

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Code of Federal Regulations 47

PART 90—PRIVATE LAND MOBILE RADIO SERVICES

Subpart Z—Wireless Broadband Services in the 3650-3700 MHz Band

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Names: PMP450i 3GHz SM/BH MIMO Transceiver

PTP450i 3GHz BH MIMO Transceiver

Kind of Equipment: Transceiver

Frequency Range: 3652.5 to 3697.5 MHz (5 MHz channel bandwidth)

3660 to 3690 MHz (20 MHz channel bandwidth) 3670 to 3680 MHz (40 MHz channel bandwidth)

Test Configuration: Stand-alone

Model Number(s): 3082HH, 3092HH, 3082CHH

Model(s) Tested: 3082CHH

Serial Number(s): 0A003E4511A5, 0A003E45116A, 0A003E45117F

Date of Tests: September 2nd to October 19th, 2016

Test Conducted For: Cambium Networks

3800 Golf Road, Suite 360

Rolling Meadows, IL 60008, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2016, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

SIGNATURE PAGE

Report By:

Craig Brandt Test Engineer

Craig Brandt

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Company: Cambium Networks Model Tested: 3082CHH

Model Tested: 3082CH Report Number: 22288 DLS Project: 8420

Table of Contents

i. Co	over Page	1
ii. Sig	gnature Page	2
iii.Tal	able of Contents	3
iv.NV	VLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	7
3.0	Test Facilities	7
4.0	Description of Test Sample	7
5.0	Test Equipment	9
6.0	Test Arrangements	
7.0	Test Conditions	12
8.0	Modifications Made To EUT For Compliance	12
9.0	Additional Descriptions	
10.0	Results	
11.0	Conclusion	13
Appe	endix A – Test Photos	14
Appe	endix B – Measurement Data	16
B1.	1.0 Duty Cycle of test unit	16
	5 MHz channel bandwidth	
	20 MHz channel bandwidth	
	40 MHz channel bandwidth	21
B2.	2.0 Transmitter Output Power and Power Density	23
	5 MHz channel bandwidth	
	20 MHz channel bandwidth	
	20 MHz channel bandwidth – with optional 19 dBi panel antenna	
۷	40 MHz channel bandwidth	27
В3.	3.0 Channel Bandwidth	28
5	5 MHz channel bandwidth	
2	20 MHz channel bandwidth	
4	40 MHz channel bandwidth	35

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

Table of Contents (continued)

B4.0 Band Edge compliance – RF Conducted	
5 MHz channel bandwidth	
20 MHz channel bandwidth	41
40 MHz channel bandwidth	44
B5.0 Band Edge compliance - Radiated	47
5 MHz channel bandwidth	
20 MHz channel bandwidth	
40 MHz channel bandwidth	56
B6.0 Transmitter Unwanted Emissions – RF conducted	60
5 MHz channel bandwidth	
20 MHz channel bandwidth	
40 MHz channel bandwidth	91
B7.0 Transmitter Unwanted Emissions – Radiated	
B8.0 Transmitter Frequency Stability	
B9.0 AC Line Conducted Emissions	127
120 Volt	
230 Volt	
Appendix C – Measurement Uncertainty	152

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2016-08-16 through 2017-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY & TELECOMMUNICATIONS

NVLAP LAB CODE 100276-0

Emissions

Designation

Description

Off-site test location

D.L.S. Electronics performs radiated emissions testing at an additional location, 166 South Carter Street, Genoa City, WI 53128.

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

1.0 Summary of Test Report

It was determined that the Cambium Networks PMP450i 3GHz SM/BH MIMO Transceiver, Model 3082CHH, complies with the requirements of CFR 47 Part 90 Subpart Z.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
Pt 90.1321 (a)	Duty Cycle of Test Unit - for	FCC KDB 971168	1	NA
	RMS measurements	D01: Power Meas		
		License Digital		
		Systems v02r02		
Pt 90.1321 (a)	Transmitter Output Power and	FCC KDB 971168	1	Yes
Pt 2.1046	Power Density	D01: Power Meas		
		License Digital		
		Systems v02r02,		
		Section 5.2.3		
Pt 2.1049	Occupied Channel Bandwidth	FCC KDB 971168 D01:	1	Yes
	(99% power bandwidth)	Power Meas License		
		Digital Systems v02r02,		
Pt 90.1323	Dand Edge compliance DE	Section 4.2 FCC KDB 971168 D01:	1	Yes
Pt 2.1051	Band Edge compliance – RF Conducted	Power Meas License	1	168
Pt 2.1031	Conducted	Digital Systems v02r02,		
		Section 6.0		
Pt 90.1323	Band Edge compliance –	FCC KDB 971168 D01:	2	Yes
Pt 2.1053	Radiated (cabinet radiation)	Power Meas License		
		Digital Systems v02r02,		
D: 00 1000 ()		Section 5.8	1	**
Pt 90.1323 (a)	Transmitter Unwanted	FCC KDB 971168 D01:	1	Yes
Pt 2.1051	Emissions – RF conducted	Power Meas License Digital Systems v02r02,		
		Section 6.0		
Pt 90.1323	Transmitter Unwanted	FCC KDB 971168 D01:	2	Yes
Pt 2.1053	Emissions – Radiated	Power Meas License		
	(cabinet radiation)	Digital Systems v02r02,		
	(****	Section 5.8		
Pt 2.1055	Frequency Stability	FCC KDB 971168 D01:	1	Yes
		Power Meas License		
		Digital Systems v02r02,		
15 207(a)	AC Line Conducted Emissions	Section 9 ANSI C63.10-2013	3	Yes
15.207(a)	AC Line Conducted Emissions	Section 6.2	3	res
		Section 0.2		

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

Note 3: Informative.

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

2.0 Introduction

From September 2nd through October 19th, 2016 the PMP450i 3GHz SM/BH MIMO Transceiver, Model 3082CHH, as provided from Cambium Networks, was tested to the requirements of CFR 47 Part 90 Subpart Z. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

FCC Registration: 90531

ISED Registration: 2060A-1 & 2060A-3

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Cambium Networks fixed outdoor frame based wireless transceiver with 17 dBi sector antenna. Tested with worst case highest channel bandwidth of 40 MHz and lowest channel bandwidth of 5 MHz. The 20 MHz channel bandwidth mode is available with an optional 19 dBi panel antenna.

Type of Equipment / Frequency Range:

Stand-Alone / 3652.5 to 3697.5 MHz (5 MHz channel bandwidth) 3660 to 3690 MHz (20 MHz channel bandwidth) 3670 to 3680 MHz (40 MHz channel bandwidth)

Physical Dimensions of Equipment Under Test:

Length: 10 in. Width: 5.25 in. Height: 3.5 in.

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

4.0 Description of Test Sample (continued):

Power Source:

56 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Cambium Networks model NET-P30-56IN power supply

Internal Frequencies:

55 kHz (Switching Power Supply Frequency) 80 MHz, 50 MHz, 40 MHz, 25 MHz, 20 MHz

Transmit / Receive Frequencies Used For Test Purpose:

5 MHz Channel Bandwidth: Low channel: 3652.5 MHz, Middle channel: 3675 MHz,

High channel: 3697.5 MHz

20 MHz Channel Bandwidth: Low channel: 3630 MHz, Middle channel: 3675 MHz,

High channel: 3690 MHz

40 MHz Channel Bandwidth: Low channel: 3670 MHz, Middle channel: 3675 MHz,

High channel: 3680 MHz

Type of Modulation(s):

QPSK (worst case) used for testing, 16QAM, 64QAM, 256QAM

Description of Circuit Board(s) / Part Number:

Cambium Networks PC Board	P007172 P21 PXP455 3GHz
2 x LMR 1 dB Cables	P006967
2 x N Female Connectors	NA
17 dBi Sector Antenna	A005297
19 dBi Panel Antenna	P0056559

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

RADIATED EMISSIONS 30 – 1000 MHz

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	6-23-16	6-23-17
Low Pass Filter	Mini-Circuits	VLFX-1125	RUU92600920	DC-1.88GHz	6-3-16	6-3-17
Preamplifier	Rohde & Schwarz	TS-PR10	032001/005	9 kHz – 1 GHz	12-3-15	12-3-16
Antenna	EMCO	3104C	9701-4785	20 MHz – 200 MHz	2-16-16	2-16-17
Antenna	EMCO	3146	9702-4895	200 MHz – 1 GHz	2-4-16	2-4-17
Test Software	Rohde & Schwarz	ESK-1	V1.7.1	N/A	N/A	N/A

AC LINE CONDUCTED

Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description Manufacturer		Number	Number	Range	Dates	Dates
Receiver	Narda PMM	9010F	020WW40102	10Hz-50MHz	6-23-16	6-23-17
LISN	Solar	9252-50-R- 24-BNC	961019	9 kHz – 30 MHz	5-4-16	5-4-17
Filter- High- Pass	SOLAR	7930-120	090702	120 kHz – 30 MHz	12-3-15	12-3-16
Limiter	Electro-Metrics	EM-7600	705	9 kHz – 30 MHz	12-3-15	12-3-16
Test Software	Narda PMM	PMM Emission Suite	Rel.2.17	N/A	N/A	N/A

TELECOM PORT CONDUCTED

Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description	Manufacturer	Number	Number	Range	Dates	Dates
Receiver	Narda PMM	9010F	020WW40102	10Hz-50MHz	6-23-16	6-23-17
Filter- High- Pass	Solar	7930-120	885577	120 kHz – 30 MHz	12-3-15	12-3-16
Limiter	Electro-Metrics	EM-7600	705	9 kHz – 30 MHz	12-3-15	12-3-16
TLISN	Fischer Custom Communications	FCC-TLISN-T8- 02	20638	150 kHz – 30 MHz	9-1-16	9-1-17
Test Software	Narda PMM	PMM Emission Suite	Rel.2.17	N/A	N/A	N/A

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

5.0 Test Equipment (continued)

RADIATED EMISSIONS 1-18 GHz

Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description Manufacturer		Number	Number	Range	Dates	Dates
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	6-23-16	6-23-17
High Pass Filter	Q-Microwave	100462	2	4.2GHz-18GHz	9-23-16	9-23-17
Preamp	Ciao	CA118-4010	101	1GHz-18GHz	1-20-16	1-20-17
Horn Antenna	EMCO	3115	9502-4451	1-18GHz	6-1-15	6-1-17
Test Software	Rohde & Schwarz	ESK-1	V1.7.1	N/A	N/A	N/A

Additional 18-40 GHz

Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description	1/14/14/14/14/14/14/14/14/14/14/14/14/14	Number	Number	Range	Dates	Dates
High Pass	K & L	50140 11SH10-	8	18GHz-40GHz	1-27-16	1-27-17
Filter		18000/T40000-				
		K-K				
Preamp	Planar	PTB-60-2040-	PL3292	18GHz-40GHz	6-6-16	6-6-17
		5R0-10-				
		115VAC-292FF				
Horn Antenna	A.H. Systems	SAS-574	222	18GHz-40GHz	3-14-16	3-14-18
Test Software	Rohde & Schwarz	ESK-1	V1.7.1	N/A	N/A	N/A

Temperature Chamber

= 0111 p 01 00 012 0 012 012 012						
Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description		Number	Number	Range	Dates	Dates
Temperature	Test Equity	1007C	R035716	-73° C to +175° C	N/A	N/A
Chamber						
Digital	Tenma	72-2060	723662	-50° C to +200° C	9-1-16	9-1-17
Thermometer						
Digital	Fluke	115	18741295	N/A	6-10-16	6-10-17
Multimeter						

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

5.0 Test Equipment (continued)

RF Conducted

Description	Manufacturer	Model	Serial	Frequency	Cal	Cal Due
Description	Manufacturer	Number	Number	Range	Dates	Dates
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	6-23-16	6-23-17
Thermal Power Sensor	Rohde & Schwarz	NRP-Z51	104290	DC-18GHz	6-24-16	6-24-17
Low Pass Filter	Mini-Circuits	VLFX-1125	RUU92600920	DC-1.88GHz	6-3-16	6-3-17
Attenuator 20 dB	Anritsu	42N50-20	000451	DC-18GHz	5-11-16	5-11-17
Attenuator 20 dB	MCE/WEINSCHEL	5955A-20	0256	DC-40GHz	6-5-16	6-5-17

6.0 Test Arrangements

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 971168 D01: Power Meas License Digital Systems v02r02, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up. See Appendix C for measurement uncertainty.

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 971168 D01: Power Meas License Digital Systems v02r02, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up. See Appendix C for measurement uncertainty.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

7.0 Test Conditions

Temperature and Humidity:

72°F at 67% RH

Supply Voltage:

56 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Cambium Networks model NET-P30-56IN power supply

8.0 Modifications Made To EUT For Compliance

None.

9.0 Additional Descriptions

Test software was used to set the frequency, modulation, and output power of the EUT. Transmitter parameters are software controlled and set to Cambium Networks' specifications. Any new software will not enable any features/operations which would violate regulatory requirements.

Mode of operation: Measurements were taken for QPSK modulation (as worst case) at the lowest, middle, and highest channels of operation. Port A was tested as representative of Port B. Port A was equal to/or worst case over Port B per Cambium Networks. 5, 20 and 40 MHz channel bandwidths were tested. Continuous Transmit, Continuous Receive, and Continuous Scan modes were tested.

Emission Designators: 5M00X1D, 20M0X1D, 40M0X1D

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 971168 D01: Power Meas License Digital Systems v02r02. Graphical and tabular data can be found in Appendix B at the end of this report.

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

11.0 Conclusion

The PMP450i 3GHz SM/BH MIMO Transceiver, Model 3082CHH, as provided from Cambium Networks tested from September 2nd through October 19th, 2016 **meets** the requirements of CFR 47 Part 90 Subpart Z.

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks

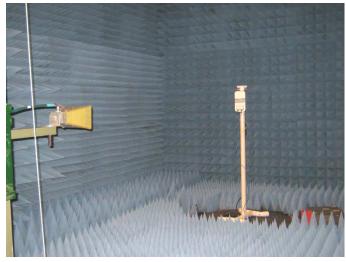
Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix A – Test Photos

Photo Information and Test Setup

Item 0: PMP450i 3GHz SM/BH MIMO Transceiver

Item 1: Cat 5e Power-Over-Ethernet cable. (2.2 meter un-shielded with plastic connectors)


Item 2: Cat 5e Ethernet cable to remote computer. (10 meter un-shielded with plastic connectors)

Item 3: Cambium Networks model NET-P30-56IN power supply

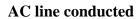
RF Conducted

Radiated - above 1 GHz

Radiated – Below 1 GHz - front

Radiated – Below 1 GHz - back

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420


Appendix A – Test Photos (continued)

AC line conducted

AC line conducted

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B1.0 Duty Cycle of test unit

Rule Part: Informational

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Limits: Informational

Results: 5 MHz channel BW: Unit with SN: 0A003E45116A

Duty cycle = $(1.252505 \text{ ms}) / (2.494990 \text{ ms}) \times 100 = 50.2\%$

Duty cycle correction for power measurements = $10 \log (1/0.502) = 3.00 \text{ dB}$

20 MHz channel BW: Unit with SN: 0A003E45117F

Duty cycle = $(1.863727 \text{ ms}) / (2.505010 \text{ ms}) \times 100 = 74.4\%$

Duty cycle correction for power measurements = $10 \log (1/0.744) = 1.28 dB$

40 MHz channel BW: Unit with SN: 0A003E45117F

Duty cycle = $(1.833667 \text{ ms}) / (2.515030 \text{ ms}) \times 100 = 72.9\%$

Duty cycle correction for power measurements = $10 \log (1/0.729) = 1.37 dB$

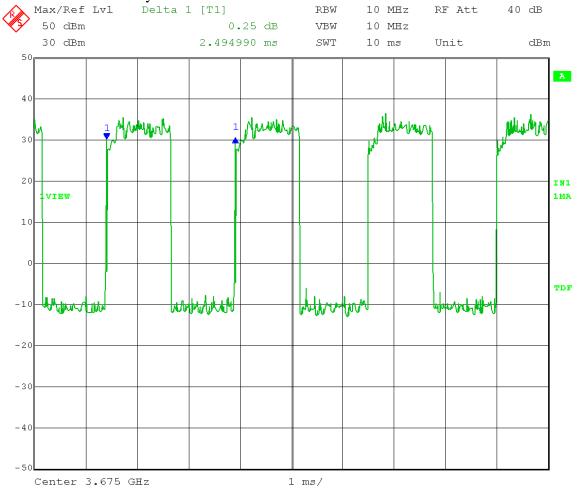
Notes: None

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Test: Duty Cycle during testing

Operator: Craig B


5 MHz channel bandwidth; QPSK

Comment: ON time = 1.252505 ms during 2.494990 ms cycle

x = 1.252505 / 2.494990 = 0.5020080 = 50.2%

Duty cycle correction factor = $10\log(1/x)$ = **3.00 dB**

ON + OFF time of 1 cycle = 2.494990 ms

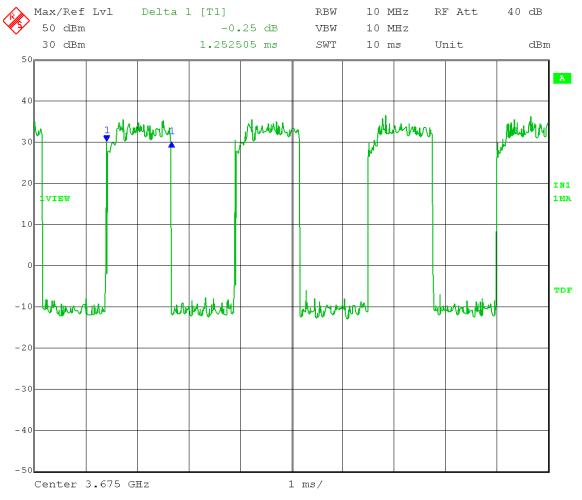
Date: 10.OCT.2016 14:28:03

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Test: Duty Cycle during testing

Operator: Craig B


5 MHz channel bandwidth; QPSK

Comment: ON time = 1.252505 ms during 2.494990 ms cycle

x = 1.252505 / 2.494990 = 0.5020080 = 50.2%

Duty cycle correction factor = $10\log(1/x)$ = **3.00 dB**

ON time of 1 cycle = 1.252505 ms

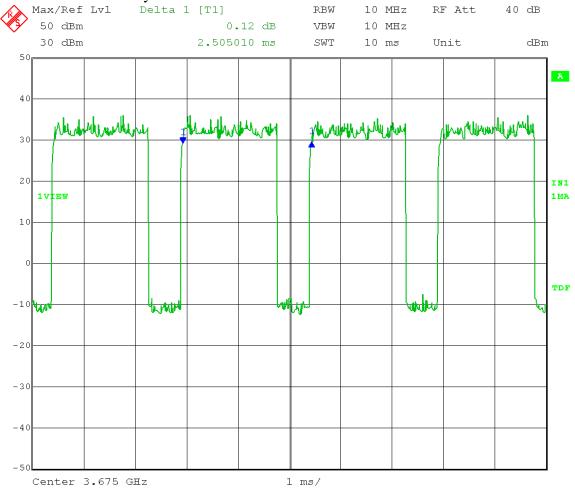
Date: 10.OCT.2016 14:29:19

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Duty Cycle during testing

Operator: Craig B


20 MHz channel bandwidth; QPSK

Comment: ON time = 1.843687 ms during 2.505010 ms cycle

x = 1.843687 / 2.505010 = 0.7359999 = 73.6%

Duty cycle correction factor = $10\log(1/x)$ = **1.33 dB**

ON + OFF time of 1 cycle = 2.505010 ms

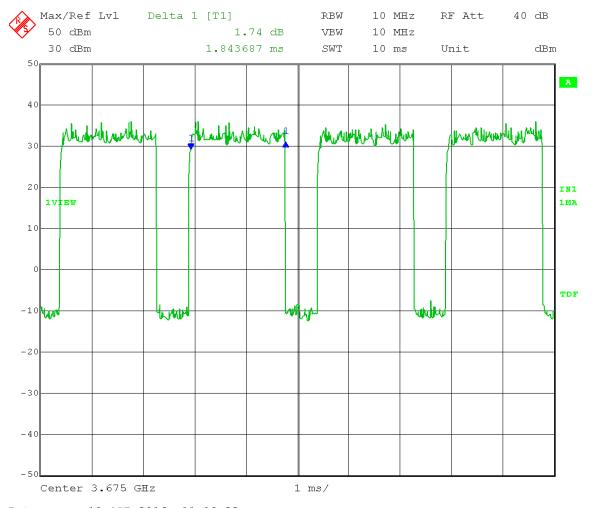
Date: 19.OCT.2016 11:09:19

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Duty Cycle during testing

Operator: Craig B


20 MHz channel bandwidth; QPSK

Comment: ON time = 1.843687 ms during 2.505010 ms cycle

x = 1.843687 / 2.505010 = 0.7359999 = 73.6%

Duty cycle correction factor = $10\log(1/x)$ = **1.33 dB**

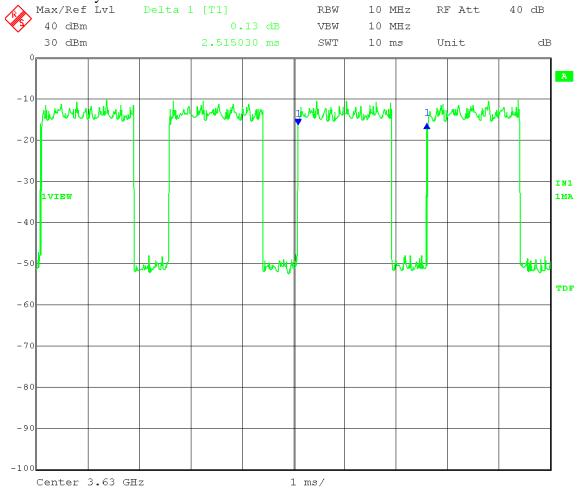
ON time of 1 cycle = 1.843687 ms

Date: 19.OCT.2016 11:10:23

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Duty Cycle during testing


Operator: Craig B

40 MHz channel bandwidth; QPSK

Comment: Duty cycle = $(1.833667 \text{ ms}) / (2.515030 \text{ ms}) \times 100 = 72.9\%$

Duty cycle correction for power measurements = $10 \log (1/0.729) = 1.37 dB$

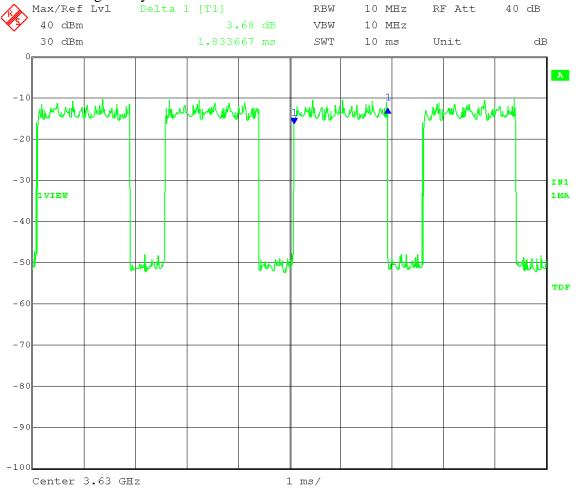
Time of one cycle: 2.515030 ms

Date: 18.OCT.2016 09:21:50

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Duty Cycle during testing


Operator: Craig B

40 MHz channel bandwidth; QPSK

Comment: Duty cycle = $(1.833667 \text{ ms}) / (2.515030 \text{ ms}) \times 100 = 72.9\%$

Duty cycle correction for power measurements = $10 \log (1/0.729) = 1.37 dB$

ON time during one cycle: 1.833667 ms

Date: 18.OCT.2016 09:22:31

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

Appendix B – Measurement Data

B2.0 Transmitter Output Power and Power Density

Rule Part: FCC Part 90.1321(a)

FCC Part 2.1046

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 5.2.3 – Average power meter

The EUT was connected to a broadband power meter with a thermal sensor through a cable and 20 dB attenuator. The output power was measured and recorded. An offset was used on the power meter to compensate for cables, connectors, and attenuator.

