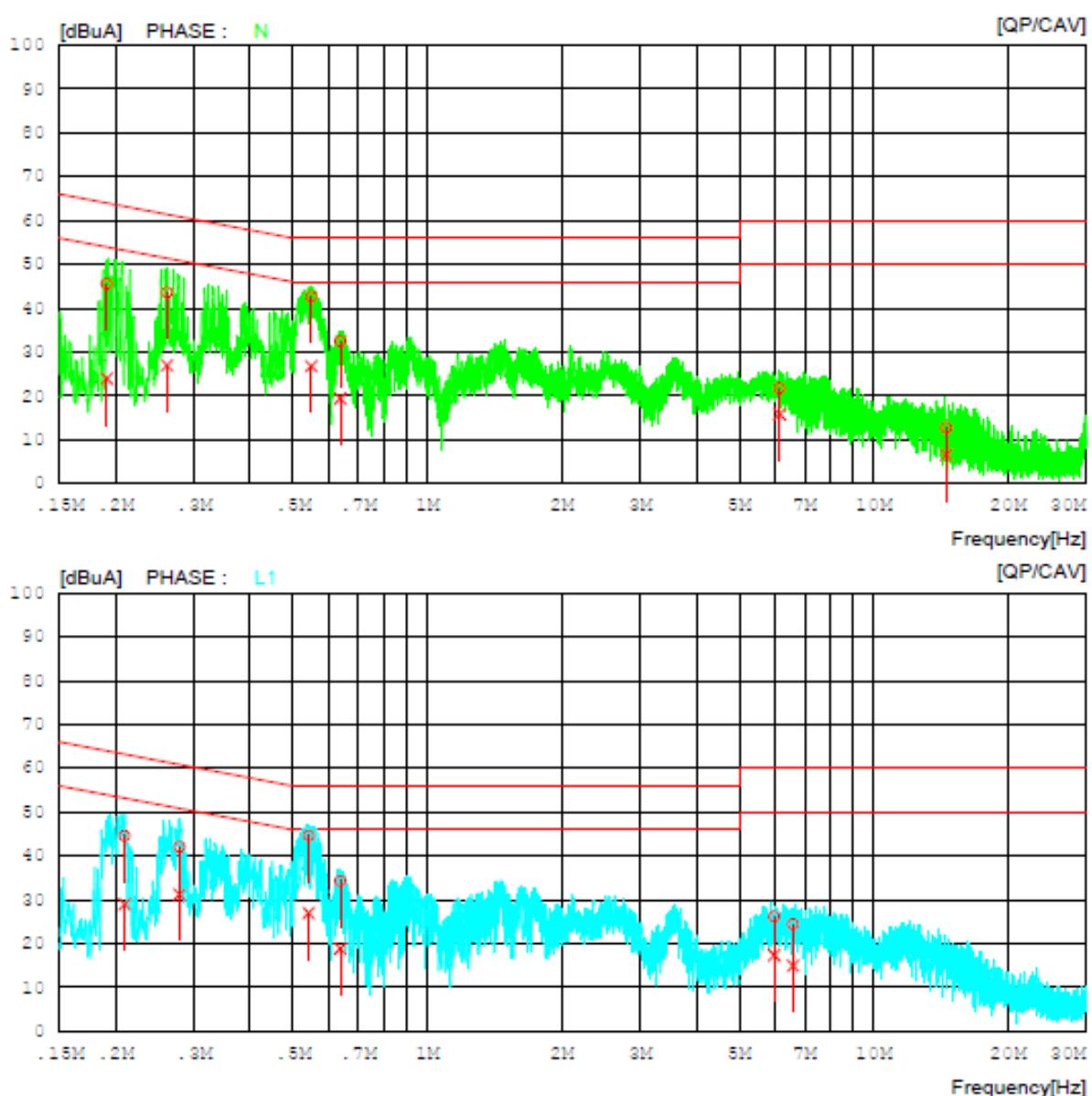
## AC Power-Line Conducted Emissions (Graph)

|                |                |               |              |
|----------------|----------------|---------------|--------------|
| Order No.      | PAS2-DZT       | Reference No. |              |
| Model No.      |                | Power Supply  | 120 V, 60 Hz |
| Serial No.     |                | Temp/Humi.    | 23 'C / 41 % |
| Test Condition | UWB_6489.6 MHz | Operator      | S.H.Han      |

