

EMC TEST REPORT	
TEST REPORT NUMBER	DBN 1613TEL660-F
TEST REPORT DATE	23-Jun-2016
TEST REPORT VERSION	1.0
MANUFACTURER	Cambium Networks
PRODUCT NAME	ePMP2000
PRODUCT MODEL	C050900P031A
CONDITION OF EUT WHEN RECEIVED	GOOD and in proper working condition
ISSUED TO	Cambium Networks, 3800 Golf Road, Suite 360, Rolling Meadows, IL, USA 60008
ISSUED BY	<p>TARANG Lab Wipro Technologies, SJP2, Survey#70,77,78/8A, Doddakannelli, Sarjapur road, Bangalore. Karnataka. India - 560 035 Tel: +91-80-30292929 Fax: +91-80-30298200 Email: tarang.planet@wipro.com Web: www.wipro.com</p>

AMENDMENT HISTORY

Amendment Number	Amendment Date	Author of Amendment	Previous Report Version	Previous Report Date
Amendment Details				

TABLE OF CONTENTS

1	TEST REPORT SUMMARY	9
2	GENERAL INFORMATION	10
2.1	ACCREDITATION DETAILS	10
2.2	MEASUREMENT UNCERTAINTY	10
3	INSTRUMENTATION AND CALIBRATION	11
3.1	TEST AND MEASURING EQUIPMENT	11
3.2	EQUIPMENTS USED	11
4	PRODUCT INFORMATION	12
4.1	DESCRIPTION OF THE PRODUCT	12
4.2	SOFTWARE AND FIRMWARE DETAILS	12
5	TEST DETAILS	13
5.1	PRODUCT AND TEST SETUP	13
5.1.1	PRODUCT CONFIGURATION	13
5.1.2	TEST SETUP DETAILS	14
5.1.3	ACCESSORIES	14
5.2	APPLICABLE TESTS	14
5.3	TEST RESULT	15
5.3.1	DUTY CYCLE (X) AND TRANSMISSION DURATION (T)	15
5.3.2	26 dB BANDWIDTH MEASUREMENT	18
5.3.3	99 % OCCUPIED CHANNEL BANDWIDTH	26
5.3.4	MAXIMUM CONDUCTED OUTPUT POWER	34
5.3.5	POWER SPECTRAL DENSITY	42
5.3.6	TRANSMITTER UNWANTED EMISSIONS (CONDUCTED)	54
5.3.7	BAND EDGE MESUREMENTS	112
	ANNEXURE I: EUT SOFTWARE SETTINGS	117
	ANNEXURE II: ACRONYMS	121

LIST OF FIGURES

Figure 1: Block diagram of the EUT test setup.....	14
Figure 2: Typical test setup for Conducted RF Test	15
Figure 3: Measured ON time	16
Figure 4: Measured Transmission Period (T)	16
Figure 5: Typical test setup for Conducted RF Test	18
Figure 6: 40 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.0 – 5280 MHz	19
Figure 7: 40 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.1– 5280 MHz	19
Figure 8: 40 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.0 - 5300 MHz.....	20
Figure 9: 40 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.1 - 5300 MHz.....	20
Figure 10: 40 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.0 - 5320 MHz	21
Figure 11: 40 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.1 - 5320 MHz	21
Figure 12: 10 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.0 - 5265 MHz.....	22
Figure 13: 10 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.1 - 5265 MHz	22
Figure 14: 10 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.0 - 5300 MHz.....	23
Figure 15: 10 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.1 - 5300 MHz.....	23
Figure 16: 10 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.0 - 5335 MHz	24
Figure 17: 10 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.1 - 5335 MHz	24
Figure 18 Typical test setup for Conducted RF Test.....	26
Figure 19: 40 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.0 – 5280 MHz	27
Figure 20: 40 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.1 – 5280 MHz	27
Figure 21: 40 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.0 – 5300 MHz.....	28
Figure 22: 40 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.1 – 5300 MHz.....	28
Figure 23: 40 MHz, 17 dBi, High channel: 99% OBW measured at Ch.0 – 5320 MHz.....	29
Figure 24: 40 MHz, 17 dBi, High channel: 99% OBW measured at Ch.1 – 5320 MHz.....	29
Figure 25: 10 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.0 – 5265 MHz	30
Figure 26: 10 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.1 – 5265 MHz	30
Figure 27: 10 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.0 – 5300 MHz.....	31
Figure 28: 10 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.1 – 5300 MHz.....	31
Figure 29: 10 MHz, 17 dBi, High channel: 99% OBW measured at Ch.0 – 5335 MHz.....	32
Figure 30: 10 MHz, 17 dBi, High channel: 99% OBW measured at Ch.1 – 5335 MHz.....	32
Figure 31: Typical test setup for Conducted RF Test	34
Figure 32: 40 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5280 MHz	35
Figure 33: 40 MHz, 17 dBi, Mid channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5300 MHz.....	35
Figure 34: 40 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5320 MHz.....	36
Figure 35: 10 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5265 MHz	36
Figure 36: 10 MHz, 17 dBi, Mid channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5300 MHz.....	37
Figure 37: 10 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5335 MHz.....	37
Figure 38: 40 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5270 MHz	38
Figure 39: 40 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5330 MHz.....	38
Figure 40: 10 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5255 MHz	39
Figure 41: 10 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5345 MHz.....	39
Figure 42: Typical test setup for Conducted Test	42
Figure 43: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5280 MHz.....	43
Figure 44: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5280 MHz.....	43
Figure 45: 40 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 0 – 5300 MHz	44
Figure 46: 40 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 1 – 5300 MHz	44
Figure 47: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5320 MHz	45
Figure 48: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5320 MHz	45
Figure 49: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5265 MHz	46
Figure 50: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5265 MHz	46
Figure 51: 10 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 0– 5300 MHz	47
Figure 52: 10 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 1 – 5300 MHz	47

Figure 53: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5335 MHz	48
Figure 54: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5335 MHz	48
Figure 55: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5270 MHz	49
Figure 56: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5270 MHz	49
Figure 57: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5330 MHz	50
Figure 58: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5330 MHz	50
Figure 59: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5255 MHz	51
Figure 60: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5255 MHz	51
Figure 61: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5345 MHz	52
Figure 62: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5345 MHz	52
Figure 63: Typical test setup for Conducted test.....	55
Figure 64: 40 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 – 5280 MHz	56
Figure 65: 40 MHz, 17 dBi, Low channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 – 5280 MHz	56
Figure 66: 40 MHz, 17 dBi, Low channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 – 5280 MHz	57
Figure 67: 40 MHz, 17 dBi, Low channel: Average emission from 1 GHz to 18 GHz at Ch. 0 – 5280 MHz	57
Figure 68: 40 MHz, 17 dBi, Low channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 – 5280 MHz	58
Figure 69: 40 MHz, 17 dBi, Low channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 – 5280 MHz	58
Figure 70: 40 MHz, 17 dBi, Low channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 – 5280 MHz	59
Figure 71: 40 MHz, 17 dBi, Low channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 – 5280 MHz	59
Figure 72: 40 MHz, 17 dBi, Low channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 – 5280 MHz	60
Figure 73: 40 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 – 5280 MHz	60
Figure 74: 40 MHz, 17 dBi, Low channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 – 5280 MHz	61
Figure 75: 40 MHz, 17 dBi, Low channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 – 5280 MHz	61
Figure 76: 40 MHz, 17 dBi, Low channel: Average emission from 1 GHz to 18 GHz at Ch. 1 – 5280 MHz	62
Figure 77: 40 MHz, 17 dBi, Low channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 – 5280 MHz	62
Figure 78: 40 MHz, 17 dBi, Low channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 – 5280 MHz	63
Figure 79: 40 MHz, 17 dBi, Low channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 – 5280 MHz	63
Figure 80: 40 MHz, 17 dBi, Low channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 – 5280 MHz	64
Figure 81: 40 MHz, 17 dBi, Low channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 – 5280 MHz	64
Figure 82: 40 MHz, 17 dBi, Mid channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 – 5300 MHz	65
Figure 83: 40 MHz, 17 dBi, Mid channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 – 5300 MHz	65
Figure 84: 40 MHz, 17 dBi, Mid channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 – 5300 MHz	66
Figure 85: 40 MHz, 17 dBi, Mid channel: Average emission from 1 GHz to 18 GHz at Ch. 0 – 5300 MHz	66
Figure 86: 40 MHz, 17 dBi, Mid channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 – 5300 MHz	67
Figure 87: 40 MHz, 17 dBi, Mid channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 – 5300 MHz	67
Figure 88: 40 MHz, 17 dBi, Mid channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 – 5300 MHz	68
Figure 89: 40 MHz, 17 dBi, Mid channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 – 5300 MHz	68
Figure 90: 40 MHz, 17 dBi, Mid channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 – 5300 MHz	69
Figure 91: 40 MHz, 17 dBi, Mid channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 – 5300 MHz	69
Figure 92: 40 MHz, 17 dBi, Mid channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 – 5300 MHz	70
Figure 93: 40 MHz, 17 dBi, Mid channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 – 5300 MHz	70
Figure 94: 40 MHz, 17 dBi, Mid channel: Average emission from 1 GHz to 18 GHz at Ch. 1 – 5300 MHz	71
Figure 95: 40 MHz, 17 dBi, Mid channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 – 5300 MHz	71
Figure 96: 40 MHz, 17 dBi, Mid channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 – 5300 MHz	72
Figure 97: 40 MHz, 17 dBi, Mid channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 – 5300 MHz	72
Figure 98: 40 MHz, 17 dBi, Mid channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 – 5300 MHz	73
Figure 99: 40 MHz, 17 dBi, Mid channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 – 5300 MHz	73
Figure 100: 40 MHz, 17 dBi, High channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 – 5320 MHz	74
Figure 101: 40 MHz, 17 dBi, High channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 – 5320 MHz	74
Figure 102: 40 MHz, 17 dBi, High channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 – 5320 MHz	75
Figure 103: 40 MHz, 17 dBi, High channel: Average emission from 1 GHz to 18 GHz at Ch. 0 – 5320 MHz	75
Figure 104: 40 MHz, 17 dBi, High channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 – 5320 MHz	76
Figure 105: 40 MHz, 17 dBi, High channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 – 5320 MHz	76

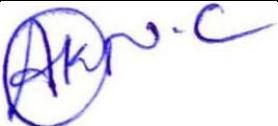
Figure 106: 40 MHz, 17 dBi, High channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 –5320 MHz.....	77
Figure 107: 40 MHz, 17 dBi, High channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 –5320 MHz.....	77
Figure 108: 40 MHz, 17 dBi, High channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 –5320 MHz.....	78
Figure 109: 40 MHz, 17 dBi, High channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 –5320 MHz.....	78
Figure 110: 40 MHz, 17 dBi, High channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 –5320 MHz.....	79
Figure 111: 40 MHz, 17 dBi, High channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 –5320 MHz.....	79
Figure 112: 40 MHz, 17 dBi, High channel: Average emission from 1 GHz to 18 GHz at Ch. 1 –5320 MHz.....	80
Figure 113: 40 MHz, 17 dBi, High channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 –5320 MHz.....	80
Figure 114: 40 MHz, 17 dBi, High channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 –5320 MHz.....	81
Figure 115: 40 MHz, 17 dBi, High channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 –5320 MHz.....	81
Figure 116: 40 MHz, 17 dBi, High channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 –5320 MHz.....	82
Figure 117: 40 MHz, 17 dBi, High channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 –5320 MHz.....	82
Figure 118: 10 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 –5265 MHz.....	83
Figure 119: 10 MHz, 17 dBi, Low channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 –5265 MHz.....	83
Figure 120: 10 MHz, 17 dBi, Low channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 –5265 MHz.....	84
Figure 121: 10 MHz, 17 dBi, Low channel: Average emission from 1 GHz to 18 GHz at Ch. 0 –5265 MHz.....	84
Figure 122: 10 MHz, 17 dBi, Low channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 –5265 MHz.....	85
Figure 123: 10 MHz, 17 dBi, Low channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 –5265 MHz.....	85
Figure 124: 10 MHz, 17 dBi, Low channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 –5265 MHz.....	86
Figure 125: 10 MHz, 17 dBi, Low channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 –5265 MHz.....	86
Figure 126: 10 MHz, 17 dBi, Low channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 –5265 MHz.....	87
Figure 127: 10 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 –5265 MHz.....	87
Figure 128: 10 MHz, 17 dBi, Low channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 –5265 MHz.....	88
Figure 129: 10 MHz, 17 dBi, Low channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 –5265 MHz.....	88
Figure 130: 10 MHz, 17 dBi, Low channel: Average emission from 1 GHz to 18 GHz at Ch. 1 –5265 MHz.....	89
Figure 131: 10 MHz, 17 dBi, Low channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 –5265 MHz.....	89
Figure 132: 10 MHz, 17 dBi, Low channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 –5265 MHz.....	90
Figure 133: 10 MHz, 17 dBi, Low channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 –5265 MHz.....	90
Figure 134: 10 MHz, 17 dBi, Low channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 –5265 MHz.....	91
Figure 135: 10 MHz, 17 dBi, Low channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 –5265 MHz.....	91
Figure 136: 10 MHz, 17 dBi, Mid channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 –5300 MHz.....	92
Figure 137: 10 MHz, 17 dBi, Mid channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 –5300 MHz.....	92
Figure 138: 10 MHz, 17 dBi, Mid channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 –5300 MHz.....	93
Figure 139: 10 MHz, 17 dBi, Mid channel: Average emission from 1 GHz to 18 GHz at Ch. 0 –5300 MHz.....	93
Figure 140: 10 MHz, 17 dBi, Mid channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 –5300 MHz.....	94
Figure 141: 10 MHz, 17 dBi, Mid channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 –5300 MHz.....	94
Figure 142: 10 MHz, 17 dBi, Mid channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 –5300 MHz.....	95
Figure 143: 10 MHz, 17 dBi, Mid channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 –5300 MHz.....	95
Figure 144: 10 MHz, 17 dBi, Mid channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 –5300 MHz.....	96
Figure 145: 10 MHz, 17 dBi, Mid channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 –5300 MHz.....	96
Figure 146: 10 MHz, 17 dBi, Mid channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 –5300 MHz.....	97
Figure 147: 10 MHz, 17 dBi, Mid channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 –5300 MHz.....	97
Figure 148: 10 MHz, 17 dBi, Mid channel: Average emission from 1 GHz to 18 GHz at Ch. 1 –5300 MHz.....	98
Figure 149: 10 MHz, 17 dBi, Mid channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 –5300 MHz.....	98
Figure 150: 10 MHz, 17 dBi, Mid channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 –5300 MHz.....	99
Figure 151: 10 MHz, 17 dBi, Mid channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 –5300 MHz.....	99
Figure 152: 10 MHz, 17 dBi, Mid channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 –5300 MHz.....	100
Figure 153: 10 MHz, 17 dBi, Mid channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 –5300 MHz.....	100
Figure 154: 10 MHz, 17 dBi, High channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 –5335 MHz.....	101
Figure 155: 10 MHz, 17 dBi, High channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 –5335 MHz.....	101
Figure 156: 10 MHz, 17 dBi, High channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 –5335 MHz.....	102
Figure 157: 10 MHz, 17 dBi, High channel: Average emission from 1 GHz to 18 GHz at Ch. 0 –5335 MHz.....	102
Figure 158: 10 MHz, 17 dBi, High channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 –5335 MHz.....	103

