

Report No.: ZR/2020/4000805

Appendix A

Detailed System Check Results

1. System Performance Check
System Performance Check 835 MHz Head
System Performance Check 1900 MHz Head
System Performance Check 2450 MHz Head
System Performance Check 2600 MHz Head

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.938$ S/m; $\varepsilon_r = 41.762$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3982; ConvF(10.39, 10.39, 10.39); Calibrated: 2019-09-11

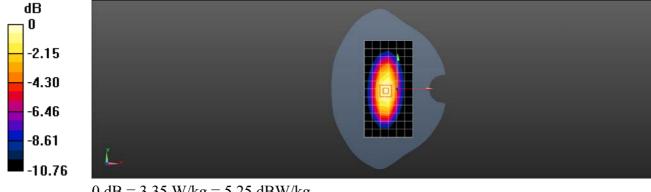
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn896; Calibrated: 2019-09-18

• Phantom: SAM 3; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.13(7474)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.03 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 52.35 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 4.00 W/kg

SAR(1 g) = 2.6 W/kg; SAR(10 g) = 1.69 W/kgMaximum value of SAR (measured) = 3.35 W/kg

0 dB = 3.35 W/kg = 5.25 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.426$ S/m; $\varepsilon_r = 41.472$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3982; ConvF(8.48, 8.48, 8.48); Calibrated: 2019-09-11

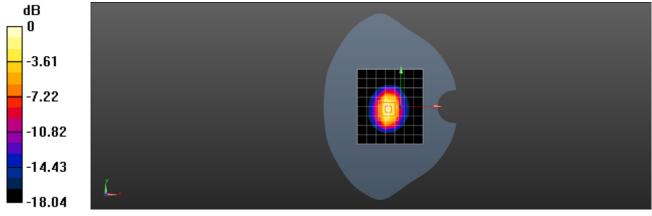
• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn896; Calibrated: 2019-09-18

• Phantom: SAM 3; Type: SAM; Serial: 1912

• DASY52 52.8.8(1222); SEMCAD X 14.6.13(7474)

Body/d=10mm, Pin=250mW/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.95 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 88.89 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.46 W/kg

Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 10.76 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.819$ S/m; $\varepsilon_r = 39.107$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

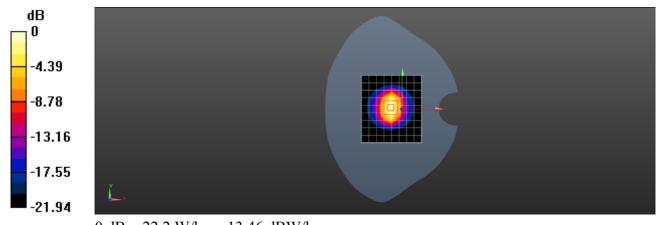
• Probe: EX3DV4 - SN3923; ConvF(7.87, 7.87, 7.87); Calibrated: 2019-10-22

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1428; Calibrated: 2020-03-03

• Phantom: SAM 2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.13(7474)


Body/d=10mm, Pin=250mW/Area Scan (9x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 21.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dv=5mm, dz=5mm

Reference Value = 90.88 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.14 W/kgMaximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.987$ S/m; $\varepsilon_r = 38.658$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

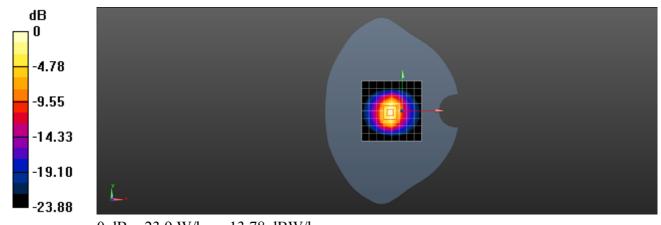
• Probe: EX3DV4 - SN3923; ConvF(7.74, 7.74, 7.74); Calibrated: 2019-10-22

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1428; Calibrated: 2020-03-03

• Phantom: SAM 2; Type: SAM; Serial: 1913

• DASY52 52.8.8(1222); SEMCAD X 14.6.13(7474)


Body/d=10mm, Pin=250mW/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 22.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.72 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.17 W/kgMaximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.9 W/kg = 13.78 dBW/kg

System Validation

Per FCC KDB 865664 D02, SAR system verification is required to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles are used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point must be validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

a tabulated summary of the system validation status, measurement frequencies, SAR probes, calibrated signal type(s) and tissue dielectric parameters has been included.

