

# Heads Up Systems

## TEST REPORT FOR

### In Vehicle Obstacle Alerter, EGAS Alerter

#### Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.249  
and  
RSS 210 Issue 8

Report No.: 91979-24

Date of issue: December 20, 2011



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

## TABLE OF CONTENTS

|                                                     |    |
|-----------------------------------------------------|----|
| Administrative Information .....                    | 3  |
| Test Report Information .....                       | 3  |
| Report Authorization .....                          | 3  |
| Test Facility Information .....                     | 4  |
| Site Registration & Accreditation Information ..... | 4  |
| Summary of Results .....                            | 5  |
| Conditions During Testing .....                     | 5  |
| Equipment Under Test .....                          | 6  |
| Peripheral Devices .....                            | 6  |
| FCC Part 15 Subpart C .....                         | 7  |
| 15.207 AC Conducted Emissions .....                 | 7  |
| 15.247 RF Power Output / Spurious Emissions .....   | 8  |
| -20dBc Occupied Bandwidth .....                     | 14 |
| Bandedge .....                                      | 16 |
| RSS-210 .....                                       | 18 |
| 99 % Bandwidth .....                                | 18 |
| Supplemental Information .....                      | 20 |
| Measurement Uncertainty .....                       | 20 |
| Emissions Test Details .....                        | 20 |

## ADMINISTRATIVE INFORMATION

### Test Report Information

**REPORT PREPARED FOR:**

Heads Up Systems  
850 Lafayette Street  
Denver, CO 80218

Representative: Pat Weston

**REPORT PREPARED BY:**

Dianne Dudley  
CKC Laboratories, Inc.  
5046 Sierra Pines Drive  
Mariposa, CA 95338

Project Number: 91979

**DATE OF EQUIPMENT RECEIPT:**

November 7, 2011

**DATE(S) OF TESTING:**

November 7- December 6, 2011

### Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.



*Steve Behm*  
Director of Quality Assurance & Engineering Services  
CKC Laboratories, Inc.

## Test Facility Information



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

**TEST LOCATION(S):**  
CKC Laboratories, Inc.  
110 Olinda Place  
Brea, CA 92823

## Site Registration & Accreditation Information

| Location | CB #   | JAPAN                   | CANADA  | FCC   |
|----------|--------|-------------------------|---------|-------|
| Brea A   | US0060 | R-2945, C-3248 & T-1572 | 3082D-1 | 90473 |

## SUMMARY OF RESULTS

**Standard / Specification: FCC Part 15 Subpart C 15.207, 15.209, 15.249 and RSS 210 Issue 8**

| Description                            | Test Procedure/Method                                    | Results |
|----------------------------------------|----------------------------------------------------------|---------|
| Conducted Emissions                    | FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003) | NA      |
| RF Power Output/<br>Spurious Emissions | FCC Part 15 Subpart C Section 15.249(a)                  | Pass    |
| -20dBc Occupied Bandwidth              | FCC Part 15 Subpart C Section 15.249                     | Pass    |
| Bandedge                               | FCC Part 15 Subpart C 15.249                             | Pass    |
| 99% Bandwidth                          | RSS 210 Issue 8                                          | Pass    |

NA = Not applicable

## Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

| Summary of Conditions |
|-----------------------|
| None                  |
|                       |

## EQUIPMENT UNDER TEST (EUT)

### EQUIPMENT UNDER TEST

#### In Vehicle Obstacle Alerter

Manuf: Heads Up Systems

Model: EGAS Alerter

Serial: NA

### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

#### Power Supply

Manuf: Topward

Model: 6306D

Serial: 988614

## FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

### 15.207 AC Conducted Emissions

NA = Conducted Emissions is not applicable because the EUT is battery powered.