Figure 159: 10 MHz, 17 dBi, High channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 –5335 MHz	103
Figure 160: 10 MHz, 17 dBi, High channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 –5335 MHz	104
Figure 161: 10 MHz, 17 dBi, High channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 –5335 MHz	104
Figure 162: 10 MHz, 17 dBi, High channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 –5335 MHz	105
Figure 163: 10 MHz, 17 dBi, High channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 –5335 MHz	105
Figure 164: 10 MHz, 17 dBi, High channel: Peak emission from 150 kHz to 30 MHz at Ch. 1 –5335 MHz	106
Figure 165: 10 MHz, 17 dBi, High channel: Peak emission from 30 MHz to 1 GHz at Ch. 1 –5335 MHz	106
Figure 166: 10 MHz, 17 dBi, High channel: Average emission from 1 GHz to 18 GHz at Ch. 1 –5335 MHz	107
Figure 167: 10 MHz, 17 dBi, High channel: Average emission from 18 GHz to 26.5 GHz at Ch. 1 –5335 MHz	107
Figure 168: 10 MHz, 17 dBi, High channel: Average emission from 26.5 GHz to 40 GHz at Ch. 1 –5335 MHz	108
Figure 169: 10 MHz, 17 dBi, High channel: Peak emission from 1 GHz to 18 GHz at Ch. 1 –5335 MHz	108
Figure 170: 10 MHz, 17 dBi, High channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 1 –5335 MHz	109
Figure 171: 10 MHz, 17 dBi, High channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 1 –5335 MHz	109
Figure 172: Typical test setup for Conducted Test	112
Figure 173: 40 MHz, 17 dBi, Low channel: Band edge measured at Ch.0 –5280 MHz	113
Figure 174: 40 MHz, 17 dBi, Low channel: Band edge measured at Ch.1 –5280 MHz	113
Figure 175: 40 MHz, 17 dBi, High channel: Band edge measured at Ch.0 –5320 MHz	114
Figure 176: 40 MHz, 17 dBi, High channel: Band edge measured at Ch.1 –5320 MHz	114
Figure 177: 10 MHz, 17 dBi, Low channel: Band edge measured at Ch.0 –5265 MHz	115
Figure 178: 10 MHz, 17 dBi, Low channel: Band edge measured at Ch.1 –5265 MHz	115
Figure 179: 10 MHz, 17 dBi, High channel: Band edge measured at Ch.0 –5335 MHz	116
Figure 180: 10 MHz, 17 dBi, High channel: Band edge measured at Ch.1 –5335 MHz	116
Figure 181: tftpd32 application screenshot	117
Figure 182: tftpd32 application initialization root_ screenshot	117
Figure 183: Tera term application screenshot	118
Figure 184: Tera term application Login screenshot	118
Figure 185: Initializing EUT screenshot	119
Figure 186: Atheros Radio Test GUI screenshot-1	119
Figure 187: Atheros Radio Test GUI screenshot -2	120

LIST OF TABLES

Table 1: List of Equipment used for Conducted RF Test.....	11
Table 2: EUT details	12
Table 3: List of cables.....	12
Table 4: Result for 26 dB Bandwidth in both 40 MHz and 10 MHz modulation bandwidth.....	25
Table 5 Result for 99% Occupied bandwidth in both 40 MHz and 10 MHz modulation bandwidth	33
Table 6: Maximum conducted output power for 17 dBi configuration.....	40
Table 7: Consolidated values across channels and final power for 17 dBi configuration.....	41
Table 8: Result of PSD for 17 dBi configuration for both 40 MHz and 10 MHz modulation bandwidth	53
Table 9: Tx Unwanted emission Limit.....	54
Table 10: General Field strength limit below 30 MHz	54
Table 11: General Field strength limit above 30 MHz.....	54
Table 12: Result for 17 dBi configuration – 40 MHz modulation bandwidth	110
Table 13: Result for 17 dBi configuration - 10 MHz modulation bandwidth	111

1 TEST REPORT SUMMARY


Applicant	Cambium Networks
Manufacturer	Cambium Networks
Product Name	ePMP2000
Product Model	C050900P031A
Product Serial Number	000456D1846A
Date of Test	18 th Mar 2016 to 26 th Apr 2016
Venue of Test	Tarang Lab

Applicable Standard	Description	Results
RSS GEN, Issue 4, Nov 2014, RSS 247 Issue 1 May 2015	Duty Cycle(X) and Transmission Duration(T)	NA
	26 dB Bandwidth measurement	NA
	RSS 247 6.2.2 (1) - 99% Occupied channel bandwidth	NA
	RSS 247 6.2.2 (1)-Maximum conducted output power	PASS
	RSS 247 6.2.2 (1)-Power spectral density	PASS
	RSS 247 6.2.2 (2)-Transmitter unwanted emission (Conducted)	PASS
	RSS 247 6.2.2 (2)- Band edge measurements	PASS

ePMP2000 was tested by Tarang Lab as per the standards that are listed in the table above. Based on the observations during the test and interpretations by Tarang lab, results have been indicated. The test results produced in this report shall apply only to the above sample that has been tested under the specific conditions and modes of testing as described in the report. Other similar equipment may not necessarily reproduce same result due to production tolerances and measurement uncertainties. Any measurement uncertainties listed in this report are for information purpose only.

The results shall stand invalid, in case there are any modifications / additions / removals to the hardware or software or end use atmosphere to the product tested. This report shall not be modified or in any way revised unless it is expressly permitted and endorsed by Tarang lab, through a duly authorized representative. Particulars on Manufacturer / Supplier / Product configuration / performance criteria, given in this report, are based on the information given by the customer, along with test request. Tarang does not assume any responsibility for the correctness of such information for the above mentioned equipment under test.

Customer acknowledges that this is a test report and not a certificate to gain market access for the product. To gain market access, Customer needs appropriate clearance from the Government or authorized agency for the target market. For markets that allow self-declaration, customer needs to follow the procedure defined by the target market.

Prepared by	Reviewed by	Approved by
Dikshit Raviteja	Arun Kumar N C	Satheesh I
EMI/EMC Test Engineer	Lead EMI/EMC Test Engineer	Technical Manager

2 GENERAL INFORMATION

2.1 ACCREDITATION DETAILS

Following are the accreditation and listing details for Tarang.

Accreditation / Listing body	Registration / Company / Certificate Number
NABL, India	Certificate No: T-1533, T-1534 http://www.nabl-india.org/
FCC (Federal Communications Commission)	Registration Number: 799247 http://www.fcc.gov/
IC (Industry Canada)	Company Number: 9023A-1 http://www.ic.gc.ca

2.2 MEASUREMENT UNCERTAINTY

NA

3 INSTRUMENTATION AND CALIBRATION

3.1 TEST AND MEASURING EQUIPMENT

The list of following measuring equipment used for this testing conforms to the applicable standards. Performance of all test and measuring equipment including any accessories are checked periodically to ensure accuracy.

3.2 EQUIPMENTS USED

Name of Equipment	Manufacturer	Model No	Serial No	Calibration Due
Spectrum Analyzer	Keysight Technologies	N9020A	MY54420183	05 th Jul 2016
X series USB Peak and Average Power sensor	Keysight Technologies	U2021XA	MY55050001	05 th Jul 2016
X series USB Peak and Average Power sensor	Keysight Technologies	U2021XA	MY55050002	05 th Jul 2016
EMI Test Receiver	R&S	ESIB40	100306	21 st Jan 2017 & 04 th Jul 2016

Table 1: List of Equipment used for Conducted RF Test

4 PRODUCT INFORMATION

4.1 DESCRIPTION OF THE PRODUCT

EUT is a point to point & point to multipoint fixed outdoor Transceiver with the following defined channels.

40 MHz channel for 17 dBi antenna	10 MHz channel for 17 dBi antenna
Low – 5280 MHz	Low – 5265 MHz
Mid - 5300 MHz	Mid – 5300 MHz
High - 5320 MHz	High – 5335 MHz

Product	ePMP2000
Model Number	C050900P031A
Serial Number	000456D1846A
Product Category / Type of Equipment	ITE
EUT Operating Voltage	120 V AC
EUT Operating frequency range	60 Hz
Max EUT Operating Current	< 1 A

Table 2: EUT details

Cable No.	Cable Name	Cable Length	Power / Interconnection cable	Shielded / Unshielded
Cable - 1	Power cable	0.8 meter	Power	Unshielded
Cable - 2	Ethernet Cable	1.5 meter	Interconnection	Unshielded
Cable - 3	Ethernet Cable	3.0 meter	Interconnection	Unshielded

Table 3: List of cables

4.2 SOFTWARE AND FIRMWARE DETAILS

Atheros Radio Test 2 (ART2-GUI) Version 2.3

5 TEST DETAILS

5.1 PRODUCT AND TEST SETUP

5.1.1 PRODUCT CONFIGURATION

The EUT was powered through AC power supply (120 V AC / 60 Hz). The EUT was connected to Ethernet switch by using RJ45 cable. Figure 1 shows the product configuration during the tests. POE module was used during the test to power ON the EUT.

The 5.2 GHz ePMP Integrated Radio was configured with test software and configured to have the following settings during the course of testing:

- 40 MHz modulation bandwidth for low, mid & high channels
 - Rate - HT40,
 - 54 Mbps OFDM, MCS15 / 270 Mbps
 - Tx Power is 11 dBm Tx99 for 17 dBi antenna configuration-Low channel
 - Tx Power is 11 dBm Tx99 for 17 dBi antenna configuration-Mid channel
 - Tx Power is 11.5 dBm Tx99 for 17 dBi antenna configuration-High channel
- 10 MHz modulation bandwidth for low, mid & high channels
 - Rate – Legacy,
 - 54 Mbps OFDM, MCS15 / 130 Mbps
 - Tx Power is 9 dBm Tx99 for 17 dBi antenna configuration-Low channel
 - Tx Power is 10 dBm Tx99 for 17 dBi antenna configuration-Mid channel
 - Tx Power is 10 dBm Tx99 for 17 dBi antenna configuration-High channel
- Additional measurements as requested by the customer at the band edges of the 5.2 GHz band
 - Low channel (5270 MHz) Tx Power is 13 dBm for 40 MHz modulation bandwidth
 - High channel (5330 MHz) Tx Power is 13 dBm for 40 MHz modulation bandwidth
 - Low channel (5255 MHz) Tx Power is 8 dBm for 10 MHz modulation bandwidth.
 - High channel (5345 MHz) Tx Power is 8.5 dBm for 10 MHz modulation bandwidth.

The unit was continuously monitored for transmission using an auxiliary antenna during the radiated tests.

5.1.2 TEST SETUP DETAILS

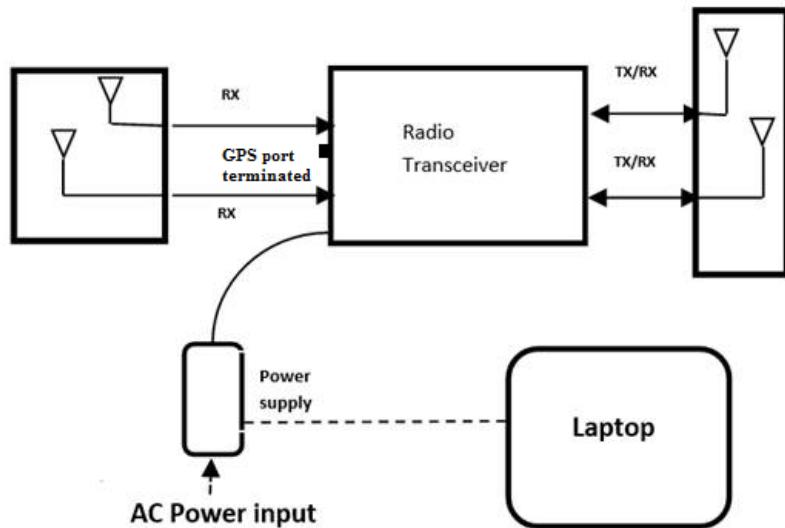


Figure 1: Block diagram of the EUT test setup

5.1.3 ACCESSORIES

Name of the Equipment	Manufacturer	Model Number	Serial Number
17 dBi Antenna Beam steer- Rx	Cambium Networks	C050900D020A	NA
17 dBi Antenna sector- Tx	Cambium Networks	C050900D021A	NA
Power Supply	Cambium Networks	NET P30 56	031-326-6719
Switching Power Supply Gigabit Compatible	Cambium Networks	NET-P30-56	N000000L034A

5.2 APPLICABLE TESTS

Applicable Standard	Description	Test level / Test Voltage	Applicability
RSS GEN Issue – May 2015 RSS GEN – Issue 4 Nov 2014	Duty Cycle(X) and Transmission Duration(T)	NA	Antenna port
	26 dB Bandwidth measurement	NA	Antenna port
	99% Occupied Channel Bandwidth	NA	Antenna port
	Maximum Conducted Output Power	≤ 250 mW	Antenna port
	Power Spectral Density	≤ 11 dBm in 1 MHz bandwidth	Antenna port
	Transmitter Unwanted emissions (Conducted)	9 kHz - 40 GHz	Antenna port
	Band edge measurements	≤ -27 dBm/MHz	Antenna port

5.3 TEST RESULT

5.3.1 DUTY CYCLE (X) AND TRANSMISSION DURATION (T)

5.3.1.1 TEST SPECIFICATION

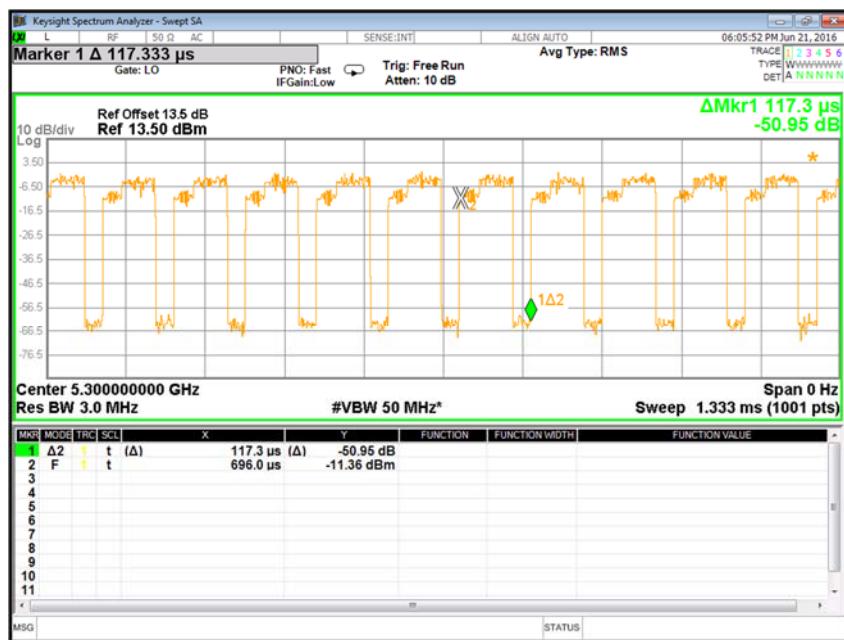
Test Standard	RSS 247 Issue 1 May 2015
Test Procedure	789033 D2 General U-NII Test Procedures New Rule v01r01
Frequency Range	5250-5350 MHz
Resolution Bandwidth	3 MHz
Video Bandwidth	50 MHz
Sweep Time	Auto
Attenuation	Auto
Test Mode	Conducted
Detector	RMS
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Suresh.G.N
Test Date	18 th Mar 2016

5.3.1.2 LIMITS

NA

5.3.1.3 TEST SETUP

Figure 2: Typical test setup for Conducted RF Test


5.3.1.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per section II B of **“789033 D2 General U-NII Test Procedures New Rule V01r01”**. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and recorded.

5.3.1.5 MEASUREMENT GRAPHS / DATA

Figure 3: Measured ON time

Figure 4: Measured Transmission Period (T)

5.3.1.6 RESULT

The Duty cycle and Transmission duration data were recorded.

