

1601 North A.W. Grimes Blvd., Suite B
Round Rock, TX 78665
e-mail: info@ptitest.com
(512) 244-3371 Fax: (512) 244-1846

May 16, 2011

Tom Kennedy
EnergyHub, Inc.
232 3rd Street, Suite C201
Brooklyn, NY 11215

Dear Tom:

Enclosed is the Wireless Test Report for the Zigbee Daughter Card by EnergyHub, Inc. This report can be used to demonstrate compliance with FCC and IC requirements for wireless devices in the United States and Canada.

If you have any questions, please contact me.

Sincerely,

Jeffrey A. Lenk
President

Enclosure

Project 12147-10

**EnergyHub, Inc.
Zigbee Daughter Card**

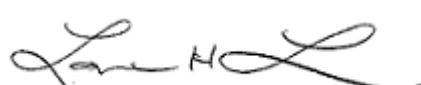
Wireless Certification Report

Prepared for:
EnergyHub, Inc.
232 3rd Street, Suite C201
Brooklyn, NY 11215

By

Professional Testing (EMI), Inc.
1601 N. A.W. Grimes Blvd., Suite B
Round Rock, Texas 78665

May 5, 2011
Revised May 16, 2011



Reviewed by

Jeffrey A. Lenk
President

Written by

Layne Lueckemeyer
Product Development Engineer

Table of Contents

Title Page	1
1.0 Introduction	6
1.1 Scope	6
1.2 EUT Description	6
1.3 Modifications	6
1.4 Test Site	6
1.5 Applicable Documents	7
2.0 Conducted Emissions Mains Terminal Measurements	8
2.1 Test Procedure	8
2.2 Test Criteria	10
2.3 Test Results	10
Table 2.3.3 Conducted Emissions Mains Terminals Test Results – Phase Lead (Line 1)	12
3.0 Output Power	13
3.1 Test Procedure	13
3.2 Test Criteria	13
3.3 Test Results	14
4.0 Occupied Bandwidth	16
4.1 Test Procedure	16
4.2 Test Criteria	16
4.3 Test Results	16
5.0 Power Spectral Density	26
5.1 Test Procedure	26
5.2 Test Criteria and Methodology	26
5.3 Test Results	26
6.0 Band Edge Spurious Emissions	30
6.1 Test Procedure	30
6.2 Test Criteria	30
6.3 Test Results	30
7.0 Out of Band Spurious Emissions	34
7.1 Test Procedure	34
7.2 Test Criteria	34
7.3 Test Results	34
Note: This number is the worst case transmit duty cycle based on the 802.15.4 standard. The real application will be much lower. This is the duty cycle attenuation factor to be used for FCC certification.....	47
8.0 Antenna Requirements	48
8.1 Evaluation Procedure	48
8.2 Evaluation Criteria	48
8.3 Evaluation Results	48
End of Report	49

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF PROFESSIONAL TESTING (EMI), INC.

NOTICE: (1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST.

(2) This report shall not be reproduced except in full, without the written approval of Professional Testing (EMI), Inc.

(3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

Applicant: EnergyHub, Inc.
 Applicant's Address: 232 3rd Street, Suite C201
 Brooklyn, NY 11215
 FCC ID: ZANEHZPA20
 IC Identifier: 9603A-EHZPA20
 Project Number: 12147-10
 Test Dates: February 23, March 15, and 23, 2011

The **EnergyHub Zigbee Daughter Card** was tested to and found to be in compliance with FCC 47 CFR Part 15 and IC RSS-210 issue 8.

The highest emissions generated by the above equipment are listed below:

Parameter	Frequency (MHz)	Level	Limit	Margin (dB)
Transmitter: Output Power @ 1 m	2405	-11.13 dBm @ 1 m	30 dBm	-41.13
Transmitter: Radiated Spurious	4960	62.8 dB μ V/m @ 1 m	63.5 dB μ V/m	-1.7
Receiver: Radiated Spurious	127.6	21.2 dB μ V/m @ 10m	33.0 dB μ V/m	-11.8
Transmitter: Mains Conducted	.34202	55.8 dB μ V	55.2 dB μ V	-3.4
Occupied Bandwidth				
6 dB	20 dB	26 dB		
1.603 MHz	2.804 MHz	4.343 MHz		

I, Layne Lueckemeyer, for Professional Testing (EMI), Inc., being familiar with the FCC rules and test procedures have reviewed the test setup, measured data, and this report. I believe them to be true and accurate.

Layne Lueckemeyer
Product Development Engineer

This report has been reviewed and accepted by EnergyHub, Inc. The undersigned is responsible for ensuring that this device will continue to comply with the FCC and IC rules.

Representative of EnergyHub, Inc.

1.0 Introduction

1.1 Scope

This report describes the extent of the equipment under test (EUT) conformance to the intentional radiator requirements of the United States and Canada.

Professional Testing (EMI), Inc. (PTI), follows the guidelines of NIST for all uncertainty calculations, estimates, and expressions thereof for EMC testing. The procedure of ANSI C63.4: 2009 were utilized for making all emissions measurements.

1.2 EUT Description

The Zigbee Daughter Card is a self-contained transceiver module that is used in the EnergyHub devices that communicate over Zigbee. The device is intended to be installed into other EnergyHub devices. These devices will then use the Communication Daughter Card to form a Zigbee network and communicate back to the HomeBase, which is the central network coordinator also made by EnergyHub.

The EUT was tested while in a continuous transmit mode. The EUT was tuned to a low, middle, and high channel to perform power, occupied bandwidth, and harmonic tests. The EUT was tuned to a middle channel to perform spurious tests. The EUT continuously transmitted at maximum power. The system tested consisted of the following:

Manufacturer	Model	FCC ID Number	IC Identifier
EnergyHub, Inc.	Zigbee Daughter Card	ZANEHZPA20	9603A-EHZPA20

The following rules apply to the operation of the EUT:

Guidelines	FCC Rules	IC Rules	
	Part 15	RSS-GEN Issue 3	RSS-210 Issue 8
Transmitter Characteristics	15.247	4.1-4.6, 7	2.2, 2.6-2.7, A2.9, A8, A9
Spurious Radiated Power	15.209	4.2, 4.7, 4.8, 6, 7	2.2, 2.6-2.7, A2.9, A8, A9
Antenna Requirement	15.203	7.1, 7.1.4	

1.3 Modifications

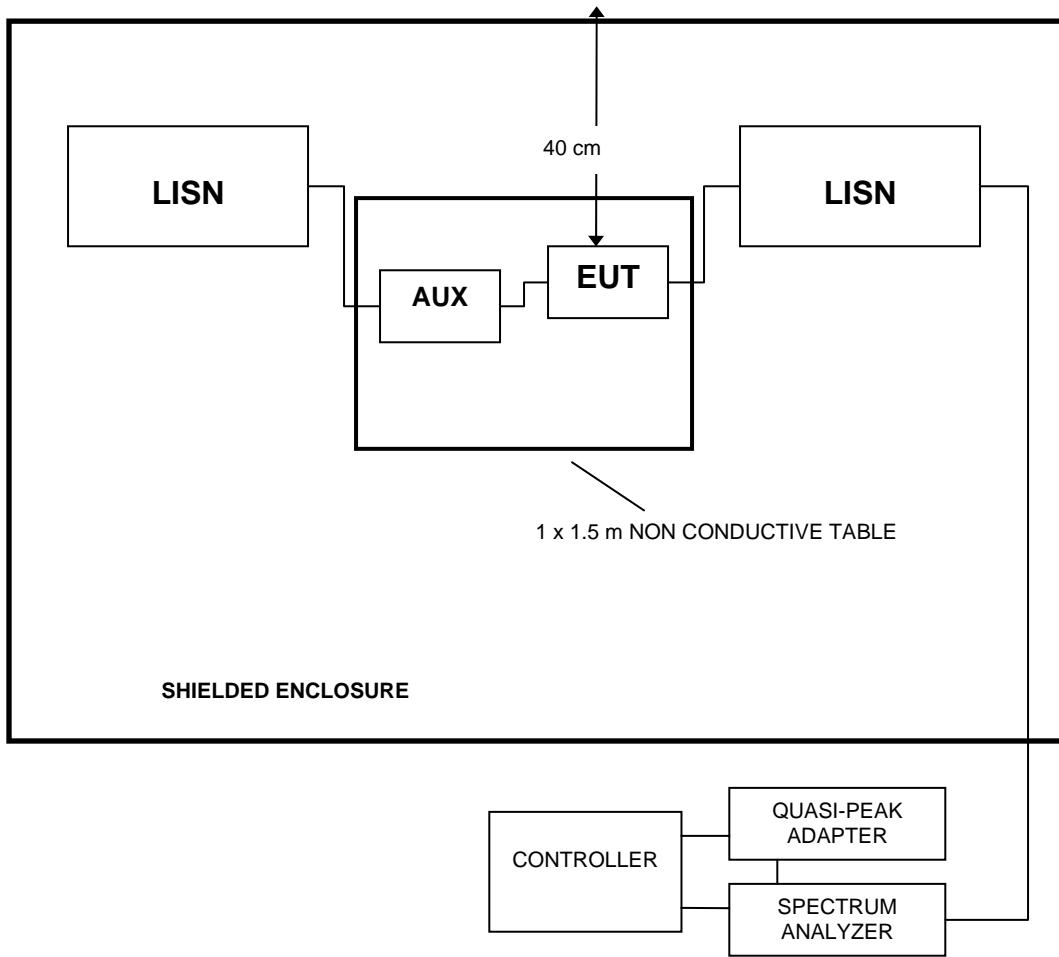
No modifications were made to the EUT during the performance of the test program.

1.4 Test Site

Measurements were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036B-1) in Austin, Texas. This site is registered with the FCC under Section 2.948 and Industry Canada per RS-212, and is subsequently confirmed by laboratory accreditation (NVLAP). The test site is located at 11400 Burnet Road, Austin, Texas, 78758, while the main office is located at 1601 N. A.W. Grimes Blvd., Suite B, Round Rock, Texas, 78665.

1.5 Applicable Documents

Document	Title	Release
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low Voltage Electrical and Electronic Equipment	2009
ANSI C63.10	American National Standard for Testing Unlicensed Wireless Devices	2009
47 CFR	Part 15 – Radio Frequency Devices Subpart C -Intentional Radiators	
RSS-210	Low-power License-exempt Radio communication Devices (All Frequency Bands): Category I Equipment	Issue 8
RSS-Gen	General Requirements and Information for the Certification of Radio Communication Equipment	Issue 3
KDB Publication No. 558074	Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)	2007


2.0 Conducted Emissions Mains Terminal Measurements

Conducted emissions measurements were made on the mains terminals of the EUT to determine the line-to-ground radio noise emitted from each power-input terminal. Conducted emissions measurements on the mains terminals were performed at Professional Testing, located in Austin, Texas.

2.1 Test Procedure

The EUT was configured and operated in a manner consistent with typical applications. The EUT power cord in excess of one meter was folded back and forth forming a bundle 30 to 40 cm long in the approximate center of the cable. Power supply cords for the peripheral equipment were powered from an auxiliary line impedance stabilization network (LISN). Excess interface cable lengths were separately bundled in a non-inductive arrangement at the approximate center of the cable with the bundle 30 to 40 centimeters in length. The conducted emissions were maximized by varying the operating states and configuration of the EUT. The tests were performed in a RayProof modular shielded room.

The EUT was placed on a non-metallic table 0.4 meters from a vertical metal reference plane and 0.8 meters from a horizontal metal reference plane. The measurements were taken using a LISN. A spectrum analyzer with a measurement bandwidth of 9 kHz was used to record the conducted emissions measurements. The configuration of the shielded room showing the location of the EUT and the measurement equipment is given as Figure 2.1.1.1.

Figure 2.1.1.1: Conducted Emissions Main Terminal Test Setup

2.2 Test Criteria

The 47 CFR Part 15, Section 15.107 Class B conducted emissions limits are given below.

Frequency (MHz)	Maximum RF Line Voltage dB(μV)	
	Quasi-Peak	Average
0.15 to 0.50	66 to 56	56 to 46*
0.50 to 5.0	56	46
5.0 to 30.0	60	50

*The lower limit shall apply at the transition frequency. Decreases with the logarithm of the frequency.