## 15.247 RF Power Output / Spurious Emissions

### Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: **Heads Up Systems**  
 Specification: **15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)**  
 Work Order #: **91979** Date: 11/8/2011  
 Test Type: **Maximized Emissions** Time: 16:36:54  
 Equipment: **In Vehicle Obstacle Alerter** Sequence#: 1  
 Manufacturer: Heads Up Systems Tested By: E. Wong  
 Model: EGAS Alerter  
 S/N: NA

#### **Test Equipment:**

| ID  | Asset #  | Description             | Model                  | Calibration Date | Cal Due Date |
|-----|----------|-------------------------|------------------------|------------------|--------------|
| T1  | AN02672  | Spectrum Analyzer       | E4446A                 | 8/9/2010         | 8/9/2012     |
| T2  | AN00309  | Preamp                  | 8447D                  | 5/7/2010         | 5/7/2012     |
| T3  | AN01995  | Biconilog Antenna       | CBL6111C               | 3/8/2010         | 3/8/2012     |
| T4  | ANP05050 | Cable                   | RG223/U                | 3/21/2011        | 3/21/2013    |
| T5  | ANP05198 | Cable                   | 8268                   | 12/21/2010       | 12/21/2012   |
| T6  | AN00786  | Preamp                  | 83017A                 | 8/5/2010         | 8/5/2012     |
| T7  | AN00849  | Horn Antenna            | 3115                   | 4/23/2010        | 4/23/2012    |
| T8  | ANP05565 | Cable                   | ANDL-1-PNMN-54         | 9/3/2010         | 9/3/2012     |
| T9  | ANP05421 | Cable                   | Sucoflex 104A          | 2/12/2010        | 2/12/2012    |
| T10 | ANP05563 | Cable                   | ANDL-1-PNMN-48         | 9/3/2010         | 9/3/2012     |
|     | AN00314  | Loop Antenna            | 6502                   | 6/30/2010        | 6/30/2012    |
|     | AN01413  | Horn Antenna-ANSI C63.5 | 84125-80008            | 12/2/2010        | 12/2/2012    |
|     |          | Antenna Factors (dB)    |                        |                  |              |
|     | AN01413  | Horn Antenna-1 Meter    | 84125-80008            | 12/2/2010        | 12/2/2012    |
|     |          | Antenna Factors (dB) -  |                        |                  |              |
|     |          | SAE ARP 958             |                        |                  |              |
| T11 | AN02744  | High Pass Filter        | 11SH10-3000/T10000-O/O | 3/5/2010         | 3/5/2012     |

#### **Equipment Under Test (\* = EUT):**

| Function                     | Manufacturer     | Model #      | S/N |
|------------------------------|------------------|--------------|-----|
| In Vehicle Obstacle Alerter* | Heads Up Systems | EGAS Alerter | NA  |

#### **Support Devices:**

| Function     | Manufacturer | Model # | S/N    |
|--------------|--------------|---------|--------|
| Power Supply | Topward      | 6306D   | 988614 |

**Test Conditions / Notes:**

Two EUTS (EGAS Beacon, EGAS Alerter) are placed on the wooden table lined with Styrofoam of 10 cm thickness. The EUTs are set in constant transmit mode.

Field strength of fundamental frequency was evaluated individually, whereas spurious emissions are presented as combined emission of the two devices.

Freq: 2424 MHz

Emission profile of EGAS Beacon and EGAS Alerter rotated along three orthogonal axis was investigated. Recorded data represent worse case emission.

15.31(e) Battery powered EGAS Beacon and EGAS Alerter: Fresh battery was installed in EGAS Beacon and for EGAS Alert was powered by a support power supply with the DC voltage set to 3.3 V to simulate a fresh battery.