Mode	ON time (μsec)	T (μsec)	Duty Cycle X (Linear)	Duty Cycle (%)	50/T Minimum RBW and VBW (kHz)
Tx ON	86.67	117.3	0.7389	73.89%	426.25

*Note: Duty cycle = (ON time / Period)*100*

5.3.2 26 dB BANDWIDTH MEASUREMENT

5.3.2.1 TEST SPECIFICATION

Test Standard	RSS 247 Issue 1 May 2015
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Frequency Range	5250-5350 MHz
Resolution Bandwidth	100 kHz, 390 kHz
Video Bandwidth	300 kHz, 1.2 MHz
Sweep Time	Auto
Attenuation	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	23.0 °C
Humidity	55.0 %
Tested By	Suresh.G.N
Test Date	18 th Mar 2016

5.3.2.2 LIMITS

Standard	Reference section	Frequency range	Limit
RSS 247 Issue 1 May 2015	NA	5250 MHz to 5350 MHz	NA

5.3.2.3 TEST SETUP

Figure 5: Typical test setup for Conducted RF Test

5.3.2.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per the **“789033 D2 General U-NII Test Procedures New Rule V01r01”**. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and recorded.

5.3.2.5 MEASUREMENT GRAPHS / DATA

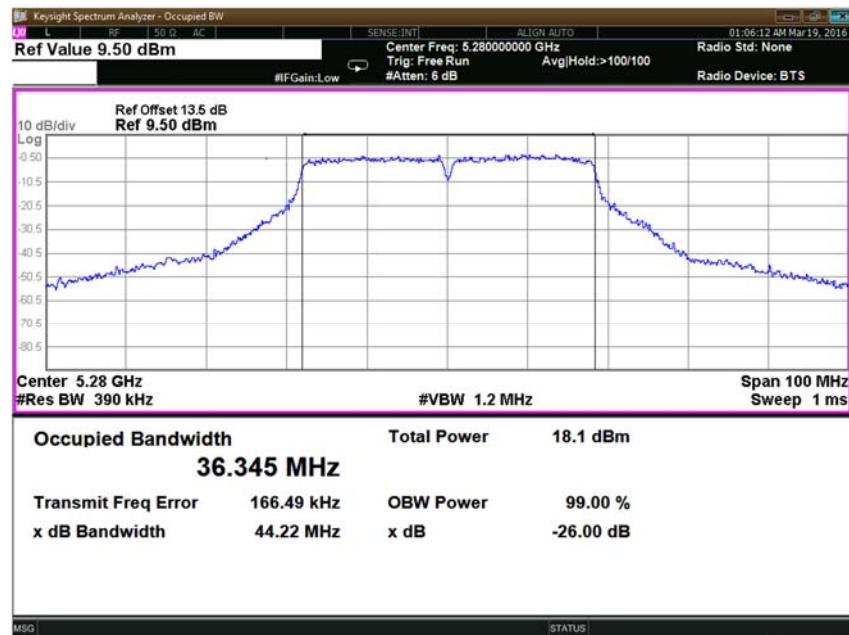


Figure 6: 40 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.0 – 5280 MHz

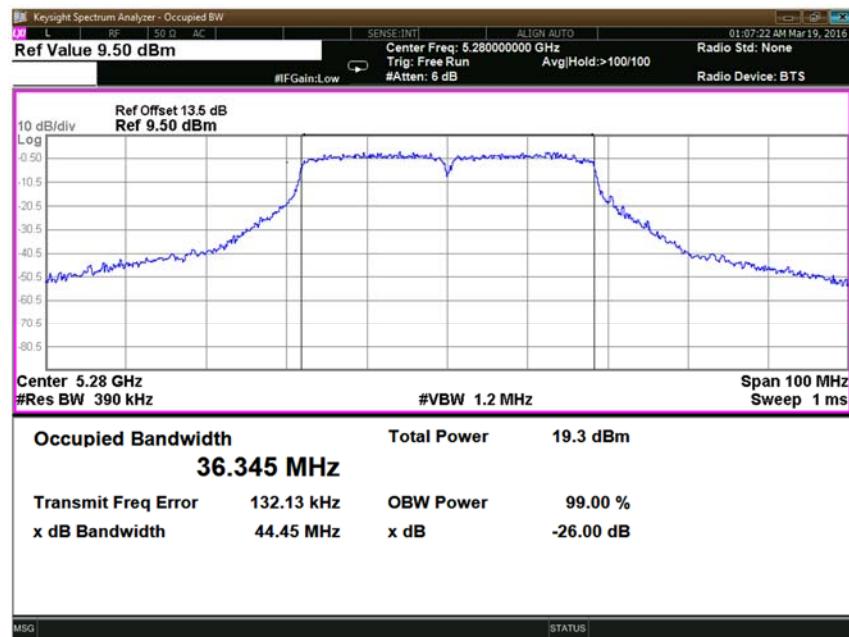


Figure 7: 40 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.1 – 5280 MHz

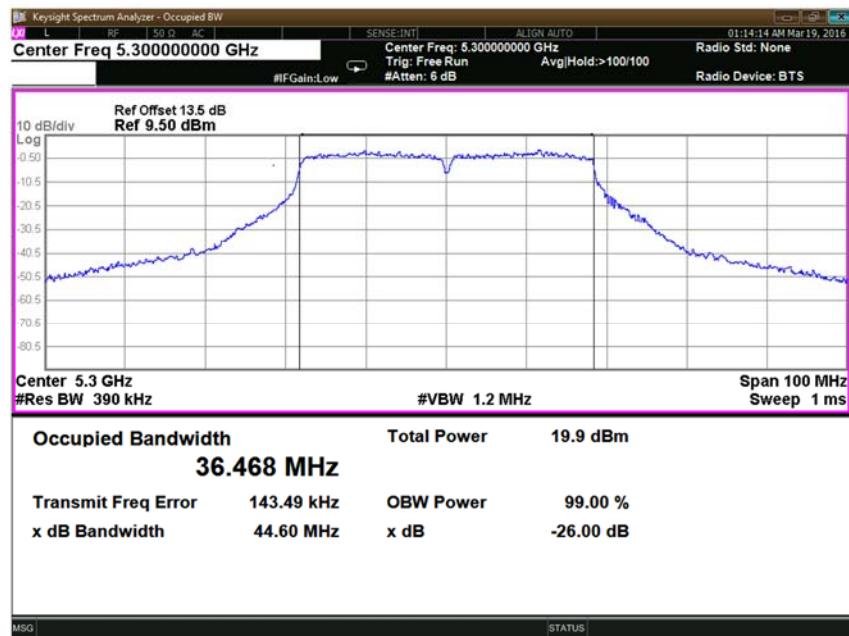


Figure 8: 40 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.0 - 5300 MHz

Figure 9: 40 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.1 - 5300 MHz

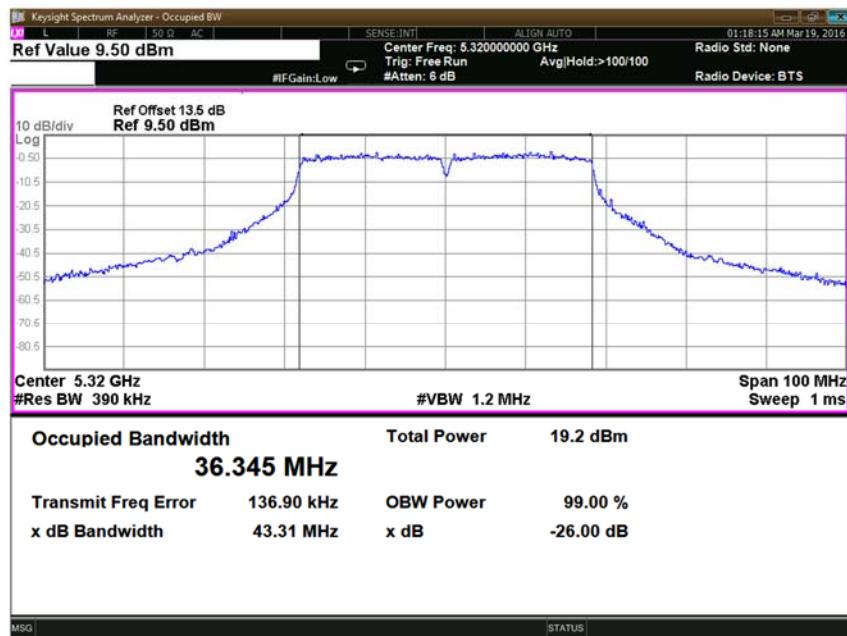


Figure 10: 40 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.0 - 5320 MHz

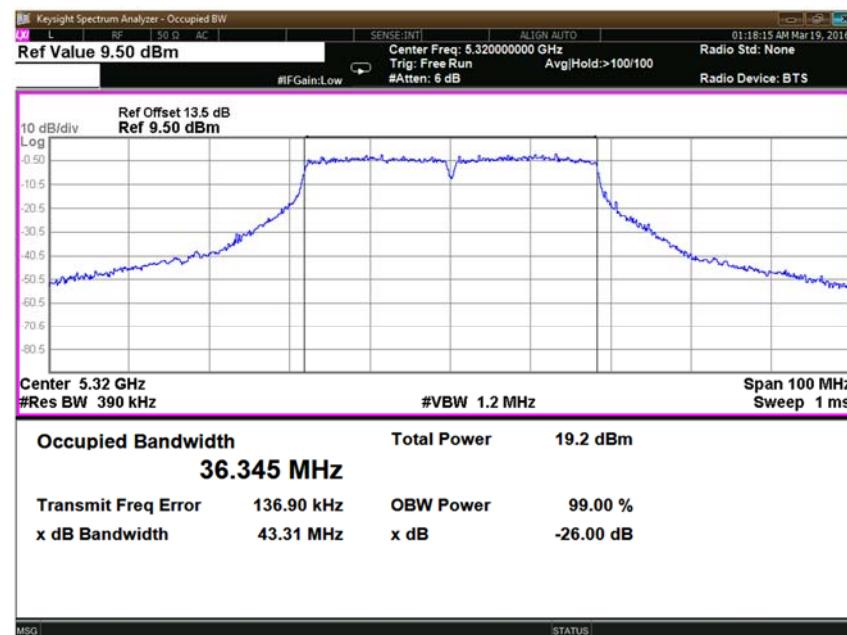


Figure 11: 40 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.1 - 5320 MHz

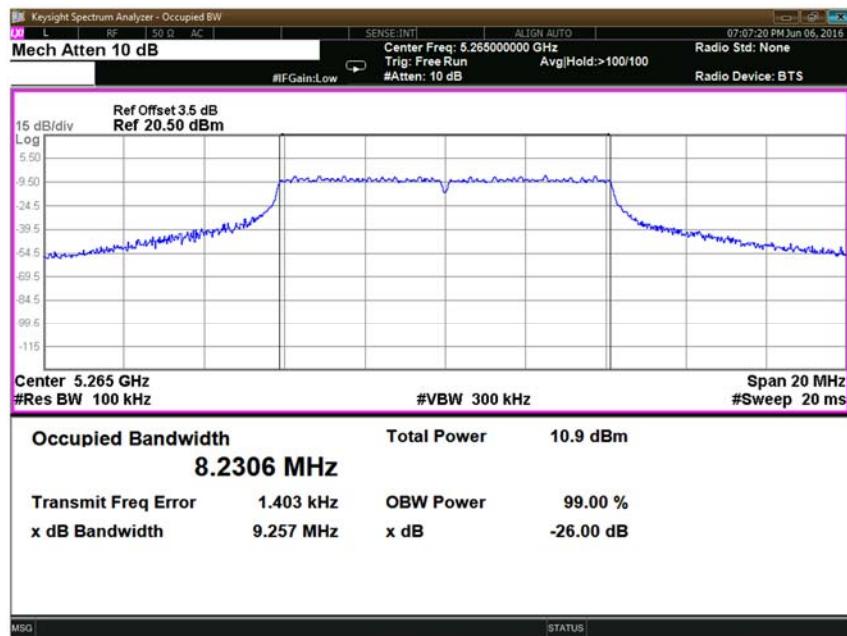


Figure 12: 10 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.0 - 5265 MHz

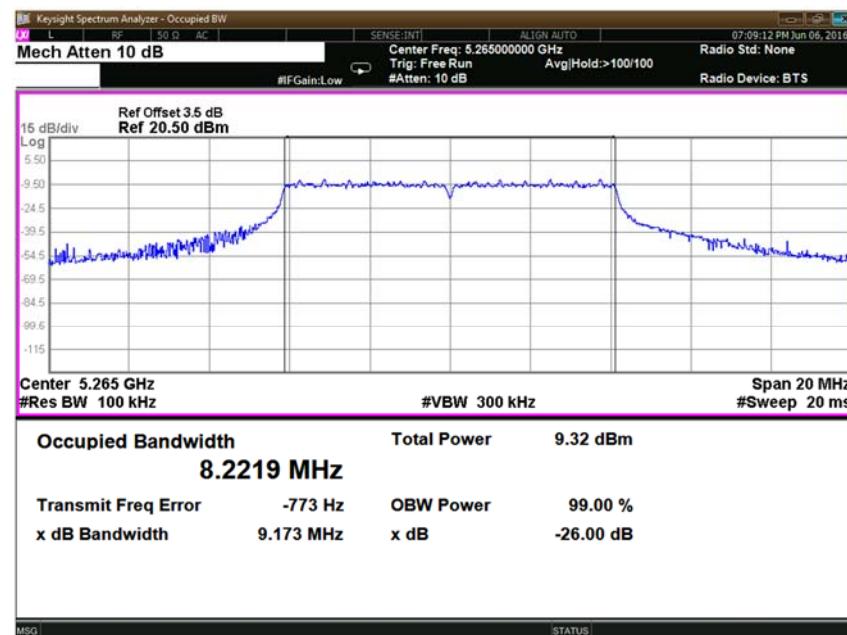


Figure 13: 10 MHz, 17 dBi, Low channel: 26 dB bandwidth measured at Ch.1 - 5265 MHz

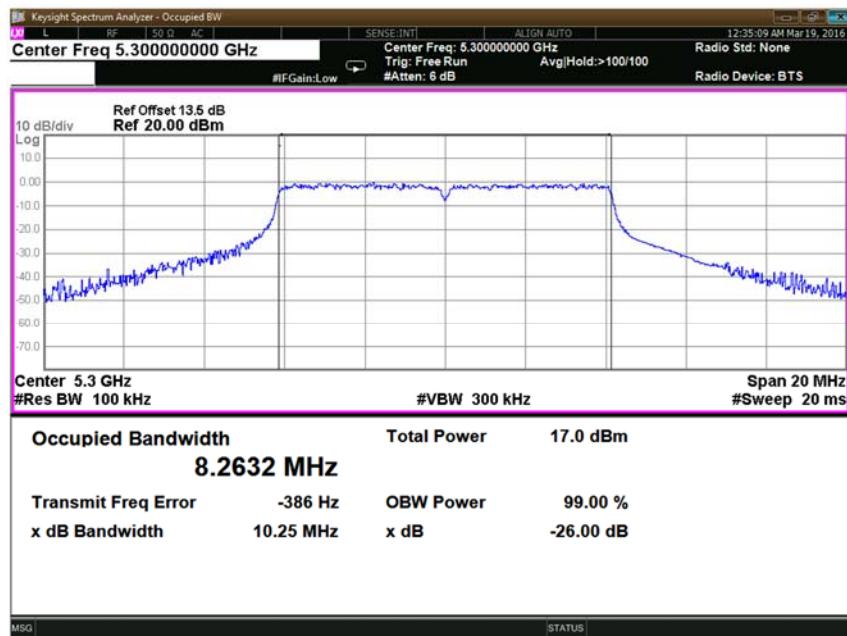


Figure 14: 10 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.0 - 5300 MHz

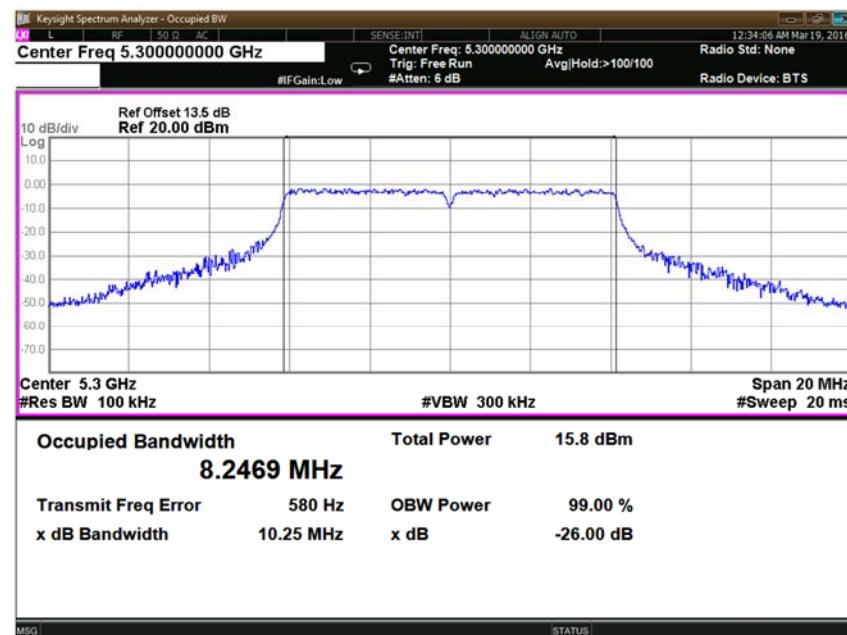


Figure 15: 10 MHz, 17 dBi, Mid channel: 26 dB bandwidth measured at Ch.1 - 5300 MHz

