Antenna Tooling Sample Test Result

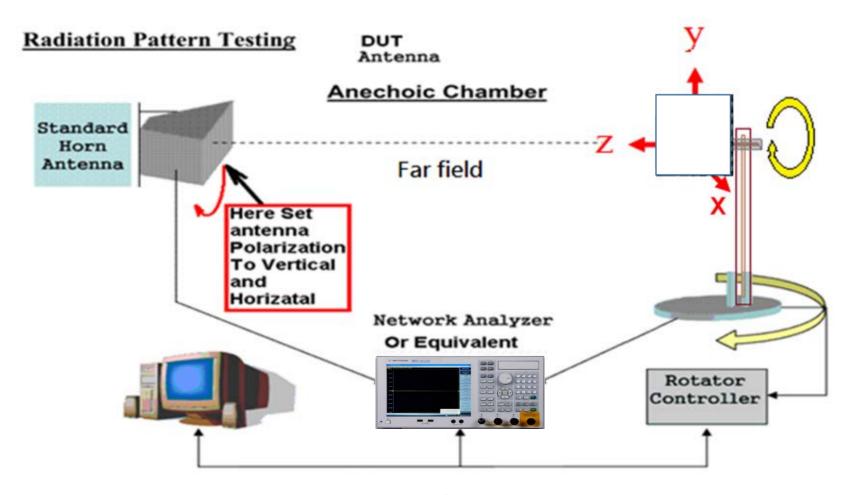
ACCTON

Contents

- Antenna Description
- Experimental Setup & Coordinate System
- Gain
- 2D Radiation Pattern

Antenna Description

Company name	Address	
ACCTON Technology Corporation	No.1, Creation Road3, Hsinchu Science Park,	
	Hsinchu 30077,Taiwan, R.O.C	


Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Modes of Operation
ACCTON	GT128V007S- 001 -1	On board chip	-	Note 1	Bluetooth, Zigbee (Radio 3)

Experimental Setup & Coordinate System

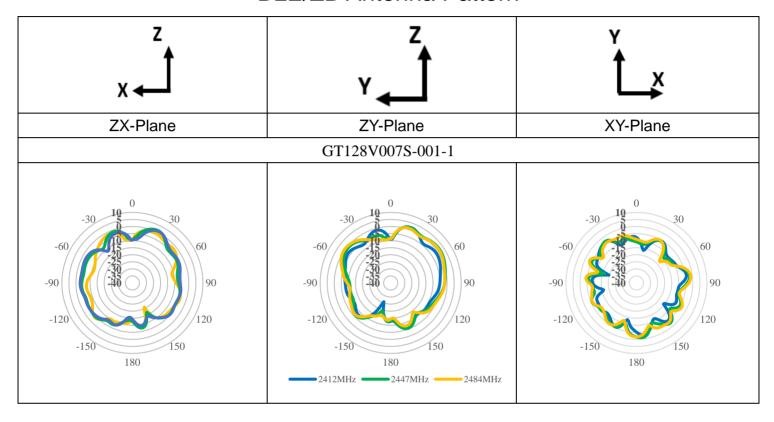
Chamber name: ETS AMS-8500 Rectangular CTIA-Compliant Test Lab

Describe	Manufacturer	Model Number	Serial Number	Cal.Date	Cal. Due Date
Network Analyzer	Agilent	E5071B	MY42402996	Dec2022	Dec2024

Gain

Note 1

BLE/ Zigbee						
Frequency (MHz)	2412	2447	2484			
Peak Gain (dBi)	3.6	4.3	4.1			
Peak Gain at Polarization	(Φ)78°(Θ)20°	(Φ)86°(Θ)56°	(Φ)100°(Θ)54°			


Φ(Phi); Θ(Theta)

%Peak Gain (G) and directivity (D) are linked by the formula G = k x D, where the antenna effective factor k (0 \leq k \leq 1) corresponds to the overall losses of the antenna. Accordingly, antenna gain can be calculated by the following formula, where represents antenna losses comprising of all ohm and dielectric losses between the input connector and the outer surface of the radome and the loss due to the impedance mismatch.

2D Radiation Pattern

BLE/ZB Antenna Pattern