2.3 Test Results

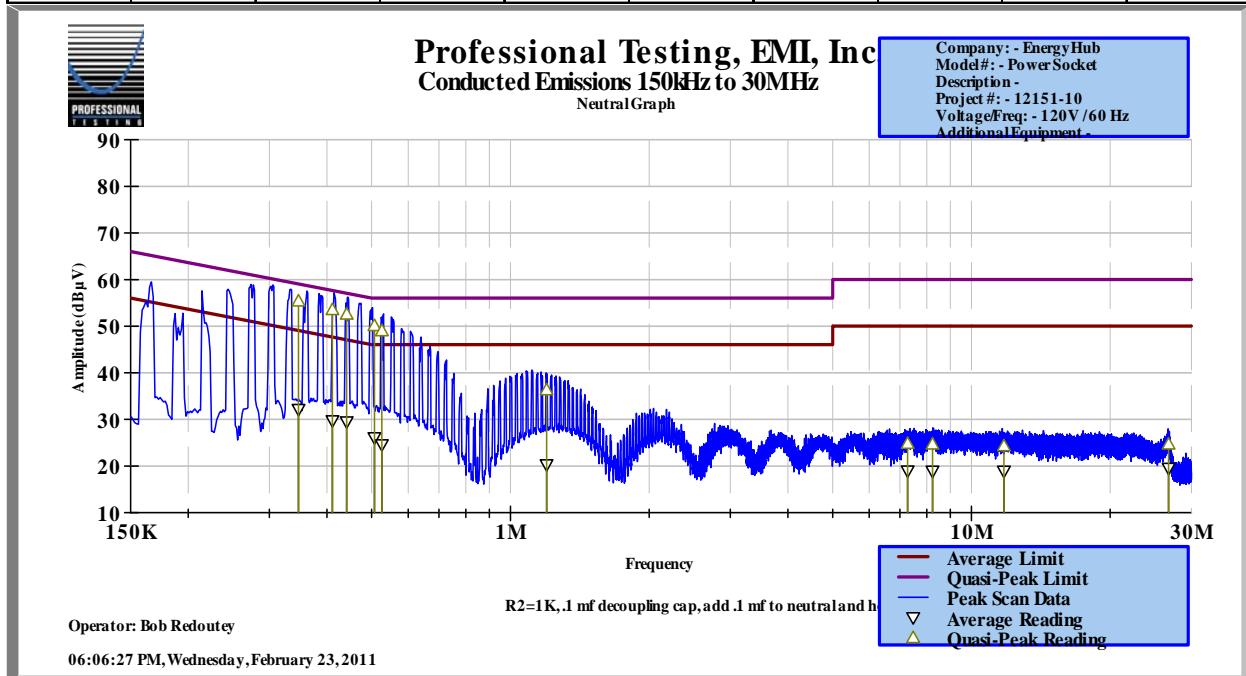
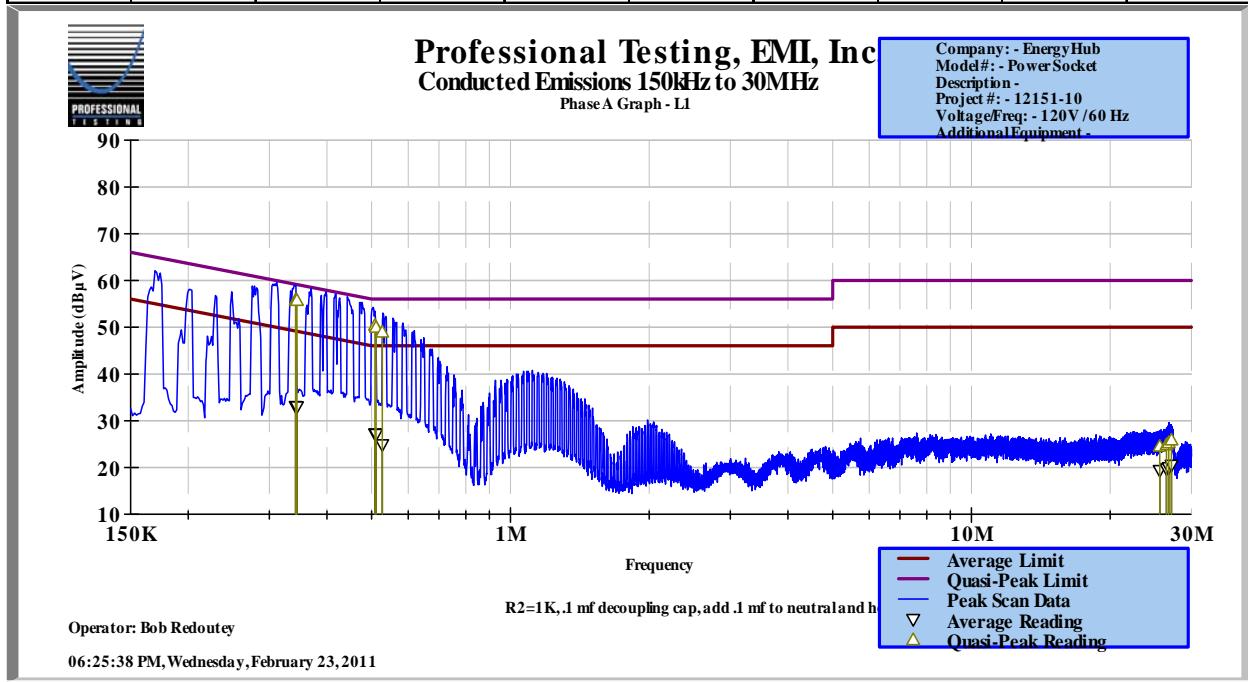

The conducted emissions generated by the EUT as measured on the mains terminals were found to be below 47 CFR Part 15, Section 15.107 Class B maximum emissions criteria.

Table 2.3.1: Conducted Emissions Test Equipment

Asset #	Manufacturer	Model #	Description	Calibration Due
1129	HP	8568B	Spectrum Analyzer 100 Hz-1.5 GHz	2140A01754
1629	HP	85662A	Spec Anal Display for AN1129	3001A18433
1277	HP	85650A	Quasi Peak Adapter	2811A01117
0027	EMCO	3825/2	LISN, 10 kHz-100 MHz	9010-1708
1173	PTI	100k HPF	Filter, High Pass, 100 kHz	none
1088	PTI	PTI-ALF4	Attenuator Limiter Filter	none
C109	HP	None	Cable, BNC, 19"	none
C107	Pomona	RG-58	Cable, BNC, 10.5'	none
C108	Pomona	RG-223	Cable, BNC, 5.5'	none
935	FCC	FCC-TLISN-T4	TLISN-T4, 9 kHz-30 MHz, CISPR 22	20153
939	EMCO	3825/2	LISN, 10 kHz-100 MHz	9603-2521
1185	EMCO	3825/2	LISN, 10 kHz-100 MHz	1235

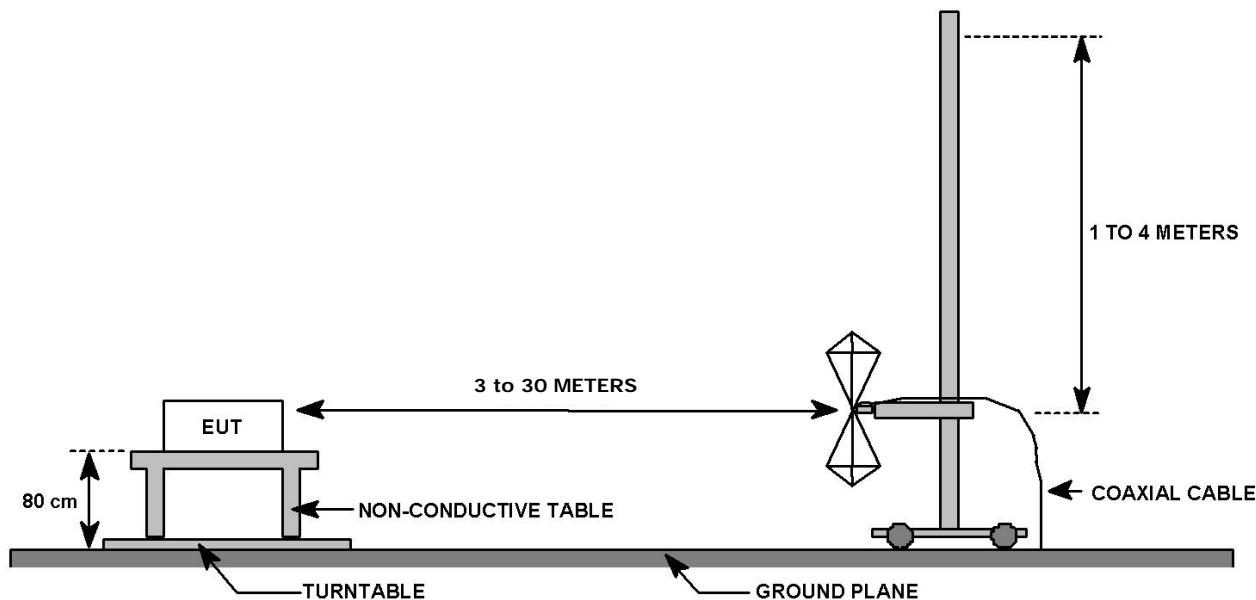

Table 2.3.2 Conducted Emissions Mains Terminals Test Results – Neutral Lead

Conducted Emissions Test Results Data Sheet - Neutral Lead							Page:	1	of	2
EUT Line Voltage:			120	VAC	EUT Line Frequency:			60	Hz	
Frequency Measured (MHz)	Peak Detector Reading (dB μ V)	Quasi-peak Detector Reading (dB μ V)	Quasi-peak Detector Limit (dB μ V)	Quasi-peak Detector Margin (dB)	Quasi-peak Detector Test Results	Average Detector Reading (dB μ V)	Average Detector Limit (dB μ V)	Average Detector Margin (dB)	Average Detector Test Results	
0.34694	58.9	55.4	59	-3.7	PASS	32.2	49	-16.9	PASS	
0.41108	57.3	53.5	57.6	-4.1	PASS	29.7	47.6	-17.9	PASS	
0.44138	56.3	52.5	57	-4.5	PASS	29.5	47	-17.6	PASS	
0.50688	54.1	50.1	56	-5.9	PASS	26.1	46	-19.9	PASS	
0.5263	53.9	49	56	-7	PASS	24.6	46	-21.4	PASS	
1.1979	41.4	36.3	56	-19.7	PASS	20.3	46	-25.7	PASS	
7.2722	31.1	24.8	60	-35.2	PASS	18.9	50	-31.1	PASS	
8.2342	31.2	24.7	60	-35.3	PASS	18.9	50	-31.1	PASS	
11.7663	31.8	24.3	60	-35.7	PASS	18.9	50	-31.1	PASS	
26.784	32	24.7	60	-35.3	PASS	19.5	50	-30.5	PASS	

Table 2.3.3 Conducted Emissions Mains Terminals Test Results – Phase Lead (Line 1)

Conducted Emissions Test Results Data Sheet - Phase Lead (Line 1)							Page: 2 of 2		
EUT Line Voltage:			120	VAC	EUT Line Frequency:			60	Hz
Frequency Measured (MHz)	Peak Detector Reading (dB μ V)	Quasi-peak Detector Reading (dB μ V)	Quasi-peak Detector Limit (dB μ V)	Quasi-peak Detector Margin (dB)	Quasi-peak Detector Test Results	Average Detector Reading (dB μ V)	Average Detector Limit (dB μ V)	Average Detector Margin (dB)	Average Detector Test Results
0.34202	59.1	55.8	59.2	-3.4	PASS	33.1	49.2	-16.1	PASS
0.34339	59.1	55.7	59.1	-3.4	PASS	33	49.1	-16.1	PASS
0.34429	59.1	55.7	59.1	-3.4	PASS	33	49.1	-16.1	PASS
0.5084	54.2	50.4	56	-5.6	PASS	27.2	46	-18.8	PASS
0.5111	54.2	50	56	-6	PASS	27.1	46	-18.9	PASS
0.5273	54.2	49	56	-7	PASS	24.9	46	-21.1	PASS
25.6096	32.2	24.5	60	-35.5	PASS	19.4	50	-30.6	PASS
26.5009	32	24.9	60	-35.1	PASS	19.7	50	-30.3	PASS
26.8018	32.4	25.3	60	-34.7	PASS	20	50	-30	PASS
27.1756	32.8	25.9	60	-34.1	PASS	20.5	50	-29.5	PASS

3.0 Output Power


Output power measurements were made on selected fundamental transmit frequencies of the EUT for the lowest, most center, and highest transmit frequency.

Tests of the fundamental emissions of the EUT also determined the worse case polarization of the device. The emissions of the device were measured with the EUT in three orthogonal axes.

3.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable, which allows 360-degree rotation. For measurements of the fundamental signal, a measurement antenna was positioned at a distance of 1 meter as measured from the closest point of the EUT. Rotating the EUT maximized the emissions.

A spectrum analyzer with peak detection was used to find the maximum field strength during the variability testing. Resolution bandwidth (RBW) is chosen to encompass the entire 6 dB bandwidth of the fundamental signal, up to 3 times the bandwidth if possible. RBW used is recorded. A calculation was then made to determine the output power at the antenna terminal. A diagram showing the test setup is given as Figure 2.1.1.

Figure 3.1.1: Radiated Emission Test Setup

3.2 Test Criteria

The maximum output power is 1 W for devices operating in the frequency range 2400 -2483.5 MHz according to FCC 15.247 and RSS-210.

3.3 Test Results

Radiated emission measurements of the output power level for the EUT were taken on March 15, 2011, and the EUT was found to be in compliance with applicable requirements.

Table 3.3.1: Radiated Emissions Test Equipment

Asset #	Manufacturer	Model #	Description	Calibration Due
0085	HP	85650A	Quasi-peak Adapter (high band)	July 28, 2011
0949	HP	85662A	Spectrum Analyzer Display (high band)	NCR
1841	HP	8566B	Spectrum Analyzer (high band)	June 8, 2011
0990	HP	85685A	RF Preselector (high band)	March 24, 2011
1281	HP	85650A	Quasi-peak Adapter (low band)	January 20, 2012
1834	HP	85662A	Spectrum Analyzer Display (low band)	NCR
1145	HP	8568B	Spectrum Analyzer (low band)	July 28, 2011
1035	HP	85685A	RF Preselector (low band)	April 3, 2011
1454	HP	8447D	RF Preamplifier	July 06, 2011
1497	Emco	3108	Biconical Antenna	August 4, 2011
1486	Emco	3147	Log Periodic Dipole Array Antenna	August 4, 2011
C026	none	none	Coaxial Cable (low band)	August 02, 2011
C027	none	none	Coaxial Cable (high band)	August 02, 2011

Table 3.3.2: Microwave Radiated Emissions Test Equipment

Asset #	Manufacturer	Model #	Description	Calibration Due
1780	ETS-Lindgren	3117	Ridge Guide Antenna	November 11, 2011
1529	Miteq	Antenna Mounted	Microwave Preamplifier (preamp 1)	July 16, 2011
1841	HP	8566B	Spectrum Analyzer	June 8, 2011
0949	HP	85662A	Spectrum Analyzer Display	NCR
1530	Miteq	None	Microwave Preamplifier (preamp 2)	July 16, 2011
C030	None	None	Coaxial Cable (MRE band)	March 22, 2011

Asset #	Manufacturer	Model #	Description	Calibration Due
XXXX	Pasternack	LLS	2 sections, total 12ft	Cal Before Use
0819	EMCO	3115	Ridge Guide Antenna	October 15, 2011
0897 (Rental unit)	Miteq Rohde & Schwarz	AFS44-00102650 FSQ	Microwave Preamplifier (preamp 1) Spectrum Analyzer	July 14, 2011 August 24, 2011
1542	A.H. Systems	SAS 572	Antenna, Horn 18-26.5GHz	NCR

Table 3.3.3: Output Power Test Results

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1m	Horn	1 MHz	1 MHz	Peak
COMMENT	Transmitting						

Vertical Polarization

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V / m)
2405	0	1	86.2	26.4	29.0	2.8	91.6
2445	0	1	84.9	26.3	29.0	2.8	90.4
2480	0	1	85.6	26.4	29.0	2.8	91.0

Calculations

$$P = \frac{(E * d)^2}{30 * G}$$

P=Power in watts, E=measured maximum field strength in V/m, d=distance in meters, G=numeric gain of transmitting antenna

Distance=1 meters

Gain=0 dBi

Calculated Result

Frequency (MHz)	Field Strength (dB μ V)	E.I.R.P.		Limit (dBm)
		dBm	mW	
2405	91.6	-11.13	0.077	30
2445	90.4	-12.33	0.058	30
2480	91.0	-11.73	0.067	30

Note: Computed power by applying a bandwidth correction factor of $10 \log (EBW/1 \text{ MHz})$ to the spectral peak of the emission.