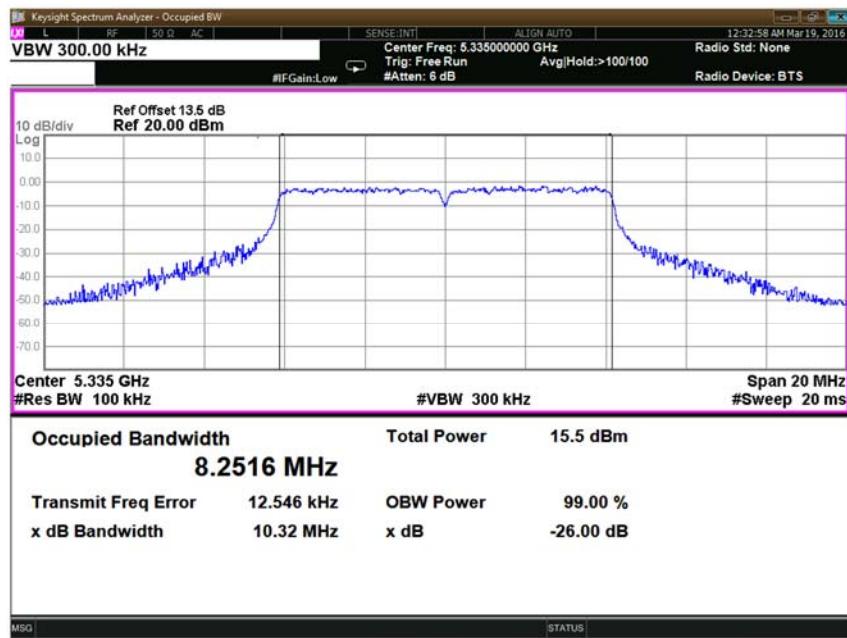


Figure 16: 10 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.0 - 5335 MHz

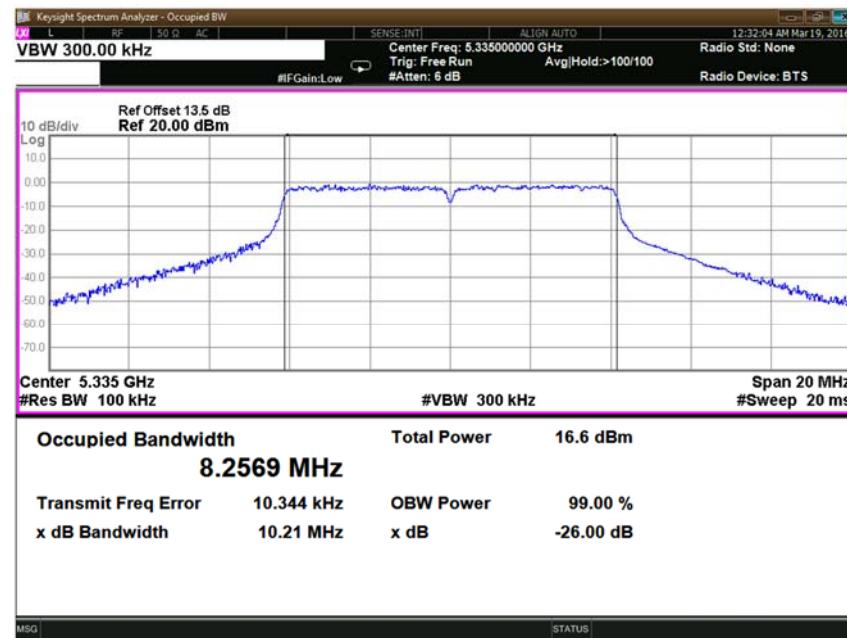


Figure 17: 10 MHz, 17 dBi, High channel: 26 dB bandwidth measured at Ch.1 - 5335 MHz

5.3.2.6 RESULT

The 26 dB emission bandwidth is measured for all channels in both 40 MHz & 10 MHz modulation bandwidth. Refer below table for consolidated data.

Configuration	Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (MHz)
17 dBi	40	Ch. 0	5280	44.22
	40	Ch. 0	5300	44.6
	40	Ch. 0	5320	43.31
	40	Ch. 1	5280	44.45
	40	Ch. 1	5300	44.65
	40	Ch. 1	5320	43.31
	10	Ch. 0	5265	9.257
	10	Ch. 0	5300	10.25
	10	Ch. 0	5335	8.251
	10	Ch. 1	5265	9.173
	10	Ch. 1	5300	10.25
	10	Ch. 1	5335	8.256

Table 4: Result for 26 dB Bandwidth in both 40 MHz and 10 MHz modulation bandwidth

5.3.3 99 % OCCUPIED CHANNEL BANDWIDTH

5.3.3.1 TEST SPECIFICATION

Test Standard	RSS 247 Issue 1 May 2015
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Frequency Range	5250-5350 MHz
Resolution Bandwidth	1 MHz
Video Bandwidth	3 MHz
Sweep Time	Auto
Attenuation	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	23.0 °C
Humidity	55.0 %
Tested By	Suresh.G.N
Test Date	18 th Mar 2016

5.3.3.2 LIMITS

Standard	Reference section	Frequency range	Limit
RSS 247 Issue 1 May 2015	6.2.2(1)	5250 MHz to 5350 MHz	NA

5.3.3.3 TEST SETUP

Figure 18 Typical test setup for Conducted RF Test

5.3.3.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per the **“789033 D2 General U-NII Test Procedures New Rule V01r01”**. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and recorded.