Limit: FCC Part 90.1321(a), base and fixed stations

e.i.r.p.: 25 W (44 dBm) in any 25 MHz bandwidth e.i.r.p.: 1 W (30 dBm) in any 1 MHz bandwidth

Results: Compliant

Notes: Only tested QPSK modulation mode as determined worst case by Cambium

Networks. Only tested output port A as determined worst case by Cambium

Networks.

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH Transmitter SN: 0A003E45116A

Tests: Maximum E.I.R.P.

Operator: Craig B

Comment: 5 MHz channel BW mode; Port A

Antenna Gain = 17 dBi

Recorded levels are measured RF conducted levels + 17 dBi antenna gain

+ 3 dB (2-port MIMO operation) + 3 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz; **Detector = RMS**

Trace mode = max hold; **Sweep time = 10 seconds per Cambium Networks**

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): Low channel (3652.5 MHz)

Power setting 18 (15 per chain)

Modulation	120	V
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	35.95	29.92

Peak EIRP Power (dBm): Mid channel (3675 MHz)

Power setting 18 (15 per chain)

10 wer setting 10 (13 per enam)		
Modulation	120 V	
Type	+20	°C
ODCV	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	35.95	29.95

Peak EIRP Power (dBm): **High channel** (3697.5 MHz)

Power setting 18 (15 per chain)

1 ower setting 16 (15 per chain)		
Modulation	120 V	
Type	+20	°C
ODCV	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	35.91	29.88

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH Transmitter SN: 0A003E45117F

Tests: Maximum E.I.R.P.

Operator: Craig B

Comment: 20 MHz channel BW mode; Port A

Antenna Gain = 17 dBi

Recorded levels are measured RF conducted levels + 17 dBi antenna gain + 3 dB (2-port MIMO operation) + 1.33 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz; **Detector = RMS**

Trace mode = max hold; **Sweep time = 10 seconds per Cambium Networks**

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): Low channel (3660 MHz)

Power setting 22 (19 per chain)

Modulation	120	V
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	39.83	28.00

Peak EIRP Power (dBm): Mid channel (3675 MHz)

Power setting 25 (22 per chain)

1 0 wer setting 25 (22 per chair)		
Modulation	120 V	
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	41.88	29.98

Peak EIRP Power (dBm): High channel (3690 MHz)

Power setting 25 (22 per chain)

1 5 wer setting 25 (22 per chain)		
Modulation	120	V
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	41.83	29.89

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH Transmitter SN: 0A003E45117F

Tests: Maximum E.I.R.P.

Operator: Craig B

Comment: 20 MHz channel BW mode; Port A

Antenna Gain = 19 dBi – 1 dB (Cambium cable from EUT to antenna)

= 18 dBi

Recorded levels are measured RF conducted levels + 19 dBi antenna gain – 1 dB (cable loss from EUT to antenna) + 3 dB (2-port MIMO operation)

+ 1.33 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz;**Detector = RMS**

Trace mode = max hold; Sweep time = 10 seconds per Cambium Networks

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 30 MHz)

Peak EIRP Power (dBm): Low channel (3660 MHz)

Power setting 22 (19 per chain)

1 ower setting 22 (1) per chain)		
Modulation	120 V	
Type	+20 °C	
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	40.83	29.00

Peak EIRP Power (dBm): Mid channel (3675 MHz)

Power setting 23 (20 per chain)

1 ower setting 25 (20 per chain)		
Modulation	120 V	
Type	+20 °C	
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	41.54	29.87

Peak EIRP Power (dBm): **High channel (3690 MHz)**

Power setting 23 (20 per chain)

1 6 Wei setting 25 (26 per enam)		
Modulation	120	V
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	41.57	29.75

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH Transmitter SN: 0A003E45117F

Tests: Maximum E.I.R.P.

Operator: Craig B

Comment: 40 MHz channel BW mode; Port A

Antenna Gain = 17 dBi

Recorded levels are measured RF conducted levels + 17 dBi antenna gain + 3 dB (2-port MIMO operation) + 1.37 dB (correction for duty cycle)

EIRP Limit: 25 W / 25 MHz; 1 W / 1 MHz

= 44 dBm / 25 MHz; 30 dBm / 1 MHz

RBW = 1 MHz; VBW = 3 MHz;**Detector = RMS**

Trace mode = max hold; **Sweep time = 10 seconds per Cambium Networks**

Span = $1.5 \times 1.5 \times 1.5$

Measurement using peak-search function of spectrum analyzer

Band power integrated over a 25 MHz bandwidth for EIRP / 25 MHz measurement (span = 60 MHz)

Peak EIRP Power (dBm): Low channel (3670 MHz)

Power setting 11 (8 per chain)

Modulation	120 V	
Type	+20	°C
ODCK	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	28.21	15.25

Peak EIRP Power (dBm): Mid channel (3675 MHz)

Power setting 24 (21 per chain)

1 6 Wei Setting 2 ! (21 per emain)		
Modulation	120 V	
Type	+20	°C
QPSK	EIRP / 25 MHz	EIRP / 1 MHz
	41.10	28.14

Peak EIRP Power (dBm): High channel (3680 MHz)

Power setting 13 (10 per chain)

1 6 wer setting 13 (10 per chain)		
Modulation	120 V	
Type	+20	°C
ODCV	EIRP / 25 MHz	EIRP / 1 MHz
QPSK	30.06	16.93

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B3.0 Channel Bandwidth

Rule Part: FCC Part 2.1049

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 4.2 – power bandwidth (99%)

Limit: Informational

Results: 5 MHz channel measured 4.55 MHz

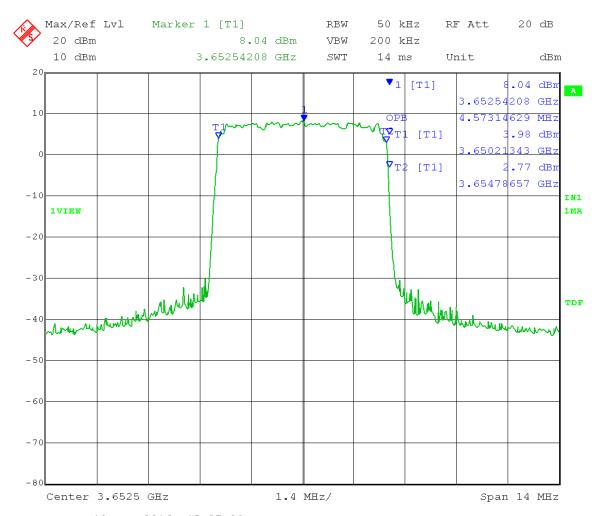
20 MHz channel measured 18.22 MHz 40 MHz channel measured 36.55 MHz

Notes: Only tested QPSK modulation mode as determined worst case by Cambium

Networks. Only tested output port A as determined worst case by Cambium

Networks.

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

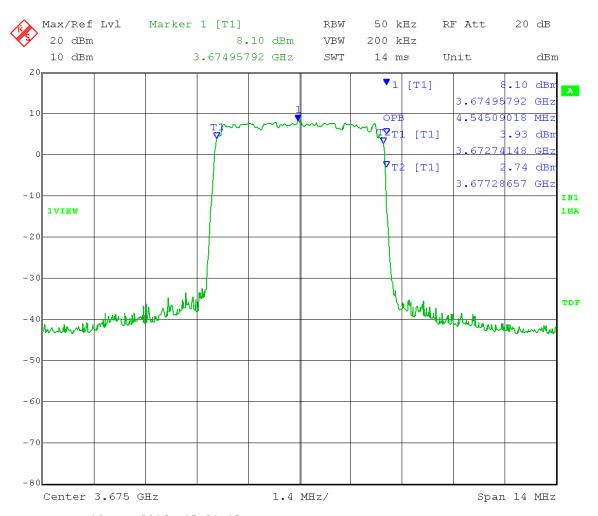
Comment: Low Channel: Transmit = 3652.5 MHz

Output power setting: 18 (15 per chain) 5 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 4.57 MHz

Date: 10.OCT.2016 15:27:28

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Mid Channel: Transmit = 3675 MHz

Output power setting: 18 (15 per chain) 5 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 4.55 MHz

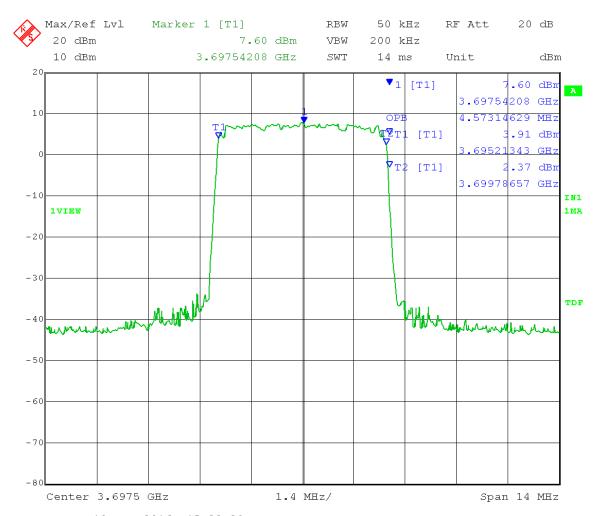
Date: 10.OCT.2016 15:31:15

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: High Channel: Transmit = 3697.5 MHz


Output power setting: 18 (15 per chain)

5 MHz channel BW

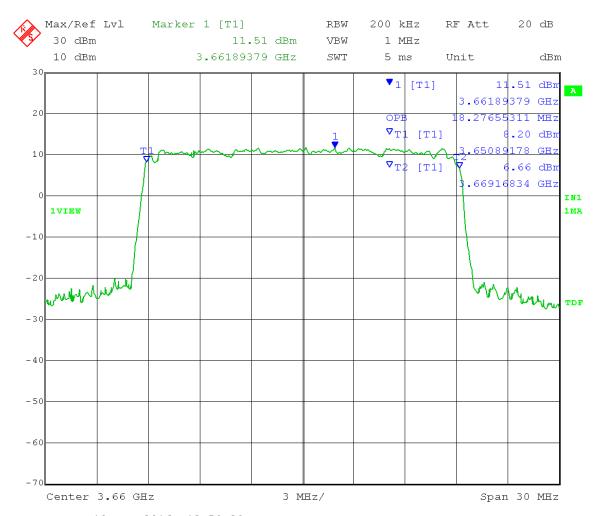
Output port A

Modulation: QPSK

Occupied Bandwidth = 4.57 MHz

Date: 10.OCT.2016 15:22:29

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Low Channel: Transmit = 3660 MHz

Output power setting: 22 (19 per chain) 20 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 18.28 MHz

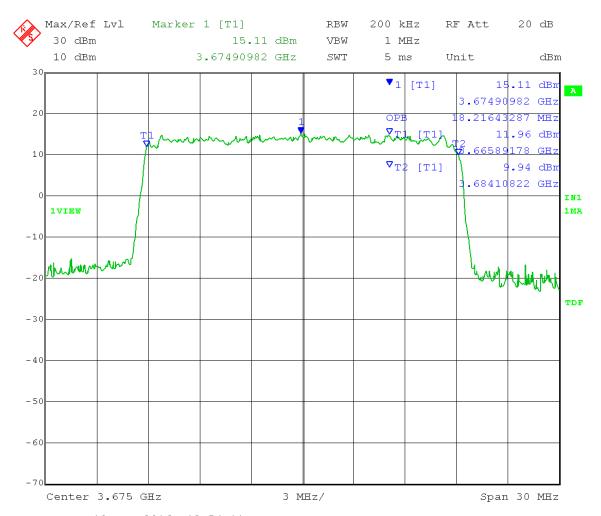
Date: 19.OCT.2016 13:58:20

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: Mid Channel: Transmit = 3675 MHz


Output power setting: 25 (22 per chain)

Output port A

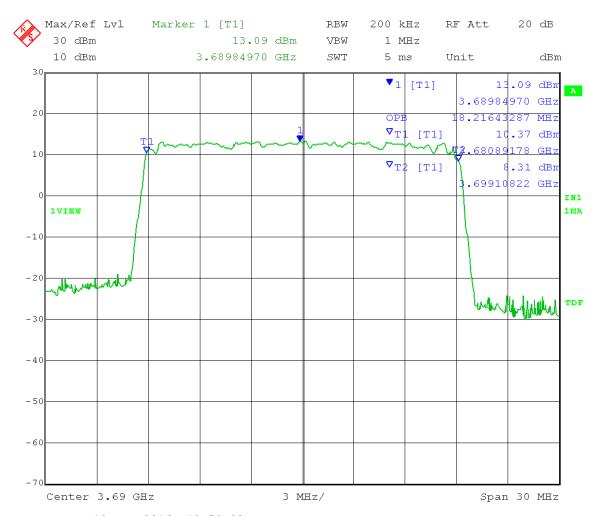
20 MHz channel BW

Modulation: QPSK

Occupied Bandwidth = 18.22 MHz

Date: 19.OCT.2016 13:54:11

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

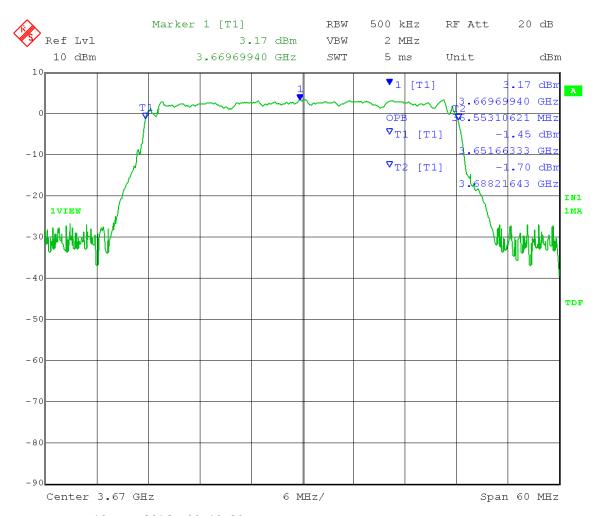
Comment: High Channel: Transmit = 3690 MHz

Output power setting: 25 (22 per chain) 20 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 18.22 MHz

Date: 19.OCT.2016 13:50:02

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

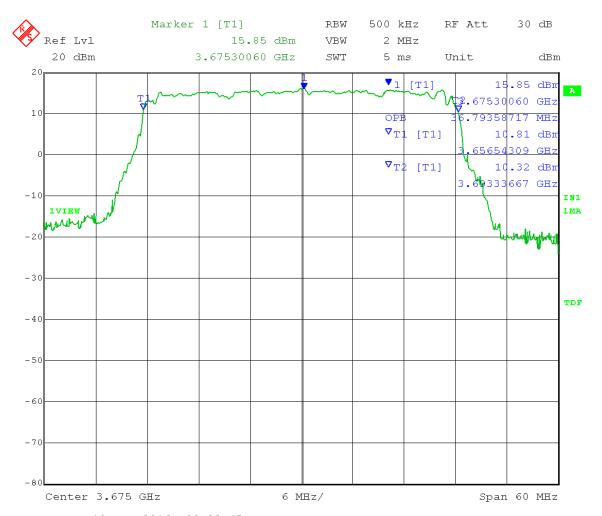
Comment: Low Channel: Transmit = 3670 MHz

Output power setting: 11 (8 per chain) 40 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 36.55 MHz

Date: 19.OCT.2016 09:18:28

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

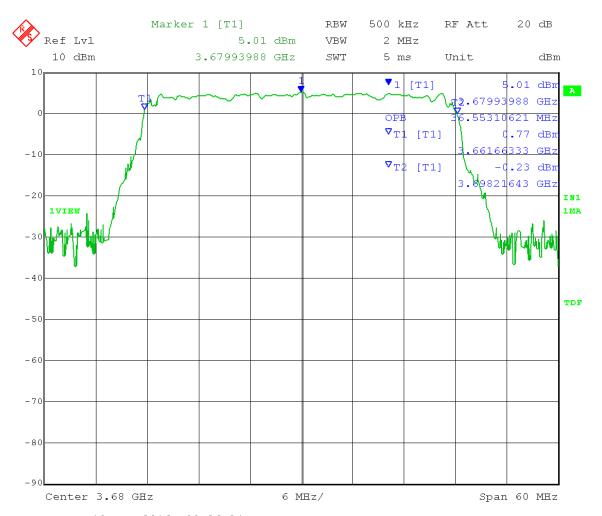
Comment: Mid Channel: Transmit = 3675 MHz

Output power setting: 24 (21 per chain) 40 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 36.79 MHz

Date: 19.OCT.2016 09:22:45

Company: Cambium Networks


EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Occupied Bandwidth (99% power) - Conducted

Operator: Craig B

Comment: High Channel: Transmit = 3680 MHz

Output power setting: 13 (10 per chain) 40 MHz channel BW Output port A Modulation: QPSK

Occupied Bandwidth = 36.55 MHz

Date: 19.OCT.2016 09:26:34

Company: Cambium Networks

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B4.0 Band Edge compliance – RF Conducted

Rule Part: FCC Part 90.1323

FCC Part 2.1051

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 6.0 – at Antenna Terminals

The EUT was connected to a spectrum analyzer through a cable and 20 dB attenuator. The output power set to the same level as was used in the Transmitter Output Power test.

Limit: FCC Part 90.1323

The power of any emission outside the frequency band 3650-3700 MHz shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB, where

P is measured in watts.

Sample calculation: Measured mean output power of one port = 22.04 dBm.

22.04 dBm +17 dBi antenna gain + 3 dB (because there are 2 output ports)

= 42.04 dBm = 15.996 Watts

Limit (dBc) = $43 + 10 \log (15.996) = 55.04 dB$

42.04 dBm - 55.04 dB = -13 dBm

Results: Compliant

Notes: This test was done with 5, 20, and 40 MHz channel bandwidth settings.

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium

Networks.