Transmit Power: $10 \log (1.60 \text{ MHz} / 1 \text{ MHz}) = 2.04$

2.04 was added to the measured value to compute real power in mW

4.0 Occupied Bandwidth

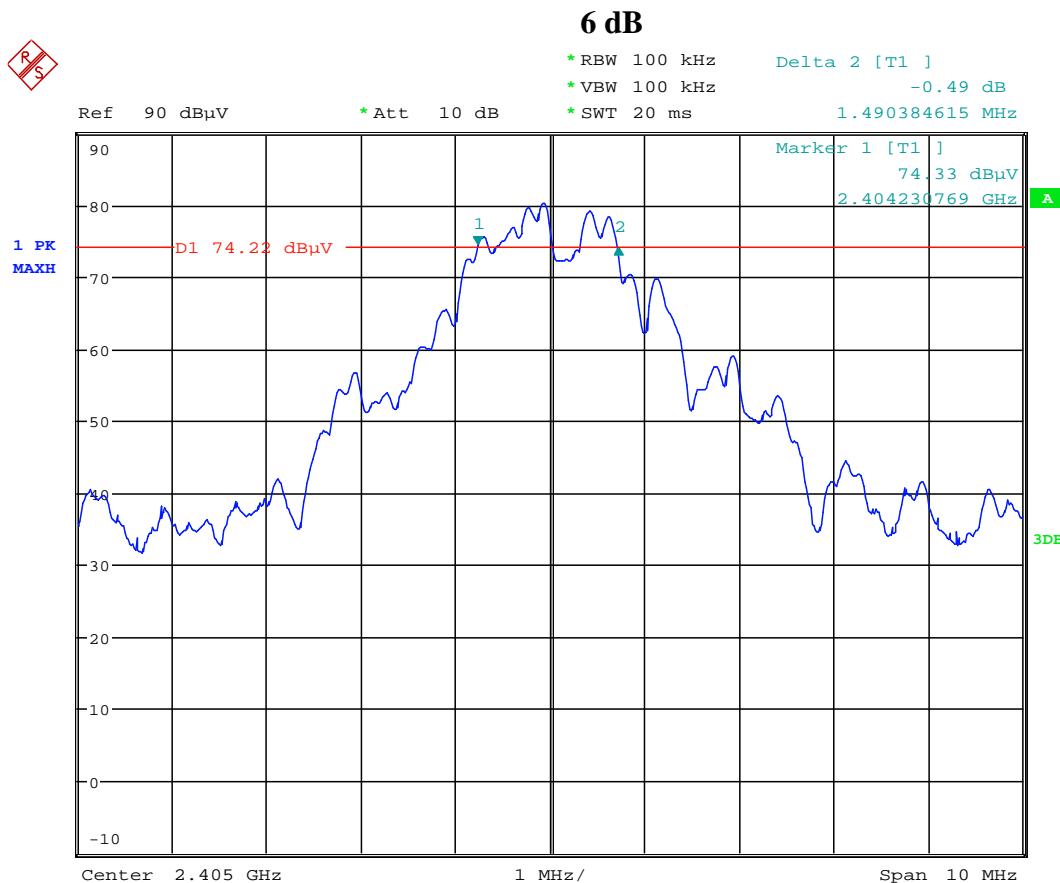
Occupied bandwidth measurements were performed on the EUT to determine compliance with FCC 15.247 and RSS-210.

4.1 Test Procedure

The occupied bandwidth was measured with a spectrum analyzer connected to a double-ridged guide horn while the EUT was operating in continuous transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency.

Display line and marker delta functions were used to measure the occupied bandwidth of the EUT. However, the 20 or 26 dB bandwidth is referenced to a peak power measurement taken at the entire bandwidth or more for RBW, then using 1% RBW for the 20 or 26 dB bandwidth. A diagram showing the test setup is given as Figure 3.1.1.

4.2 Test Criteria

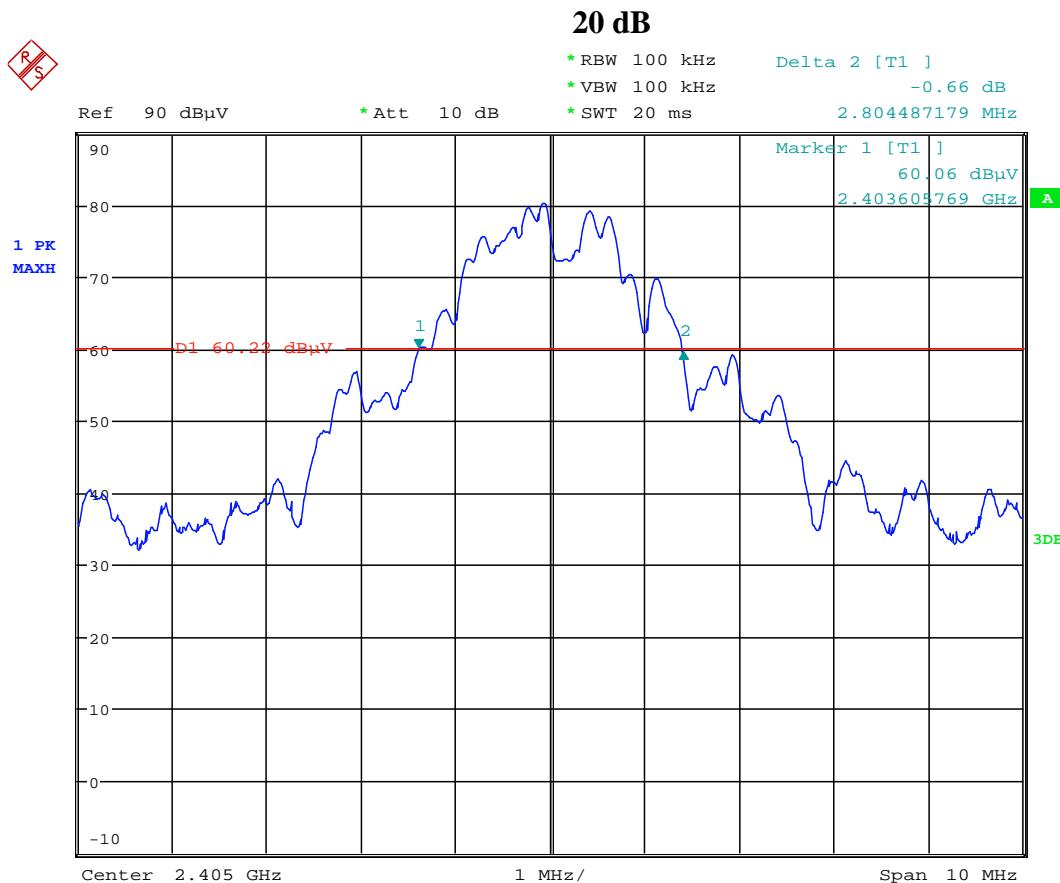

The minimum 6 dB occupied bandwidth for the EUT is 500 kHz as stated in 15.247(a)(2) and RSS-210. The 20 dB bandwidth must be measured and reported for the FCC and the 26 dB bandwidth must be measured and reported for IC.

4.3 Test Results

Occupied bandwidth measurements were taken on March 15, and 23, 2011, and the EUT was found to be in compliance with applicable requirements. Test equipment used to perform this test is given in Tables 3.3.1 and 3.3.2.

Table 4.3.1: Occupied Bandwidth Low Channel Test Results, Data Sheet 1

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Low Channel 6 dB Bandwidth – 1.490 MHz						

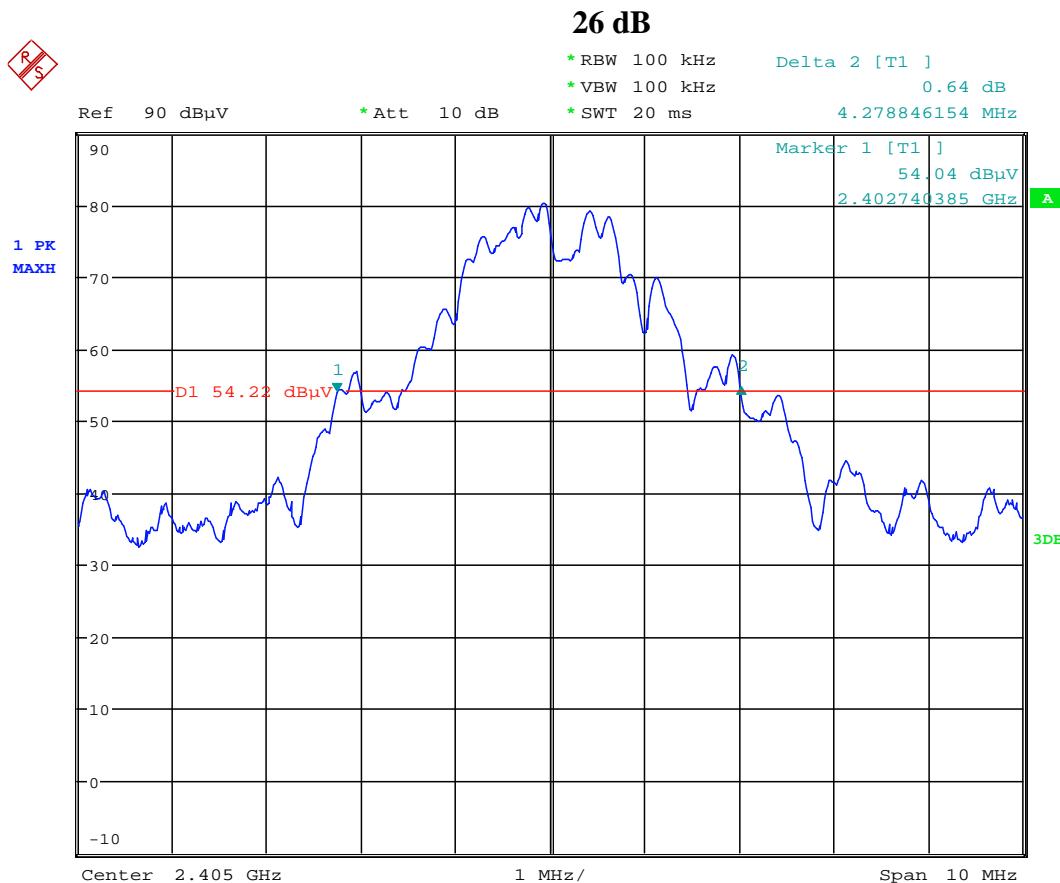


Date: 15.MAR.2011 19:47:44

Result = Pass

Table 4.3.2: Occupied Bandwidth Low Channel Test Results, Data Sheet 2

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Low Channel 20 dB Bandwidth – 2.804 MHz						

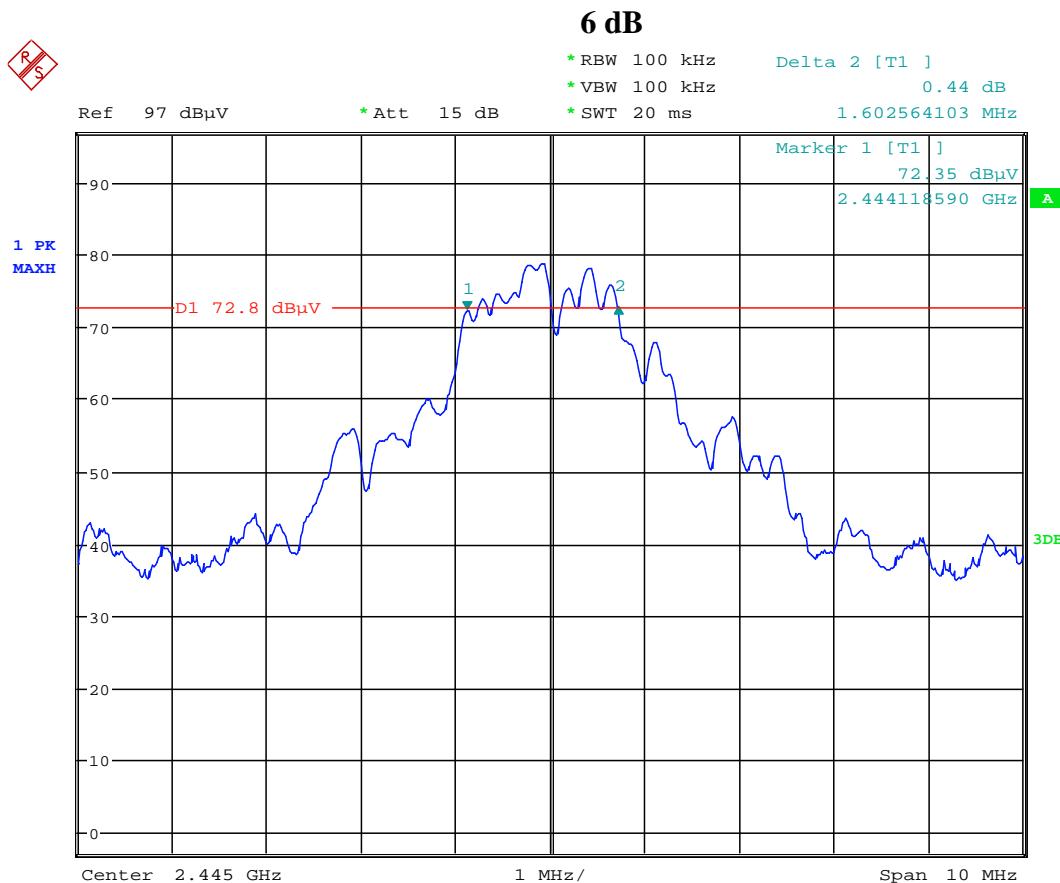


Date: 15.MAR.2011 19:48:19

Result = Pass

Table 4.3.3: Occupied Bandwidth Low Channel Test Results, Data Sheet 3

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Low Channel 26 dB Bandwidth – 4.279 MHz						