5.3.3.5 MEASUREMENT GRAPHS / DATA

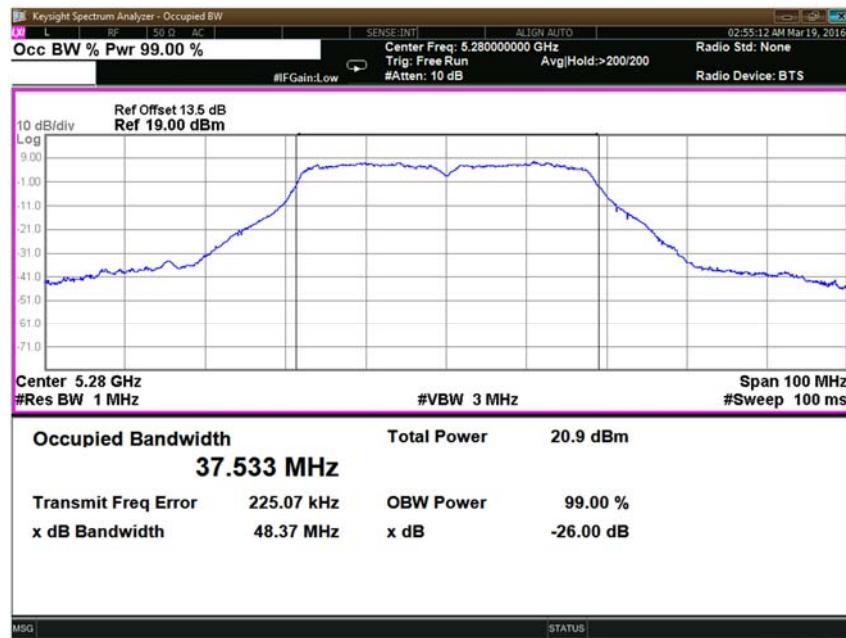


Figure 19: 40 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.0 – 5280 MHz

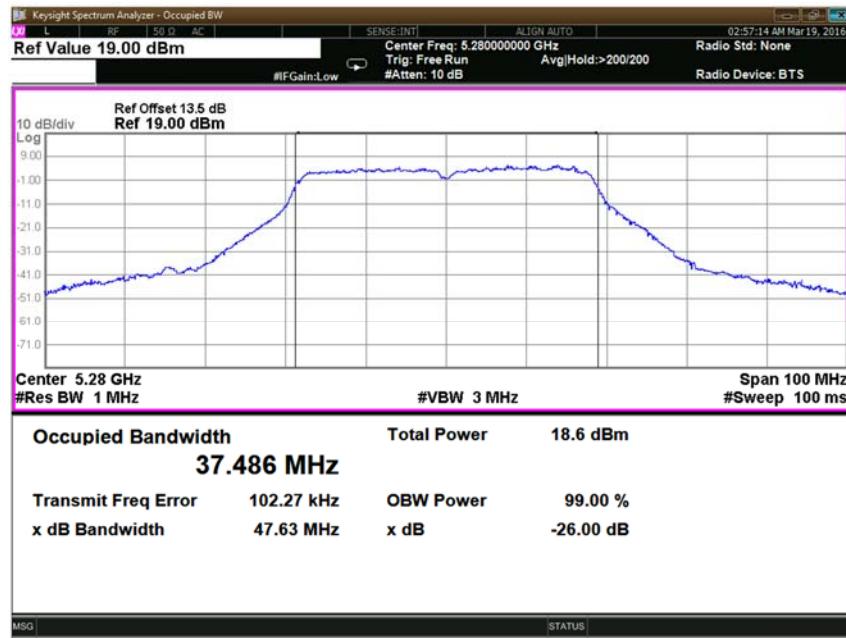


Figure 20: 40 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.1 – 5280 MHz

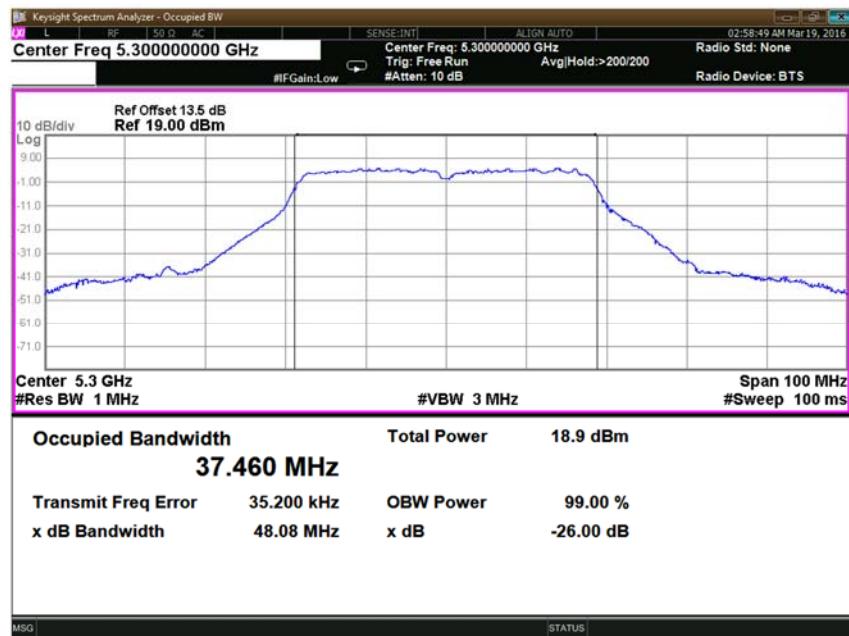


Figure 21: 40 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.0 – 5300 MHz

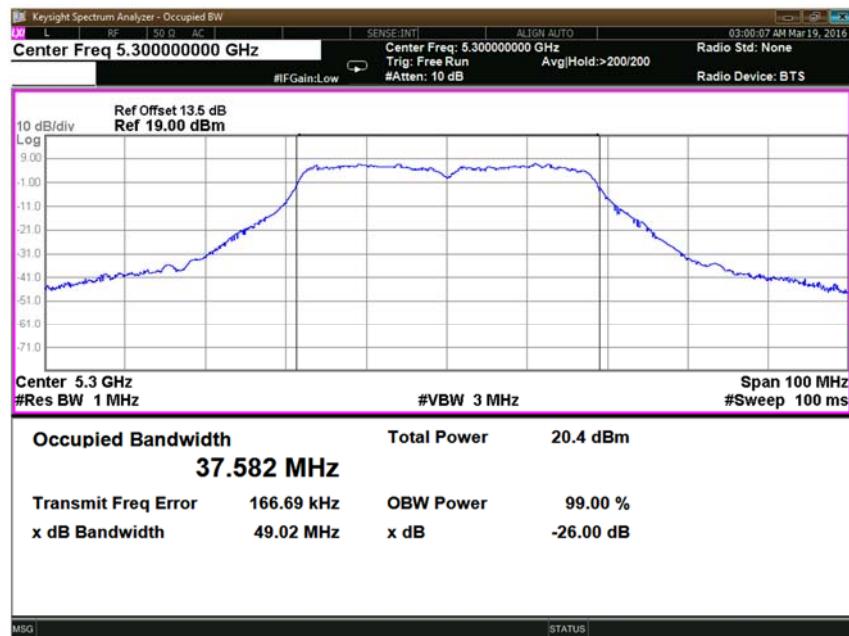


Figure 22: 40 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.1 – 5300 MHz

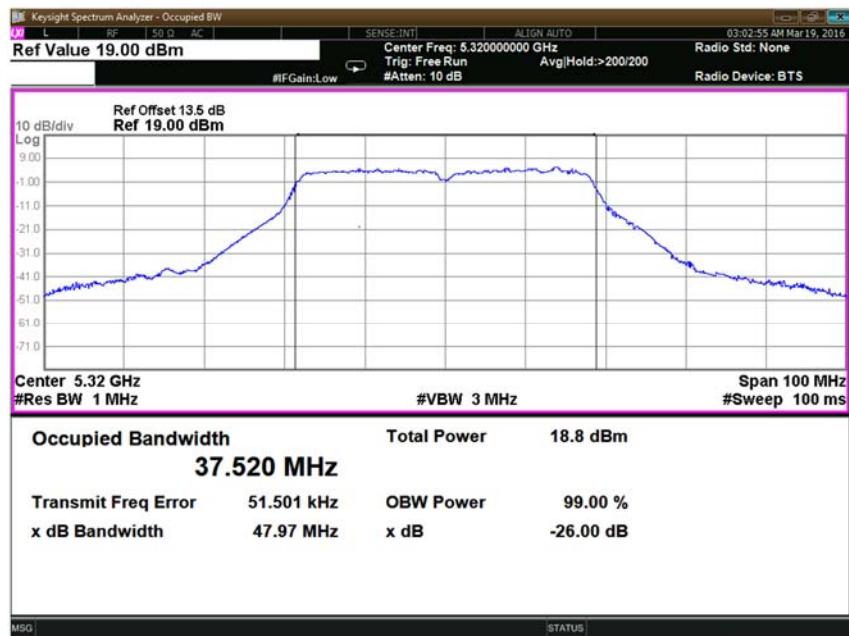


Figure 23: 40 MHz, 17 dBi, High channel: 99% OBW measured at Ch.0 – 5320 MHz

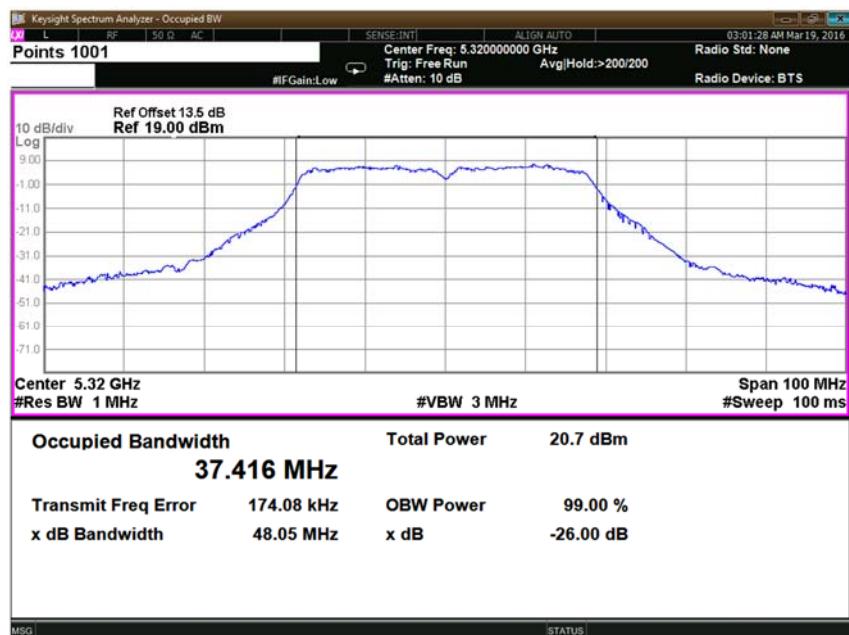


Figure 24: 40 MHz, 17 dBi, High channel: 99% OBW measured at Ch.1 – 5320 MHz

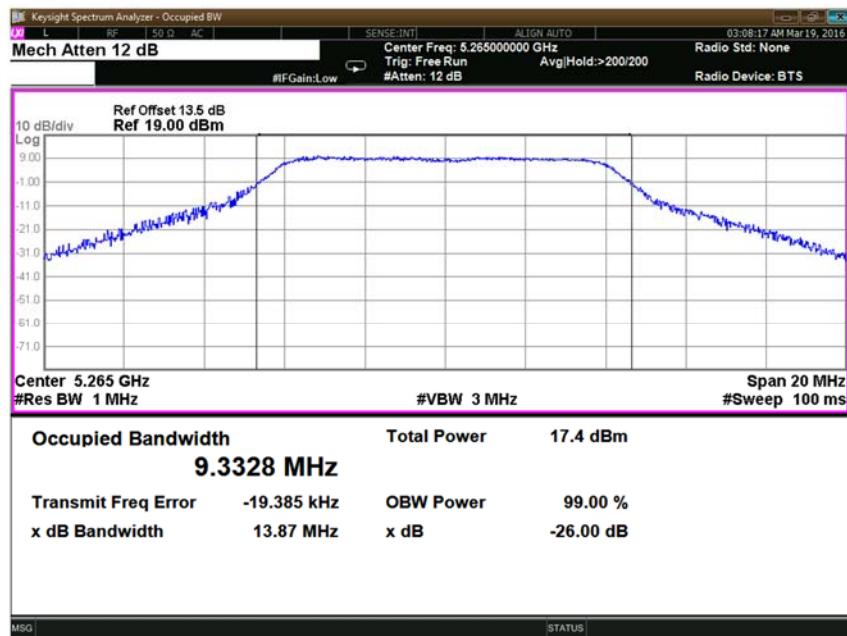


Figure 25: 10 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.0 – 5265 MHz

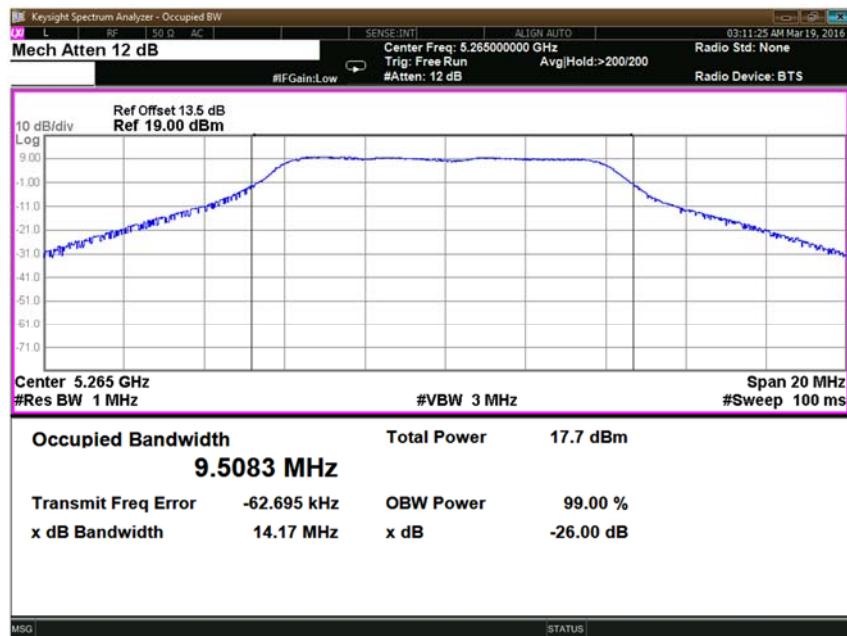


Figure 26: 10 MHz, 17 dBi, Low channel: 99% OBW measured at Ch.1 – 5265 MHz

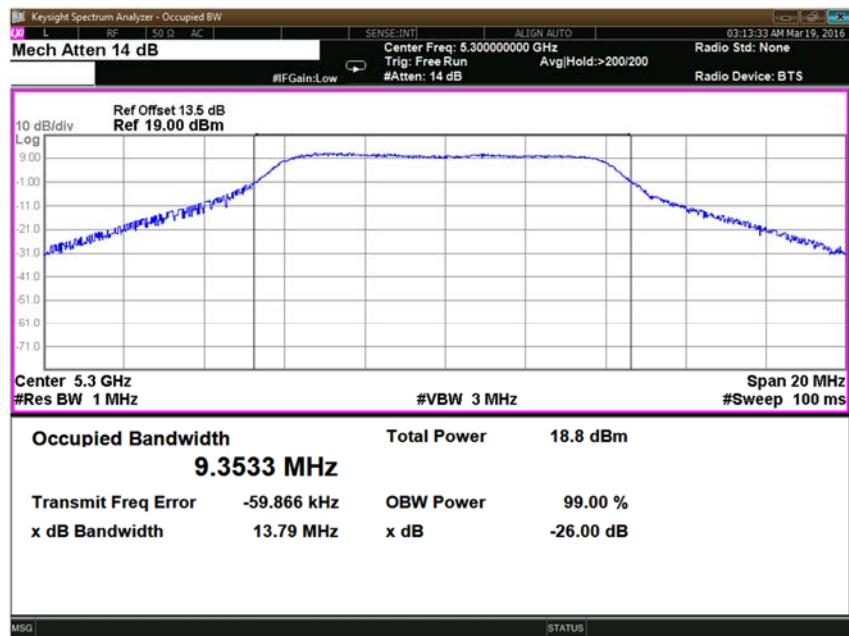


Figure 27: 10 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.0 – 5300 MHz

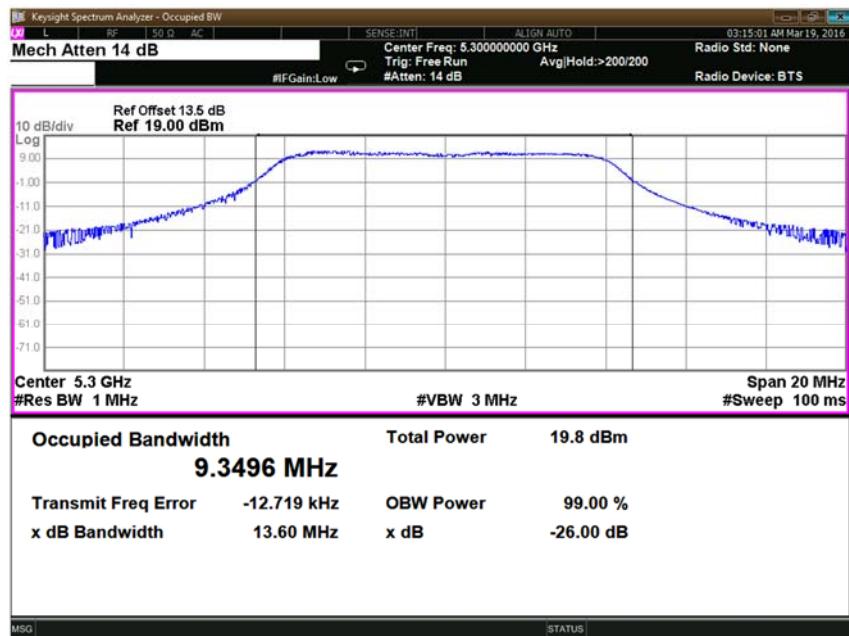


Figure 28: 10 MHz, 17 dBi, Mid channel: 99% OBW measured at Ch.1 – 5300 MHz

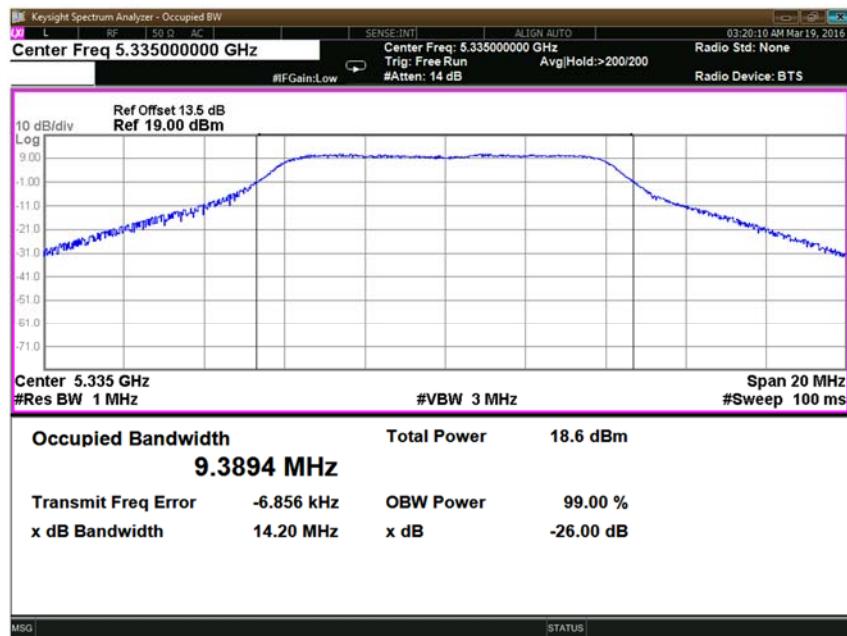


Figure 29: 10 MHz, 17 dBi, High channel: 99% OBW measured at Ch.0 – 5335 MHz

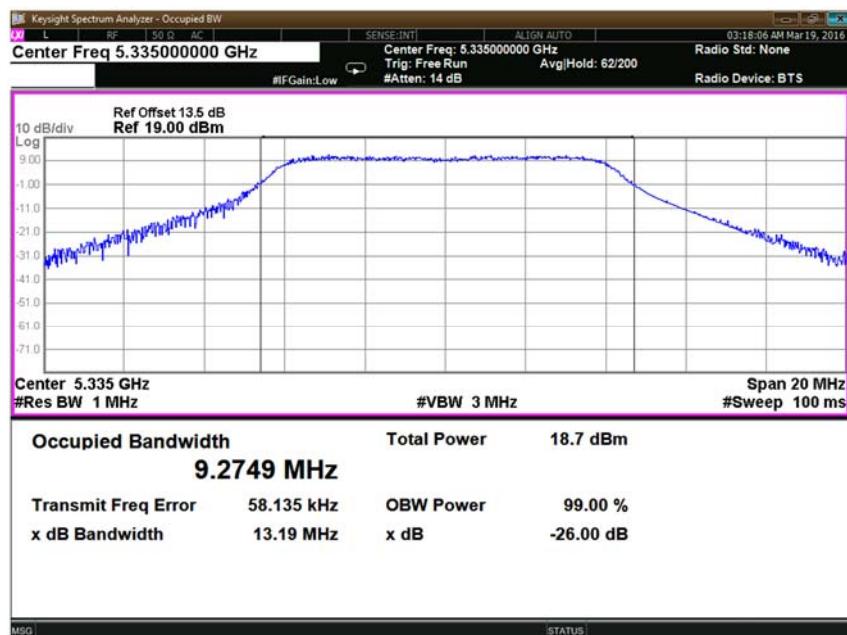


Figure 30: 10 MHz, 17 dBi, High channel: 99% OBW measured at Ch.1 – 5335 MHz

5.3.3.6 RESULT

The 99% Occupied channel Bandwidth for all channels in both 40 MHz & 10 MHz Modulation Bandwidths has been measured and tabulated in below table.

Configuration	Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (MHz)
17 dBi Antenna Condition	40	Ch. 0	5280	37.533
	40	Ch. 0	5300	37.46
	40	Ch. 0	5320	37.52
	40	Ch. 1	5280	37.486
	40	Ch. 1	5300	37.582
	40	Ch. 1	5320	37.41
	10	Ch. 0	5265	9.3328
	10	Ch. 0	5300	9.3533
	10	Ch. 0	5335	9.3894
	10	Ch. 1	5265	9.5083
	10	Ch. 1	5300	9.3496
	10	Ch. 1	5335	9.2749

Table 5 Result for 99% Occupied bandwidth in both 40 MHz and 10 MHz modulation bandwidth

5.3.4 MAXIMUM CONDUCTED OUTPUT POWER

5.3.4.1 TEST SPECIFICATION

Test Standard	RSS 247 Issue 1 May 2015
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Test Mode	Conducted
Frequency Range	5250-5350 MHz
Detector	Average
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	23.0 °C
Humidity	55.0 %
Tested By	Suresh GN
Test Date	18 th Mar 2016

5.3.4.2 LIMITS

Standard	Reference section	Frequency range	Limit
RSS 247 Issue 1 May 2015	6.2.2(1)	5250 MHz to 5350 MHz	max conducted Tx power $\leq 23.97 \text{ dBm (250 mW)}$ max Limit (for 17 dBi antenna) : $\leq 12.97 \text{ dBm}$

5.3.4.3 TEST SETUP

Figure 31: Typical test setup for Conducted RF Test

5.3.4.4 TEST PROCEDURE

The Conducted test was performed using the power meter. Measurements were done as per Section II E 3.b (Method PM-G) of KDB “**789033 DO2 General UNII Test Procedures New Rules v01r01**”. The RF output of the EUT was connected to the input port of Power meter using an attenuator. The graph and data captured from power meter and compared with the limits specified in the standard.