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A Test: Lower Band-Edge Measurements - Conducted

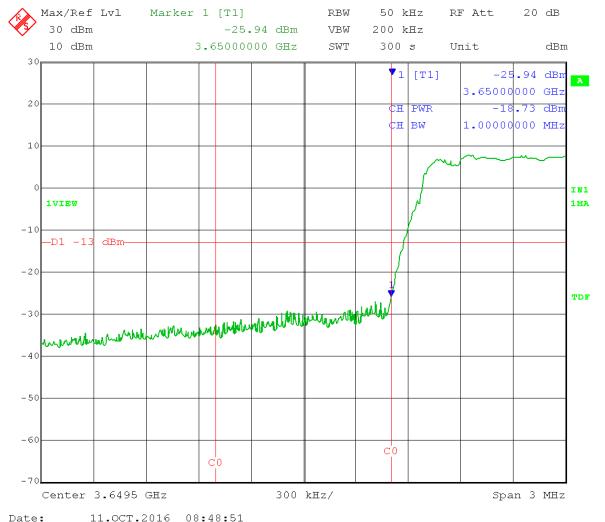
Operator: Craig B

 $RBW \ge 1\% OBW$ Comment: $VBW \ge 3 \times RBW$

> Detector = PeakSweep = 300 s

Trace = max hold

Low Channel: Transmit = 3652.5 MHz Output power setting: 18


Channel bandwidth: 5 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -18.73 dBm/MHz

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A
Test: Upper Band-Edge Measurements - Conducted

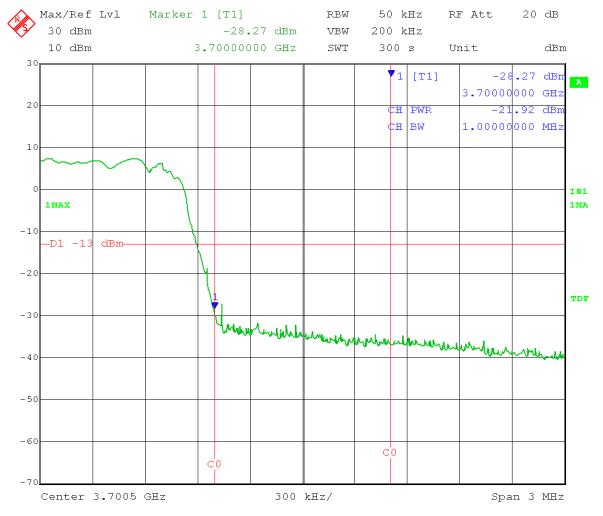
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 300 s

Trace = max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18


Channel bandwidth: 5 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -21.92 dBm/MHz

Date: 11.OCT.2016 09:04:12

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements - Conducted

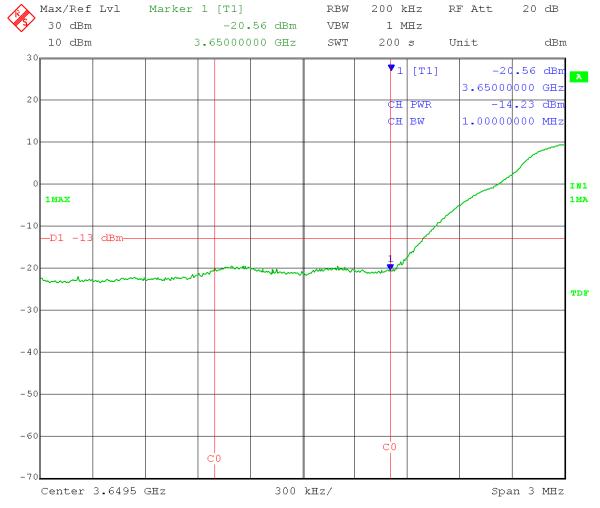
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

Low Channel: Transmit = 3660 MHz Output power setting: 22


Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -14.23 dBm/MHz

Date: 19.0CT.2016 12:43:56

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements - Conducted

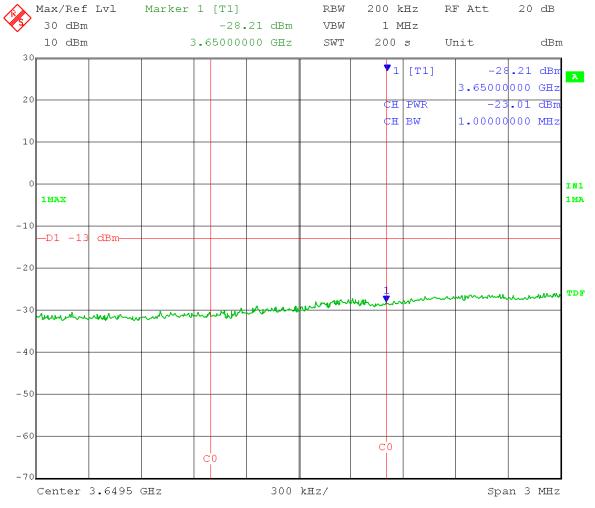
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

Mid Channel: Transmit = 3675 MHz Output power setting: 25


Channel bandwidth: 20 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -23.01 dBm/MHz

Date: 19.0CT.2016 13:37:32

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Upper Band-Edge Measurements - Conducted

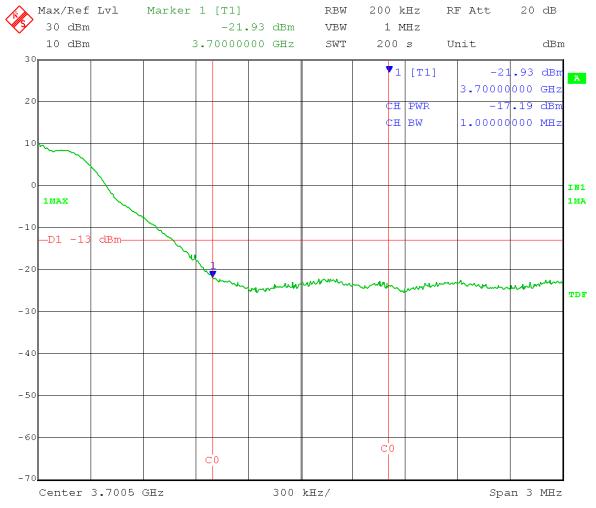
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

High Channel: Transmit = 3690 MHz Output power setting: 25


Channel bandwidth: 20 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -17.19 dBm/MHz

Date: 19.0CT.2016 13:44:42

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements - Conducted

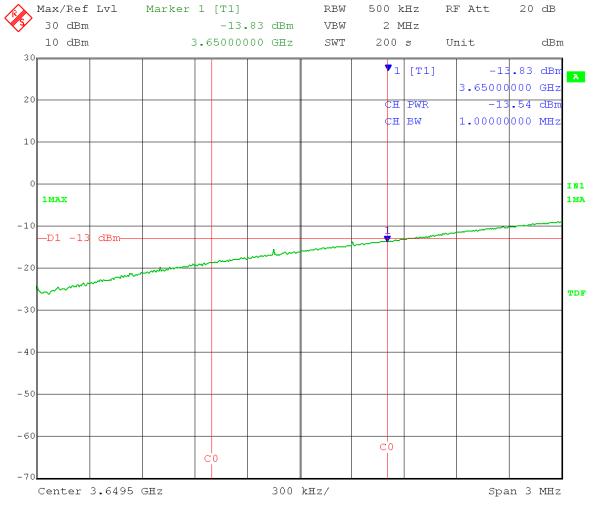
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

Low Channel: Transmit = 3670 MHz Output power setting: 11


Channel bandwidth: 40 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -13.54 dBm/MHz

Date: 18.OCT.2016 14:40:41

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements - Conducted

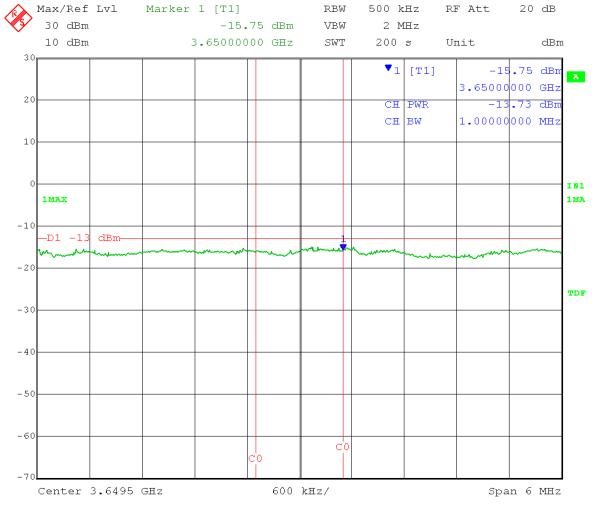
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

Mid Channel: Transmit = 3675 MHz Output power setting: 24


Channel bandwidth: 40 MHz Output port: A

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -13.73 dBm/MHz

Date: 18.OCT.2016 14:18:20

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Upper Band-Edge Measurements - Conducted

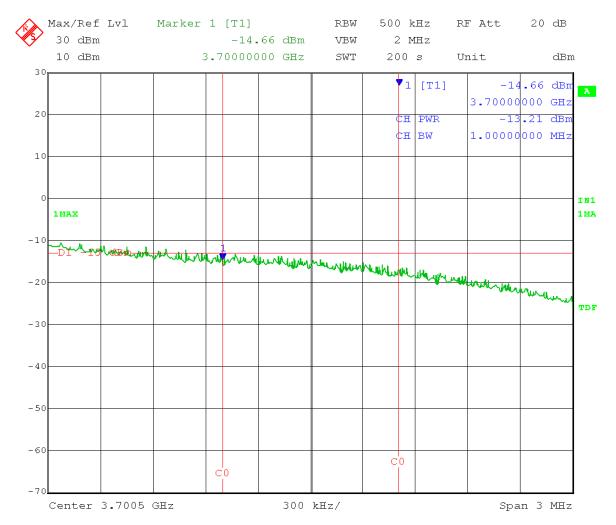
Operator: Craig B

Comment: $RBW \ge 1\% OBW$ $VBW \ge 3 \times RBW$

Detector = Peak Sweep = 200 s

Trace = max hold

High Channel: Transmit = 3680 MHz Output power setting: 13


Channel bandwidth: 40 MHz Output port: A

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz

Measured power at band edge is integrated over a 1 MHz bandwidth

Power level at band edge = -13.21 dBm/MHz

Date: 18.OCT.2016 15:22:35

Company: Cambium Networks

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B5.0 Band Edge compliance - Radiated With 50 Ohm terminations on antenna ports (cabinet radiation)

Rule Part: FCC Part 90.1323

FCC Part 2.1053

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 5.8 – Radiated measurements

Limit: FCC Part 90.1323

The power of any emission outside the frequency band 3650-3700 MHz shall be

attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}$ (P) dB, where

P is measured in watts.

Sample calculation: Measured mean output power of one port = 22.04 dBm.

22.04 dBm +17 dBi antenna gain + 3 dB (because there are 2 output ports)

= 42.04 dBm = 15.996 Watts

Limit (dBc) = $43 + 10 \log (15.996) = 55.04 dB$

42.04 dBm - 55.04 dB = -13 dBm

Results: Compliant

Notes: This test was done with 5, 20, and 40 MHz channel bandwidth settings.

Only tested QPSK modulation mode as determined worst case by

Cambium Networks. Both ports were active during this test.

Company: Cambium Networks

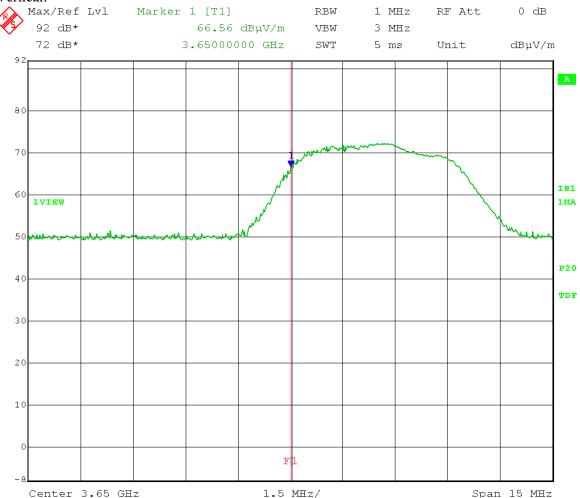
EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A
Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: Transmit = 3652.5 MHz Output power setting: 18 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $66.56 + 20\log(3) - 104.8 = -28.69 \text{ dBm/MHz}$

Vertical:

Date: 11.OCT.2016 11:12:38

48 of 153

Company: Cambium Networks

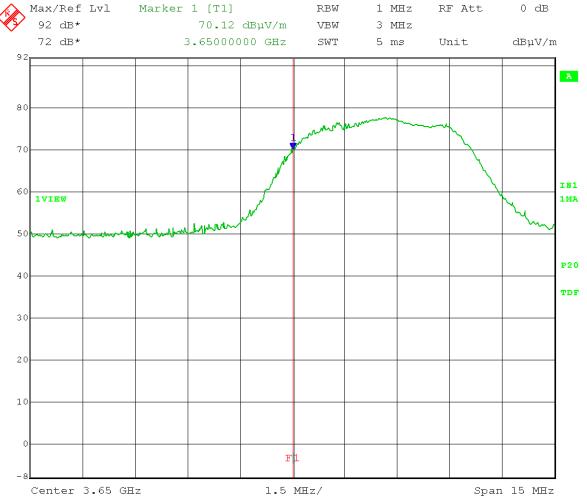
EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A
Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: Transmit = 3652.5 MHz Output power setting: 18 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $70.12 + 20\log(3) - 104.8 = -25.13 \text{ dBm/MHz}$

Horizontal:

Date: 11.OCT.2016 11:04:55

Company: Cambium Networks

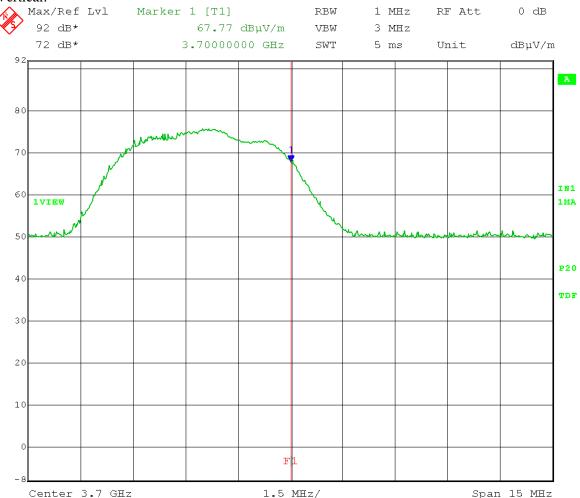
EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A
Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: Transmit = 3697.5 MHzOutput power setting: 18Channel bandwidth: 5 MHzBoth ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $67.77 + 20\log(3) - 104.8 = -27.48 \text{ dBm/MHz}$

Vertical:

Date: 11.OCT.2016 11:22:32

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A
Test: Upper Band-Edge Measurements – Radiated from cabinet

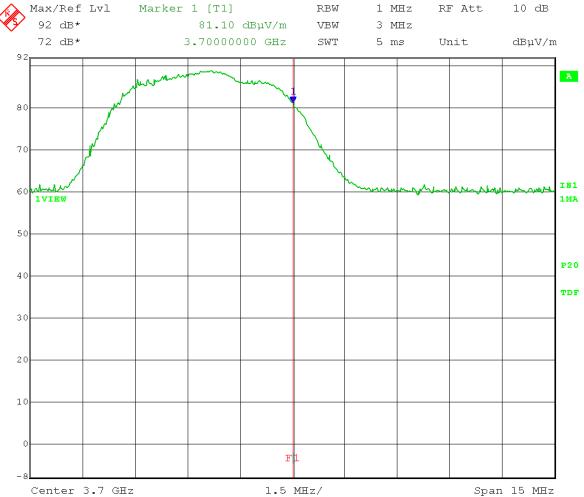
Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3697.5 MHz Output power setting: 18 Channel bandwidth: 5 MHz Both ports active and 50Ω terminated


Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in matters

distance in meters.

Power level at band edge = $81.10 + 20\log(3) - 104.8 = -14.15 \text{ dBm/MHz}$

Horizontal:

Date: 11.OCT.2016 11:27:52

Test Date: 10-20-2016

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements – Radiated from cabinet

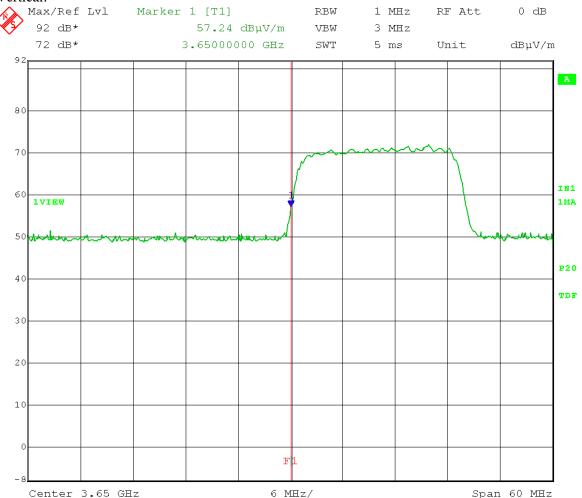
Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25


Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = E(dB μ V/m) + 20log(d) – 104.8 where d is the measurement distance in meters.

Power level at band edge = $57.24 + 20\log(3) - 104.8 = -38.02 \text{ dBm/MHz}$

Vertical:

Date: 20.OCT.2016 08:54:38

Test Date: 10-20-2016

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements – Radiated from cabinet

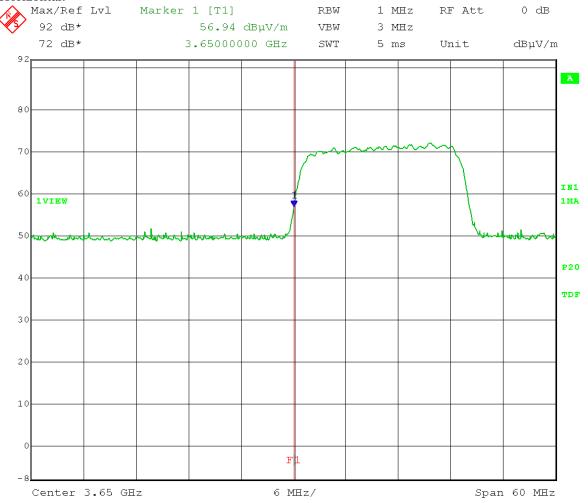
Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3660 MHz Output power setting: 25


Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $56.94 + 20\log(3) - 104.8 = -38.32 \text{ dBm/MHz}$

Horizontal:

Date: 20.OCT.2016 08:50:15

Test Date: 10-20-2016

Company: Cambium Networks

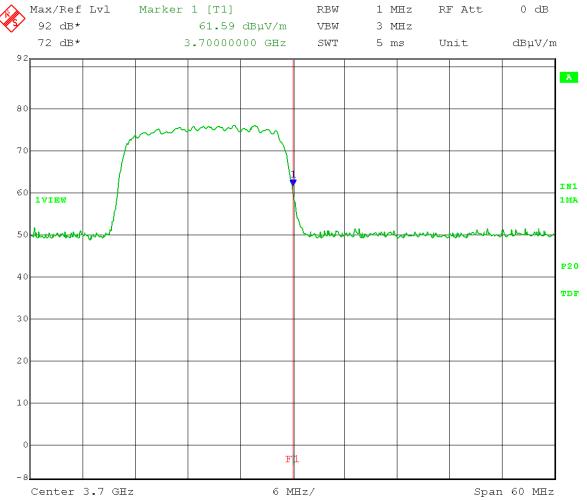
EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Upper Band-Edge Measurements – Radiated from cabinet

Craig B Operator:

Comment: RBW = 1 MHzVBW = 3 MHz

> Detector = PeakSweep = auto couple

Trace = max hold


High Channel: Transmit = 3690 MHz Output power setting: 25 Channel bandwidth: 20 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: 43 + 10log (P) below the channel transmitter power = -13 dBm/MHz $EIRP(dBm) = E(dB\mu V/m) + 20log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $61.59 + 20\log(3) - 104.8 = -33.67 \text{ dBm/MHz}$

Vertical:

20.OCT.2016 09:02:15 Date:

Test Date: 10-20-2016

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F
Test: Upper Band-Edge Measurements – Radiated from cabinet

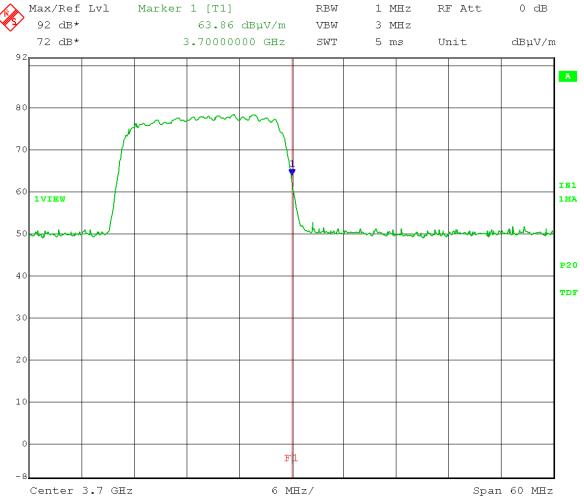
Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

High Channel: Transmit = 3690 MHz Output power setting: 25 Channel bandwidth: 20 MHz Both ports active and 50Ω terminated


Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log{(P)}$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

distance in meters.