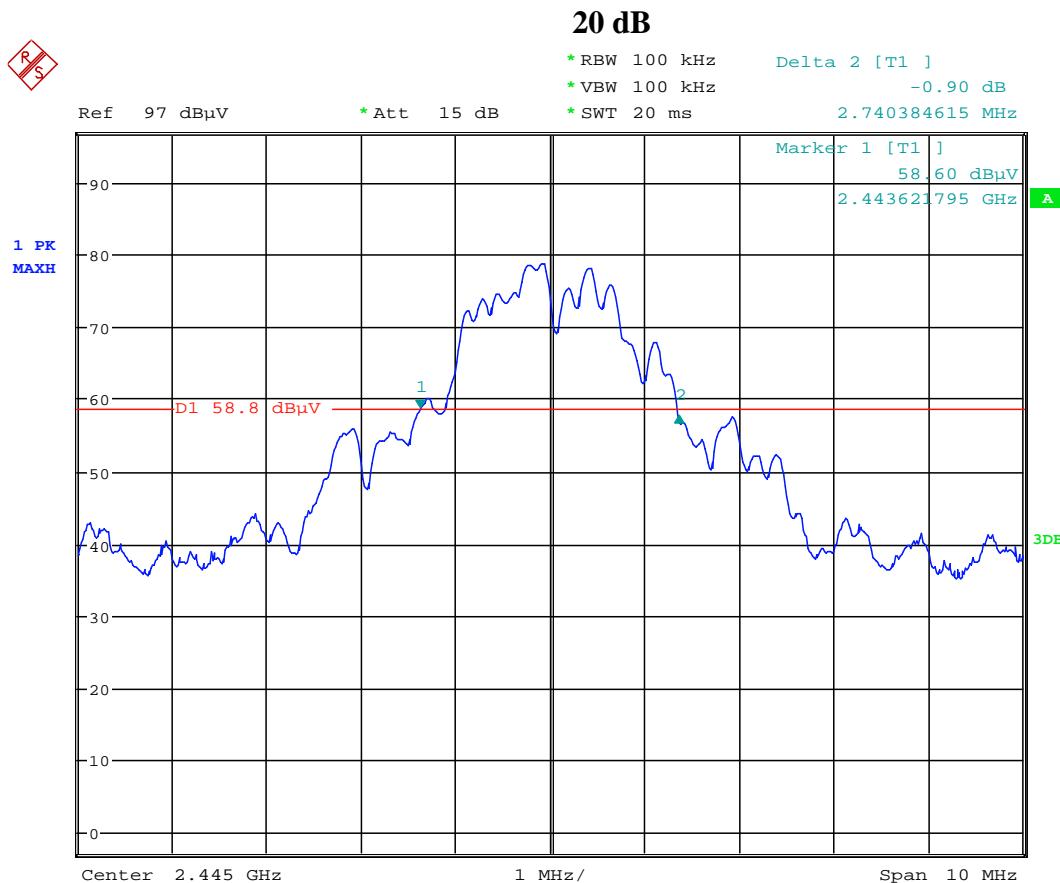


Date: 15.MAR.2011 19:48:58

Result = Pass

Table 4.3.4: Occupied Bandwidth Mid Channel Test Results, Data Sheet 4

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Mid Channel 6 dB Bandwidth – 1.603 MHz						

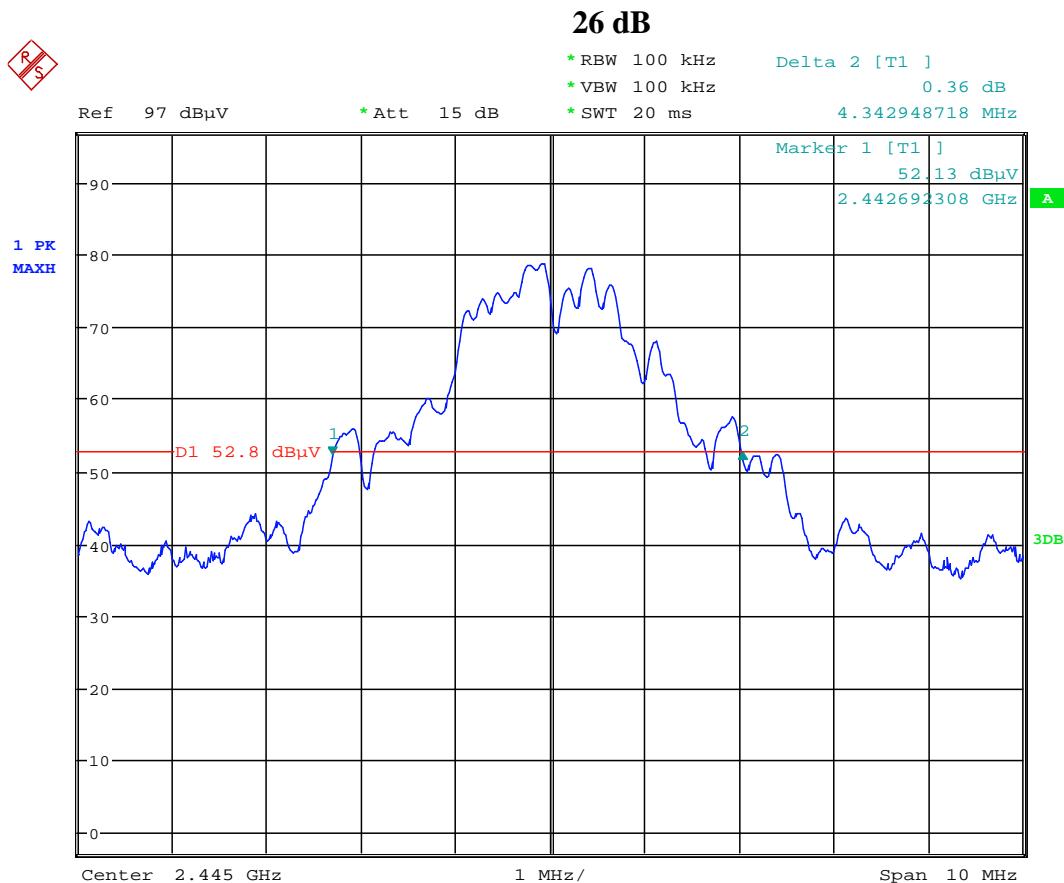


Date: 23.MAR.2011 20:49:36

Result = Pass

Table 4.3.5: Occupied Bandwidth Mid Channel Test Results, Data Sheet 5

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Mid Channel 20 dB Bandwidth – 2.740 MHz						



Date: 23.MAR.2011 20:50:23

Result = Pass

Table 4.3.6: Occupied Bandwidth Mid Channel Test Results, Data Sheet 6

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	Mid Channel 26 dB Bandwidth – 4.343 MHz						



Date: 23.MAR.2011 20:51:08

Result = Pass

Table 4.3.7: Occupied Bandwidth High Channel Test Results, Data Sheet 7

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	High Channel 6 dB Bandwidth – 1.506 MHz						

Date: 23.MAR.2011 22:22:58

Result = Pass

Table 4.3.8: Occupied Bandwidth High Channel Test Results, Data Sheet 8

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	High Channel 20 dB Bandwidth – 2.788 MHz						



Date: 23.MAR.2011 22:23:30

Result = Pass

Table 4.3.9: Occupied Bandwidth High Channel Test Results, Data Sheet 6

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	100 kHz	100 kHz	Peak
COMMENT	High Channel 26 dB Bandwidth – 4.311 MHz						

Date: 23.MAR.2011 22:24:25

Result = Pass

5.0 Power Spectral Density

Power spectral density measurements were performed on the EUT to determine compliance with FCC 15.247(d) and RSS-210.

5.1 Test Procedure

The fundamental emission of the EUT is maximized and the spectrum analyzer is tuned to the highest point as measured in max-hold with peak detection. The analyzer is then centered on the maximum peak and set with the following parameters: RBW = 3 kHz, VBW > RBW, span = 300 kHz, and sweep time = 100s. The peak level is obtained after the sweep completes. The test setup is included in Appendix A.

5.2 Test Criteria and Methodology

According to section FCC 15.247(d) and RSS-210 the maximum power spectral density is +8 dBm in any 3 kHz bandwidth.

The calculation for deriving power spectral density is as follows:

Calculations:

$$P = \frac{(E * d)^2}{30 * G}$$

P=Power in watts, E=measured maximum field strength in V/m, d=distance in meters, G=numeric gain of transmitting antenna

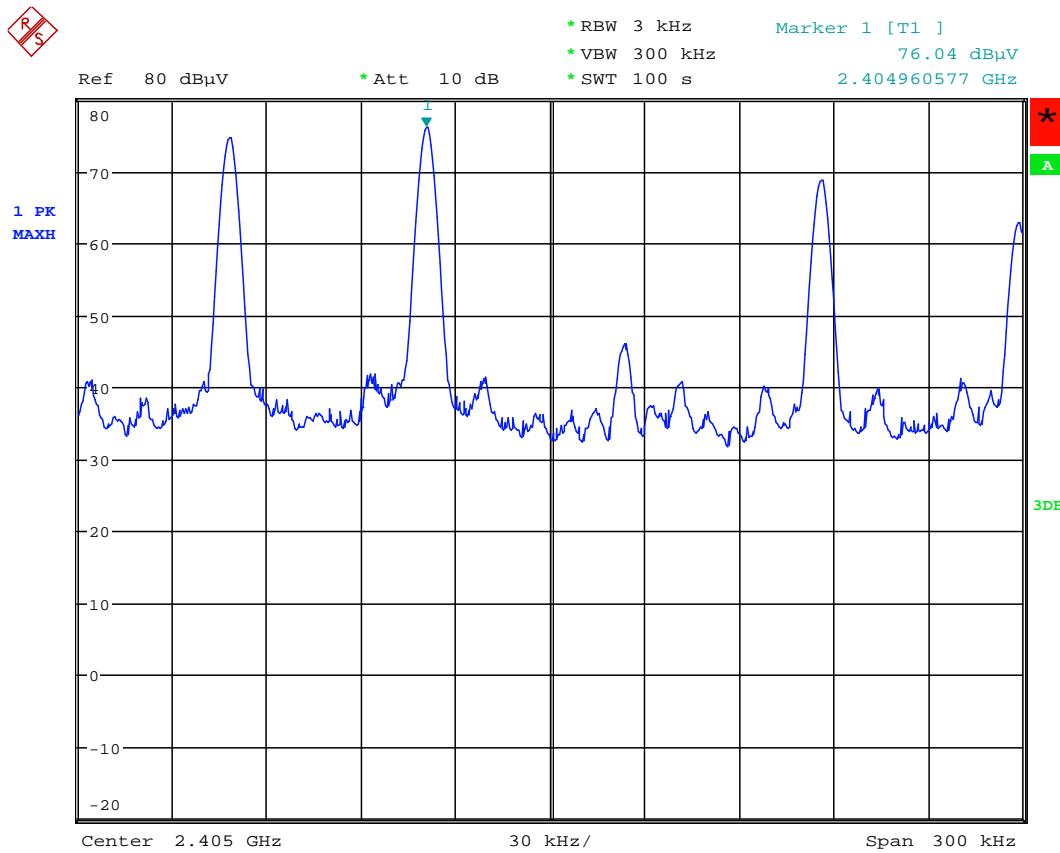
Distance=1 meters

Gain=0 dBi

5.3 Test Results

Power spectral density measurements were taken on March 15, and 23, 2011, and the EUT was found to be in compliance with applicable requirements. Test equipment used to perform this test is given in Tables 3.3.1 and 3.3.2.