Memo 12V

LIMIT : FCC P15.207 AV  
FCC P15.207 QP

## Lisn Factor


1. NSLK 8128 RC-387\_N\_24.10.21
2. NSLK 8128 RC-387\_L1\_24.10.21

## Cable Loss

1. C1\_LISN TO RECEIVER\_2024-12-11

## Pulse Lmitter

1. PULSE LIMITER\_ESH3-Z2\_101333\_2025.07.10



## AC Power-Line Conducted Emissions (List)

### Results of Conducted Emission

Date 2025-07-18

Order No. Reference No.  
Model No. Power Supply 120 V, 60 Hz  
Serial No. Temp/Humi. 23 °C / 41 %  
Test Condition UWB\_6489.6 MHz Operator S.H.Han  
Memo 48V

LIMIT : FCC P15.207 AV  
FCC P15.207 QP

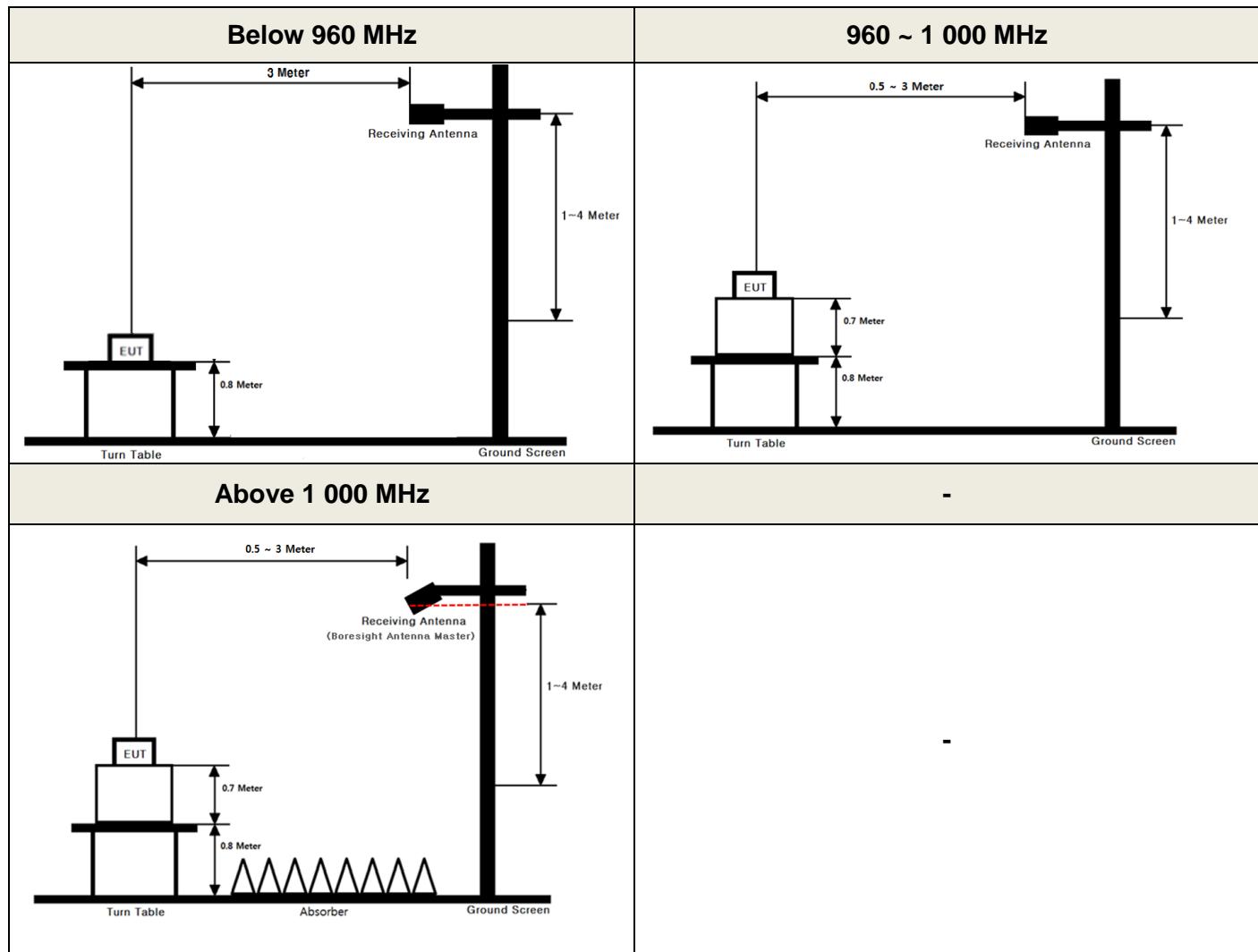
**List Factor**

1. NSLK 8128 RC-387\_N\_24.10.21
2. NSLK 8128 RC-387\_L1\_24.10.21

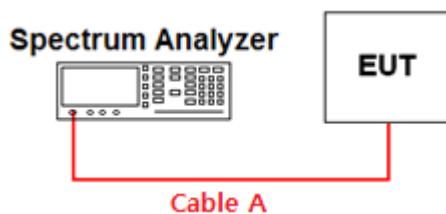
**Cable Loss**

1. C1\_LISN TO RECEIVER\_2024-12-11

**Pulse Limiter**


1. PULSE LIMITER\_ESH3-Z2\_101333\_2025.07.10

| NO | FREQ<br>[MHz] | READING      |               | C.FACTOR<br>[dB] | RESULT       |               | LIMIT        |               | MARGIN<br>[dBuA] | PHASE |
|----|---------------|--------------|---------------|------------------|--------------|---------------|--------------|---------------|------------------|-------|
|    |               | QP<br>[dBuA] | CAV<br>[dBuA] |                  | QP<br>[dBuA] | CAV<br>[dBuA] | QP<br>[dBuA] | CAV<br>[dBuA] |                  |       |
| 1  | 0.15712       | 35.32        | 27.99         | 10.02            | 45.34        | 38.01         | 65.61        | 55.61         | 20.27            | 17.60 |
| 2  | 0.39659       | 26.02        | 22.64         | 10.04            | 36.06        | 32.68         | 57.92        | 47.92         | 21.86            | 15.24 |