Power level at band edge = $63.86 + 20\log(3) - 104.8 = -31.40 \text{ dBm/MHz}$

Horizontal:

Date: 20.OCT.2016 09:08:16

10-19-2016 Test Date:

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

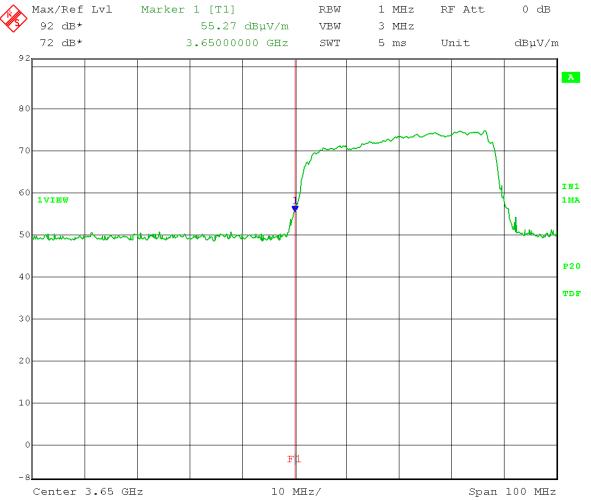
RBW = 1 MHzComment: VBW = 3 MHz

> Detector = PeakSweep = auto couple

Trace = max hold

Low Channel: Transmit = 3670 MHz Output power setting: 24

Channel bandwidth: 40 MHz Both ports active and 50Ω terminated


Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz $EIRP(dBm) = E(dB\mu V/m) + 20log(d) - 104.8$ where d is the measurement

distance in meters.

Power level at band edge = $55.27 + 20\log(3) - 104.8 = -39.99 \text{ dBm/MHz}$

Vertical:

19.OCT.2016 10:42:53 Date:

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Lower Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

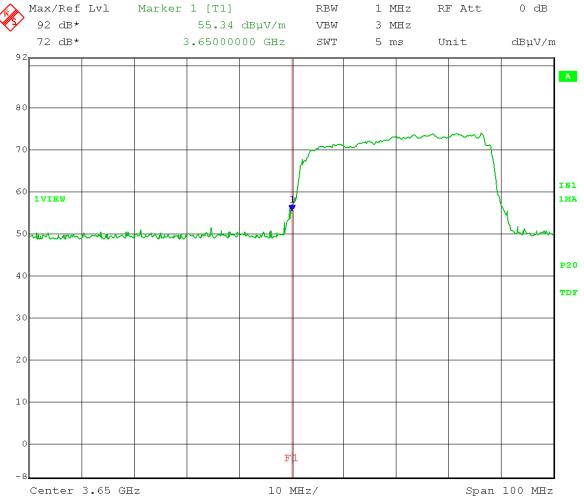
Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: Transmit = 3670 MHz Output power setting: 24

Channel bandwidth: 40 MHz


Both ports active and 50Ω terminated

Lower band edge frequency = 3650 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $55.34 + 20\log(3) - 104.8 = -39.92 \text{ dBm/MHz}$

Horizontal:

Date: 19.OCT.2016 10:37:46

10-19-2016 Test Date:

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F Test: Upper Band-Edge Measurements – Radiated from cabinet

Craig B Operator:

Comment: RBW = 1 MHzVBW = 3 MHz

> Detector = PeakSweep = auto couple

Trace = max hold

High Channel: Transmit = 3680 MHz Output power setting: 24 Channel bandwidth: 40 MHz Both ports active and 50Ω terminated


Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz $EIRP(dBm) = E(dB\mu V/m) + 20log(d) - 104.8$ where d is the measurement

distance in meters.

Power level at band edge = $59.04 + 20\log(3) - 104.8 = -36.22 \text{ dBm/MHz}$

Vertical:

19.OCT.2016 10:50:09 Date:

Company: Cambium Networks

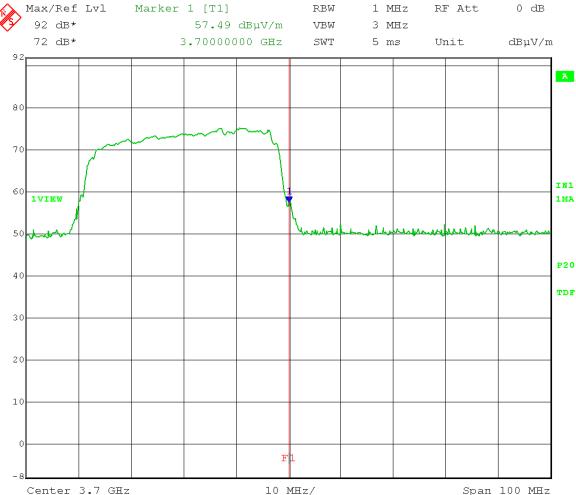
EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F
Test: Upper Band-Edge Measurements – Radiated from cabinet

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: Transmit = 3680 MHz Output power setting: 24 Channel bandwidth: 40 MHz Both ports active and 50Ω terminated

Upper band edge frequency = 3700 MHz

Limit: $43 + 10\log(P)$ below the channel transmitter power = -13 dBm/MHz EIRP(dBm) = $E(dB\mu V/m) + 20\log(d) - 104.8$ where d is the measurement distance in meters.

Power level at band edge = $57.49 + 20\log(3) - 104.8 = -37.77 \text{ dBm/MHz}$

Horizontal:

Date: 19.OCT.2016 10:54:49

Company: Cambium Networks

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B6.0 Transmitter Unwanted Emissions – RF conducted

Rule Part: FCC Part 90.1323

FCC Part 2.1051

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 6.0 – at Antenna Terminals

The EUT was connected to a spectrum analyzer through a cable and 20 dB attenuator. The output power set to the same level as was used in the Transmitter Output Power test.

Limit: FCC Part 90.1323

The power of any emission outside the frequency band 3650-3700 MHz shall be attenuated below the transmitter power (P) by at least 43 + 10 log₁₀ (P) dB, where

P is measured in watts.

Sample calculation: Measured mean output power of one port = 22.04 dBm.

22.04 dBm +17 dBi antenna gain + 3 dB (because there are 2 output ports)

= 42.04 dBm = 15.996 Watts

Limit (dBc) = $43 + 10 \log (15.996) = 55.04 dB$

42.04 dBm - 55.04 dB = -13 dBm

Results: Compliant

Notes: This test was done with 5, 20, and 40 MHz channel bandwidth settings.

Only tested QPSK modulation mode as determined worst case by Cambium Networks. Only tested output port A as determined worst case by Cambium

Networks.

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

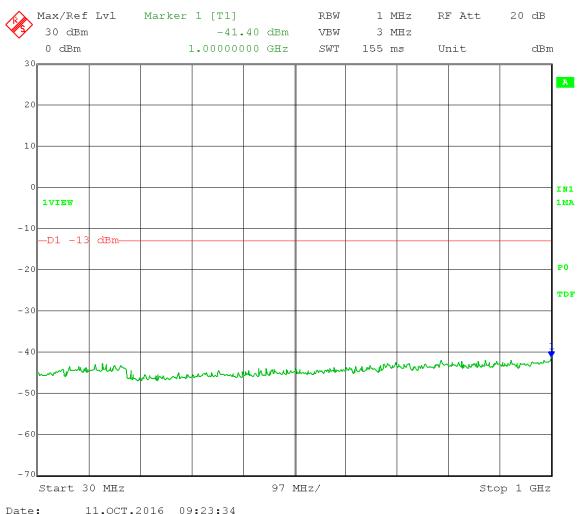
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3652.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.0CT.2016 09:23:34

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

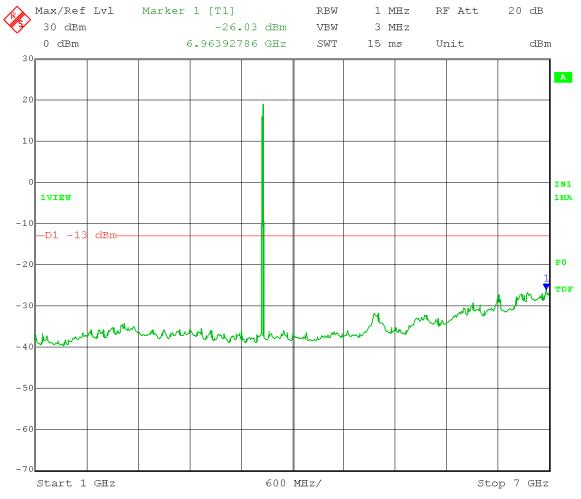
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3652.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.0CT.2016 09:15:38

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

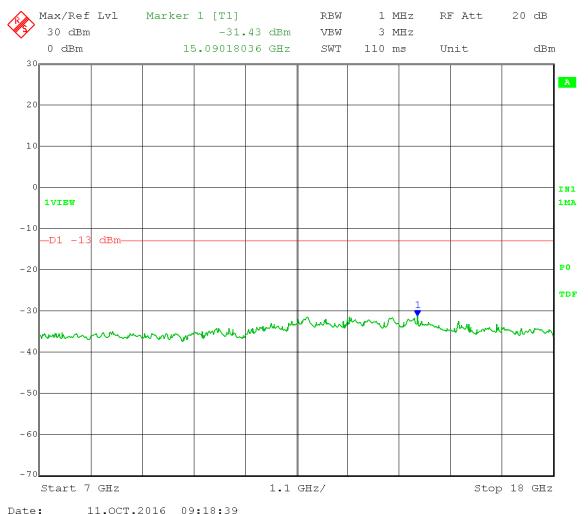
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3652.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.0CT.2016 09:18:39

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

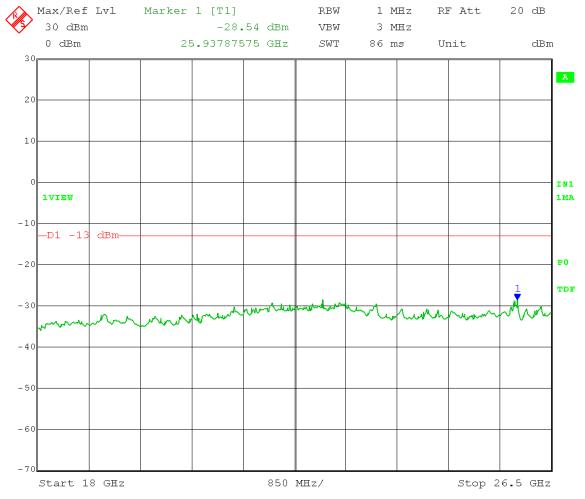
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3652.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.0CT.2016 09:20:31

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

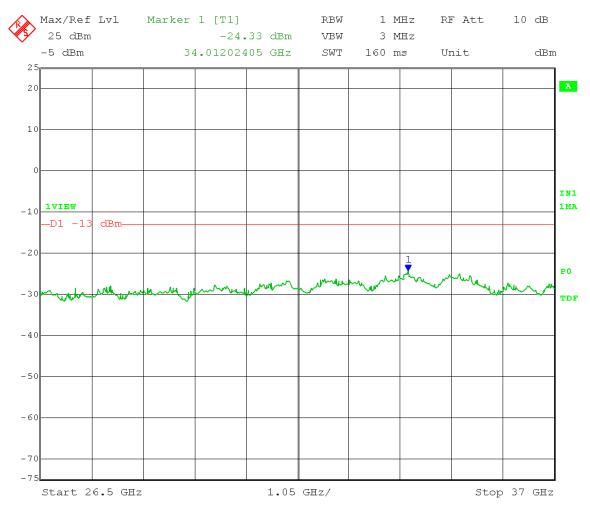
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3652.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.0CT.2016 09:22:06

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.0CT.2016 09:37:59

10-11-2016 Test Date:

Company: **Cambium Networks**

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

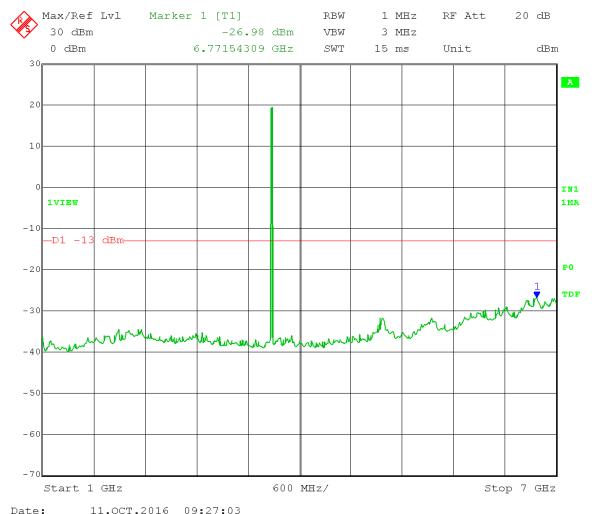
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHzVBW = 3 MHz

> Detector = PeakSweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

11.OCT.2016 09:27:03

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

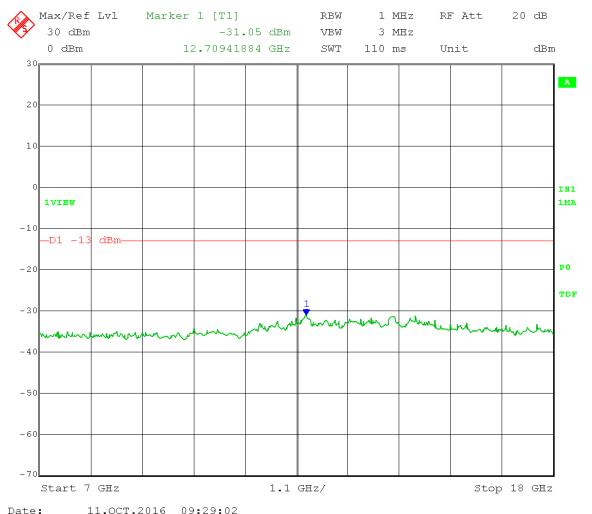
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 11.0CT.2016 09:29:02

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

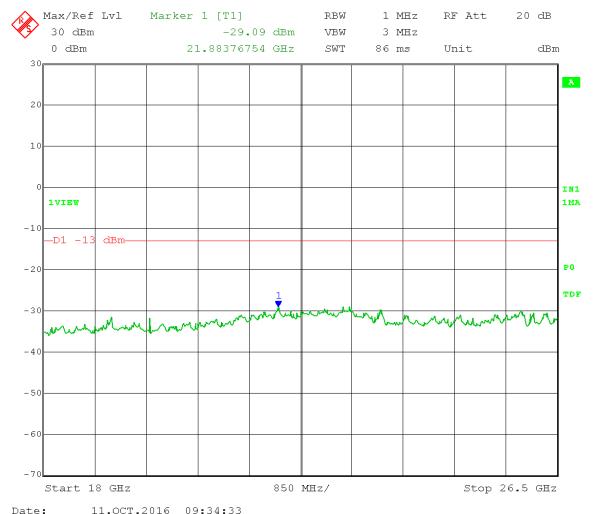
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.0CT.2016 09:34:33

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 11.0CT.2016 09:36:48

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

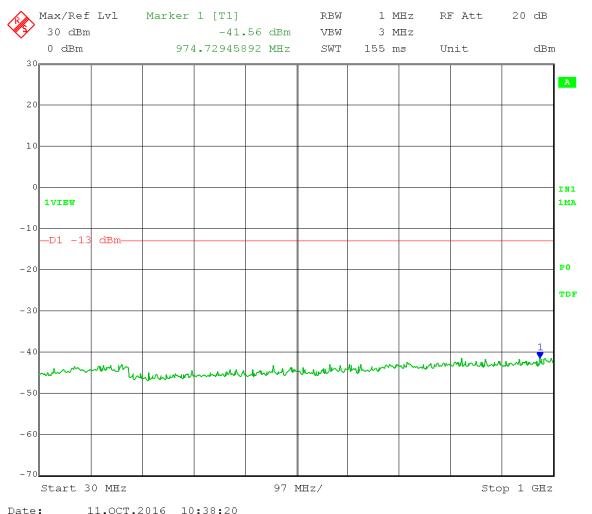
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 11.0CT.2016 10:38:20

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

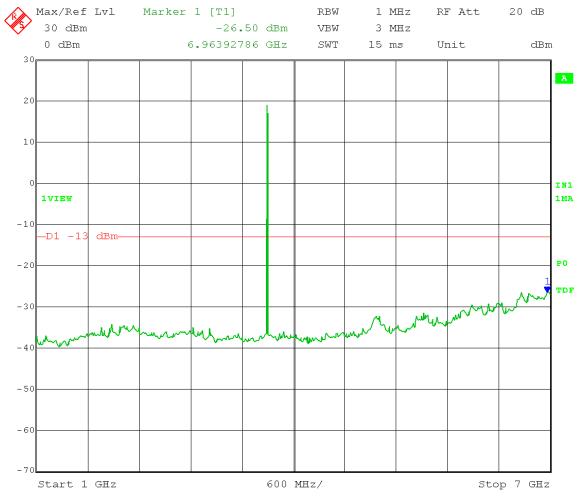
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 11.OCT.2016 10:32:02

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

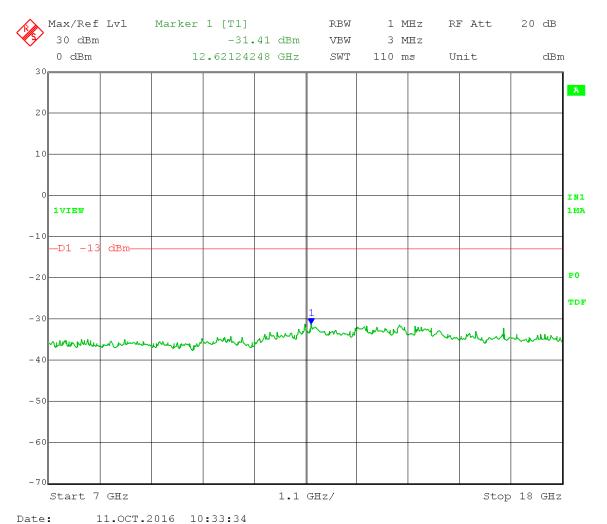
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

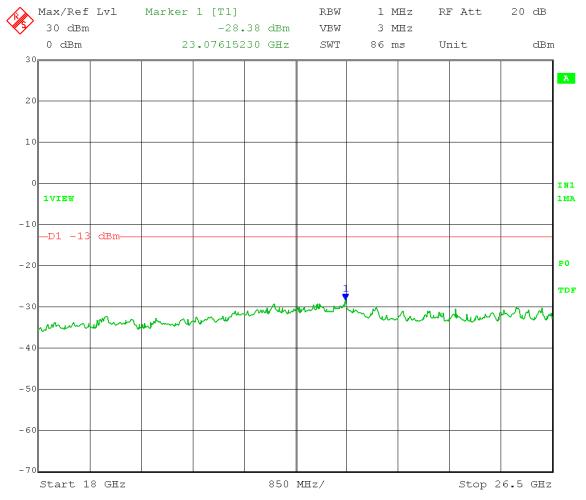
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3697.5 MHz Output power setting: 18

Channel bandwidth: 5 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 11.0CT.2016 10:34:55

10-11-2016 Test Date:

Company: **Cambium Networks**

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

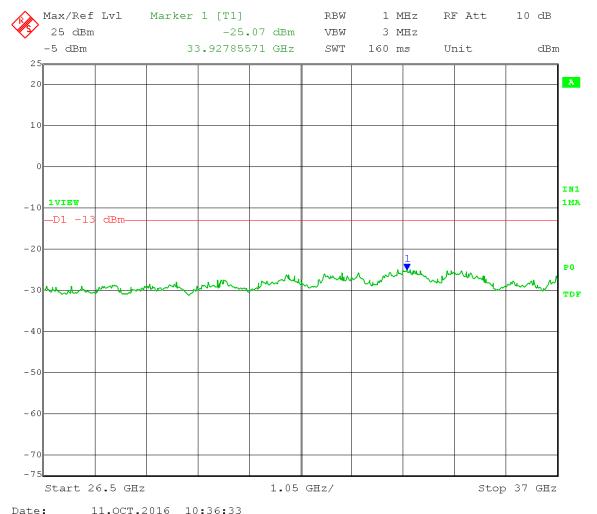
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHzVBW = 3 MHz

> Detector = PeakSweep = auto couple

Trace = max hold


High Channel: 3697.5 MHz Output power setting: 18

Output port: A Channel bandwidth: 5 MHz

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

11.OCT.2016 10:36:33

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

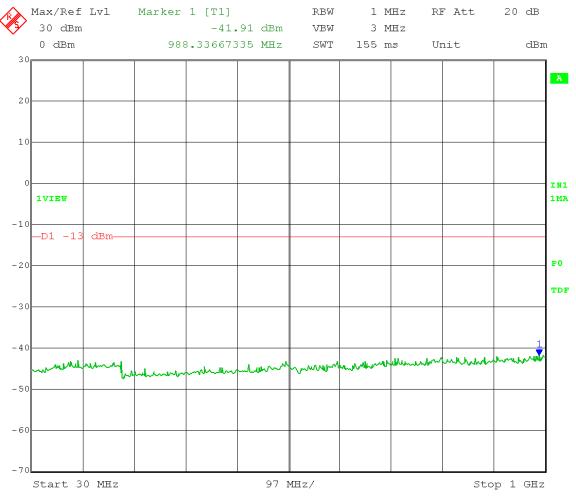
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3660 MHz Output power setting: 22