Table 5.3.1: Power Spectral Density Low Channel Test Results, Data Sheet 1


PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1 m	Horn	3 kHz	300 kHz	Peak
COMMENT	Low Channel						

Measured Data

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V / m)
2405	0	1	76	26.4	29.0	2.8	81.4

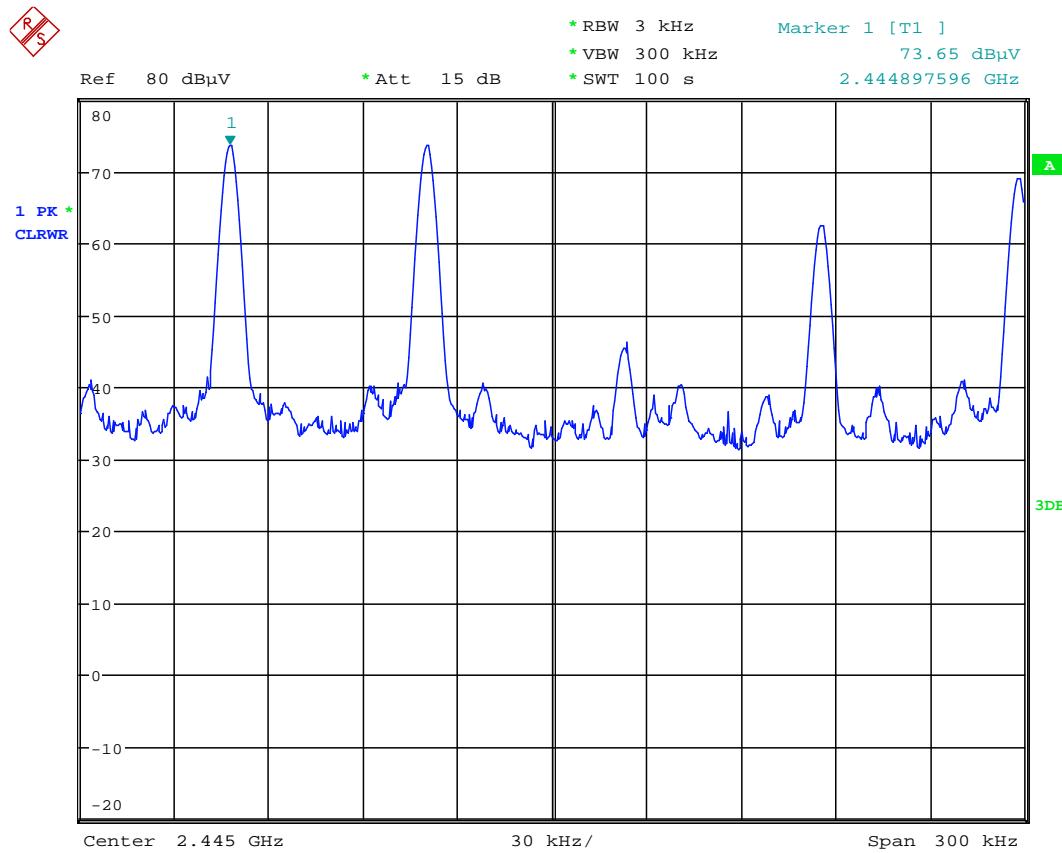
Calculated Result

Frequency (MHz)	Field Strength (dB μ V / 3 kHz)	E.I.R.P (dBm / 3 kHz)	Limit (dBm / 3 kHz)
2405	81.4	-23.37	8

Date: 15.MAR.2011 19:54:34

Result = Pass

Table 5.3.2: Power Spectral Density Mid Channel Test Results, Data Sheet 2


PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	3 kHz	300 kHz	Peak
COMMENT	Mid Channel						

Measured Data

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V / m)
2445	0	1	73.7	26.3	29.0	2.8	79.2

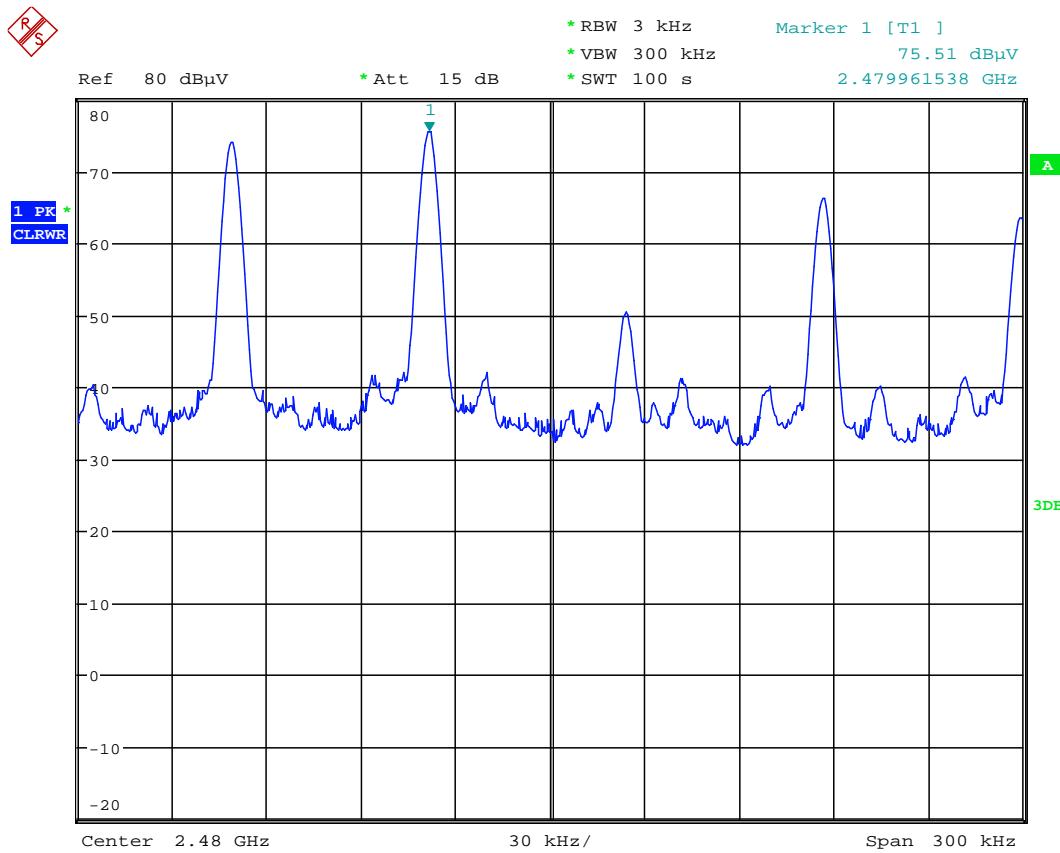
Calculated Result

Frequency (MHz)	Field Strength (dB μ V / 3 kHz)	E.I.R.P (dBm / 3 kHz)	Limit (dBm / 3 kHz)
2445	79.2	-25.57	8

Date: 23.MAR.2011 20:54:26

Result = Pass

Table 5.3.3: Power Spectral Density High Channel Test Results, Data Sheet 3


PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1 m	Horn	3 kHz	300 kHz	Peak
COMMENT	High Channel						

Measured Data

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V / m)
2480	0	1	75.5	26.4	29.0	2.8	80.9

Calculated Result

Frequency (MHz)	Field Strength (dB μ V / 3 kHz)	E.I.R.P (dBm / 3 kHz)	Limit (dBm / 3 kHz)
2480	80.9	-23.87	8

Date: 23.MAR.2011 22:26:56

Result = Pass

6.0 Band Edge Spurious Emissions

Band edge spurious emissions measurements were performed on the EUT to determine compliance to FCC 15.247(c) and RSS-210.

6.1 Test Procedure

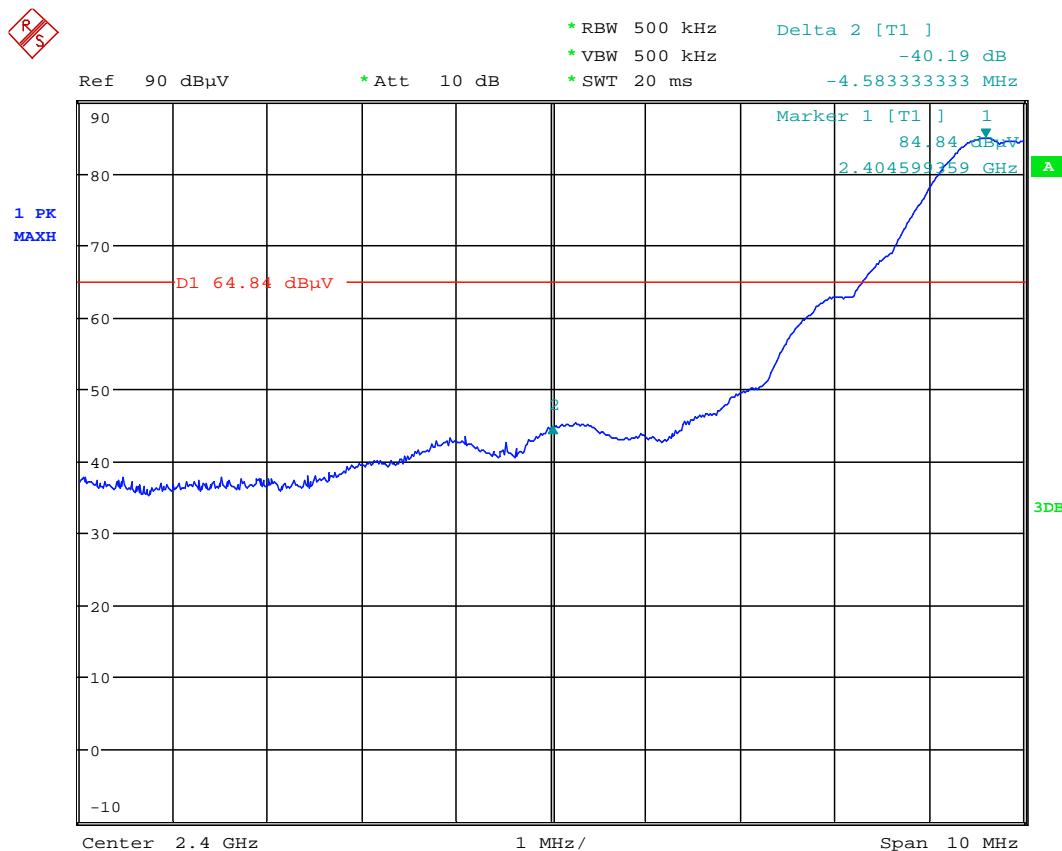
The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable, which allows 360-degree rotation. For measurements of the fundamental signal, a measurement antenna was positioned at a distance of 1 meter as measured from the closest point of the EUT. Rotating the EUT maximized the emissions.

The spectrum analyzer was set for peak detection using a 500 kHz resolution bandwidth. The span is set wide enough to show the band edge and the edge of the emission of the screen. Measurement is made at the band edge using the marker delta method while transmitting on the channels nearest the band edge to determine if the EUT meets the test criteria. The test setup is included in Appendix A.

6.2 Test Criteria

According to FCC 15.247(c) and RSS-210 the band edge spurious emissions must be 20 dB below the highest peak in the operating band in any 100 kHz bandwidth. If the frequency falls in the restricted bands of 15.205 the maximum permitted average must be below the field strength listed in 15.209.

Alternatively, the band edge spurious emissions will meet criteria if they are attenuated below the limits specified in FCC 15.209 or RSS-210 Table 3

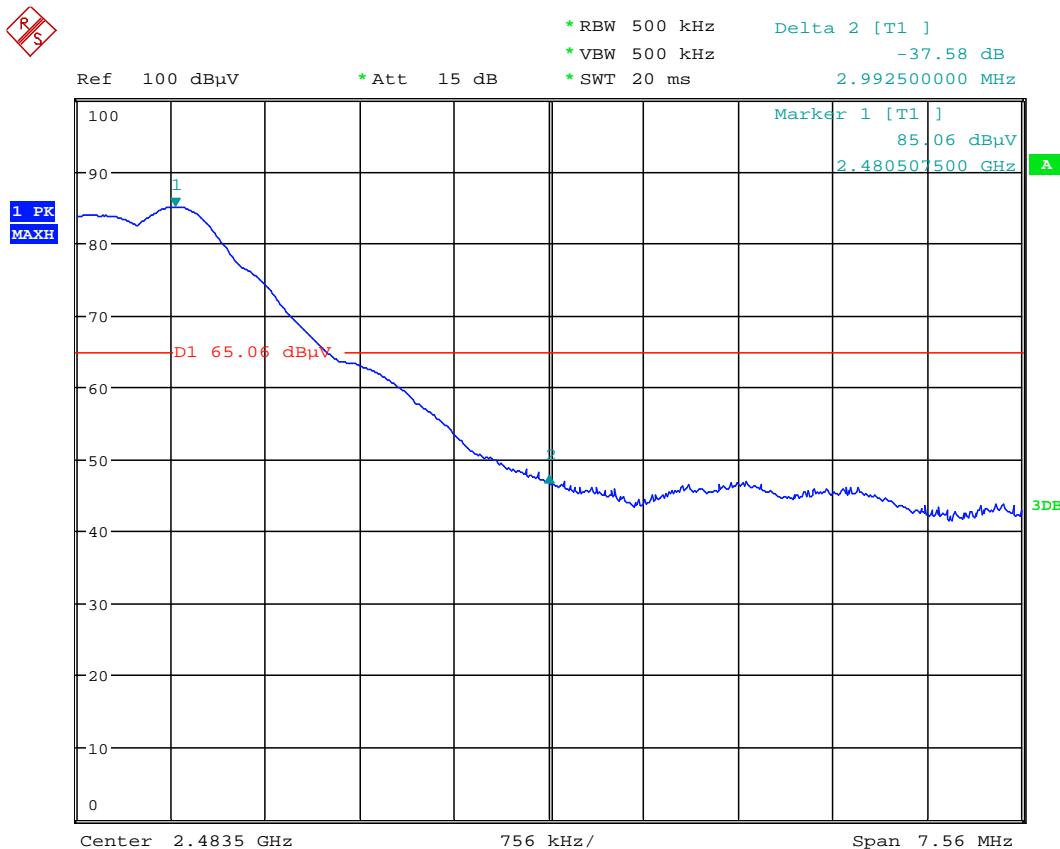

6.3 Test Results

Band edge spurious emissions measurements were taken on March 15, and 23, 2011, and the EUT was found to be in compliance with applicable requirements. Test equipment used to perform this test is given in Tables 3.3.1 and 3.3.2.