Table of SAR System validation summary:

Frequency		Duala	Drobo	Probe CAL Point		PERM (εr)	COND (σ)	CW Validation			MOD.Validation		
(MHz)	Date	Probe SN	Probe Type					Sensitivity	Probe Linarity	Probe Isotropy	Modulation	Duty. Factore	PAR
750	2019/10/09	3982	EX3DV4	750	Head	42.116	0.857	PASS	PASS	PASS	N/A	N/A	N/A
835	2019/10/09	3982	EX3DV4	835	Head	42.233	0.904	PASS	PASS	PASS	GMSK	PASS	N/A
1750	2019/10/09	3982	EX3DV4	1750	Head	40.251	1.375	PASS	PASS	PASS	N/A	N/A	N/A
1900	2019/10/09	3982	EX3DV4	1900	Head	40.284	1.389	PASS	PASS	PASS	GMSK	PASS	N/A
3300	2019/10/09	3982	EX3DV4	3300	Head	38.739	2.639	PASS	PASS	PASS	TDD	PASS	N/A
3500	2019/10/09	3982	EX3DV4	3500	Head	38.305	3.020	PASS	PASS	PASS	TDD	PASS	N/A
3700	2019/10/09	3982	EX3DV4	3700	Head	37.686	3.256	PASS	PASS	PASS	TDD	PASS	N/A
3900	2019/10/09	3982	EX3DV4	3900	Head	37.075	3.485	PASS	PASS	PASS	TDD	PASS	N/A
4100	2019/10/09	3982	EX3DV4	4100	Head	35.944	3.467	PASS	PASS	PASS	TDD	PASS	N/A
4400	2019/10/09	3982	EX3DV4	4400	Head	35.247	3.740	PASS	PASS	PASS	TDD	PASS	N/A
4600	2019/10/09	3982	EX3DV4	4600	Head	38.343	3.847	PASS	PASS	PASS	TDD	PASS	N/A
4800	2019/10/09	3982	EX3DV4	4800	Head	38.252	4.182	PASS	PASS	PASS	TDD	PASS	N/A
4950	2019/10/09	3982	EX3DV4	4950	Head	37.973	4.216	PASS	PASS	PASS	TDD	PASS	N/A
Frequency		Probe Prol SN Typ	Drohe	Drohe	00 CAI	PERM	COND	CW	Validation		MOD.Validation		
(MHz)	Date		Type	Probe CAL Point		(Er)	(σ)	Sensitivity	Probe Linarity	Probe Isotropy	Modulation	Duty. Factore	PAR
750	2019/10/28	3923	EX3DV4	750	Head	43.278	0.910	PASS	PASS	PASS	N/A	N/A	N/A
835	2019/10/28	3923	EX3DV4	835	Head	40.769	0.906	PASS	PASS	PASS	GMSK	PASS	N/A
1750	2019/10/28	3923	EX3DV4	1750	Head	40.524	1.336	PASS	PASS	PASS	N/A	N/A	N/A
1900	2019/10/28	3923	EX3DV4	1900	Head	41.235	1.418	PASS	PASS	PASS	GMSK	PASS	N/A
2000	2019/10/28	3923	EX3DV4	2000	Head	41.105	1.398	PASS	PASS	PASS	N/A	N/A	N/A
2450	2019/10/28	3923	EX3DV4	2450	Head	39.345	1.785	PASS	PASS	PASS	OFDM	PASS	N/A
2600	2019/10/28	3923	EX3DV4	2600	Head	38.713	1.996	PASS	PASS	PASS	TDD	PASS	N/A
5250	2019/10/28	3923	EX3DV4	5250	Head	36.570	4.625	PASS	PASS	PASS	OFDM	PASS	N/A
5600	2019/10/28	3923	EX3DV4	5600	Head	35.748	5.159	PASS	PASS	PASS	OFDM	PASS	N/A
5750	2019/10/28	3923	EX3DV4	5750	Head	35.384	5.309	PASS	PASS	PASS	OFDM	PASS	N/A

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664D01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5dB), such as OFDM according to KDB 865664.