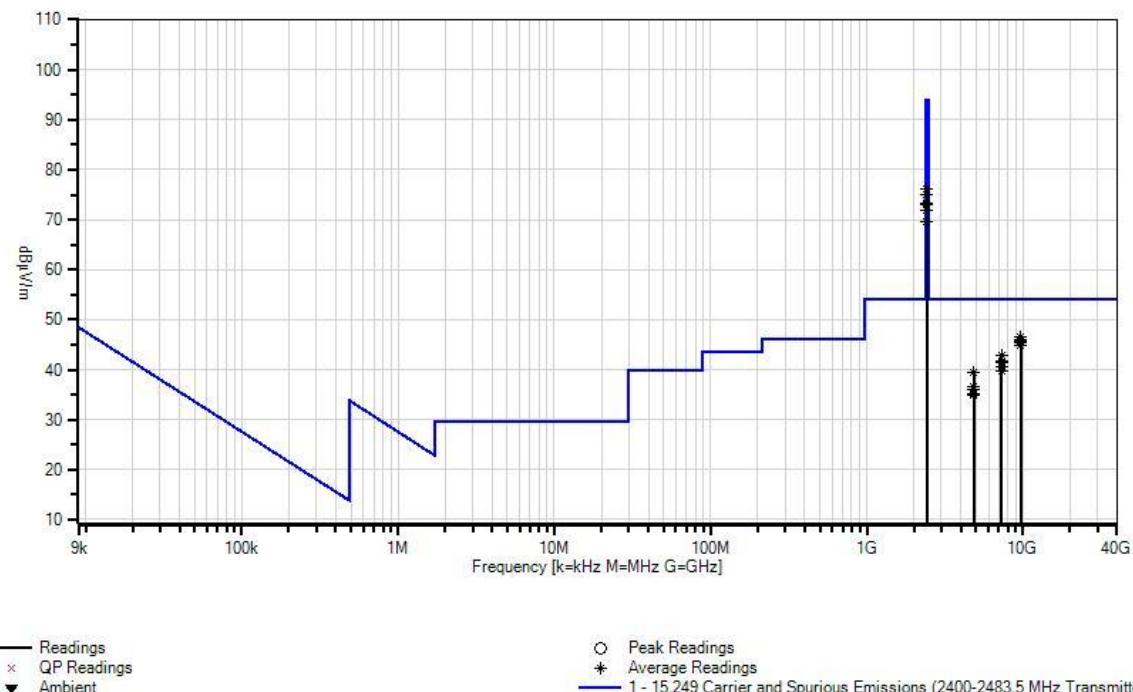
Frequency range of measurement = 9 kHz- 25 GHz.

Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz- 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz-25,000 MHz RBW=1 MHz, VBW=1 MHz.

17°C, 37% Relative Humidity

Worse case Fundamental:76.2dBuV/m@3m

Worse case Spur: 46.5dBuV/m@3m


| # | Freq<br>MHz | Rdng<br>dB $\mu$ V | Reading listed by margin. |                 |                 |          | Test Distance: 3 Meters |                      |                      |              |                  |
|---|-------------|--------------------|---------------------------|-----------------|-----------------|----------|-------------------------|----------------------|----------------------|--------------|------------------|
|   |             |                    | T1<br>T5<br>T9            | T2<br>T6<br>T10 | T3<br>T7<br>T11 | T4<br>T8 | Dist<br>Table           | Corr<br>dB $\mu$ V/m | Spec<br>dB $\mu$ V/m | Margin<br>dB | Polar            |
|   |             |                    |                           |                 |                 |          |                         |                      |                      |              | Ant              |
| 1 | 9695.492M   | 27.5               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 46.5                 | 54.0                 | -7.5         | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | Z-beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              | *(worse case)    |
| 2 | 9695.417M   | 26.9               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 45.9                 | 54.0                 | -8.1         | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | X_beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |
| ^ | 9695.417M   | 45.6               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 64.6                 | 54.0                 | +10.6        | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | X_beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |
| 4 | 9695.559M   | 26.8               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 45.8                 | 54.0                 | -8.2         | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | Y_beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |
| ^ | 9695.492M   | 47.0               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 66.0                 | 54.0                 | +12.0        | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | Z-beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |
| ^ | 9695.559M   | 44.6               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 63.6                 | 54.0                 | +9.6         | Horiz            |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | Y_beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |
| 7 | 9695.492M   | 26.6               | +0.0                      | +0.0            | +0.0            | +0.0     | +0.0                    | 45.6                 | 54.0                 | -8.4         | Vert             |
|   |             |                    | +0.0                      | -35.3           | +37.6           | +6.5     |                         |                      |                      |              | Z-beacon_alerter |
|   |             |                    | +2.7                      | +7.0            | +0.5            |          |                         |                      |                      |              |                  |