Table 6.3.1 Band Edge Spurious Emissions Test Results Data Sheet 1

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	15.247	1m	Horn	500 kHz	500 kHz	Peak
COMMENT	Transmitting						

Frequency (MHz)	Recorded Level (dB)	Limit (dB) down from fundamental	Margin (dB)	Detector Function
2400	-40.19	-20.0	-20.19	Peak


Date: 15.MAR.2011 19:49:58

Result = Pass

Table 6.3.2 Band Edge Spurious Emissions Test Results Data Sheet 2

PROJECT #	DATE	RULE	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	15.247	1m	Horn	500 kHz	500 kHz	Peak
COMMENT	Transmitting						

Frequency (MHz)	Recorded Level (dB)	Limit (dB) down from fundamental	Margin (dB)	Detector Function
2483.5	-37.58	-20.0	-17.58	Peak

Date: 23.MAR.2011 22:28:39

Result = Pass

Table 6.3.3 Band Edge Spurious Emissions (Restricted Bands) Test Results Data Sheet 3

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 23, 2011	FCC B	1 m	Horn	1 MHz	10 Hz / 1 MHz	Average / Peak
COMMENT	Investigated Restricted Bands at 2390 MHz and 2483.5 MHz						

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V /m)	Limit (dB μ V /m)	Margin (dB)	Detector Function
2.39	0	1	38.2	26.4	28.1	2.8	42.7	83.5	-40.8	Peak Hold
2.39	0	1	29.1	26.4	28.1	2.8	33.6	63.5	-29.9	Average
2.4385	0	1	52.8	26.4	29.0	2.8	58.2	83.5	-25.3	Peak Hold
2.4385	0	1	44.9	26.4	29.0	2.8	50.3	63.5	-13.2	Average

7.0 Out of Band Spurious Emissions

Out of band spurious/harmonic emissions measurements were performed on the EUT to determine compliance to FCC sections 15.247(c), 15.209 and RSS-210.

7.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a rotating turntable at a distance of 10 meters from the measurement antenna.

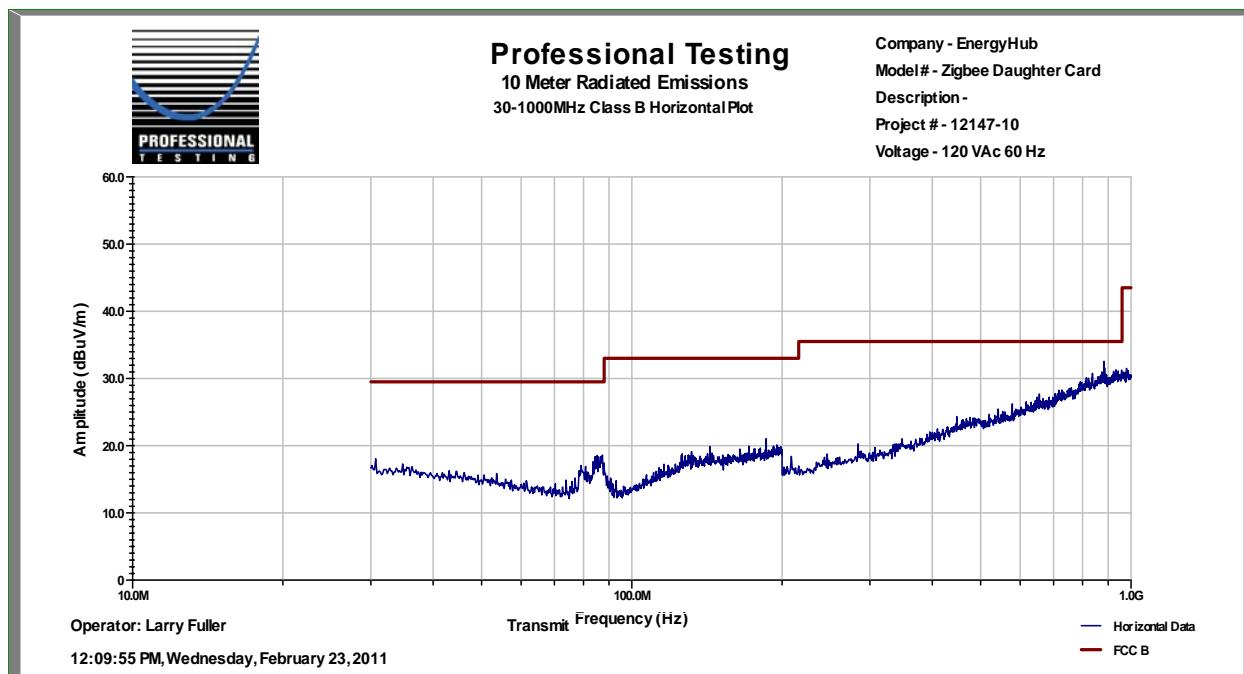
For spurious emissions below 1 GHz, quasi-peak detection was used with a resolution bandwidth of 120 kHz. All measurements below 1 GHz were normalized to 3 meters using a 20 dB/decade distance extrapolation. The emissions were maximized by rotating the EUT and raising and lowering the measurement antenna from 1 to 4 meters.

Spurious/harmonic emissions above 1 GHz peak were measured with average and peak detection with a resolution bandwidth of 1 MHz and measured at a distance of 1 meter. Average detection was used to determine compliance of the EUT if the peak did not meet the average limit. Non-harmonic emissions must satisfy the average limit and the peak limit (20 dB above average). A diagram showing the test setup is given as Figure 2.1.1. Above 1 GHz, testing was completed at the transmit frequency to determine compliance.

7.2 Test Criteria

The radiated limits of FCC 15.209 and RSS-210 are shown below. The limits specified are at 3 meters. The limits are quasi-peak for emissions below 1 GHz and average for emissions above 1 GHz. Also above 1 GHz, the peak limit is 20 dB above the average limit.

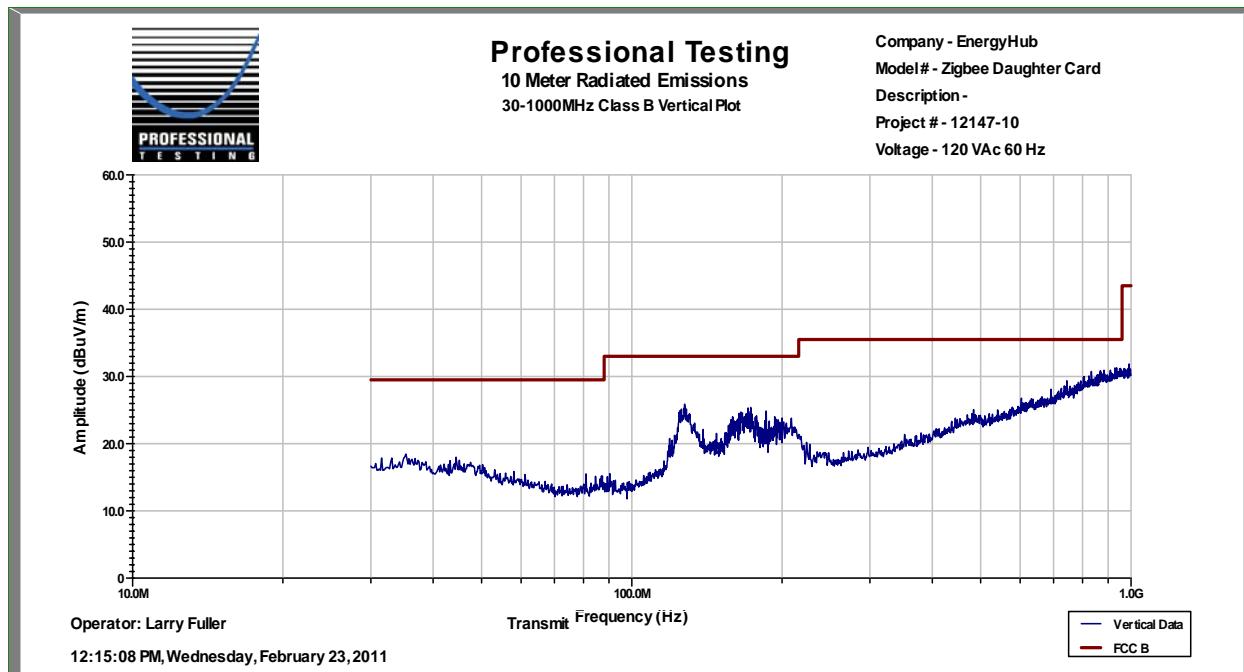
Frequency MHz	Specification Distance (Meters)	Field Strength (dBuV/m)	Test Distance (Meters)	Field Strength (dBuV/m)
30 to 88	3	40.0	10	29.5
88 to 216	3	43.5	10	33
216 to 960	3	46.0	10	35.5
Above 960	3	54.0	1	63.5


7.3 Test Results

Out of band spurious emissions measurements were taken on February 23, and March 15, 2011, and the EUT was found to be in compliance with applicable requirements. Test equipment used to perform this test is given in Tables 3.3.1 and 3.3.2.

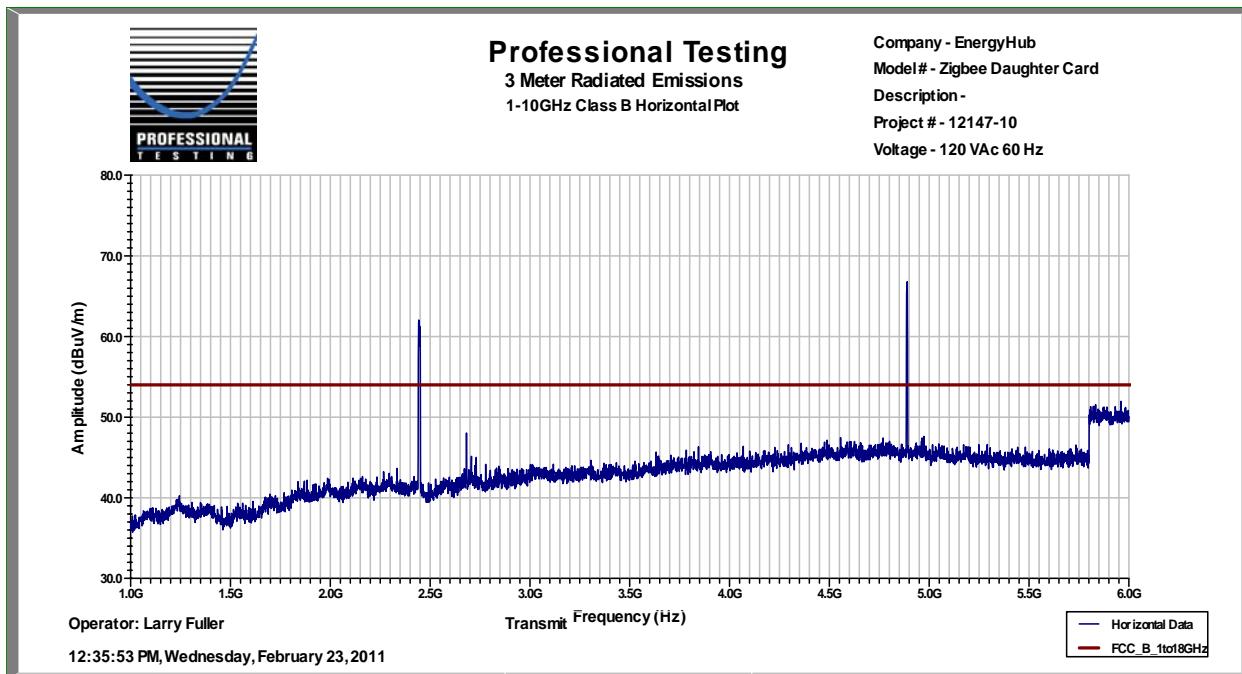
Table 7.3.1: Out of Band Spurious Emissions Test Results, 30 MHz to 1 GHz, Horizontal Polarization

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Transmitting					


Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
31.5	10	Noise	Floor	Quasi-peak	21.8	9.4	29.5	-20.1
87.2	10	32	4	Quasi-peak	28.7	12.2	29.5	-17.3
199.8	10	Noise	Floor	Quasi-peak	21.4	12.1	33.1	-21.0
566.4	10	Noise	Floor	Quasi-peak	26.8	20.3	35.6	-15.3
841.6	10	Noise	Floor	Quasi-peak	26.1	24.6	35.6	-11.0
993.6	10	Noise	Floor	Quasi-peak	26.5	26.9	43.5	-16.6

Result = Pass

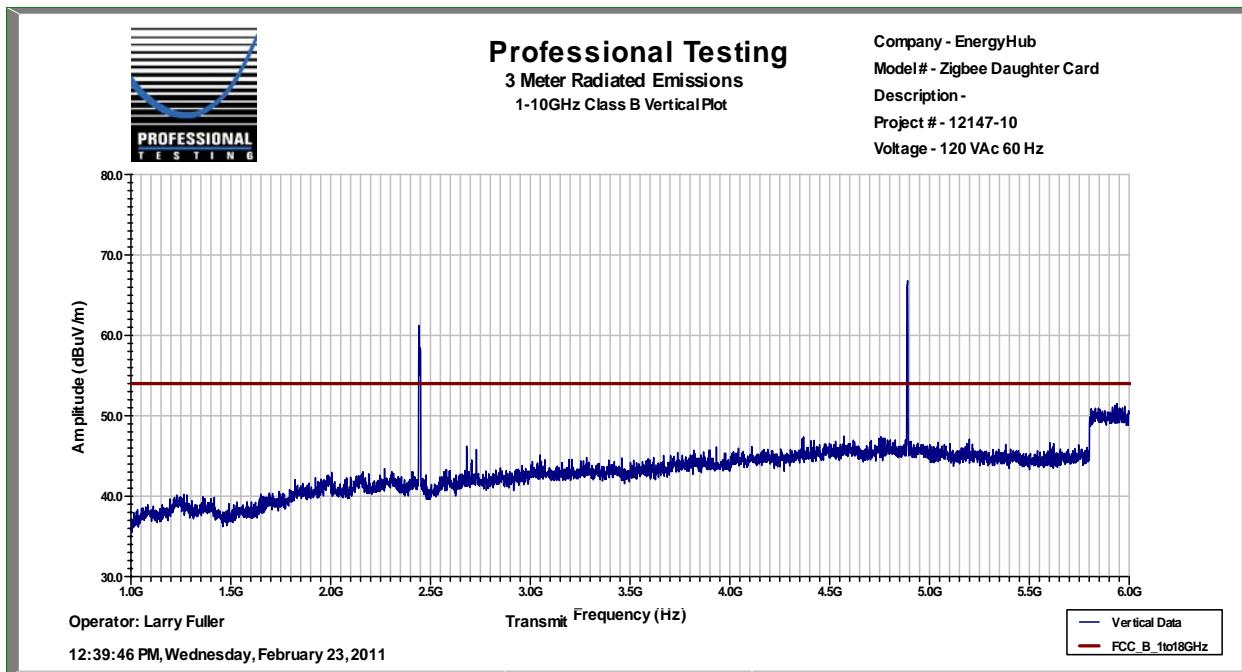
Table 7.3.2: Out of Band Spurious Emissions Test Results, 30 MHz to 1 GHz, Vertical Polarization


PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Transmitting					

Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
31.5	10	Noise	Floor	Quasi-peak	21.8	9.4	29.5	-20.1
127.6	10	319	1	Quasi-peak	33.2	21.2	33.1	-11.9
173.1	10	1	1	Quasi-peak	27.8	17.3	33.1	-15.8
566.4	10	Noise	Floor	Quasi-peak	26.9	20.4	35.6	-15.2
841.6	10	Noise	Floor	Quasi-peak	26.3	24.8	35.6	-10.8
993.6	10	Noise	Floor	Quasi-peak	26.5	26.9	43.5	-16.6

Result = Pass

Table 7.3.3: Out of Band Spurious Emissions Test Results, 1 GHz to 6 GHz, Horizontal Polarization


PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	3 m	Horn	1 MHz	1 MHz	Average
COMMENT	Transmitting						

Result = Pass

Note: Graphical data for overview only. Pre-scan used to determine if spurious signals other than harmonics were present.

