

APPENDIX I

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Network Media Player
Frequency band (Operating)	<input checked="" type="checkbox"/> 802.11g/n HT20: 2.412GHz ~ 2.462GHz <input checked="" type="checkbox"/> 802.11n HT40: 2.422GHz ~ 2.452GHz <input type="checkbox"/> Others
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure ($S = 5\text{mW/cm}^2$) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1\text{mW/cm}^2$)
Antenna Specification	1. Master Wave Technology CO., LTD / 98242MRSX000 Dipole Antenna / Gain: 2 dBi, (Numeric gain: 1.58) 2. Dail Fong Electronics CO., LTD / P/N: AN-DF073007 Dipole Antenna / 2.4GHz Gain: 2 dBi, (Numeric gain: 1.58)
Max. output power	IEEE 802.11g : 9.8 dBm (9.550mW) IEEE 802.11n HT20 : 9.62 dBm (9.162mW) IEEE 802.11n HT40 : 7.76 dBm (5.970mW)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A
Remark:	The maximum output power is <u>9.8dBm (9.550mW) at 2462MHz (with 1.58numeric antenna gain.)</u>

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{377}$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P \text{ (mW)} = P \text{ (W)} / 1000 \text{ and}$$

$$d \text{ (cm)} = d \text{ (m)} / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using $d = 20$ cm into Equation 1:

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
11	2462	9.550	1.58	20	0.0030	1

IEEE 802.11n HT20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
11	2462	9.162	1.58	20	0.0029	1

IEEE 802.11n HT40 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
9	2452	5.970	1.58	20	0.0019	1