|    |           |      |      |       |       |      |      |      |                  |       |       |
|----|-----------|------|------|-------|-------|------|------|------|------------------|-------|-------|
| 8  | 9695.534M | 26.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 45.4 | 54.0             | -8.6  | Vert  |
|    | Ave       |      | +0.0 | -35.3 | +37.6 | +6.5 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.7 | +7.0  | +0.5  |      |      |      |                  |       |       |
| ^  | 9695.492M | 45.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 64.4 | 54.0             | +10.4 | Vert  |
|    |           |      | +0.0 | -35.3 | +37.6 | +6.5 |      |      | Z_beacon_alerter |       |       |
|    |           |      | +2.7 | +7.0  | +0.5  |      |      |      |                  |       |       |
| 10 | 9695.633M | 25.8 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 44.8 | 54.0             | -9.2  | Vert  |
|    | Ave       |      | +0.0 | -35.3 | +37.6 | +6.5 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.7 | +7.0  | +0.5  |      |      |      |                  |       |       |
| ^  | 9695.534M | 44.6 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 63.6 | 54.0             | +9.6  | Vert  |
|    |           |      | +0.0 | -35.3 | +37.6 | +6.5 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.7 | +7.0  | +0.5  |      |      |      |                  |       |       |
| ^  | 9695.633M | 43.1 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 62.1 | 54.0             | +8.1  | Vert  |
|    |           |      | +0.0 | -35.3 | +37.6 | +6.5 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.7 | +7.0  | +0.5  |      |      |      |                  |       |       |
| 13 | 7271.723M | 30.2 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 42.9 | 54.0             | -11.1 | Horiz |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.723M | 46.5 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 59.2 | 54.0             | +5.2  | Horiz |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| 15 | 7271.800M | 28.9 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 41.6 | 54.0             | -12.4 | Vert  |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.800M | 46.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 59.1 | 54.0             | +5.1  | Vert  |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | X_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| 17 | 7271.515M | 28.7 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 41.4 | 54.0             | -12.6 | Horiz |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Z_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| 18 | 7271.581M | 27.9 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 40.6 | 54.0             | -13.4 | Horiz |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.515M | 47.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 60.0 | 54.0             | +6.0  | Horiz |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Z_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.581M | 43.1 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 55.8 | 54.0             | +1.8  | Horiz |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| 21 | 7271.565M | 27.8 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 40.5 | 54.0             | -13.5 | Vert  |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Z_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| 22 | 7271.581M | 27.1 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 39.8 | 54.0             | -14.2 | Vert  |
|    | Ave       |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.565M | 43.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 56.0 | 54.0             | +2.0  | Vert  |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Z_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |
| ^  | 7271.581M | 42.0 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 54.7 | 54.0             | +0.7  | Vert  |
|    |           |      | +0.0 | -36.8 | +36.0 | +5.2 |      |      | Y_beacon_alerter |       |       |
|    |           |      | +2.3 | +5.8  | +0.2  |      |      |      |                  |       |       |

|    |           |      |      |       |       |      |      |      |                     |       |       |
|----|-----------|------|------|-------|-------|------|------|------|---------------------|-------|-------|
| 25 | 4847.854M | 32.7 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 39.5 | 54.0                | -14.5 | Horiz |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | X_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 26 | 4847.333M | 29.9 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 36.7 | 54.0                | -17.3 | Vert  |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | X_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4847.333M | 47.1 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 53.9 | 54.0                | -0.1  | Vert  |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | X_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 28 | 2423.858M | 78.8 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 76.2 | 94.0                | -17.8 | Horiz |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      | Fundamental_Z_Al    |       |       |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      | erter *(Worse case) |       |       |
| 29 | 4847.538M | 29.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 36.1 | 54.0                | -17.9 | Horiz |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Z-beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4847.538M | 45.5 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 52.3 | 54.0                | -1.7  | Horiz |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Z-beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4847.604M | 42.6 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 49.4 | 54.0                | -4.6  | Horiz |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Y_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 32 | 4847.954M | 28.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 35.1 | 54.0                | -18.9 | Horiz |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Y_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4847.854M | 50.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 57.1 | 54.0                | +3.1  | Horiz |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | X_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 34 | 2423.858M | 77.5 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 74.9 | 94.0                | -19.1 | Horiz |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      | Fundamental_Y_Al    |       |       |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      | erter               |       |       |
| ^  | 2423.858M | 99.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 96.8 | 94.0                | +2.8  | Horiz |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      | Fundamental_Z_Al    |       |       |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      | erter               |       |       |
| ^  | 2423.858M | 97.9 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 95.3 | 94.0                | +1.3  | Horiz |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      | Fundamental_Y_Al    |       |       |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      | erter               |       |       |
| 37 | 4848.529M | 28.1 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 34.9 | 54.0                | -19.1 | Vert  |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Y_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4848.529M | 44.0 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 50.8 | 54.0                | -3.2  | Vert  |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Y_beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 39 | 4850.088M | 28.0 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 34.8 | 54.0                | -19.2 | Vert  |
|    | Ave       |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Z-beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| ^  | 4850.088M | 45.9 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 52.7 | 54.0                | -1.3  | Vert  |
|    |           |      | +0.0 | -37.1 | +33.0 | +4.2 |      |      | Z-beacon_alerter    |       |       |
|    |           |      | +1.9 | +4.4  | +0.4  |      |      |      |                     |       |       |
| 41 | 2424.100M | 76.0 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 73.4 | 94.0                | -20.6 | Vert  |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      | Fundamental_Z_Al    |       |       |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      | erter               |       |       |