Table 7.3.4: Out of Band Spurious Emissions Test Results, 1 GHz to 6 GHz, Vertical Polarization

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	3 m	Horn	1 MHz	1 MHz	Average
COMMENT	Transmitting						

Result = Pass

Note: Graphical data for overview only. Pre-scan used to determine if spurious signals other than harmonics were present.

Table 7.3.5: Out of Band Spurious Emissions Test Results, 1 GHz to 25 GHz, Horizontal and Vertical Polarizations

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR	
12147-10	March 15, 2011	FCC B	1 m	Horn	1 MHz	1 MHz	Average	
COMMENT		Transmitting 2405 MHz Harmonics and spurious investigated up to 25 GHz						

Horizontal Polarization

Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.81	0	1	40.8	24.4	33.5	4.2	54.1	63.5	-9.4	Avg
7.215	0	1	42.9	24.1	36.8	5.0	60.7	63.5	-2.8	Avg
9.62	Noise	Floor	35.7	28.5	38.2	4.6	50.1	63.5	-13.4	Avg
12.025	Noise	Floor	29.1	25.3	40.3	7.1	51.2	63.5	-12.3	Avg
14.43	Noise	Floor	30.2	25.3	42.0	7.7	54.6	63.5	-8.9	Avg
16.835	Noise	Floor	25.3	24.5	41.0	7.6	49.4	63.5	-14.1	Avg
19.24	Noise	Floor	39.7	43.2	36.6	8.8	41.9	63.5	-21.6	Avg
21.645	Noise	Floor	40.3	41.8	36.9	9.5	44.9	63.5	-18.6	Avg
24.05	Noise	Floor	42.6	42.2	37.1	10.4	47.9	63.5	-15.6	Avg

Vertical Polarization

Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.81	0	1	54.4	24.4	33.5	4.2	67.7	83.5	-15.8	Pk Hld
4.81	0	1	47.7	24.4	33.5	4.2	61	63.5	-2.5	Avg
7.215	0	1	43.5	24.1	36.8	5.0	61.3	63.5	-2.2	Avg
9.62	Noise	Floor	35.9	28.5	38.2	4.6	50.3	63.5	-13.2	Avg
12.025	Noise	Floor	29.1	25.3	40.3	7.1	51.2	63.5	-12.3	Avg
14.43	Noise	Floor	30.2	25.3	42.0	7.7	54.6	63.5	-8.9	Avg
16.835	Noise	Floor	25.3	24.5	41.0	7.6	49.4	63.5	-14.1	Avg
19.24	Noise	Floor	39.7	43.2	36.6	8.8	41.9	63.5	-21.6	Avg
21.645	Noise	Floor	40.3	41.8	36.9	9.5	44.9	63.5	-18.6	Avg
24.05	Noise	Floor	42.6	42.2	37.1	10.4	47.9	63.5	-15.6	Avg

Result = Pass

Note: A correction factor of -6.7 dB was applied due to the duty cycle of the EUT being < 46%.

Table 7.3.6: Out of Band Spurious Emissions Test Results, 1 GHz to 25 GHz, Horizontal and Vertical Polarizations

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	FCC B	1 m	Horn	1 MHz	1 MHz	Average
COMMENT		Transmitting 2445 MHz Harmonics and spurious investigated up to 25 GHz					

Horizontal Polarization

Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.89	0	1	39	24.4	33.5	4.2	52.4	63.5	-11.1	Avg
7.335	0	1	42	24.1	36.8	5.1	59.8	63.5	-3.7	Avg
9.78	Noise	Floor	37.5	24.4	38.2	5.0	56.2	63.5	-7.3	Avg
12.225	Noise	Floor	29.1	26.7	39.5	5.6	47.5	63.5	-16.0	Avg
14.67	Noise	Floor	30.2	24.5	41.4	6.1	53.2	63.5	-10.3	Avg
17.115	Noise	Floor	25.3	22.8	42.7	7.6	52.8	63.5	-10.7	Avg
19.56	Noise	Floor	39.7	43.5	36.5	6.7	39.4	63.5	-24.1	Avg
22.005	Noise	Floor	40.3	40.6	36.9	10.4	46.9	63.5	-16.6	Avg
24.45	Noise	Floor	42.6	42.2	37.2	10.3	47.8	63.5	-15.7	Avg

Vertical Polarization

Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.89	0	1	50.9	24.4	33.5	4.2	64.3	83.5	-19.2	Pk Hld
4.89	0	1	44.2	24.4	33.5	4.2	57.6	63.5	-5.9	Avg
7.335	0	1	42.7	24.1	36.8	5.1	60.5	63.5	-3.0	Avg
9.78	Noise	Floor	32.5	24.4	38.2	5.0	51.2	63.5	-12.3	Avg
12.225	Noise	Floor	29.1	26.7	39.5	5.6	47.5	63.5	-16.0	Avg
14.67	Noise	Floor	30.2	24.5	41.4	6.1	53.2	63.5	-10.3	Avg
17.115	Noise	Floor	25.3	22.8	42.7	7.6	52.8	63.5	-10.7	Avg
19.56	Noise	Floor	39.7	43.5	36.5	6.7	39.4	63.5	-24.1	Avg
22.005	Noise	Floor	40.3	40.6	36.9	10.4	46.9	63.5	-16.6	Avg
24.45	Noise	Floor	42.6	42.2	37.2	10.3	47.8	63.5	-15.7	Avg

Result = Pass

Note: A correction factor of -6.7 dB was applied due to the duty cycle of the EUT being < 46%.

Table 7.3.7: Out of Band Spurious Emissions Test Results, 1 GHz to 25 GHz, Horizontal and Vertical Polarizations

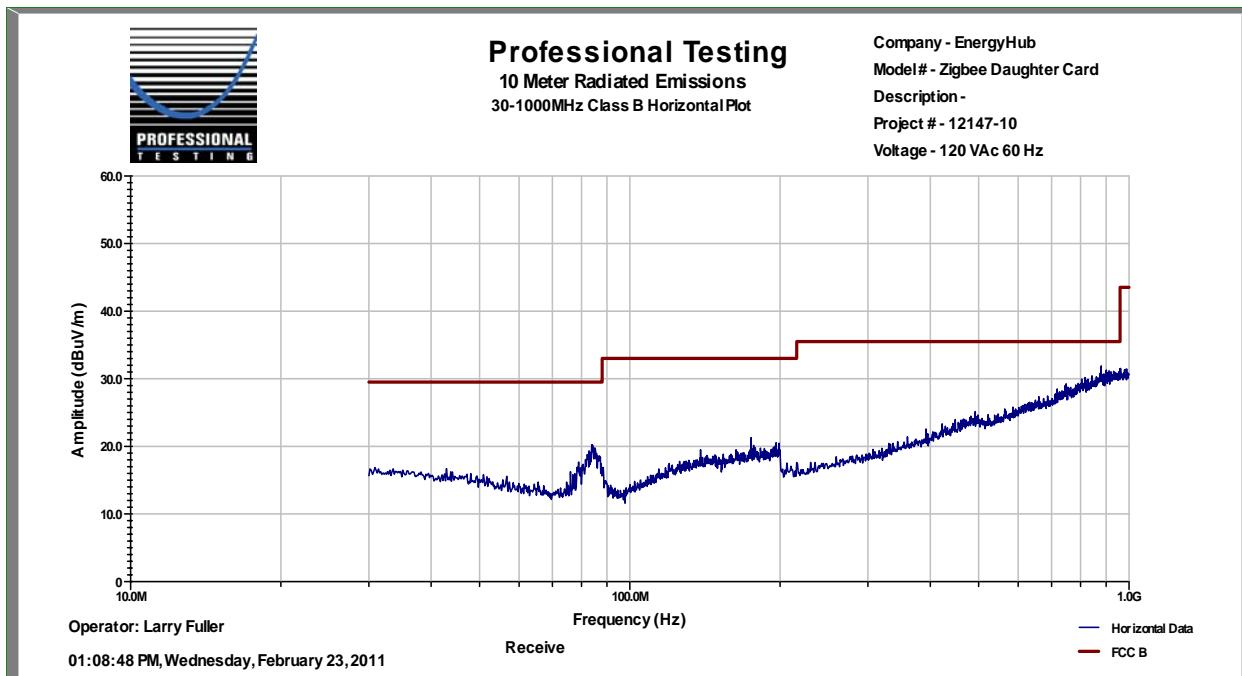
PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	March 15, 2011	FCC B	1 m	Horn	1 MHz	1 MHz	Average
COMMENT		Transmitting 2480 MHz Harmonics and spurious investigated up to 25 GHz					

Horizontal Polarization

Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.96	0	1	44.3	24.4	33.5	4.2	57.7	63.5	-5.8	Avg
7.44	0	1	33.2	24.7	37.3	4.5	50.3	63.5	-13.2	Avg
9.92	Noise	Floor	29.6	23.5	38.2	5.0	49.3	63.5	-14.2	Avg
12.4	Noise	Floor	29.1	27.8	39.9	6.2	47.4	63.5	-16.1	Avg
14.88	Noise	Floor	30.2	23.4	41.1	7.3	55.2	63.5	-8.3	Avg
17.36	Noise	Floor	25.3	21.5	44.6	8.7	57.1	63.5	-6.4	Avg
19.84	Noise	Floor	39.7	43.7	36.5	8.2	40.8	63.5	-22.7	Avg
22.32	Noise	Floor	40.3	40.5	37.1	9.4	46.3	63.5	-17.2	Avg
24.8	Noise	Floor	42.6	42.1	37.2	10.1	47.8	63.5	-15.7	Avg

Vertical Polarization

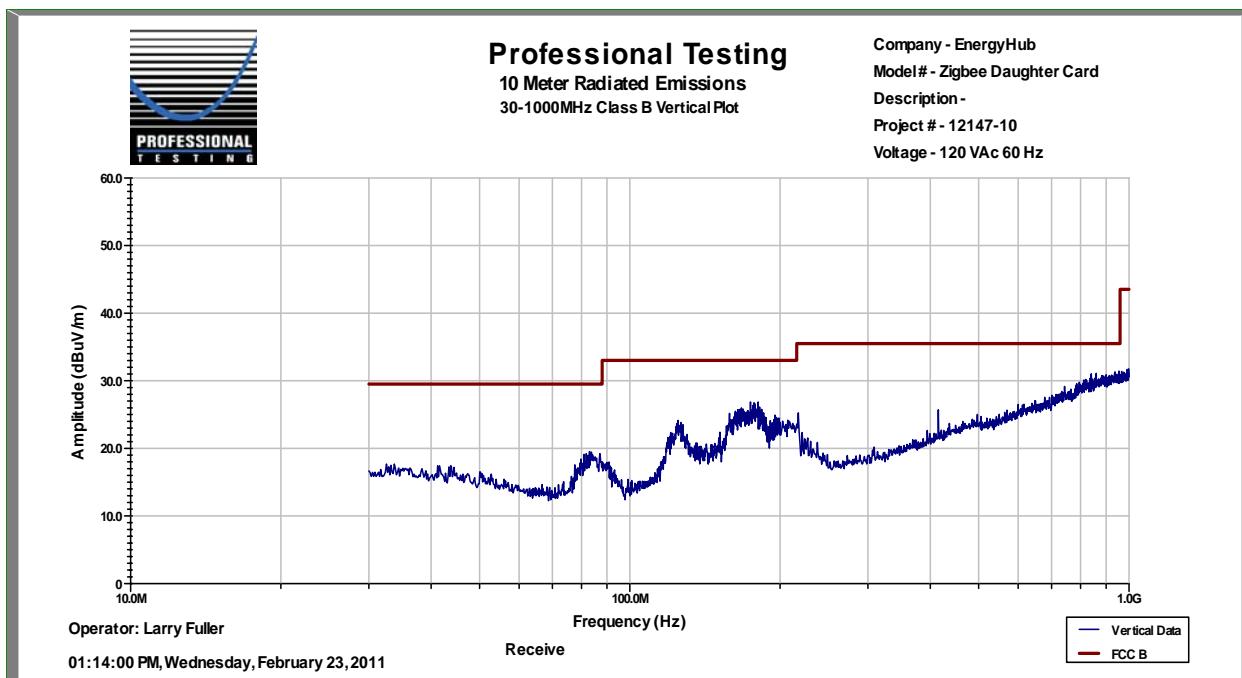
Frequency Measured (MHz)	EUT Direction (Degrees)	Antenna Height (Meters)	Recorded Level (dB μ V)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)	Detector Function
4.96	0	1	55.1	24.4	33.5	4.2	69.5	83.5	-14.0	Pk Hld
4.96	0	1	48.4	24.4	33.5	4.2	62.8	63.5	-1.7	Avg
7.44	0	1	42.8	24.7	37.3	4.5	59.9	63.5	-3.6	Avg
9.92	Noise	Floor	30.6	23.5	38.2	5.0	50.3	63.5	-13.2	Avg
12.4	Noise	Floor	29.1	27.8	39.9	6.2	47.4	63.5	-16.1	Avg
14.88	Noise	Floor	30.2	23.4	41.1	7.3	55.2	63.5	-8.3	Avg
17.36	Noise	Floor	25.3	21.5	44.6	8.7	57.1	63.5	-6.4	Avg
19.84	Noise	Floor	39.7	43.7	36.5	8.2	40.8	63.5	-22.7	Avg
22.32	Noise	Floor	40.3	40.5	37.1	9.4	46.3	63.5	-17.2	Avg
24.8	Noise	Floor	42.6	42.1	37.2	10.1	47.8	63.5	-15.7	Avg


Result = Pass

Note: A correction factor of -6.7 dB was applied due to the duty cycle of the EUT being < 46 %.