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 19.0CT.2016 14:19:19

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Low Channel: 3660 MHz Output power setting: 22

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 19.0CT.2016 14:17:54

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

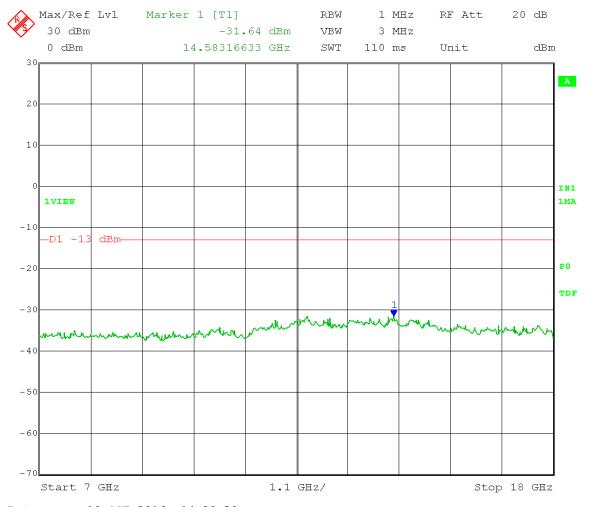
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3660 MHz Output power setting: 22

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 19.OCT.2016 14:20:58

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

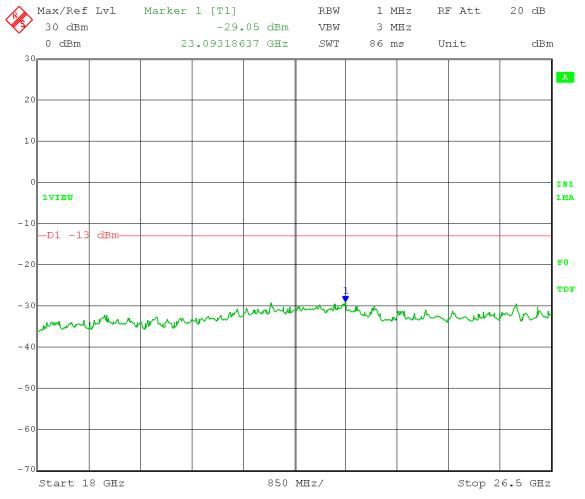
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3660 MHz Output power setting: 22

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 19.0CT.2016 14:22:24

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

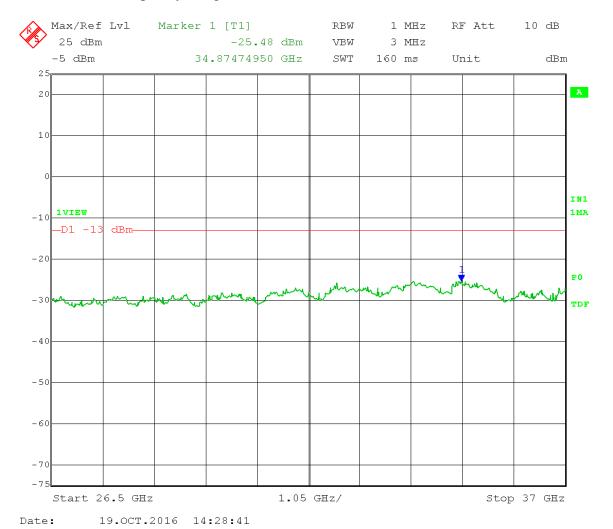
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3660 MHz Output power setting: 22

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

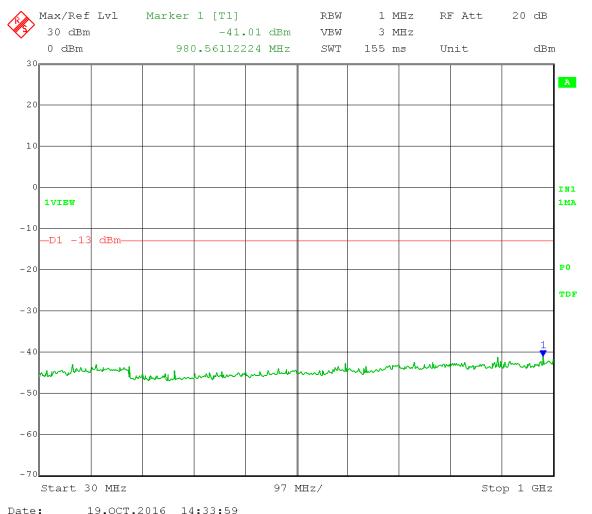
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 19.0CT.2016 14:33:59

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

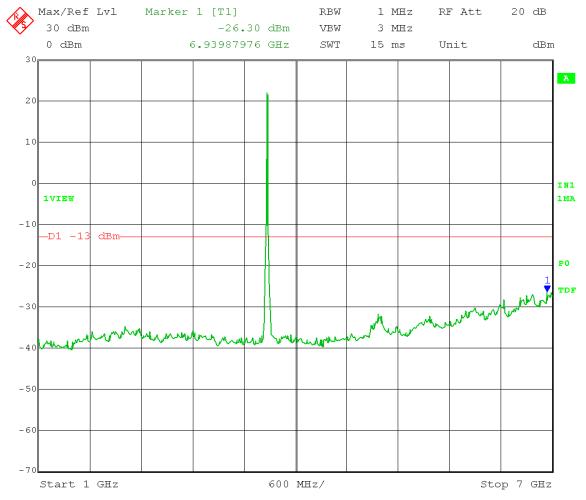
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 19.OCT.2016 14:32:30

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

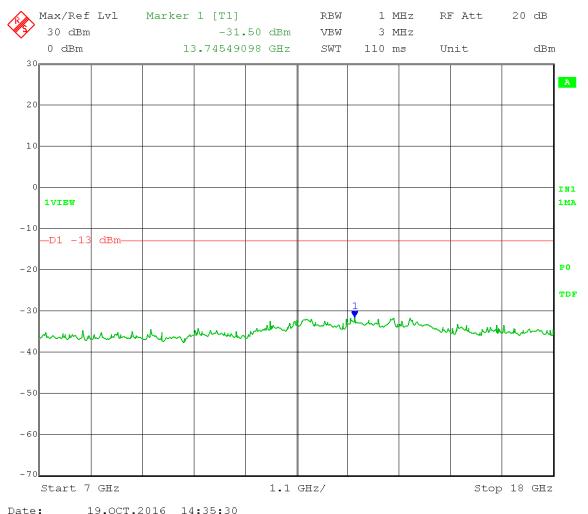
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 19.0CT.2016 14:35:30

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

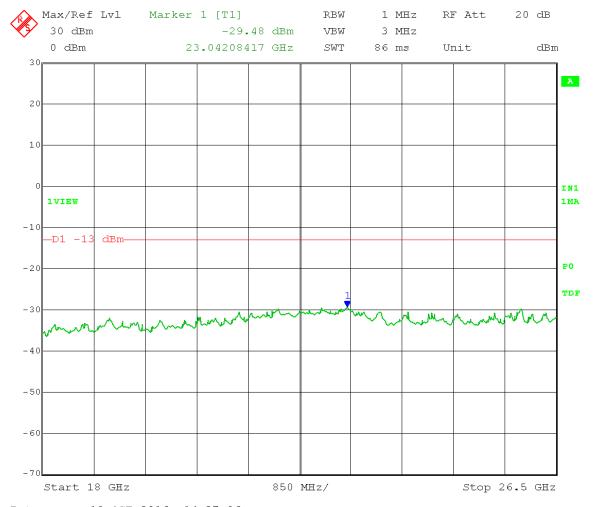
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 19.OCT.2016 14:37:06

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

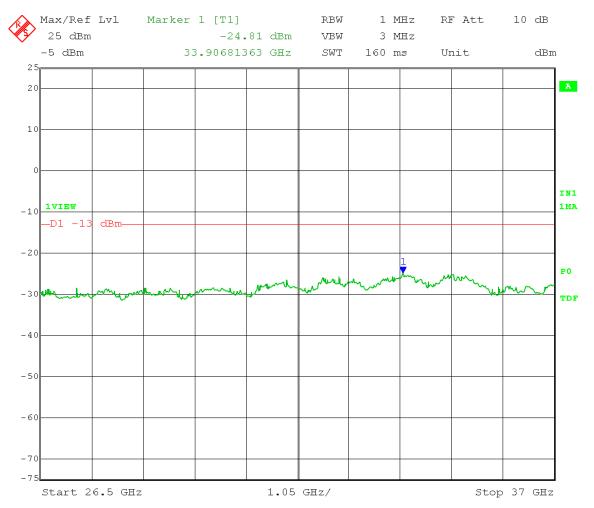
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 19.0CT.2016 14:38:43

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

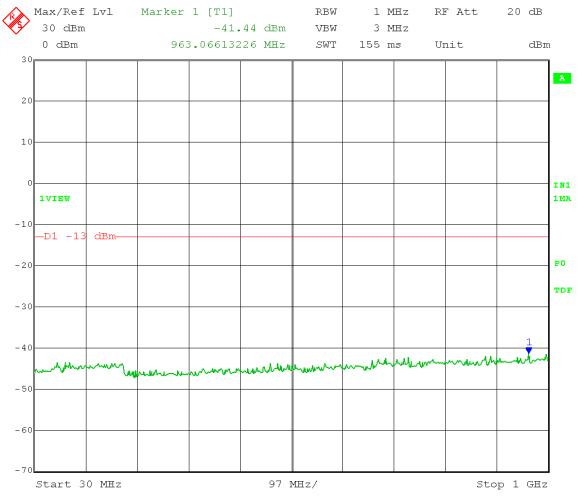
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 19.0CT.2016 14:43:28

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

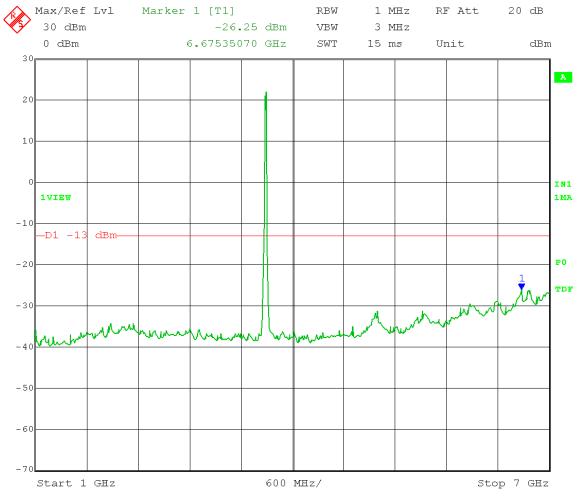
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 19.0CT.2016 14:42:12

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

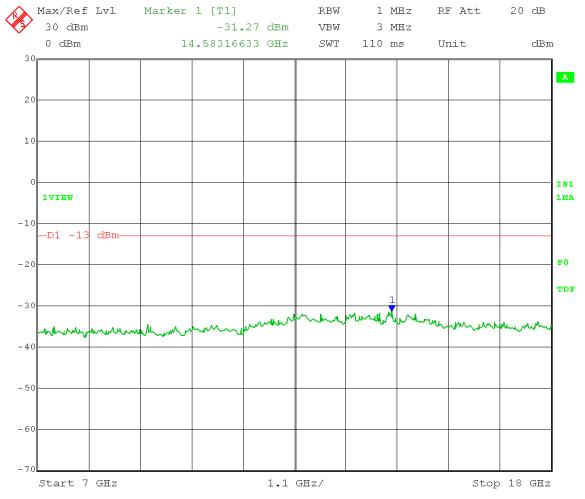
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 19.0CT.2016 14:44:47

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

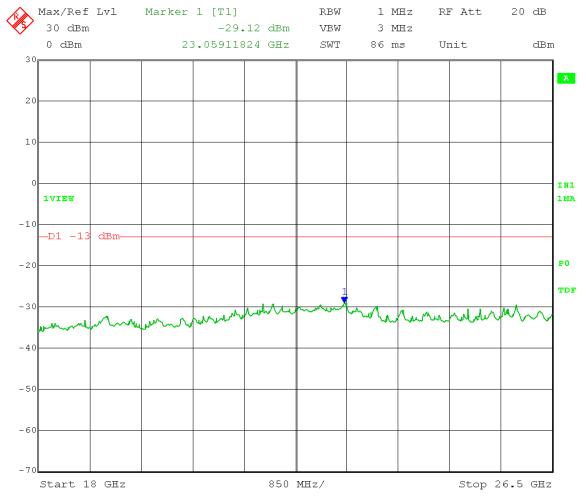
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 19.0CT.2016 14:46:09

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

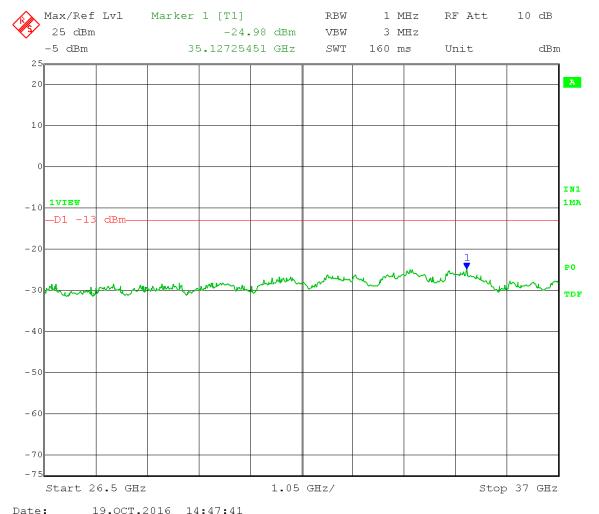
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3690 MHz Output power setting: 25

Channel bandwidth: 20 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 19.0CT.2016 14:47:41

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

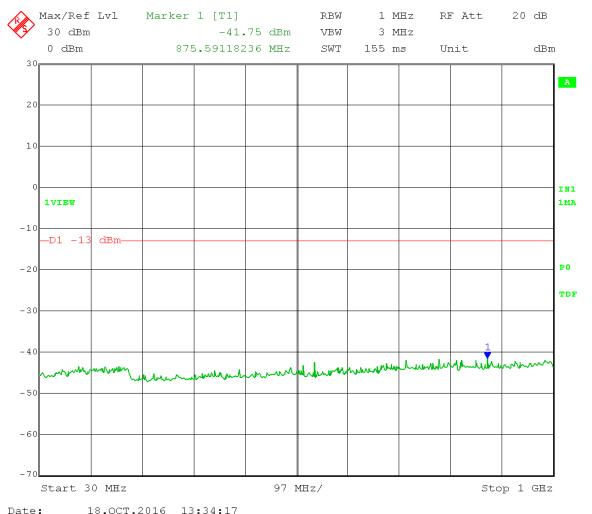
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3670 MHz Output power setting: 11

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 18.OCT.2016 13:34:17

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

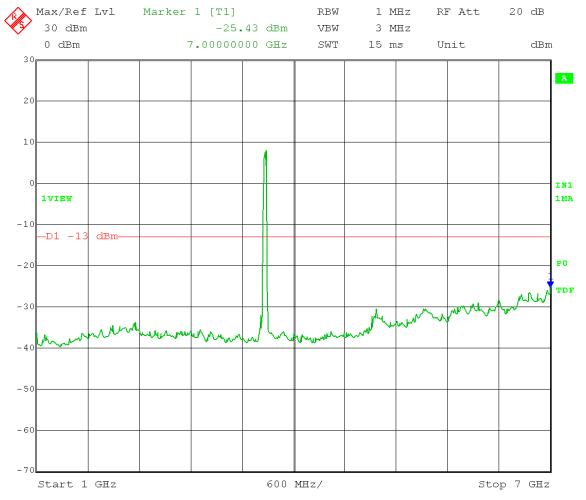
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3670 MHz Output power setting: 11

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 18.OCT.2016 13:33:18

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

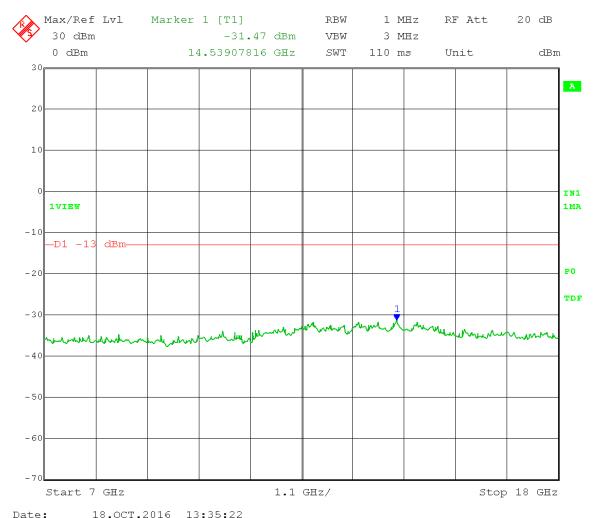
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3670 MHz Output power setting: 11

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

10.001.2010 13.33.22

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

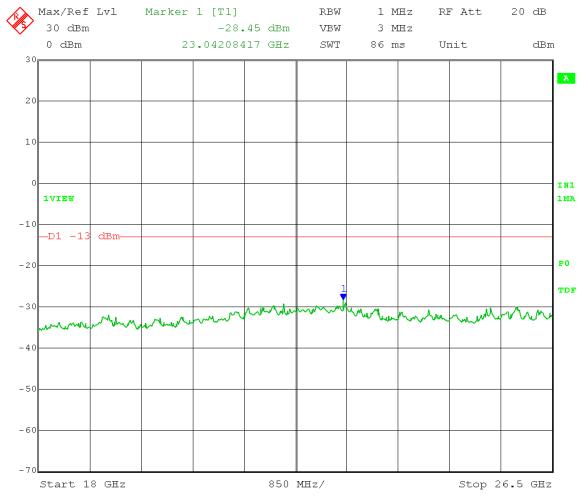
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3670 MHz Output power setting: 11

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 18.OCT.2016 13:36:19

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

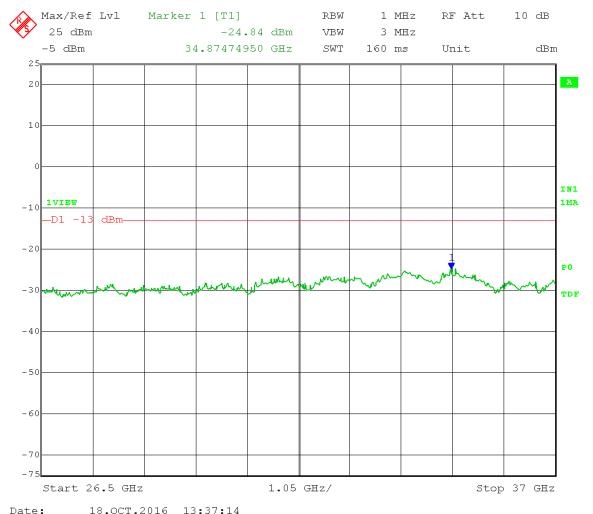
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Low Channel: 3670 MHz Output power setting: 11

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 18.OCT.2016 13:37:14

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

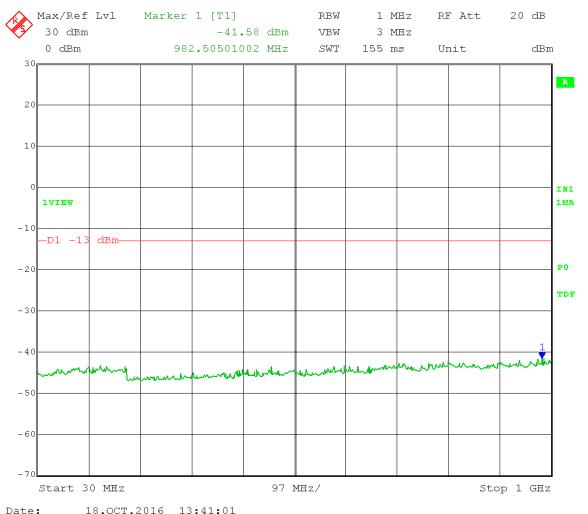
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 24

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 18.OCT.2016 13:41:01

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

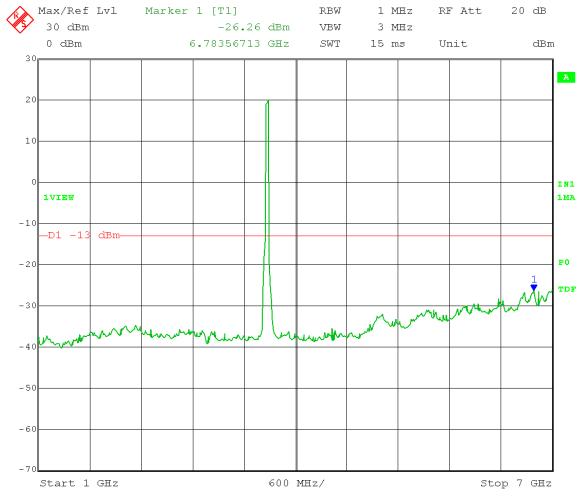
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 24