|    |           |      |      |       |       |      |      |      |      |       |                  |
|----|-----------|------|------|-------|-------|------|------|------|------|-------|------------------|
| 42 | 2424.100M | 75.5 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 72.9 | 94.0 | -21.1 | Horiz            |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_X_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| ^  | 2424.100M | 97.6 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 95.0 | 94.0 | +1.0  | Horiz            |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_X_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| 44 | 2424.100M | 74.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 71.8 | 94.0 | -22.2 | Vert             |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_X_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| 45 | 2424.100M | 72.2 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 69.6 | 94.0 | -24.4 | Vert             |
|    | Ave       |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_Y_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| ^  | 2424.100M | 98.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 95.7 | 94.0 | +1.7  | Vert             |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_Z_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| ^  | 2424.083M | 96.3 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 93.7 | 94.0 | -0.3  | Vert             |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_X_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |
| ^  | 2424.100M | 93.5 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 90.9 | 94.0 | -3.1  | Vert             |
|    |           |      | +0.0 | -38.0 | +28.4 | +2.7 |      |      |      |       | Fundamental_Y_A1 |
|    |           |      | +1.2 | +3.1  | +0.0  |      |      |      |      |       | erter            |

CKC Laboratories, Inc. Date: 11/8/2011 Time: 16:36:54 Heads Up Systems WO#: 91979  
 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Sequence#: 1 Ext  
 ATTN: 0 dB



**Test Setup Photos**



FRONT VIEW



BACK VIEW

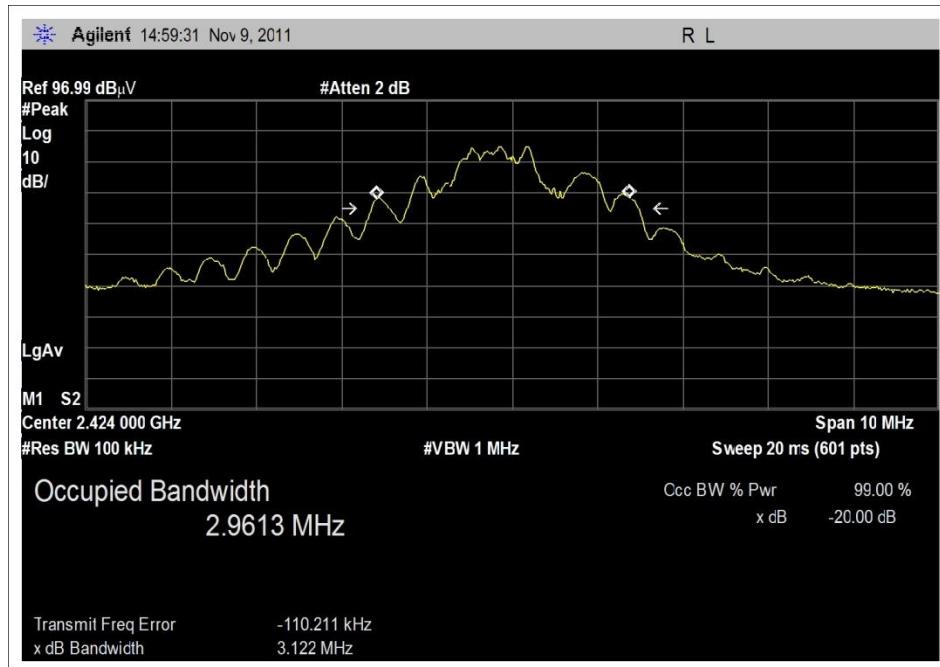
## -20dBc Occupied Bandwidth

### Test Conditions / Setup

The EUT is set in constant transmit mode and placed next to a spectrum analyzer with a un-calibrated field probe attached., the BW measurement is relative to the peak of the detected amplitude as detected with the field probe.