Table 7.3.8: Out of Band Spurious Emissions Test Results, Receive Mode 30 MHz to 1 GHz, Horizontal Polarization

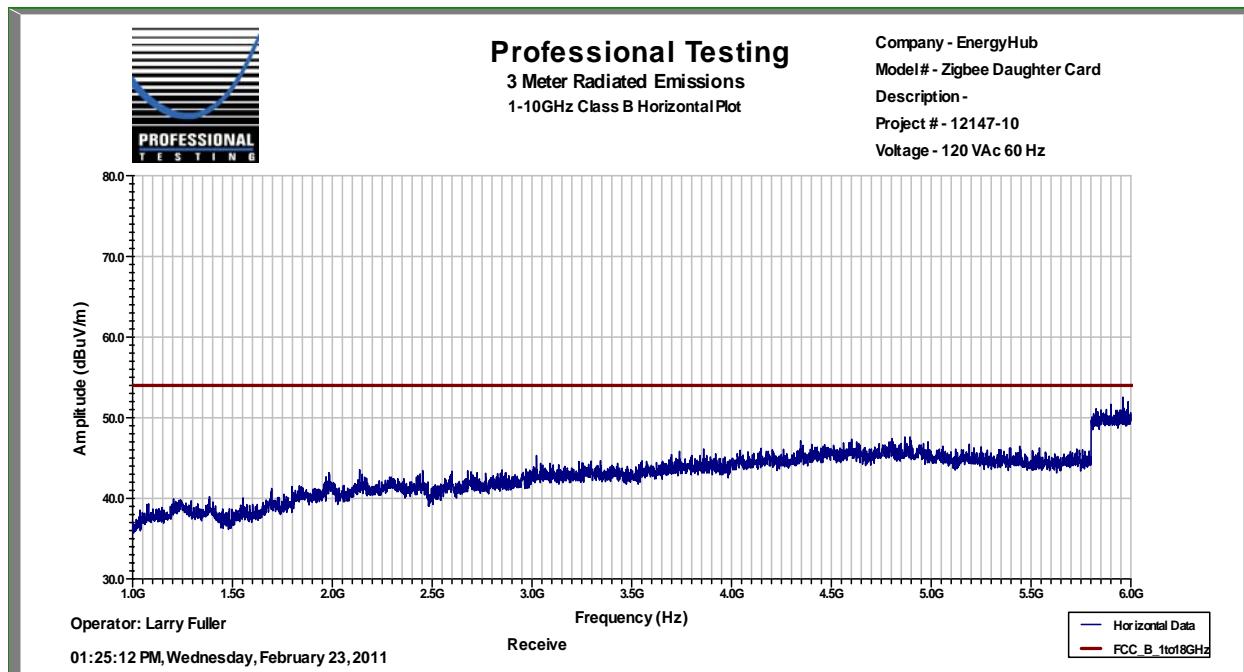
PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Receive					


Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
31.5	10	Noise	Floor	Quasi-peak	21.8	9.4	29.5	-20.1
87.2	10	32	4	Quasi-peak	28.7	12.2	29.5	-17.3
199.8	10	Noise	Floor	Quasi-peak	21.4	12.1	33.0	-20.9
566.4	10	Noise	Floor	Quasi-peak	26.8	20.3	35.5	-15.2
841.6	10	Noise	Floor	Quasi-peak	26.1	24.6	35.5	-10.9
993.6	10	Noise	Floor	Quasi-peak	26.5	26.9	43.5	-16.6

Result = Pass

Table 7.3.9: Out of Band Spurious Emissions Test Results, Receive Mode 30 MHz to 1 GHz, Vertical Polarization

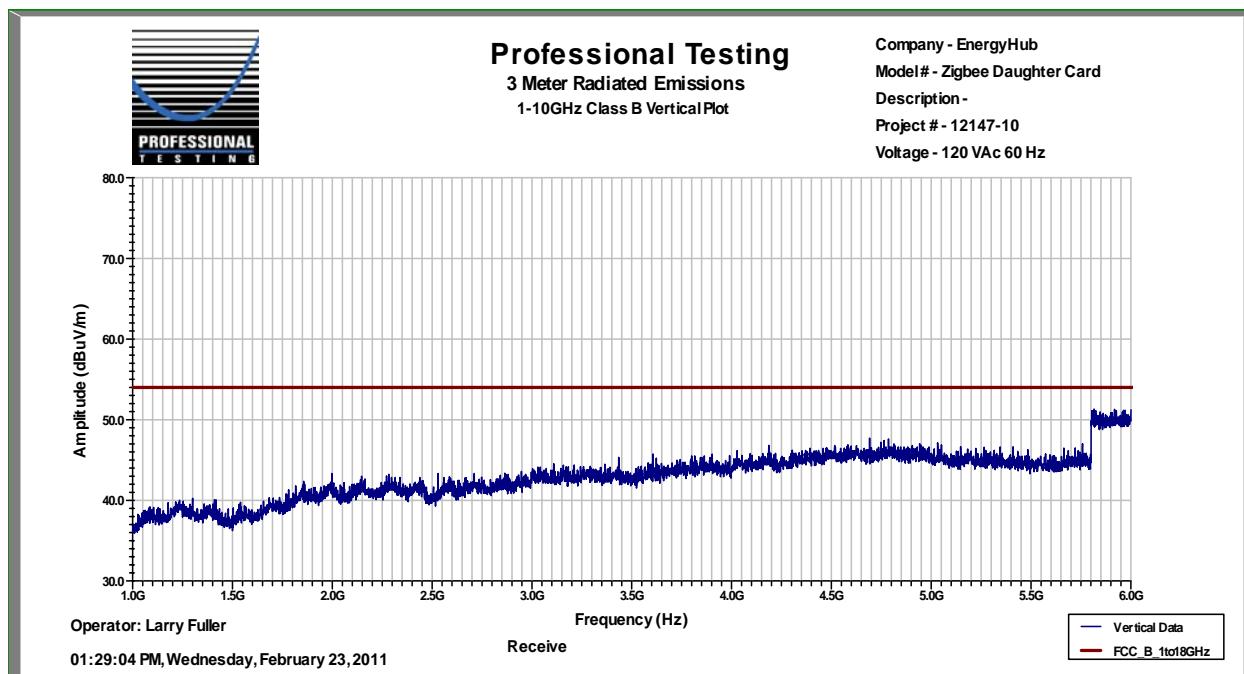
PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Receive					


Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
31.5	10	Noise	Floor	Quasi-peak	21.8	9.4	29.5	-20.1
127.6	10	319	1	Quasi-peak	33.2	21.2	33.0	-11.8
173.1	10	1	1	Quasi-peak	27.8	17.3	33.0	-15.7
566.4	10	Noise	Floor	Quasi-peak	26.9	20.4	35.5	-15.1
841.6	10	Noise	Floor	Quasi-peak	26.3	24.8	35.5	-10.7
993.6	10	Noise	Floor	Quasi-peak	26.5	26.9	43.5	-16.6

Result = Pass

Table 7.3.10: Out of Band Spurious Emissions Test Results, Receive Mode 1 GHz to 6 GHz, Horizontal Polarization

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Receive					


Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
2067	3	Noise	Floor	Average	46.3	44.4	54.0	-9.6
4376	3	Noise	Floor	Average	45.1	47.4	54.0	-6.6
6050	3	Noise	Floor	Average	46.3	50.2	54.0	-3.7

Result = Pass

Table 7.3.11: Out of Band Spurious Emissions Test Results, Receive Mode 1 GHz to 6 GHz, Vertical Polarization

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	10 m	Bicon Log	CISPR 120 kHz	1 MHz	Quasi Peak
COMMENT		Receive					

Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Recorded Amplitude (dB μ V)	Corrected Level (dB μ V/m)	Limit Level (dB μ V/m)	Margin (dB)
2067	3	Noise	Floor	Average	46.3	44.4	54.0	-9.6
4376	3	Noise	Floor	Average	45.1	47.4	54.0	-6.6
6050	3	Noise	Floor	Average	46.3	50.2	54.0	-3.7

Result = Pass

Table 7.3.12: Duty Cycle Correction Factor Worksheet 1

PROJECT #	DATE	CLASS	DISTANCE	ANTENN A	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	N/A	N/A	N/A	N/A	N/A
COMMENT	The following duty cycle correction factor worksheet is supplied by the manufacturer.						

IEEE 802.15.4-2003 2.4 GHz PHY Constants

Data Rate	250000 bits / sec	31250 bytes / sec
Symbols/byte	2 sym / bytes	
Symbol Timing	62500 sym / sec	
	0.000016 sec / sym	
Byte Timing	0.000032 sec / byte	
PHY PSDU	6 bytes	4 Preamble, SPD, Length
Max Length	127 bytes	
Total Packet Length	133 bytes	
Maximum Time TX PKT	0.004256 sec	

IEEE 802.15.4-2003 MAC Constants

maxBE	5 IEEE 802.15.4 specifies 5, ZigBee specifies 8
aMaxFrameResponseTime	1220 symbols
aMaxFrameRetries	3
aUnitBackoffPeriod	20 symbols
macAckWaitDuration	54 symbols
macBattLifeExtPeriods	6 Backoff periods
macMaxCSMABackoffs	4
macMinBE	3 IEEE 802.15.4 specifies 3, ZigBee specifies 5
aMinLIFSPeriod	40 symbols
aMinSIFSPeriod	12 symbols
aMinCAPLength	440 symbols
NB	0
CW	2
BE	3

Long Frame Scenario:

- 1) Transmit Frame This is the length of the data frame
- 2) Wait for ACK
- 3) Receive ACK
- 4) CPU Processing of ACK
- 5) Wait for Backoff
- 6) Repeat 1)

Table 7.3.13: Duty Cycle Correction Factor Worksheet 2

PROJECT #	DATE	CLASS	DISTANCE	ANTENNA	RBW	VBW	DETECTOR
12147-10	February 23, 2011	FCC B	N/A	N/A	N/A	N/A	N/A
COMMENT	The following duty cycle correction factor worksheet is supplied by the manufacturer.						

MAC-Level Calculation (LIFS)	
<u>Long InterFrame Spacing (Slotted w/ ACK)</u>	Time
Device TX ON	Long Frame Payload
	Preamble
Device TX ON	5 bytes
Device TX OFF	ACK Frame (includes Preamble)
	tack
Device TX OFF	12 sym
Device TX OFF	tcca(CCA Assessment)
Notes	Backoff Required
Device TX OFF	2
	Backoff Time
	70 sym
	0.00112
Transmit Time	
TX Time (Packet)	0.004256
NOT Transmit time (RX or Idle)	
Wait for ACK (tack)	0.000192
RX Time (ACK)	0.000352
Backoff Time (tbo)	0.00112
CCA Assessment (tcca)	0.000128
Turn Around Time (RX to TX)	0.000192
Total Off Time (sec)	0.001984
Number of TX Retransmissions	4
Worse Case 10 Re-Transmits(100ms window)	
TX Frame retransmits	0.017024
RX or IDLE for retransmissions	0.01984
Sum	0.036864
Vorst Case MAC duty cycle (%):	46.18%
	6.710816936 dB

Note: This number is the worst case transmit duty cycle based on the 802.15.4 standard. The real application will be much lower. This is the duty cycle attenuation factor to be used for FCC certification.

8.0 Antenna Requirements

An antenna evaluation was performed on the EUT to determine compliance with FCC sections 15.203, 15.247(b) and RSS-210.

8.1 Evaluation Procedure

The design of the EUT antenna was evaluated for conformance to engineering requirements for gain and to prevent substitution of unapproved antennae. Gain of the antenna was assessed by reviewing the antenna manufacturer's data sheet.

8.2 Evaluation Criteria

The antenna design must meet at least one of the following criteria:

- a) Antenna is permanently attached to the unit.
- b) Antenna must use a unique type of connector to attach to the EUT.
- c) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

8.3 Evaluation Results

The Zigbee Daughter Card met the criteria of this rule by virtue of having an internal antenna inaccessible to the user. Therefore, the EUT is compliant.

End of Report

(This page intentionally left blank.)