5.3.4.5 MEASUREMENT GRAPHS / DATA

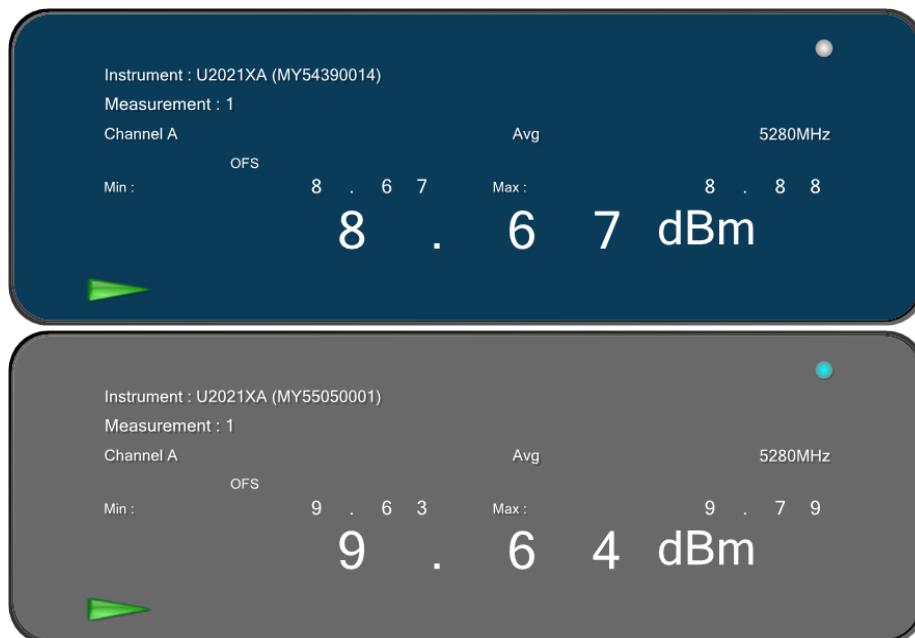


Figure 32: 40 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5280 MHz

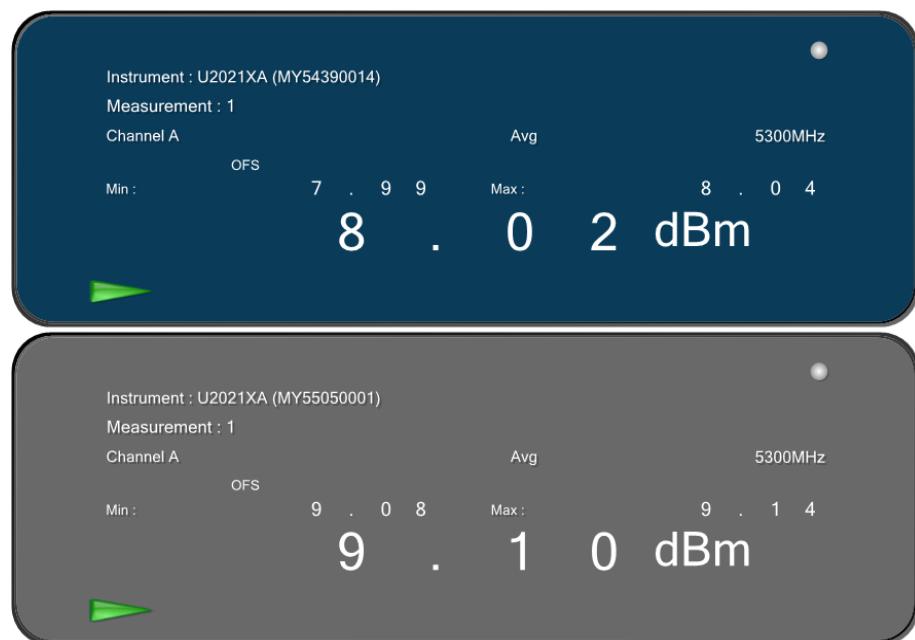


Figure 33: 40 MHz, 17 dBi, Mid channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5300 MHz

Figure 34: 40 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5320 MHz

Figure 35: 10 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5265 MHz

Figure 36: 10 MHz, 17 dBi, Mid channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5300 MHz

Figure 37: 10 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5335 MHz

Figure 38: 40 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5270 MHz

Figure 39: 40 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5330 MHz

Figure 40: 10 MHz, 17 dBi, Low channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5255 MHz

Figure 41: 10 MHz, 17 dBi, High channel: Maximum conducted output power measured at Ch.0 & Ch.1 – 5345 MHz

5.3.4.6 RESULT

Maximum Conducted Output Power for all channels in both 40 MHz & 10 MHz modulation bandwidth is within the specified limits. Refer below table for consolidated data.

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (dBm)
40	Ch. 0	5280	8.67
40	Ch. 1	5280	9.64
40	Ch. 0	5300	8.02
40	Ch. 1	5300	9.10
40	Ch. 0	5320	8.35
40	Ch. 1	5320	9.12
40	Ch. 0	5270	9.82
40	Ch. 1	5270	9.86
40	Ch. 0	5330	9.62
40	Ch. 1	5330	9.54
10	Ch. 0	5265	6.30
10	Ch. 1	5265	7.38
10	Ch. 0	5300	8.22
10	Ch. 1	5300	8.67
10	Ch. 0	5335	7.85
10	Ch. 1	5335	8.62
10	Ch. 0	5255	4.06
10	Ch. 1	5255	5.69
10	Ch. 0	5345	4.92
10	Ch. 1	5345	5.92

Table 6: Maximum conducted output power for 17 dBi configuration

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Consolidated Power (dBm)	Limit (dBm)	Result
40	Ch. 0 & Ch. 1	5280	12.20	12.97	PASS
40	Ch. 0 & Ch. 1	5300	11.58	12.97	PASS
40	Ch. 0 & Ch. 1	5320	11.76	12.97	PASS
40	Ch. 0 & Ch. 1	5270	12.85	12.97	PASS
40	Ch. 0 & Ch. 1	5330	12.6	12.97	PASS
10	Ch. 0 & Ch. 1	5265	9.912	12.97	PASS
10	Ch. 0 & Ch. 1	5300	11.46	12.97	PASS
10	Ch. 0 & Ch. 1	5335	11.27	12.97	PASS
10	Ch. 0 & Ch. 1	5255	7.923	12.97	PASS
10	Ch. 0 & Ch. 1	5345	8.45	12.97	PASS

Table 7: Consolidated values across channels and final power for 17 dBi configuration

*The recorded power in dBm was converted into Watt, and then added and convert the result back to dBm
 dBm to mW = $\log(mW) * 10$
 mW to dBm = $10^{\log(mW) / 10}$*

5.3.5 POWER SPECTRAL DENSITY

5.3.5.1 TEST SPECIFICATION

Test Standard	RSS 247 Issue 1 May 2015
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Frequency Range	5250-5350 MHz
Resolution Bandwidth	1 MHz
Video Bandwidth	3 MHz
Sweep Time	1 ms
Attenuation	Auto
Test Mode	Conducted
Detector	RMS
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	23.0 °C
Humidity	54.0 %
Tested By	Suresh .G.N
Test Date	25 th Apr 2016

5.3.5.2 LIMITS

Standard	Reference section	Frequency range	Limit
RSS 247 Issue 1 May 2015	6.2.2(1)	5250 MHz to 5350 MHz	≤ 11 dBm in any 1MHz band Limit (for 17 dBi antenna configuration) : ≤ 0 dBm

5.3.5.3 TEST SETUP

Figure 42: Typical test setup for Conducted Test

5.3.5.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per Section II F (PSD) of KDB ‘789033 D02 General UNII Test Procedures New Rules v01r01’. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and compared with the limits specified in the standard.

5.3.5.5 MEASUREMENT GRAPHS / DATA

Figure 43: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5280 MHz

Figure 44: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5280 MHz

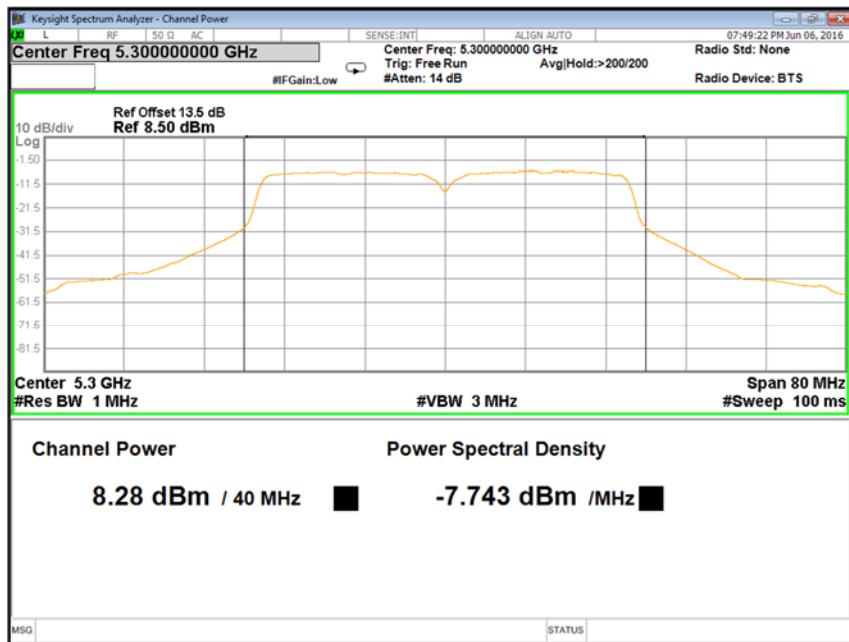


Figure 45: 40 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 0 – 5300 MHz

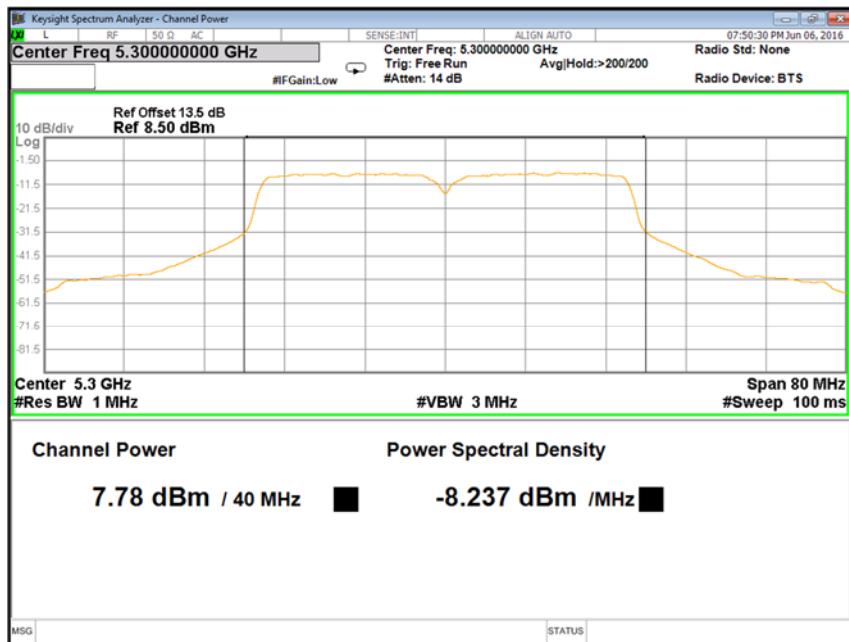


Figure 46: 40 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 1 – 5300 MHz

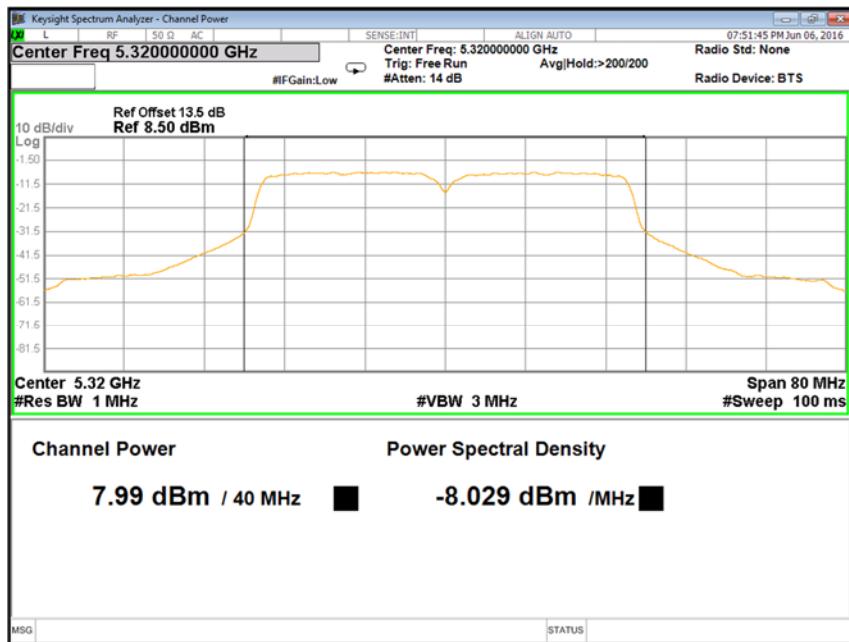


Figure 47: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5320 MHz

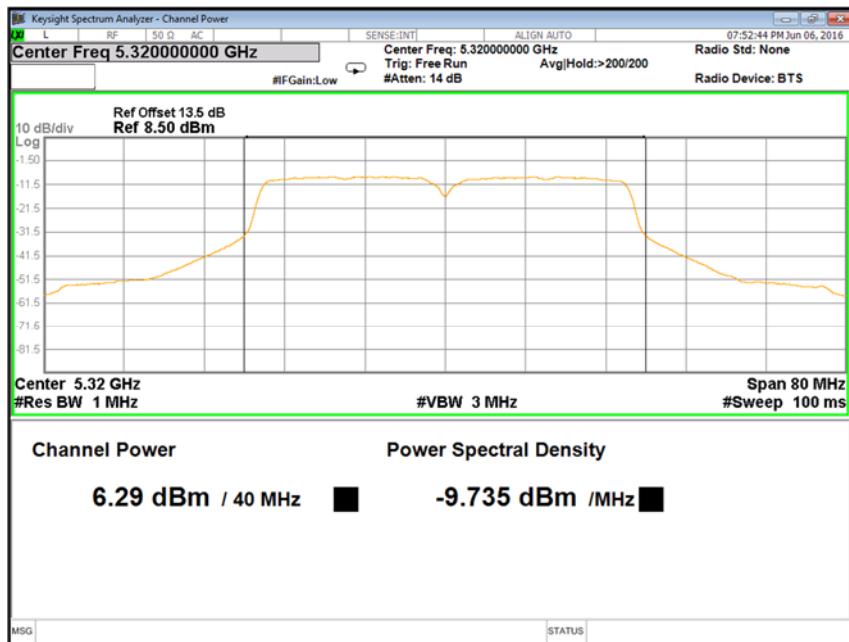


Figure 48: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5320 MHz

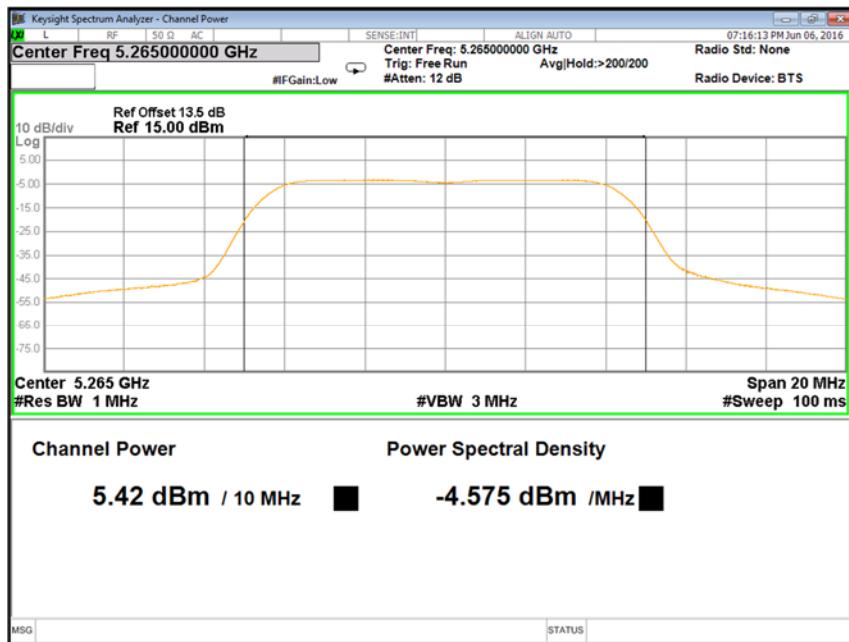


Figure 49: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5265 MHz

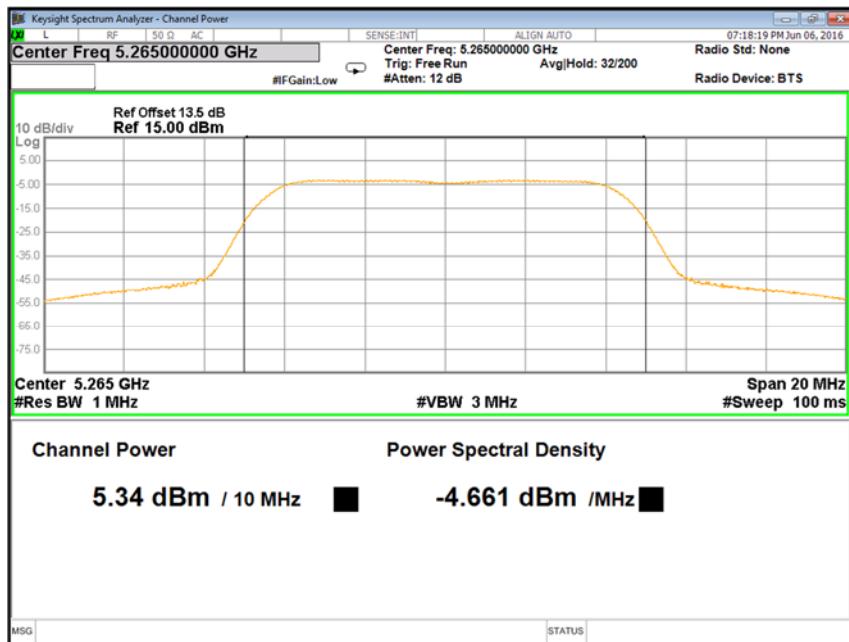


Figure 50: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5265 MHz

Figure 51: 10 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 0– 5300 MHz



Figure 52: 10 MHz, 17 dBi, Mid channel: Power spectral density measured at Ch. 1 – 5300 MHz