Freq: 2424 MHz

15.31(e) EGAS Alerter was powered by a support power supply with the DC voltage set to 3.3 V to simulate a fresh battery.


17°C, 37% Relative Humidity

Engineer Name: E. Wong

### **Test Equipment**

| Asset/Serial # | Description  | Model          | Manufacturer   | Cal Date  | Cal Due   |
|----------------|--------------|----------------|----------------|-----------|-----------|
| AN00786        | Preamp       | 83017A         | HP             | 8/5/2010  | 8/5/2012  |
| AN00849        | Horn Antenna | 3115           | ETS            | 4/23/2010 | 4/23/2012 |
| ANP05565       | Cable        | ANDL-1-PNMN-54 | Andrews        | 9/3/2010  | 9/3/2012  |
| ANP05421       | Cable        | Sucoflex 104A  | Huber & Suhner | 2/12/2010 | 2/12/2012 |
| ANP05563       | Cable        | ANDL-1-PNMN-48 | Andrews        | 9/3/2010  | 9/3/2012  |

### Test Plots



**Test Setup Photos**



## Bandedge

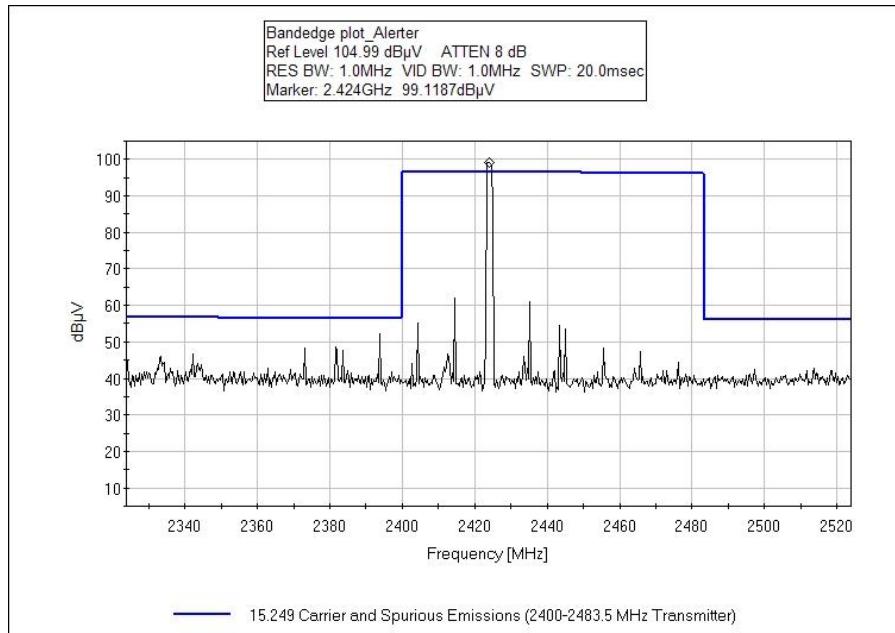
### Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. The EUT is set in constant transmit mode.

Freq: 2424 MHz

Emission profile of EGAS Alerter rotated along three orthogonal axis was investigated. Recorded data represent worse case emission.

15.31(e) EGAS Alerter was powered by a support power supply with the DC voltage set to 3.3 V to simulate a fresh battery.


17°C, 37% Relative Humidity

Engineer Name: E. Wong

### Test Equipment

| Asset/Serial # | Description  | Model          | Manufacturer   | Cal Date  | Cal Due   |
|----------------|--------------|----------------|----------------|-----------|-----------|
| AN00786        | Preamp       | 83017A         | HP             | 8/5/2010  | 8/5/2012  |
| AN00849        | Horn Antenna | 3115           | ETS            | 4/23/2010 | 4/23/2012 |
| ANP05565       | Cable        | ANDL-1-PNNM-54 | Andrews        | 9/3/2010  | 9/3/2012  |
| ANP05421       | Cable        | Sucoflex 104A  | Huber & Suhner | 2/12/2010 | 2/12/2012 |
| ANP05563       | Cable        | ANDL-1-PNNM-48 | Andrews        | 9/3/2010  | 9/3/2012  |