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 18.OCT.2016 13:42:20

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

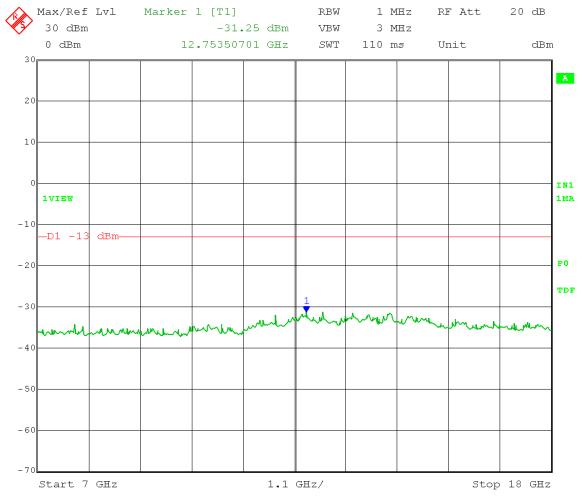
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


Mid Channel: 3675 MHz Output power setting: 24

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 18.OCT.2016 13:43:35

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 24

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 18.OCT.2016 13:44:41

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold

Mid Channel: 3675 MHz Output power setting: 24

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 18.OCT.2016 13:40:02

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

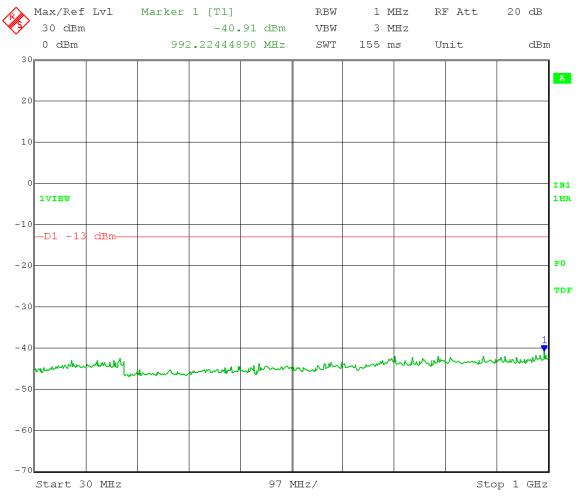
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3680 MHz Output power setting: 13

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 30 – 1000 MHz

Date: 18.OCT.2016 13:02:11

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

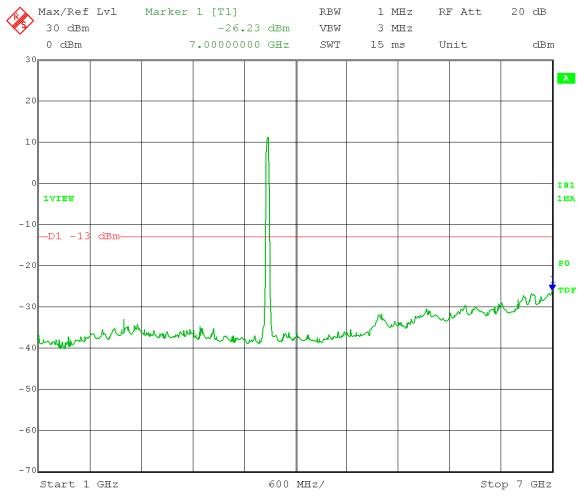
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3680 MHz Output power setting: 13

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 1 - 7 GHz

Date: 18.OCT.2016 13:00:48

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

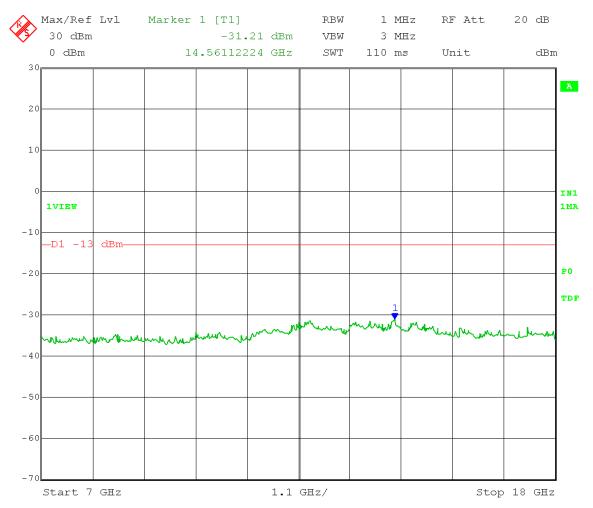
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3680 MHz Output power setting: 13

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 7 – 18 GHz

Date: 18.OCT.2016 13:03:45

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

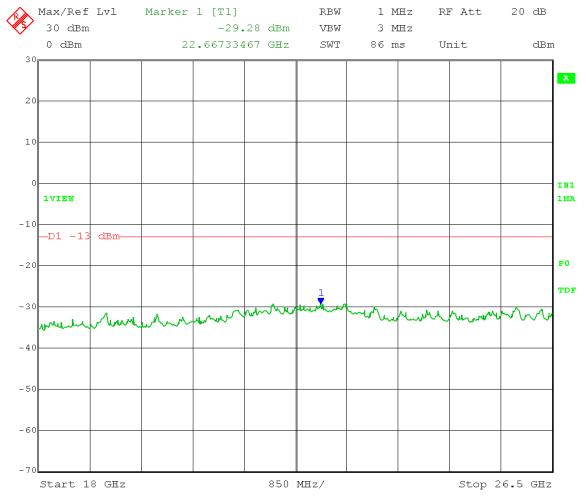
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3680 MHz Output power setting: 13

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 18 – 26.5 GHz

Date: 18.OCT.2016 13:05:08

Company: Cambium Networks

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45117F

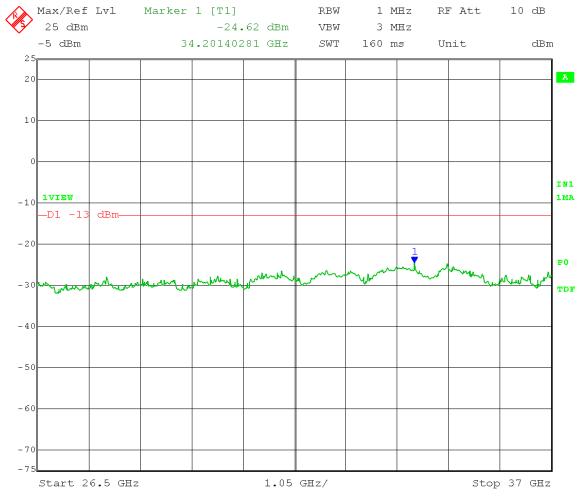
Test: Transmitter Unwanted Emissions – RF Conducted

Operator: Craig B

Comment: RBW = 1 MHz VBW = 3 MHz

Detector = Peak Sweep = auto couple

Trace = max hold


High Channel: 3680 MHz Output power setting: 13

Channel bandwidth: 40 MHz Output port: A

Limit: 43 + 10log (P) below the channel transmitter power

= -13 dBm/MHz

Frequency Range: 26.5 – 37 GHz

Date: 18.OCT.2016 13:06:13

Company: Cambium Networks

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B7.0 Transmitter Unwanted Emissions – Radiated With 50 Ohm terminations on antenna ports (cabinet radiation)

Rule Part: FCC Part 90.1323

FCC Part 2.1053

Test Procedure: FCC KDB 971168 D01: Power Meas License Digital Systems v02r02

Section 5.8 – Radiated measurements

Limit: FCC Part 90.1323

The power of any emission outside the frequency band 3650-3700 MHz shall be attenuated below the transmitter power (P) by at least 43 + 10 log₁₀ (P) dB, where

P is measured in watts.

Sample calculation: Measured mean output power of one port = 22.04 dBm.

22.04 dBm +17 dBi antenna gain + 3 dB (because there are 2 output ports)

= 42.04 dBm = 15.996 Watts

Limit (dBc) = $43 + 10 \log (15.996) = 55.04 dB$

42.04 dBm - 55.04 dB = -13 dBm

Results: Compliant

Notes: This test was done with a 5 MHz channel bandwidth setting (worst-case).

Only tested QPSK modulation mode as determined worst case by Cambium

Networks. Both ports were active during this test.

FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i SM/BH 3.65 GHz

Manufacturer: Cambium Networks Operating Condition: 72 deg. F; 67% R.H.

Test Site: DLS O.F. Site 3

Operator: Craig B

Test Specification: Low, Mid, High channels

Comment: Transmitter Emissions; 50 Ohm terminations on ant

Date: 09-02-2016

TEXT: "Vert 3 meters"

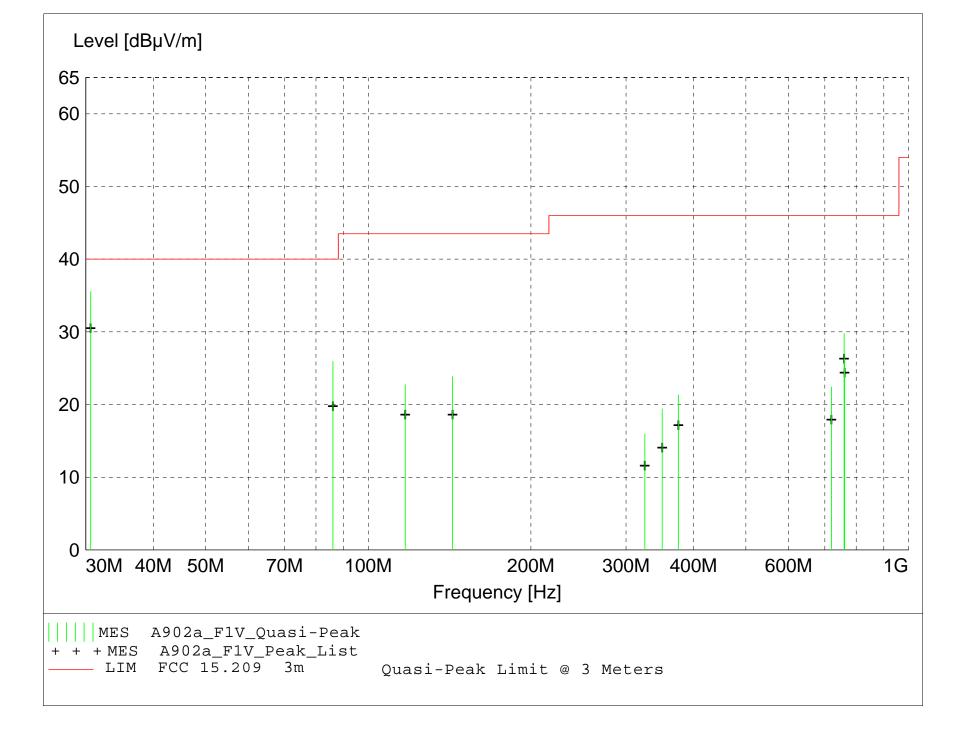
Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A902a_F1V_Final"

9/2/2016 10:4	9/2/2016 10:46AM												
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment			
		Factor	Loss	Level			Ant.	Angle	Detector				
MHz	dΒμV	dΒμV/m	dВ	dBµV/m	dBμV/m	dВ	m	deg					
30.630000	48.42	11.97	-24.8	35.6	40.0	4.4	1.00	90	QUASI-PEAK	broadband			
86.030000	42.35	7.41	-23.8	25.9	40.0	14.1	1.00	0	QUASI-PEAK	None			
760.000000	28.65	21.30	-20.2	29.8	46.0	16.2	1.00	0	QUASI-PEAK	None			
143.240000	35.09	12.00	-23.3	23.8	43.5	19.7	1.00	340	QUASI-PEAK	None			
761.600000	25.11	21.30	-20.1	26.3	46.0	19.7	1.00	10	QUASI-PEAK	None			
117.070000	33.22	12.90	-23.4	22.7	43.5	20.8	1.00	100	QUASI-PEAK	None			
720.000000	21.25	21.30	-20.1	22.4	46.0	23.6	1.00	10	QUASI-PEAK	None			
375.000000	27.99	15.00	-21.7	21.3	46.0	24.7	1.50	180	QUASI-PEAK	None			
349.990000	26.73	14.70	-22.0	19.4	46.0	26.6	1.70	340	QUASI-PEAK	None			
324.990000	23.56	14.40	-22.0	15.9	46.0	30.1	1.50	180	QUASI-PEAK	None			

FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i SM/BH 3.65 GHz

Manufacturer: Cambium Networks
Operating Condition: 72 deg. F; 67% R.H.
Test Site: DLS O.F. Site 3

Operator: Craig B

Test Specification: Low, Mid, High channels

Comment: Transmitter Emissions; 50 Ohm terminations on ant

Date: 09-02-2016

TEXT: "Horz 3 meters"

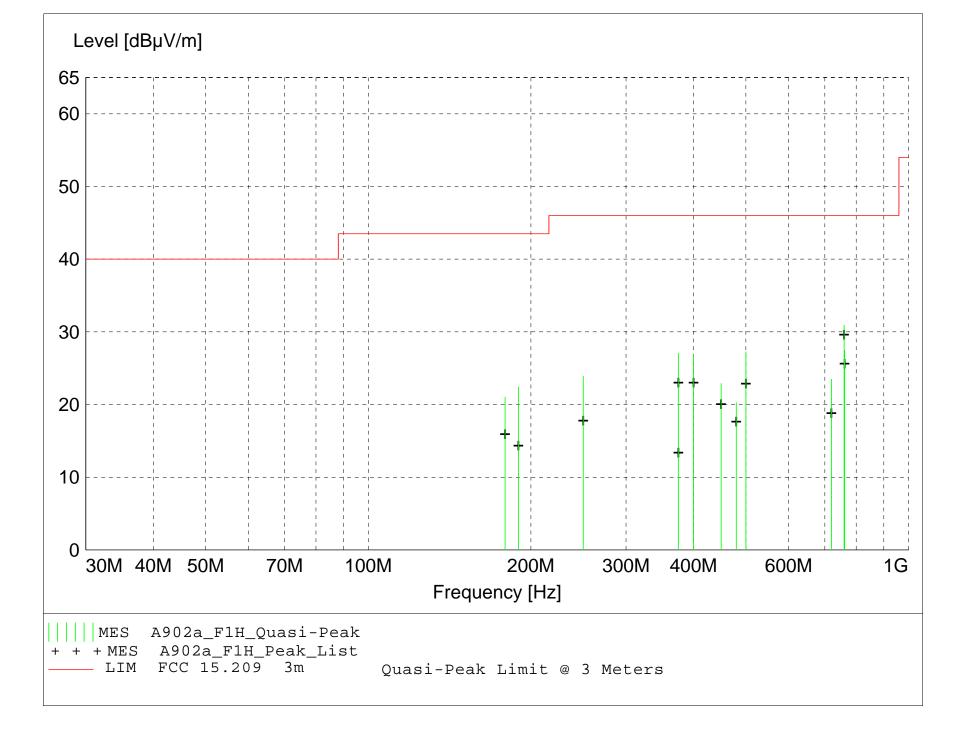
Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A902a_F1H_Final"

9/2/2016 11:0	9/2/2016 11:03AM										
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment	
		Factor	Loss	Level			Ant.	Angle	Detector		
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg			
T.CO. 000000	00 01	01 00	00.0	20.0	4.5.0		0.00	005			
760.000000	29.81	21.30	-20.2	30.9	46.0	15.1	2.00	225	QUASI-PEAK	None	
761.600000	26.27	21.30	-20.1	27.4	46.0	18.6	1.80	180	QUASI-PEAK	None	
500.000000	30.65	17.80	-21.2	27.3	46.0	18.7	1.00	80	QUASI-PEAK	None	
374.990000	33.73	15.00	-21.7	27.1	46.0	18.9	1.00	60	QUASI-PEAK	None	
400.000000	32.46	15.90	-21.5	26.8	46.0	19.2	1.00	75	QUASI-PEAK	None	
189.620000	27.65	17.52	-22.7	22.4	43.5	21.1	1.70	170	QUASI-PEAK	broadband	
249.990000	34.21	12.10	-22.4	23.9	46.0	22.1	1.50	20	QUASI-PEAK	None	
179.170000	27.81	16.12	-22.9	21.0	43.5	22.5	1.60	350	QUASI-PEAK	broadband	
720.000000	22.32	21.30	-20.1	23.5	46.0	22.5	2.00	190	QUASI-PEAK	None	
450.000000	27.33	16.80	-21.2	22.9	46.0	23.1	1.00	80	QUASI-PEAK	None	
375.000000	28.60	15.00	-21.7	21.9	46.0	24.1	1.40	150	QUASI-PEAK	None	
479.990000	24.57	17.10	-21.4	20.3	46.0	25.7	1.00	90	QUASI-PEAK	None	

RSS-197 & FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Manufacturer: Cambium Networks
Operating Condition: 71 deg C 49% R.H.

Test Site: DLS O.F. G1
Operator: Craig B; #8420

Test Specification: Transmitter Spurious; with 50 Ohm terminations on ant ports

Comment: 5 MHz ch BW; Tx 50.2% @ pwr setting 18 L,M,H channels

Date: 10-11-2016

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

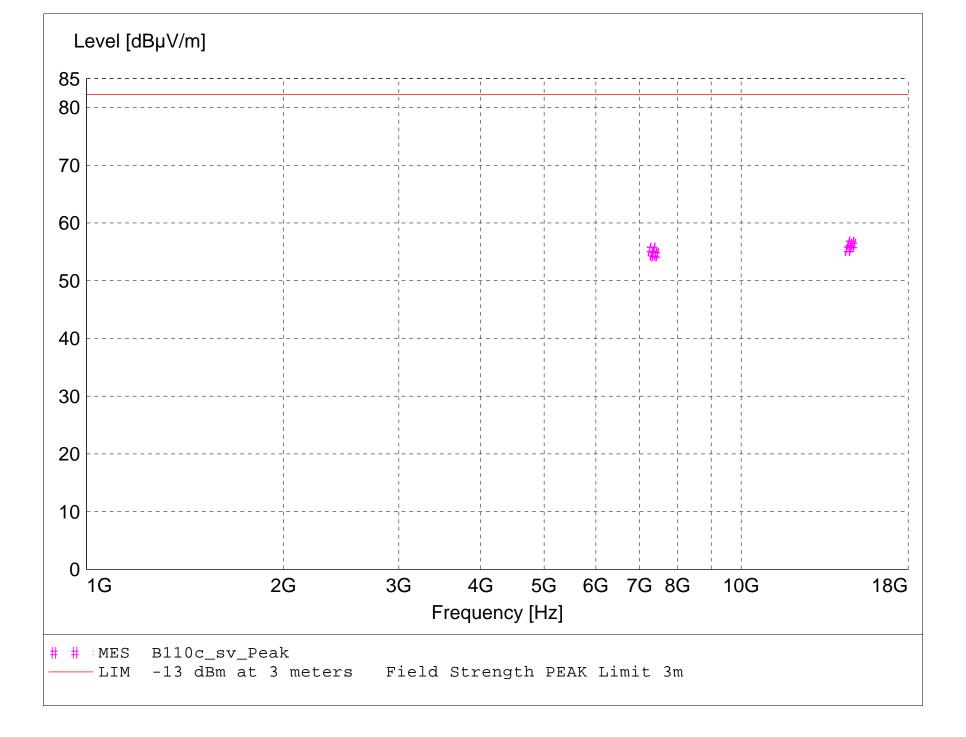
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "B110c_sv_Final"

14PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	$\text{dB}\mu\text{V}/\text{m}$	dB	$\text{dB}\mu\text{V}/\text{m}$	$\text{dB}\mu\text{V/m}$	dB	m	deg		
50 61	12 22	-26.2	56 5	02 2	25 0	2 16	212	MAY DEAK	Mid ch
51.13	41.35	-36.3	56.I	82.3	26.1	2.10	53	MAX PEAK	High ch
49.96	41.88	-36.4	55.5	82.3	26.8	2.15	307	MAX PEAK	Low ch
54.30	36.43	-35.3	55.4	82.3	26.8	2.21	0	MAX PEAK	Low ch
53.36	36.52	-35.2	54.7	82.3	27.6	2.05	9	MAX PEAK	Mid ch
52.96	36.61	-35.1	54.5	82.3	27.8	1.64	345	MAX PEAK	High ch
	Level dBµV 50.61 51.13 49.96 54.30 53.36	Level Antenna Factor dBμV dBμV/m 50.61 42.22 51.13 41.35 49.96 41.88 54.30 36.43 53.36 36.52	Level Antenna Factor dBμV System Loss dBμV/m 50.61 42.22 -36.3 degree -36.3 degree -36.3 degree -36.3 degree -36.3 degree -36.4 degree -36.4 degree -36.3 degree -35.3 degree -35.3 degree -35.3 degree -35.2 degree -35.2 degree -35.2 degree -36.4 degree -3	Level Antenna System Total βμν Total Level δβμν dβμν/m dβμν/m 50.61 42.22 -36.3 56.5 51.13 41.35 -36.3 56.1 49.96 41.88 -36.4 55.5 54.30 36.43 -35.3 55.4 53.36 36.52 -35.2 54.7	Level Antenna System Total Limit dBμV dBμV/m dBμV/m dBμV/m dBμV/m 50.61 42.22 -36.3 56.5 82.3 51.13 41.35 -36.3 56.1 82.3 49.96 41.88 -36.4 55.5 82.3 54.30 36.43 -35.3 55.4 82.3 53.36 36.52 -35.2 54.7 82.3	Level Antenna Factor dBμV System Level dBμV/m Total dBμV/m Limit dBμV/m Margin dBμV/m 50.61 42.22 -36.3 56.5 82.3 25.8 51.13 41.35 -36.3 56.1 82.3 26.1 49.96 41.88 -36.4 55.5 82.3 26.8 54.30 36.43 -35.3 55.4 82.3 26.8 53.36 36.52 -35.2 54.7 82.3 27.6	Level Antenna Factor dBμV System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 50.61 42.22 -36.3 56.5 82.3 25.8 2.16 51.13 41.35 -36.3 56.1 82.3 26.1 2.10 49.96 41.88 -36.4 55.5 82.3 26.8 2.15 54.30 36.43 -35.3 55.4 82.3 26.8 2.21 53.36 36.52 -35.2 54.7 82.3 27.6 2.05	Level Antenna System Total Limit Margin Height EuT dBμV dBμV/m dBμV/m	Level Antenna Factor dBμV/m System Loss Level dBμV/m Total dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT Final Angle deg 50.61 42.22 -36.3 56.5 82.3 25.8 2.16 312 MAX PEAK Angle deg 51.13 41.35 -36.3 56.1 82.3 26.1 2.10 53 MAX PEAK Angle deg 49.96 41.88 -36.4 55.5 82.3 26.8 2.15 307 MAX PEAK Angle deg 54.30 36.43 -35.3 55.4 82.3 26.8 2.21 0 MAX PEAK Angle deg 53.36 36.52 -35.2 54.7 82.3 27.6 2.05 9 MAX PEAK Angle deg

RSS-197 & FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Manufacturer: Cambium Networks
Operating Condition: 71 deg C 43% R.H.