| 3  | 0.71813       | 21.10        | 20.40         | 10.06            | 31.16        | 30.46         | 56.00        | 46.00         | 24.84            | 15.54 |
| 4  | 2.09520       | 21.18        | 16.00         | 10.08            | 31.26        | 26.08         | 56.00        | 46.00         | 24.74            | 19.92 |
| 5  | 17.70560      | 7.87         | 4.24          | 10.62            | 18.49        | 14.86         | 60.00        | 50.00         | 41.51            | 35.14 |
| 6  | 26.48060      | 15.95        | 10.82         | 10.62            | 26.57        | 21.44         | 60.00        | 50.00         | 33.43            | 28.56 |
| 7  | 0.15692       | 35.31        | 28.11         | 10.09            | 45.40        | 38.20         | 65.63        | 55.63         | 20.23            | 17.43 |
| 8  | 0.35905       | 26.84        | 22.85         | 10.03            | 36.87        | 32.88         | 58.75        | 48.75         | 21.88            | 15.87 |
| 9  | 0.76318       | 20.70        | 20.17         | 10.06            | 30.76        | 30.23         | 56.00        | 46.00         | 25.24            | 15.77 |
| 10 | 2.02060       | 21.01        | 15.76         | 10.18            | 31.19        | 25.94         | 56.00        | 46.00         | 24.81            | 20.06 |
| 11 | 10.56740      | 8.97         | 5.90          | 10.46            | 19.43        | 16.36         | 60.00        | 50.00         | 40.57            | 33.64 |
| 12 | 27.46700      | 15.93        | 10.74         | 10.70            | 26.63        | 21.44         | 60.00        | 50.00         | 33.37            | 28.56 |


## APPENDIX I

### Test set up diagrams

#### ▪ Radiated Measurement



#### ▪ Conducted Measurement



- END -