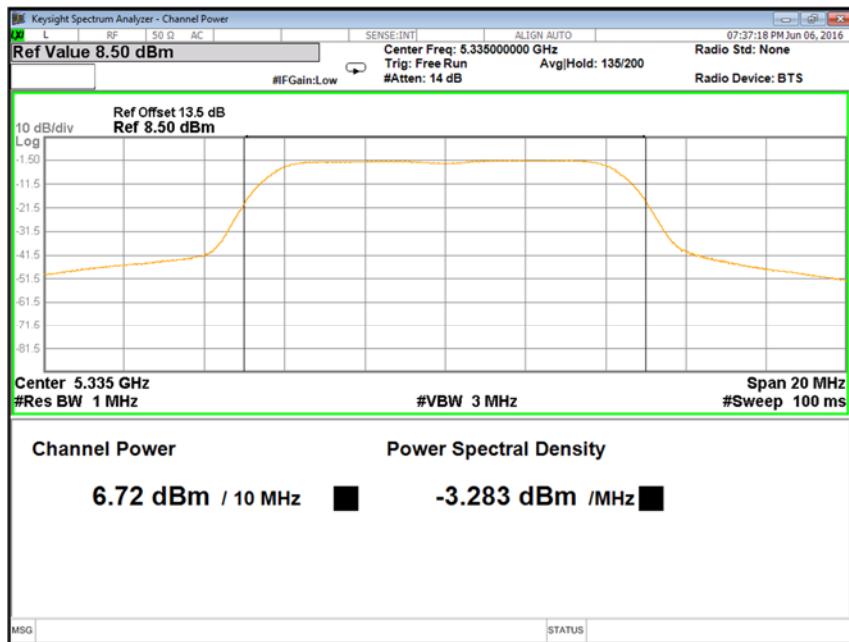


Figure 53: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5335 MHz

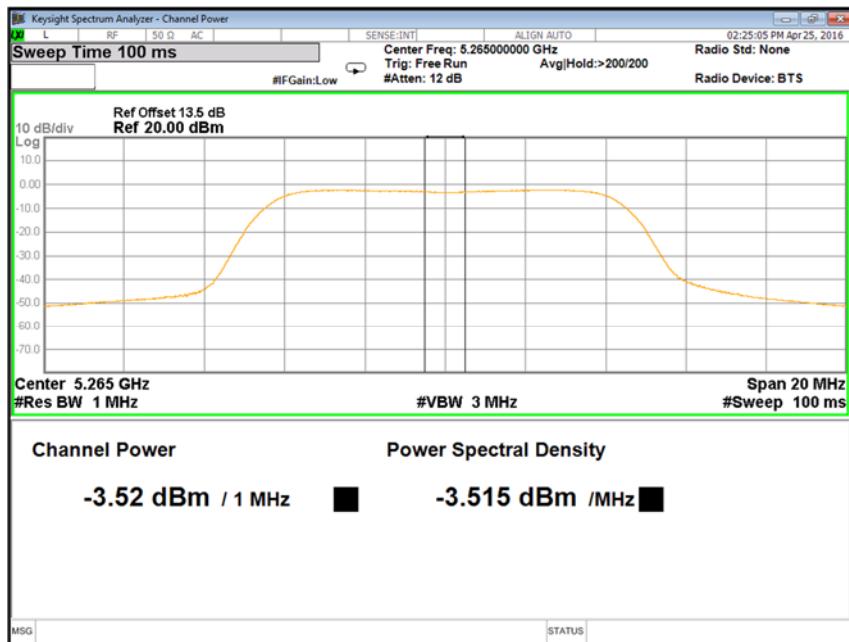


Figure 54: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5335 MHz

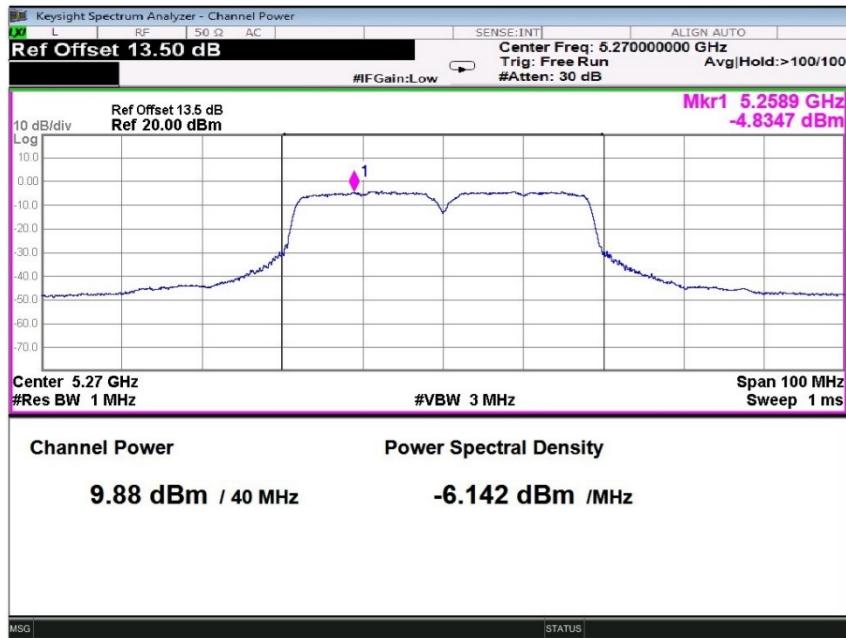


Figure 55: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5270 MHz

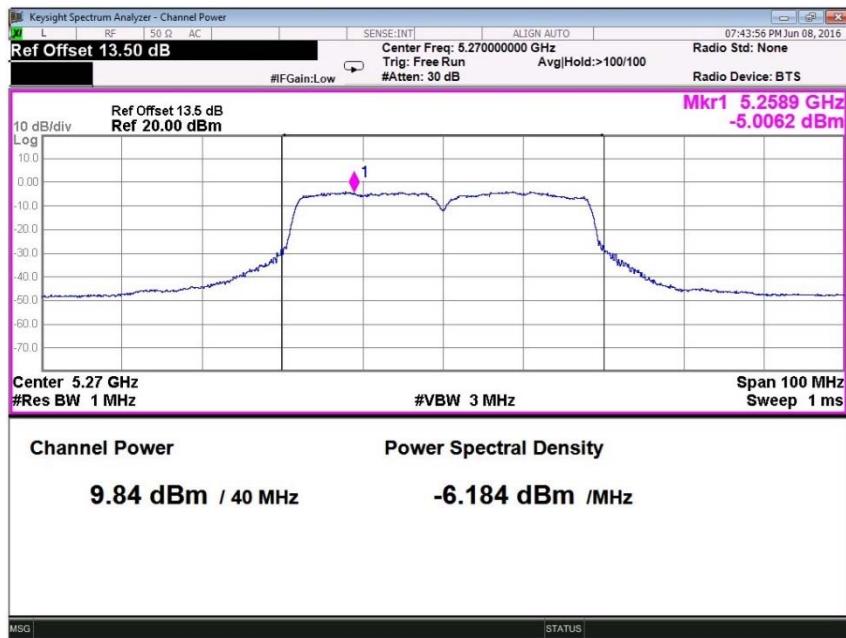


Figure 56: 40 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5270 MHz

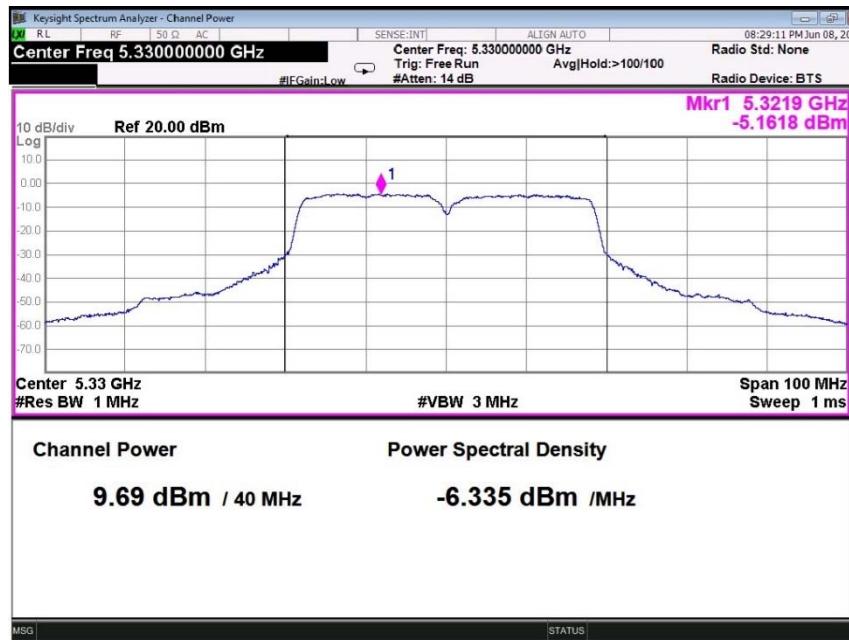


Figure 57: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5330 MHz

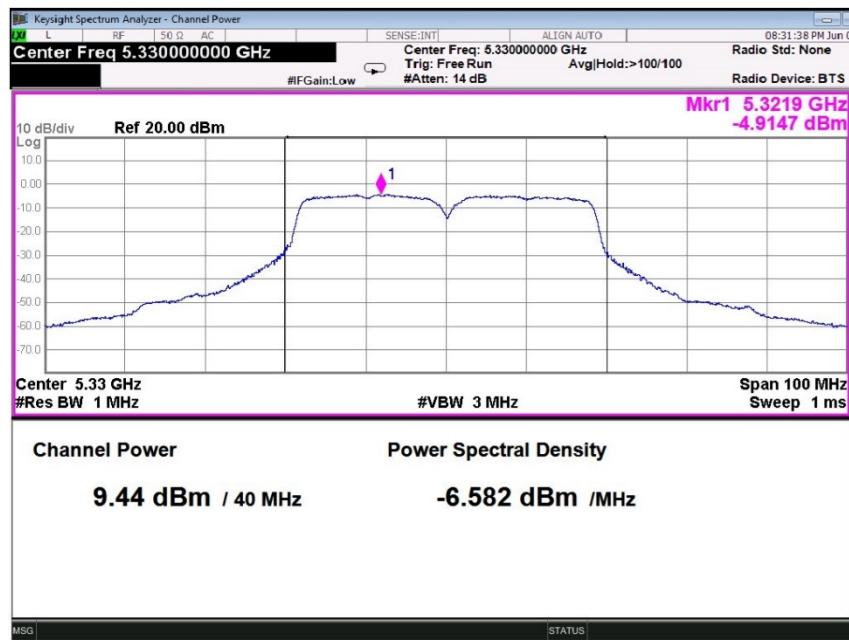


Figure 58: 40 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5330 MHz

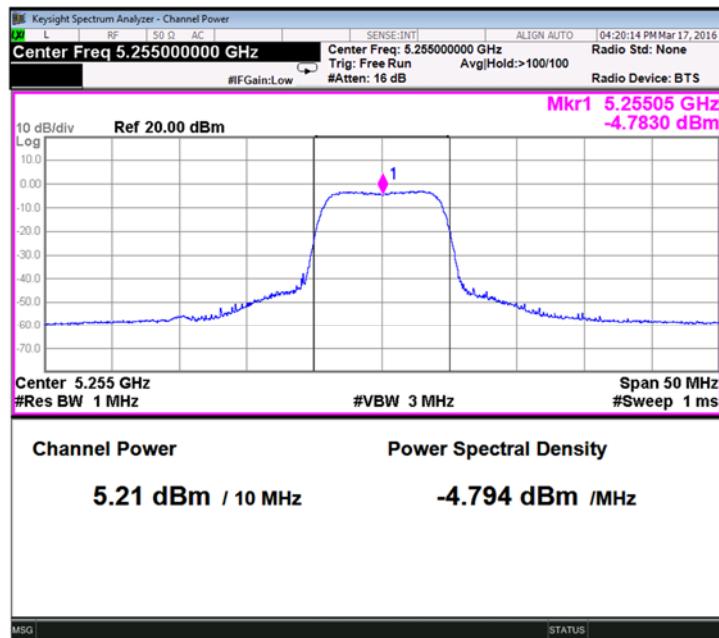


Figure 59: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 0 – 5255 MHz

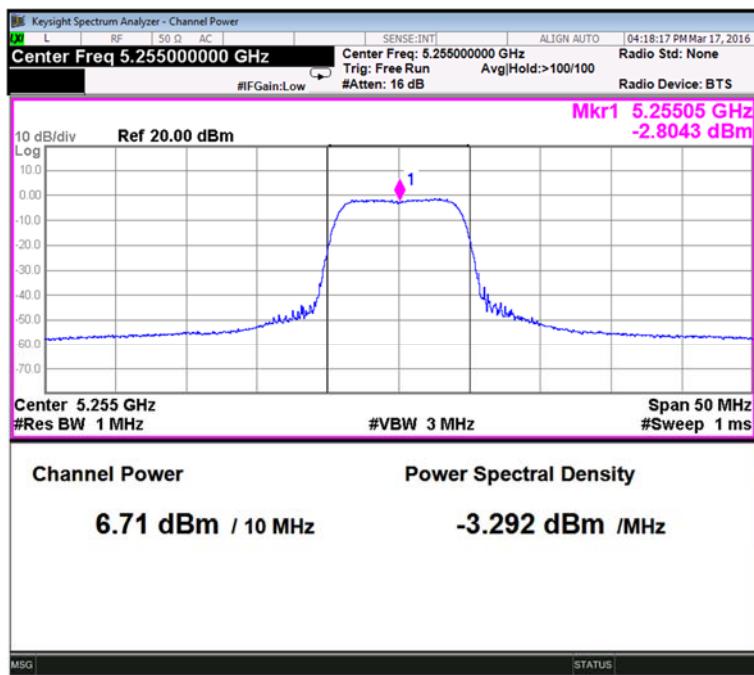


Figure 60: 10 MHz, 17 dBi, Low channel: Power spectral density measured at Ch. 1 – 5255 MHz