Test Site: DLS O.F. G1
Operator: Craig B; #8420

Test Specification: Transmitter Spurious; with 50 Ohm terminations on ant ports

Comment: 5 MHz ch BW; Tx 50.2% @ pwr setting 18 L,M,H channels

Date: 10-13-2016

TEXT: "Vert 1 meters"

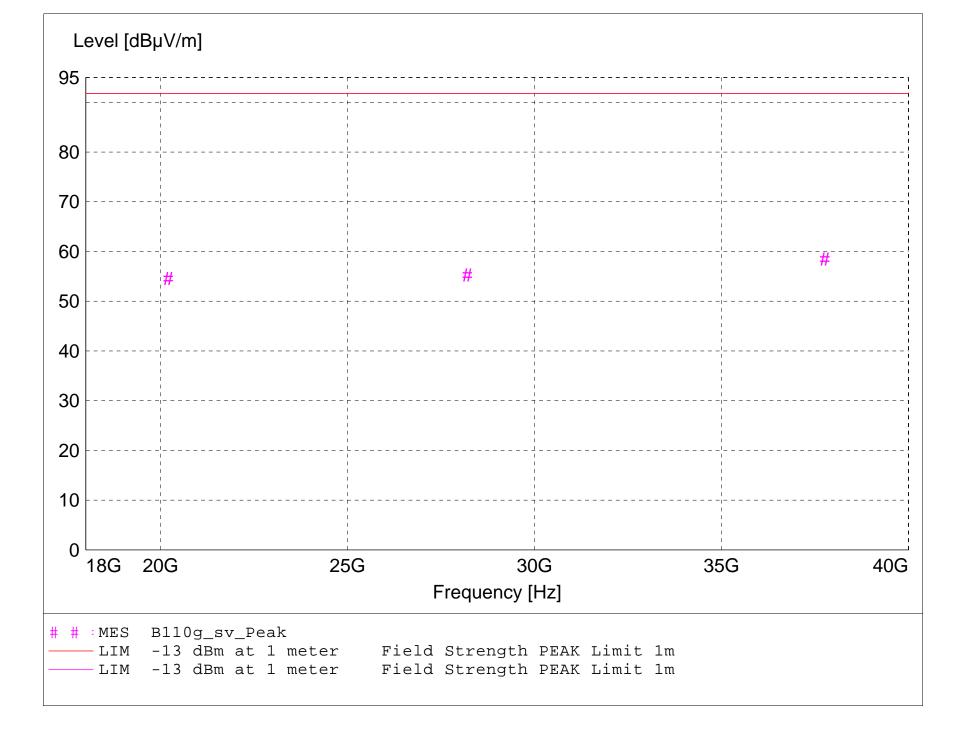
Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "B110g_sv_Final"

10/13/2016 11:	15AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	$\text{dB}\mu\text{V}/\text{m}$	dBμV/m	dB	m	deg		
37761.600000	61.01	41.50	-44.0	58.5	91.8	33.3	1.50	90	MAX PEAK	noise floor
28201.200000	61.01	40.43	-46.2	55.3	91.8	36.5	1.50	180	MAX PEAK	noise floor
20205.200000	65.47	40.49	-51.4	54.6	91.8	37.2	1.50	135	MAX PEAK	noise floor

RSS-197 & FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Manufacturer: Cambium Networks
Operating Condition: 71 deg C 49% R.H.

Test Site: DLS O.F. G1
Operator: Craig B; #8420

Test Specification: Transmitter Spurious; with 50 Ohm terminations on ant ports

Comment: 5 MHz ch BW; Tx 50.2% @ pwr setting 18 L,M,H channels

Date: 10-11-2016

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

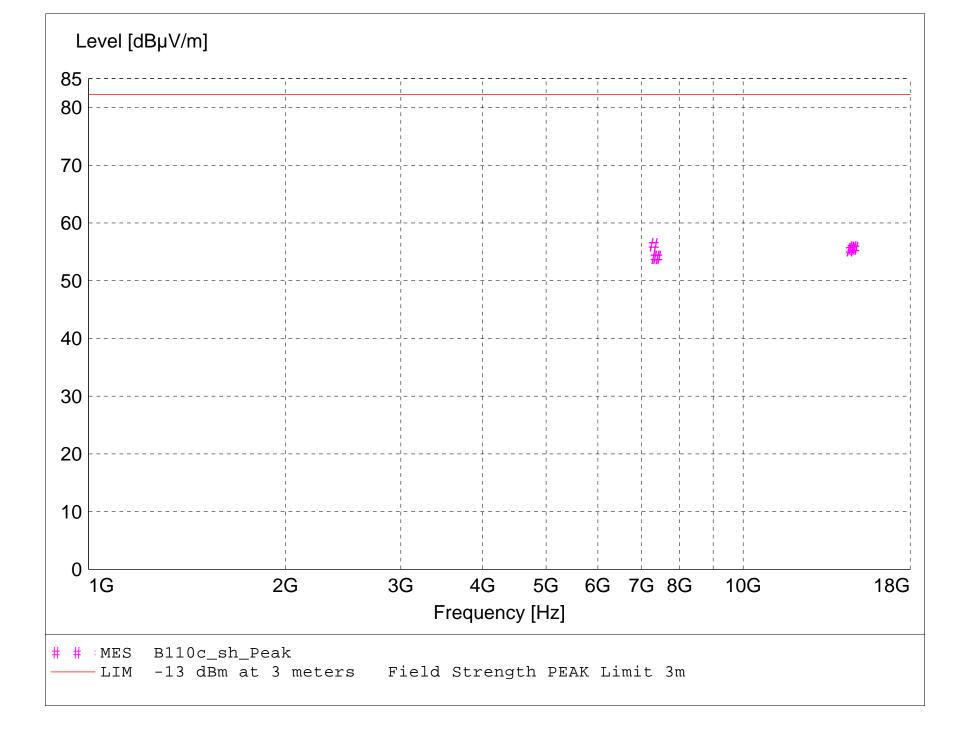
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "B110c_sh_Final"

10/11/2016 2	:13PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
7305.000000	55.12	36.43	-35.3	56.2	82.3	26.0	1.93	136	MAX PEAK	Low ch
14700.010000	49.82	42.22	-36.3	55.7	82.3	26.6	1.71	139	MAX PEAK	Mid ch
14790.080000	50.61	41.35	-36.3	55.6	82.3	26.6	1.50	143	MAX PEAK	High ch
14610.020000	49.82	41.88	-36.4	55.3	82.3	26.9	1.48	134	MAX PEAK	Low ch
7395.000000	52.55	36.61	-35.1	54.1	82.3	28.2	1.49	235	MAX PEAK	High ch
7350.000000	52.69	36.52	-35.2	54.0	82.3	28.2	1.67	236	MAX PEAK	Mid ch

RSS-197 & FCC Part 90, Subpart Z

Electric Field Strength

EUT: PMP450i 3.65 GHz SM/BH SN: 0A003E45116A

Manufacturer: Cambium Networks
Operating Condition: 71 deg C 43% R.H.

Test Site: DLS O.F. G1
Operator: Craig B; #8420

Test Specification: Transmitter Spurious; with 50 Ohm terminations on ant ports

Comment: 5 MHz ch BW; Tx 50.2% @ pwr setting 18 L,M,H channels

Date: 10-13-2016

TEXT: "Horz 1 meters"

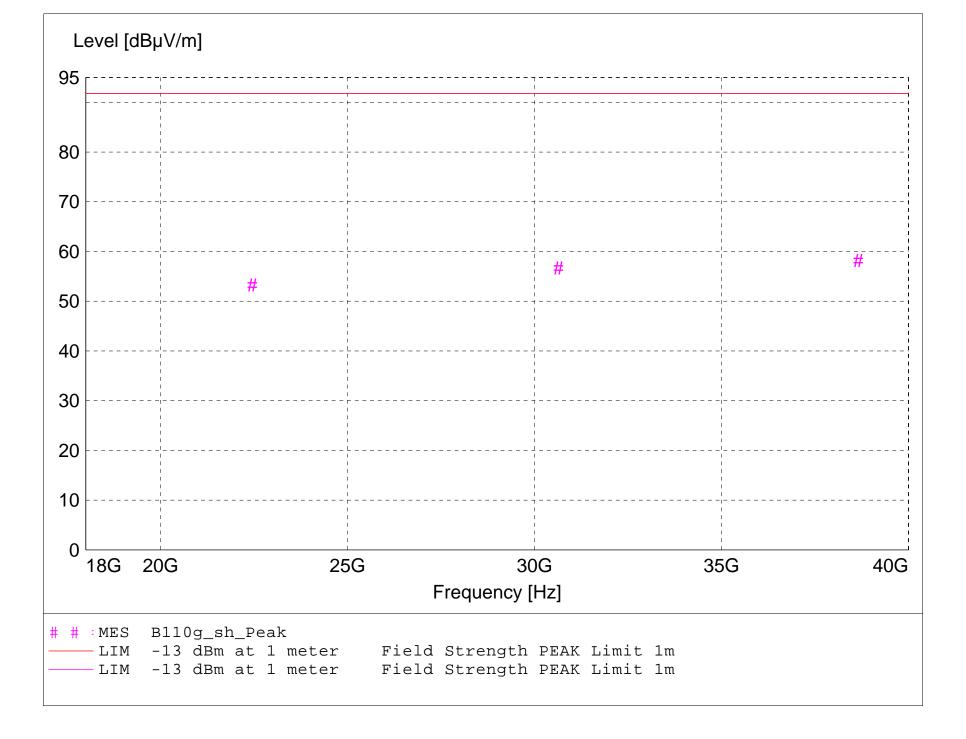
Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "B110g_sh_Final"

10/13/2016 11:	14AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
38657.600000	61.01	41.46	-44.3	58.2	91.8	33.6	1.50	270	MAX PEAK	noise floor
30641.600000	61.27	40.52	-45.1	56.7	91.8	35.1	1.50	45	MAX PEAK	noise floor
22451.200000	63.10	40.18	-50.1	53.2	91.8	38.6	1.50	315	MAX PEAK	noise floor

Company: **Cambium Networks**

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix B – Measurement Data

B8.0 Transmitter Frequency Stability

FCC Part 2.1055 Rule Part:

Test Procedure:

The EUT was connected to a spectrum analyzer through a cable and 20 dB attenuator. Using a RBW of 1% of the occupied bandwidth, reference points F_L and F_H were recorded at the lower (F_L) and upper (F_H) frequencies where the transmit signal crossed the unwanted emission limit (-13 dBm). The frequency offset (drift/error) was then measured.

Limit: The wanted emission must stay within the 3650-3700 MHz band.

> Calculated signal edge measurements (F_L – frequency offset and F_H + frequency offset) show that the signal edges referenced to the unwanted emission (-13 dBm)

fall within the 3650-3700 MHz band.

Notes: Since the EUT was not capable of operating in an un-modulated mode for testing,

the following procedure was used to measure the frequency offset (drift/error):

The EUT was set to transmit at its lowest (5 MHz) channel bandwidth. The center frequency of the spectrum analyzer was set to the nominal center frequency of the channel being tested. The SPAN was set to 7 MHz. The RBW was set to 5 kHz. The VBW was set to 200 Hz. The detector was set to Peak. The trace was set to Max Hold. A marker f_{peak} was placed on the trace using the peak-search function of the analyzer. Another marker f₁ was placed at the lower frequency edge of the signal where the level was 10 dB lower than fpeak. Another marker fh was placed at the upper frequency edge of the signal where the level was 10 dB lower than f_{peak} . The center frequency was calculated as $(f_1 + f_h)/2$.

Only tested output port A as determined worst case by Cambium Networks.

125 of 153 Report #22288

DLS Electronic Systems, Inc.

Company: Cambium Networks

Operator: Craig B

Dates of test: 10-13-2016, 10-14-2016 Model: PMP450i 3.65 GHz SM/BH

 F^{L} = Lower frequency of Low channel where emission level is at -13 dBm (reference level) FH = Upper frequency of High channel where emission level is at -13 dBm (reference level)

 $Limit = F^{L(extreme)}$ and $F^{H(extreme)}$ must stay within the 3650 - 3700 MHz Band

Low channel reference center frequency (MHz): 3652.50702 High channel reference center frequency (MHz): 3697.50702

Frequency Stability

F _L reference Frequency (MHz)	F _H reference Frequency (MHz)	Extreme condition	Measured Center (MHz) Low ch	Measured Center (MHz) High ch	Offset Low channel (MHz)	Offset High channel (MHz)	$\begin{aligned} & \text{Calculated} \\ & F_{L(extreme)} \\ & (\text{MHz}) \end{aligned}$	Calculated F _{H(extreme)} (MHz)
3650.09646	3699.88552	-30°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	-20°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	-10°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	0°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	10°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	20°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	30°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	40°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	50°C	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	102 V	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552
3650.09646	3699.88552	138 V	3652.50702	3697.50702	0.00000	0.00000	3650.09646	3699.88552

126 of 153 Report #22288

Company: Cambium Networks

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

Appendix B – Measurement Data

B9.0 AC Line Conducted Emissions

Rule Part: FCC Part 15.207 (a)

Test Procedure: ANSI C63.10-2013, Section 6.2

Limit: FCC Part 15.207 (a)

Results: Compliant

Notes: The EUT was powered with Cambium Networks model NET-P30-56IN

power supply that was connected to a Line Impedance Stabilization

Network.

127 of 153 Report #22288

PMM NARDA REPORT: Cambium Networks PMP450i 120v L1

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47 %

Test Specs : Line 1; Quasi-Peak

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

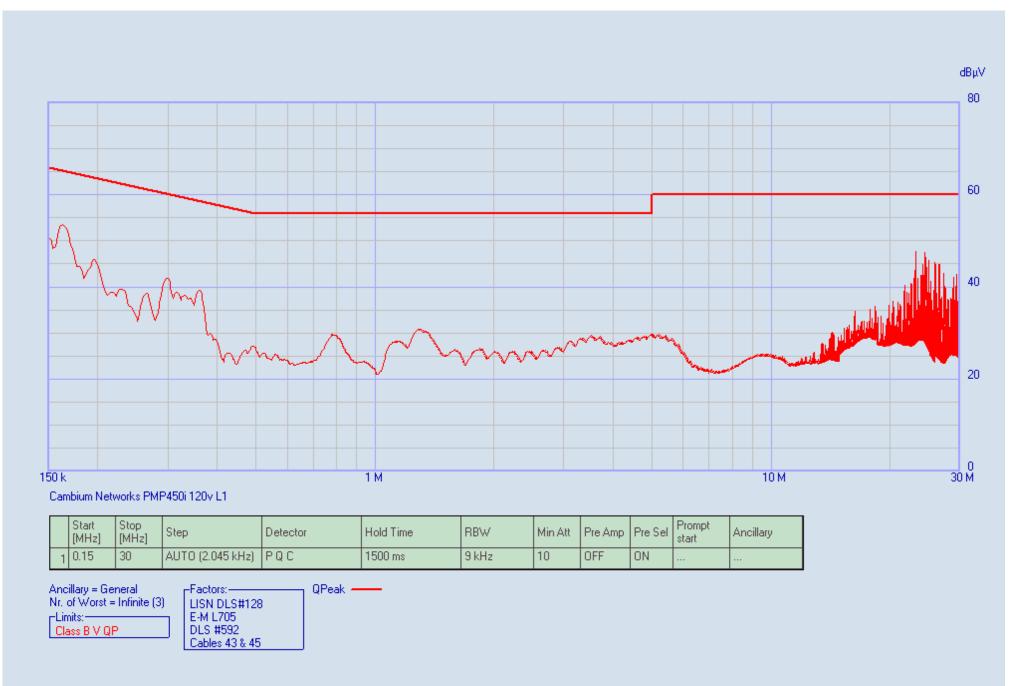
Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 120 V 60 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210


Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 120v L1 06/09/2016 14:51:22

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 15 dB

	Frequency	QPeak	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V.	•	LISN DLS#	E-M L705	DLS #592	Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.15818	51.25	65.56	-14.31	1.54	9.85	2.03	0.13
2	0.160225	53.09	65.45	-12.36	1.51	9.85	2.00	0.12
3	0.16227	53.51	65.35	-11.84	1.49	9.84	1.97	0.11
4	0.164315	53.30	65.24	-11.94	1.46	9.84	1.94	0.10
5	0.16636	52.77	65.14	-12.37	1.43	9.83	1.91	0.09
6	0.168405	51.50	65.04	-13.54	1.41	9.83	1.89	0.09
7	23.12762	47.12	60.00	-12.88	0.35	10.15	0.44	0.87
8	23.129665	47.74	60.00	-12.26	0.35	10.15	0.44	0.87
9	23.13171	47.56	60.00	-12.44	0.36	10.15	0.44	0.87
10	24.348485	46.11	60.00	-13.89	0.37	10.15	0.46	0.89
11	24.35053	47.52	60.00	-12.48	0.37	10.15	0.46	0.89
12	24.352575	47.43	60.00	-12.57	0.37	10.15	0.46	0.89
13	24.35462	45.91	60.00	-14.09	0.37	10.15	0.46	0.89
14	24.532535	46.04	60.00	-13.96	0.37	10.14	0.47	0.89
15	24.53458	46.49	60.00	-13.51	0.37	10.14	0.47	0.89
16	24.536625	46.17	60.00	-13.83	0.37	10.14	0.47	0.89
17	24.89859	45.07	60.00	-14.93	0.37	10.13	0.47	0.89
18	24.900635	45.82	60.00	-14.18	0.37	10.13	0.47	0.89
19	24.90268	45.73	60.00	-14.27	0.37	10.13	0.47	0.89
20	24.961985	45.35	60.00	-14.65	0.37	10.13	0.47	0.89
21	24.96403	45.08	60.00	-14.92	0.37	10.13	0.47	0.89
22	25.694095	45.26	60.00	-14.74	0.37	10.12	0.49	0.89
23	25.69614	45.29	60.00	-14.71	0.37	10.12	0.49	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 120v L1

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 1; Average

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 120 V 60 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 120v L1 06/09/2016 14:51:22