### Test Data



**Test Setup Photos**



FRONT VIEW



BACK VIEW

## RSS-210

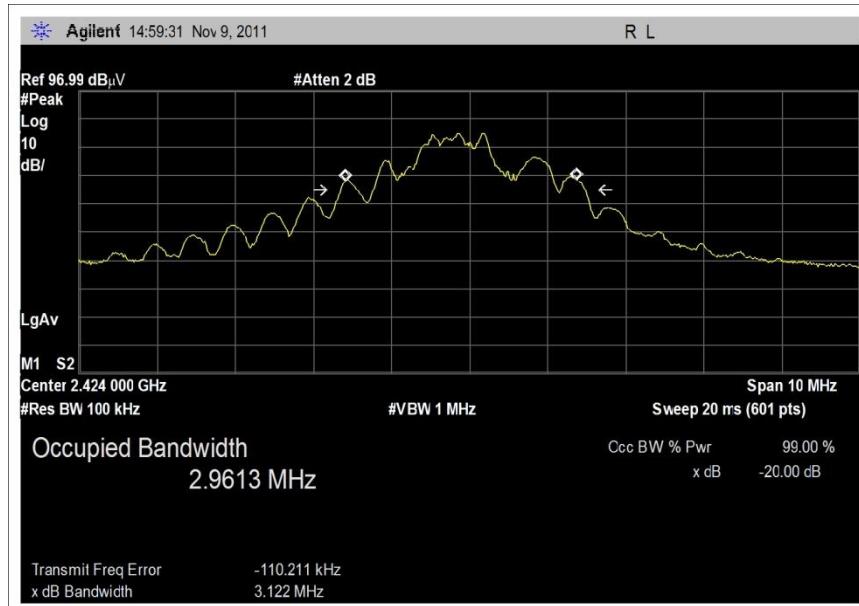
### 99 % Bandwidth

#### Test Conditions / Setup

The EUT is set in constant transmit mode and placed next to a spectrum analyzer with a un-calibrated field probe attached., the BW measurement is relative to the peak of the detected amplitude as detected with the field probe.

Freq: 2424 MHz

15.31(e) EGAS Alerter was powered by a support power supply with the DC voltage set to 3.3 V to simulate a fresh battery.


17°C, 37% Relative Humidity

Engineer Name: E. Wong

#### Test Equipment

| Asset/Serial # | Description  | Model          | Manufacturer   | Cal Date  | Cal Due   |
|----------------|--------------|----------------|----------------|-----------|-----------|
| AN00786        | Preamp       | 83017A         | HP             | 8/5/2010  | 8/5/2012  |
| AN00849        | Horn Antenna | 3115           | ETS            | 4/23/2010 | 4/23/2012 |
| ANP05565       | Cable        | ANDL-1-PNMN-54 | Andrews        | 9/3/2010  | 9/3/2012  |
| ANP05421       | Cable        | Sucoflex 104A  | Huber & Suhner | 2/12/2010 | 2/12/2012 |
| ANP05563       | Cable        | ANDL-1-PNMN-48 | Andrews        | 9/3/2010  | 9/3/2012  |

#### Test Data



**Test Setup Photos**



## SUPPLEMENTAL INFORMATION

### Measurement Uncertainty

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ . Compliance is deemed to occur provided measurements are below the specified limits.

### Emissions Test Details

#### TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $\text{dB}\mu\text{V}/\text{m}$ , the spectrum analyzer reading in  $\text{dB}\mu\text{V}$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

| <b>SAMPLE CALCULATIONS</b> |                |
|----------------------------|----------------|
| Meter reading              | (dB $\mu$ V)   |
| + Antenna Factor           | (dB)           |
| + Cable Loss               | (dB)           |
| - Distance Correction      | (dB)           |
| - Preamplifier Gain        | (dB)           |
| = Corrected Reading        | (dB $\mu$ V/m) |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| <b>MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE</b> |                     |                  |                   |
|-------------------------------------------------------------------|---------------------|------------------|-------------------|
| TEST                                                              | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |
| CONDUCTED EMISSIONS                                               | 150 kHz             | 30 MHz           | 9 kHz             |
| RADIATED EMISSIONS                                                | 30 MHz              | 1000 MHz         | 120 kHz           |
| RADIATED EMISSIONS                                                | 1000 MHz            | >1 GHz           | 1 MHz             |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

##### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

##### Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

##### Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.