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 7.5 dB

	Frequency	C-Avg	Limit Class B V	Delta	Factor	Factor	Factor DLS #592	Factor Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	23.12762	44.78	50.00	-5.22	0.35	10.15	0.44	0.87
2	23.129665	45.45	50.00	-4.55	0.35	10.15	0.44	0.87
3	23.13171	45.34	50.00	-4.66	0.36	10.15	0.44	0.87
4	23.133755	42.89	50.00	-7.11	0.36	10.15	0.44	0.87
5	24.045825	42.58	50.00	-7.42	0.36	10.15	0.46	0.89
6	24.348485	43.57	50.00	-6.43	0.37	10.15	0.46	0.89
7	24.35053	45.07	50.00	-4.93	0.37	10.15	0.46	0.89
8	24.352575	45.08	50.00	-4.92	0.37	10.15	0.46	0.89
9	24.35462	43.78	50.00	-6.22	0.37	10.15	0.46	0.89
10	24.532535	43.54	50.00	-6.46	0.37	10.14	0.47	0.89
11	24.53458	44.03	50.00	-5.97	0.37	10.14	0.47	0.89
12	24.536625	43.86	50.00	-6.14	0.37	10.14	0.47	0.89
13	24.89859	42.50	50.00	-7.50	0.37	10.13	0.47	0.89
14	24.900635	43.38	50.00	-6.62	0.37	10.13	0.47	0.89
15	24.90268	43.31	50.00	-6.69	0.37	10.13	0.47	0.89
16	24.961985	42.88	50.00	-7.12	0.37	10.13	0.47	0.89
17	24.96403	42.75	50.00	-7.25	0.37	10.13	0.47	0.89
18	25.694095	42.85	50.00	-7.15	0.37	10.12	0.49	0.89
19	25.69614	42.87	50.00	-7.13	0.37	10.12	0.49	0.89
20	25.878145	42.61	50.00	-7.39	0.37	10.11	0.49	0.89
21	26.4896	42.54	50.00	-7.46	0.38	10.10	0.50	0.89
22	26.6123	42.51	50.00	-7.49	0.38	10.10	0.50	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 120v L2

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47 %

Test Specs : Line 2; Quasi-Peak

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

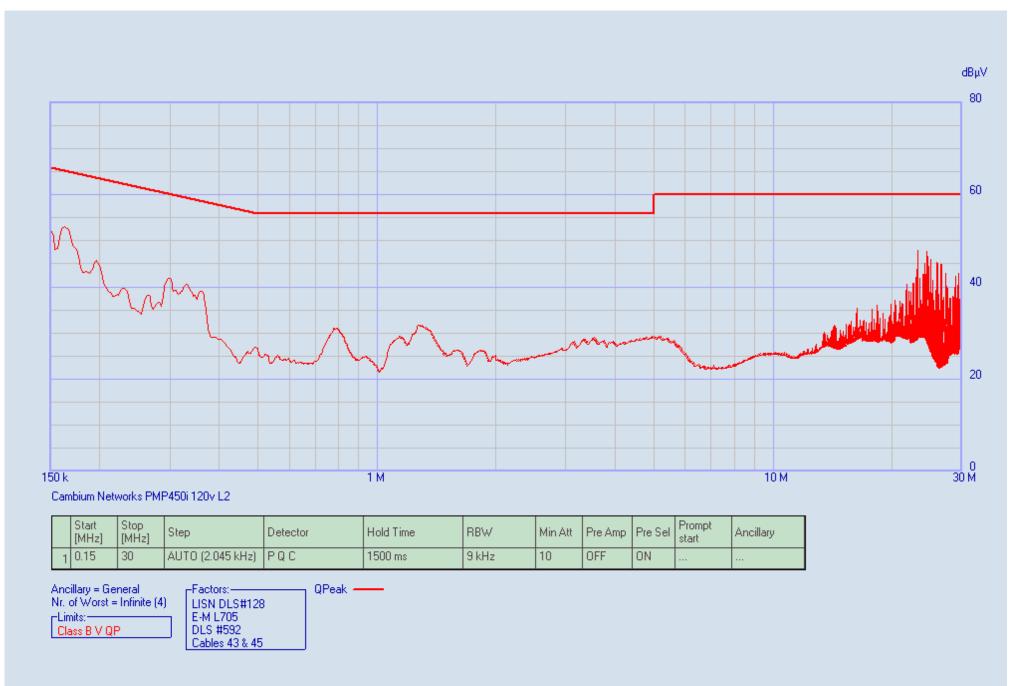
Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 120 V 60 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210


Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 120v L2 06/09/2016 15:05:57

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 14 dB

	Frequency	QPeak	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V.	•	LISN DLS#	E-M L705	DLS #592	Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.15	52.40	66.00	-13.60	1.66	9.87	2.16	0.17
_								
2	0.160225	52.74	65.45	-12.71	1.51	9.85	2.00	0.12
3	0.16227	53.14	65.35	-12.21	1.49	9.84	1.97	0.11
4	0.164315	52.99	65.24	-12.25	1.46	9.84	1.94	0.10
5	0.16636	52.41	65.14	-12.73	1.43	9.83	1.91	0.09
6	23.12762	47.31	60.00	-12.69	0.35	10.15	0.44	0.87
7	23.129665	47.90	60.00	-12.10	0.35	10.15	0.44	0.87
8	23.13171	47.75	60.00	-12.25	0.36	10.15	0.44	0.87
9	24.348485	46.33	60.00	-13.67	0.37	10.15	0.46	0.89
10	24.35053	47.67	60.00	-12.33	0.37	10.15	0.46	0.89
11	24.352575	47.69	60.00	-12.31	0.37	10.15	0.46	0.89
12	24.35462	46.21	60.00	-13.79	0.37	10.15	0.46	0.89
13	24.532535	46.19	60.00	-13.81	0.37	10.14	0.47	0.89
14	24.53458	46.64	60.00	-13.36	0.37	10.14	0.47	0.89
15	24.536625	46.45	60.00	-13.55	0.37	10.14	0.47	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 120v L2

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 2; Average

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 120 V 60 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

Model : PMM 9010F Brand : Narda S/N : 020WW40102 Last Calibration : 06/23/2016

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 120v L2 06/09/2016 15:05:57

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 7.3 dB

	Frequency	C-Avg	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V.		LISN DLS#.	. E-M L705	DLS #592	Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	23.12762	44.94	50.00	-5.06	0.35	10.15	0.44	0.87
2	23.129665	45.60	50.00	-4.40	0.35	10.15	0.44	0.87
3	23.13171	45.48	50.00	-4.52	0.36	10.15	0.44	0.87
4	23.133755	43.03	50.00	-6.97	0.36	10.15	0.44	0.87
5	24.045825	42.84	50.00	-7.16	0.36	10.15	0.46	0.89
6	24.04787	42.72	50.00	-7.28	0.36	10.15	0.46	0.89
7	24.348485	43.80	50.00	-6.20	0.37	10.15	0.46	0.89
8	24.35053	45.30	50.00	-4.70	0.37	10.15	0.46	0.89
9	24.352575	45.30	50.00	-4.70	0.37	10.15	0.46	0.89
10	24.35462	44.00	50.00	-6.00	0.37	10.15	0.46	0.89
11	24.532535	43.75	50.00	-6.25	0.37	10.14	0.47	0.89
12	24.53458	44.23	50.00	-5.77	0.37	10.14	0.47	0.89
13	24.536625	44.06	50.00	-5.94	0.37	10.14	0.47	0.89
14	24.900635	43.53	50.00	-6.47	0.37	10.13	0.47	0.89
15	24.90268	43.47	50.00	-6.53	0.37	10.13	0.47	0.89
16	24.961985	43.00	50.00	-7.00	0.37	10.13	0.47	0.89
17	24.96403	42.86	50.00	-7.14	0.37	10.13	0.47	0.89
18	25.694095	42.89	50.00	-7.11	0.37	10.12	0.49	0.89
19	25.69614	42.91	50.00	-7.09	0.37	10.12	0.49	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 230v L1

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 1; Quasi-Peak

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

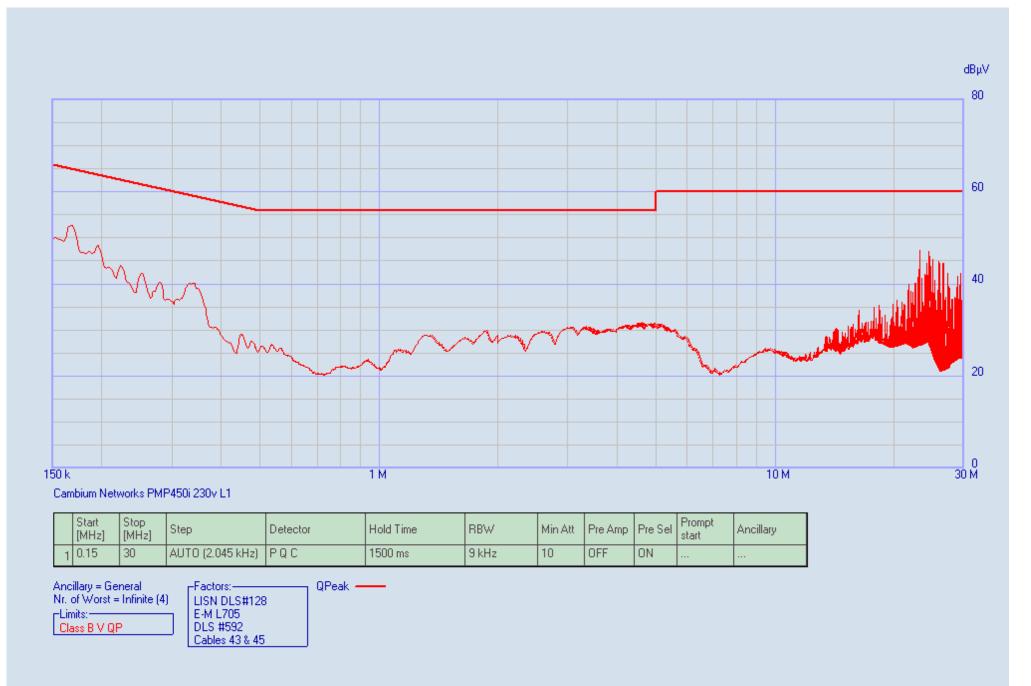
Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 230 V 50 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210


Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 230v L1 06/09/2016 15:20:04

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 15 dB

	Frequency	QPeak	Limit Class B V	Delta	Factor	Factor E-M L705	Factor DLS #592	Factor Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.164315	52.22	65.24	-13.02	1.46	9.84	1.94	0.10
2	0.16636	52.81	65.14	-12.33	1.43	9.83	1.91	0.09
3	0.168405	52.64	65.04	-12.40	1.41	9.83	1.89	0.09
4	0.17045	51.90	64.94	-13.04	1.39	9.82	1.88	0.08
5	0.172495	50.07	64.84	-14.77	1.37	9.82	1.86	0.07
6	23.12762	46.70	60.00	-13.30	0.35	10.15	0.44	0.87
7	23.129665	47.33	60.00	-12.67	0.35	10.15	0.44	0.87
8	23.13171	47.13	60.00	-12.87	0.36	10.15	0.44	0.87
9	24.348485	45.73	60.00	-14.27	0.37	10.15	0.46	0.89
10	24.35053	47.02	60.00	-12.98	0.37	10.15	0.46	0.89
11	24.352575	47.05	60.00	-12.95	0.37	10.15	0.46	0.89
12	24.35462	45.58	60.00	-14.42	0.37	10.15	0.46	0.89
13	24.532535	45.58	60.00	-14.42	0.37	10.14	0.47	0.89
14	24.53458	46.07	60.00	-13.93	0.37	10.14	0.47	0.89
15	24.536625	45.82	60.00	-14.18	0.37	10.14	0.47	0.89
16	24.900635	45.35	60.00	-14.65	0.37	10.13	0.47	0.89
17	24.90268	45.26	60.00	-14.74	0.37	10.13	0.47	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 230v L1

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 1; Average

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 230 V 50 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 230v L1 06/09/2016 15:20:04

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 7.5 dB

	Frequency	C-Avg	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V		LISN DLS#	E-M L705	DLS #592	Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	23.12762	44.37	50.00	-5.63	0.35	10.15	0.44	0.87
2	23.129665	45.04	50.00	-4.96	0.35	10.15	0.44	0.87
3	23.13171	44.93	50.00	-5.07	0.36	10.15	0.44	0.87
4	23.133755	42.50	50.00	-7.50	0.36	10.15	0.44	0.87
5	24.348485	43.24	50.00	-6.76	0.37	10.15	0.46	0.89
6	24.35053	44.76	50.00	-5.24	0.37	10.15	0.46	0.89
7	24.352575	44.75	50.00	-5.25	0.37	10.15	0.46	0.89
8	24.35462	43.47	50.00	-6.53	0.37	10.15	0.46	0.89
9	24.532535	43.23	50.00	-6.77	0.37	10.14	0.47	0.89
10	24.53458	43.73	50.00	-6.27	0.37	10.14	0.47	0.89
11	24.536625	43.56	50.00	-6.44	0.37	10.14	0.47	0.89
12	24.900635	43.08	50.00	-6.92	0.37	10.13	0.47	0.89
13	24.90268	43.02	50.00	-6.98	0.37	10.13	0.47	0.89
14	24.961985	42.54	50.00	-7.46	0.37	10.13	0.47	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 230v L2

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 2; Quasi-Peak

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

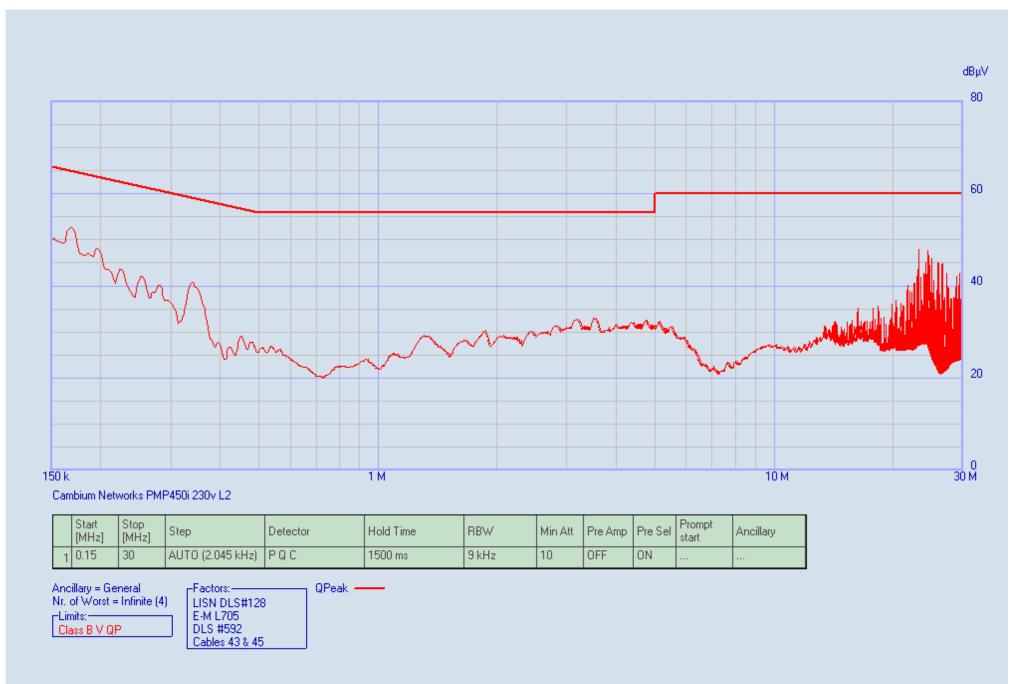
Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 230 V 50 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210


Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 230v L2 06/09/2016 15:28:23

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 15 dB

	Frequency	QPeak	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V.		LISN DLS#.	. E-M L705	DLS #592	Cables 43
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	0.164315	51.88	65.24	-13.36	1.46	9.84	1.94	0.10
2	0.16636	52.45	65.14	-12.69	1.43	9.83	1.91	0.09
3	0.168405	52.65	65.04	-12.39	1.41	9.83	1.89	0.09
4	0.17045	52.31	64.94	-12.63	1.39	9.82	1.88	0.08
5	0.172495	51.23	64.84	-13.61	1.37	9.82	1.86	0.07
6	23.12762	47.34	60.00	-12.66	0.35	10.15	0.44	0.87
7	23.129665	47.97	60.00	-12.03	0.35	10.15	0.44	0.87
8	23.13171	47.77	60.00	-12.23	0.36	10.15	0.44	0.87
9	23.133755	45.11	60.00	-14.89	0.36	10.15	0.44	0.87
10	24.045825	45.12	60.00	-14.88	0.36	10.15	0.46	0.89
11	24.348485	46.29	60.00	-13.71	0.37	10.15	0.46	0.89
12	24.35053	47.67	60.00	-12.33	0.37	10.15	0.46	0.89
13	24.352575	47.69	60.00	-12.31	0.37	10.15	0.46	0.89
14	24.35462	46.17	60.00	-13.83	0.37	10.15	0.46	0.89
15	24.532535	46.19	60.00	-13.81	0.37	10.14	0.47	0.89
16	24.53458	46.68	60.00	-13.32	0.37	10.14	0.47	0.89
17	24.536625	46.40	60.00	-13.60	0.37	10.14	0.47	0.89
18	24.89859	45.06	60.00	-14.94	0.37	10.13	0.47	0.89
19	24.900635	45.95	60.00	-14.05	0.37	10.13	0.47	0.89
20	24.90268	45.84	60.00	-14.16	0.37	10.13	0.47	0.89
21	24.961985	45.31	60.00	-14.69	0.37	10.13	0.47	0.89
22	24.96403	45.10	60.00	-14.90	0.37	10.13	0.47	0.89
23	25.694095	45.16	60.00	-14.84	0.37	10.12	0.49	0.89
24	25.69614	45.18	60.00	-14.82	0.37	10.12	0.49	0.89

PMM NARDA REPORT: Cambium Networks PMP450i 230v L2

Report issuing date : 09-06-2016

Standard : FCC 15.207
Test Type : Voltage Mains

Test Site : DLS O.F. Screen Room

Temperature : 75°F Humidity : 47%

Test Specs : Line 2; Average

Operator : Craig B
DLS Project # : 8420
Result : Pass

EUT

Manufacturer : Cambium Networks
Model : PMP450i 3.65 GHz SM/BH

Product

Notes : 230 V 50 Hz

Testing Company : DLS Electronic Systems, Inc.

Telephone : 262-279-0210

Web site : http://www.dlsemc.com

Receiver Details

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.

Cambium Networks PMP450i 230v L2 06/09/2016 15:28:23

Rel. SW 2.22 (August 2015)

Rel. FW 1.54 20/04/16

Margin: 7.5 dB

	Frequency	C-Avg	Limit	Delta	Factor	Factor	Factor	Factor
			Class B V.		LISN DLS#	E-M L705	DLS #592	Cables 43.
	[MHz]	[dBµV]	[dBµV]	[dB]	[dB]	[dB]	[dB]	[dB]
1	23.12762	45.05	50.00	-4.95	0.35	10.15	0.44	0.87
2	23.129665	45.72	50.00	-4.28	0.35	10.15	0.44	0.87
3	23.13171	45.61	50.00	-4.39	0.36	10.15	0.44	0.87
4	23.133755	43.16	50.00	-6.84	0.36	10.15	0.44	0.87
5	24.045825	42.94	50.00	-7.06	0.36	10.15	0.46	0.89
6	24.04787	42.81	50.00	-7.19	0.36	10.15	0.46	0.89
7	24.348485	43.86	50.00	-6.14	0.37	10.15	0.46	0.89
8	24.35053	45.37	50.00	-4.63	0.37	10.15	0.46	0.89
9	24.352575	45.37	50.00	-4.63	0.37	10.15	0.46	0.89
10	24.35462	44.06	50.00	-5.94	0.37	10.15	0.46	0.89
11	24.532535	43.79	50.00	-6.21	0.37	10.14	0.47	0.89
12	24.53458	44.28	50.00	-5.72	0.37	10.14	0.47	0.89
13	24.536625	44.11	50.00	-5.89	0.37	10.14	0.47	0.89
14	24.89859	42.64	50.00	-7.36	0.37	10.13	0.47	0.89
15	24.900635	43.53	50.00	-6.47	0.37	10.13	0.47	0.89
16	24.90268	43.46	50.00	-6.54	0.37	10.13	0.47	0.89
17	24.961985	42.98	50.00	-7.02	0.37	10.13	0.47	0.89
18	24.96403	42.84	50.00	-7.16	0.37	10.13	0.47	0.89
19	25.694095	42.79	50.00	-7.21	0.37	10.12	0.49	0.89
20	25.69614	42.81	50.00	-7.19	0.37	10.12	0.49	0.89
21	25.878145	42.53	50.00	-7.47	0.37	10.11	0.49	0.89

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks

Model Tested: 3082CHH Report Number: 22288 DLS Project: 8420

Appendix C – Measurement Uncertainty

Compliance with the limits in this standard are based on the results of the compliance measurement. Our calculated measurement uncertainty including the measurement instrumentation, associated connections between the various instruments in the measurement chain, and other contributions, are provided in this section of the test report.

Parameter	Expanded Uncertainty (K=2)		
Emission Bandwidth, Conducted	+/- 1.14%		
RF Output Power, Conducted	+/- 1.36dB		
Power Spectral Density, Conducted	+/- 1.26dB		
All Emissions, Radiated	+/- 5.69dB		
All Emissions, RF Conducted	+/- 3.31dB		
AC Line Conducted	+/- 2.10 dB		
Duty Cycle	+/- 0.05%		

152 of 153 Report #22288

Company: Cambium Networks

Model Tested: 3082CHH
Report Number: 22288
DLS Project: 8420

END OF REPORT

Revision #	Date	Comments	By
1.0	10-28-2016	Preliminary Release	CB

153 of 153 Report #22288