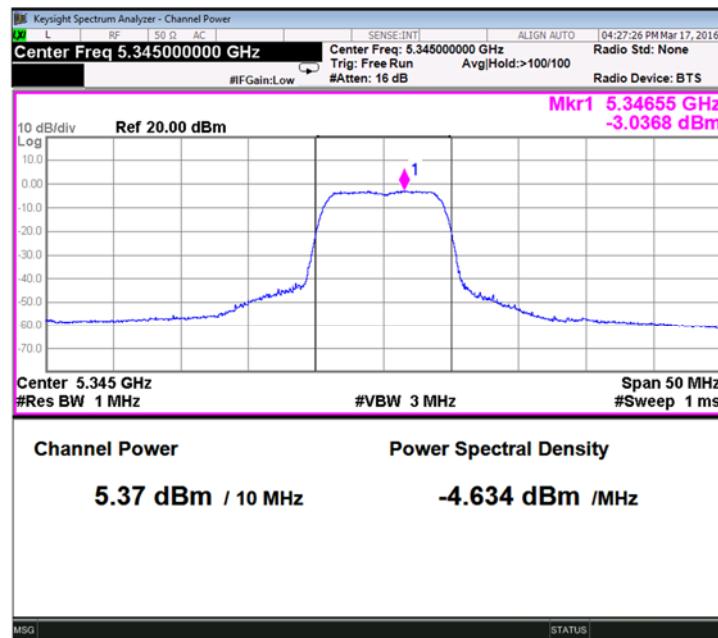


Figure 61: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 0 – 5345 MHz

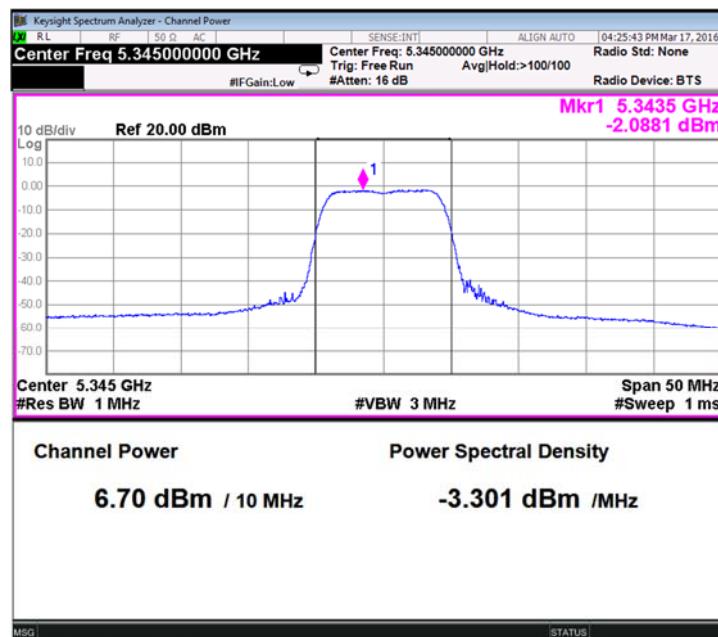


Figure 62: 10 MHz, 17 dBi, High channel: Power spectral density measured at Ch. 1 – 5345 MHz

5.3.5.6 RESULT

Power Spectral Density for all channels in both 40 MHz & 10 MHz Modulation Bandwidths is within the Specified limit. Refer below table for consolidated result.

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (dBm/MHz)	Limit (dBm/MHz)	Result
40	Ch. 0	5280	-7.587	-3	Pass
40	Ch. 0	5300	-7.743	-3	Pass
40	Ch. 0	5320	-8.029	-3	Pass
40	Ch. 1	5280	-7.697	-3	Pass
40	Ch. 1	5300	-8.237	-3	Pass
40	Ch. 1	5320	-9.735	-3	Pass
40	Ch. 0	5270	-6.142	-3	Pass
40	Ch. 0	5330	-6.335	-3	Pass
40	Ch. 1	5270	-6.184	-3	Pass
40	Ch. 1	5330	-6.582	-3	Pass
10	Ch. 0	5265	-4.575	-3	Pass
10	Ch. 0	5300	-3.336	-3	Pass
10	Ch. 0	5335	-3.283	-3	Pass
10	Ch. 1	5265	-4.661	-3	Pass
10	Ch. 1	5300	-4.263	-3	Pass
10	Ch. 1	5335	-3.515	-3	Pass
10	Ch. 0	5255	-4.794	-3	Pass
10	Ch. 0	5345	-4.634	-3	Pass
10	Ch. 1	5255	-3.292	-3	Pass
10	Ch. 0	5345	-3.301	-3	Pass

Table 8: Result of PSD for 17 dBi configuration for both 40 MHz and 10 MHz modulation bandwidth

5.3.6 TRANSMITTER UNWANTED EMISSIONS (CONDUCTED)

5.3.6.1 TEST SPECIFICATION

Test Standard	RSS 247 Issue 1 May 2015			
Test Procedure	ANSI C63.10-2013			
Frequency Range	9 kHz - 150 kHz	150 kHz -30 MHz	30 MHz-1 GHz	1 GHz – 40 GHz
Resolution Bandwidth	200 Hz	9 kHz	120 kHz	1 MHz
Video Bandwidth	1 kHz	30 kHz	300 kHz	3 MHz
Sweep Time	Auto	Auto	Auto	Auto
Detector	Peak	Peak	Peak	Peak & Average
Attenuation	Auto			
Test Mode	Conducted			
Input Voltage	120 V AC			
Input Frequency	60 Hz			
Temperature	23.0 °C			
Humidity	54.0 %			
Tested By	Suresh.G.N			
Test Date	26 th Apr 2016			

5.3.6.2 LIMITS

Standard	Reference section	Frequency range	Limit EIRP (dBm/MHz)
RSS 247 Issue 1 May 2015	6.2.2(2)	Outside 5470-5725 MHz	-27

Table 9: Tx Unwanted emission Limit

Standard	Reference section	Frequency range	Limit (dBμV/m)
RSS GEN-Issue 4 Nov 2014	8.9 and 8.10	9 kHz to 490 kHz 490 kHz to 1.705 MHz 1.705 MHz to 30 MHz	128.5194 to 93.8003* 73.8003 to 62.9697* 69.5429

Table 10: General Field strength limit below 30 MHz

Note: * Decreases with the logarithm of the frequency

Standard	Reference section	Frequency range	Limit (dBμV/m) as per Section 5.209
RSS GEN-Issue 4 Nov 2014	8.9 and 8.10	30 MHz to 88 MHz 88 MHz to 216 MHz 216 MHz to 960 MHz 960 MHz to 40 GHz	40 43.52 46.02 53.98

Table 11: General Field strength limit above 30 MHz

Above table specifies limit with Average detector above 1 GHz. 73.98 dB μ V/m is considered as the limit when Peak detector is employed for the measurements above 1 GHz.

5.3.6.3 TEST SETUP

Figure 63: Typical test setup for Conducted test

5.3.6.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer/EMI receiver. Measurements were done as per Section II G.0 of KDB “**789033 DO2 General UNII Test Procedure New Rules v01r01**”. The RF output of the EUT was connected to the input port of Spectrum analyzer/EMI receiver using an attenuator. The graph and data captured from spectrum analyzer and performed required calculations to attain the Electric Field value and compared with the limits specified in the standard.

In the frequency range 9 kHz to 1 GHz, the measurement was performed with peak detector. In the frequency range 1 GHz to 40 GHz, measurement was performed employing both peak & average detector as specified in the standard. Detectors were selected based on FCC KDB document.

Peak search option was used to capture the frequency with maximum amplitude in the respective bands and final calculations have been performed on these frequencies to show compliance with the limits specified.

5.3.6.5 MEASUREMENT GRAPHS / DATA

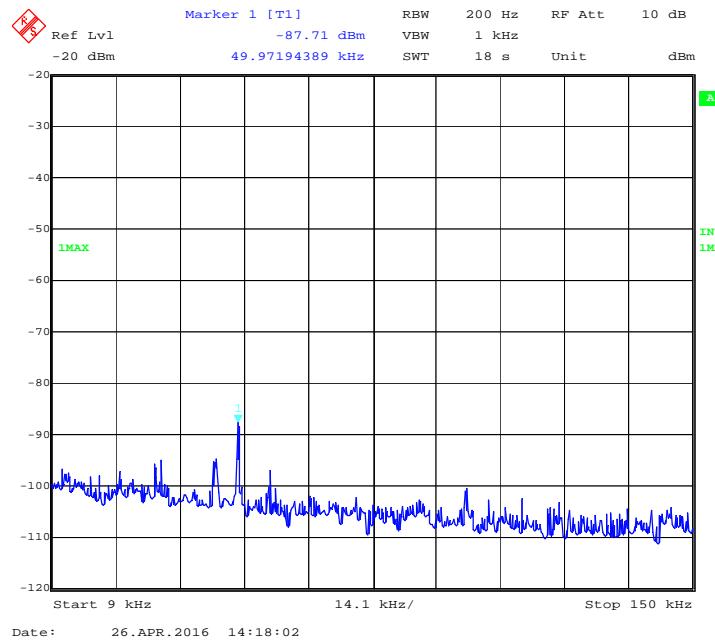


Figure 64: 40 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 0 – 5280 MHz

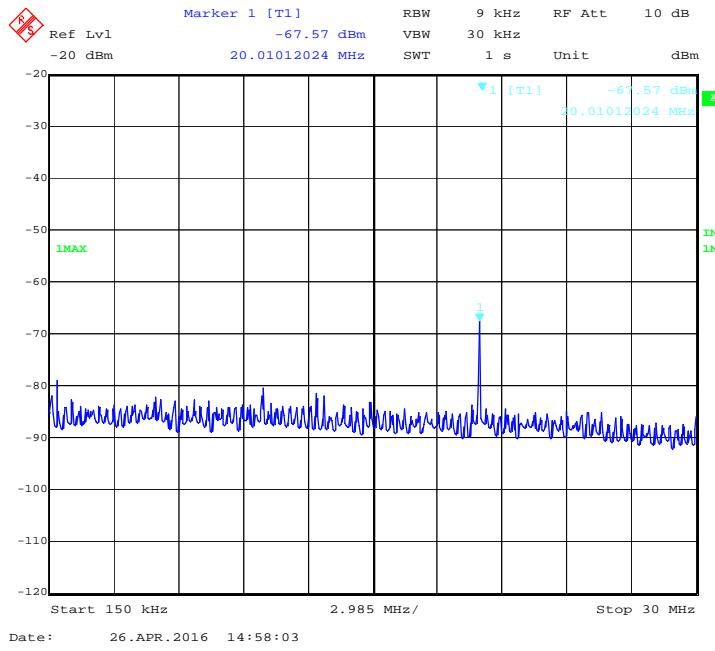


Figure 65: 40 MHz, 17 dBi, Low channel: Peak emission from 150 kHz to 30 MHz at Ch. 0 – 5280 MHz

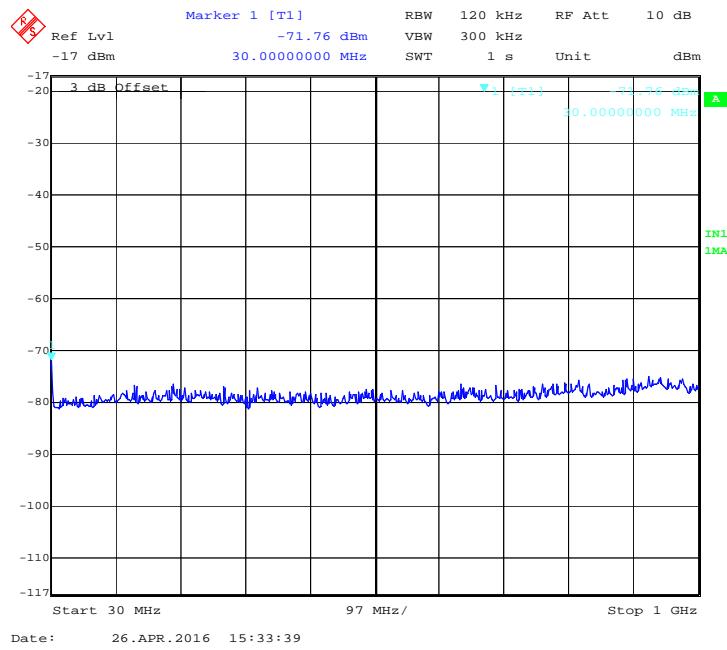


Figure 66: 40 MHz, 17 dBi, Low channel: Peak emission from 30 MHz to 1 GHz at Ch. 0 –5280 MHz

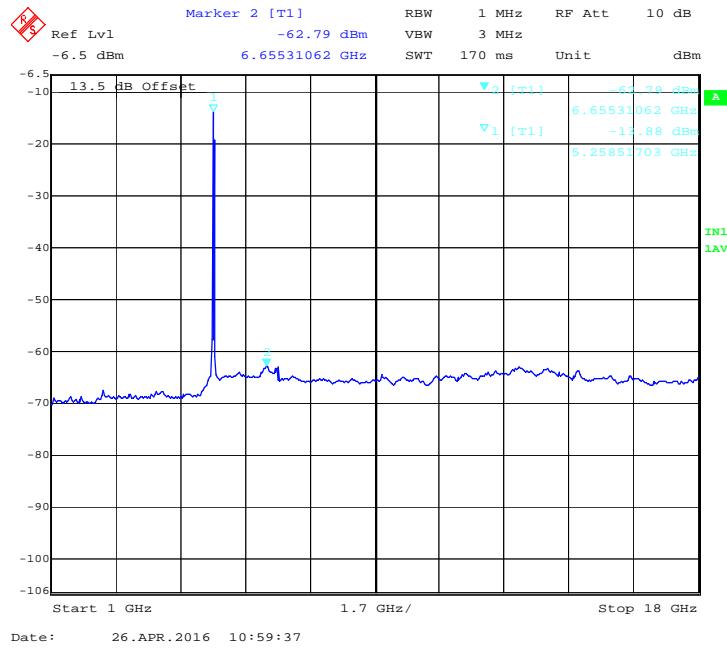


Figure 67: 40 MHz, 17 dBi, Low channel: Average emission from 1 GHz to 18 GHz at Ch. 0 –5280 MHz

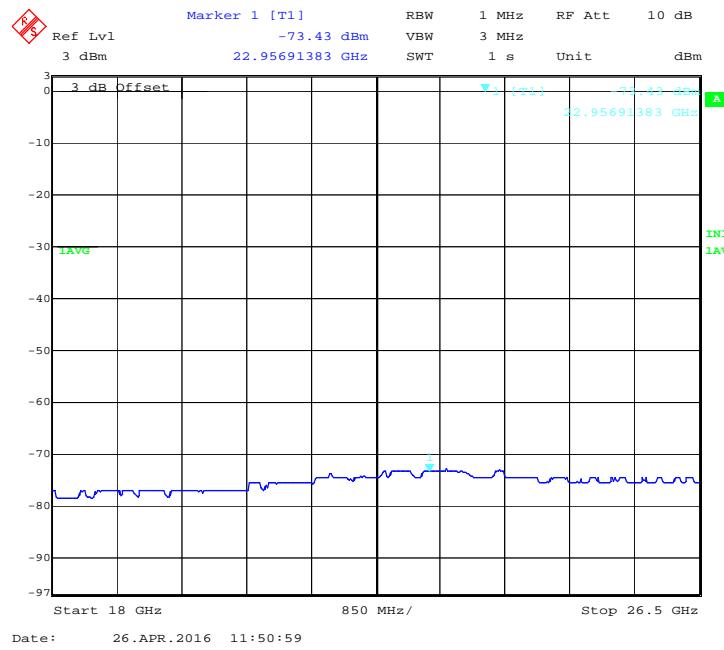


Figure 68: 40 MHz, 17 dBi, Low channel: Average emission from 18 GHz to 26.5 GHz at Ch. 0 –5280 MHz

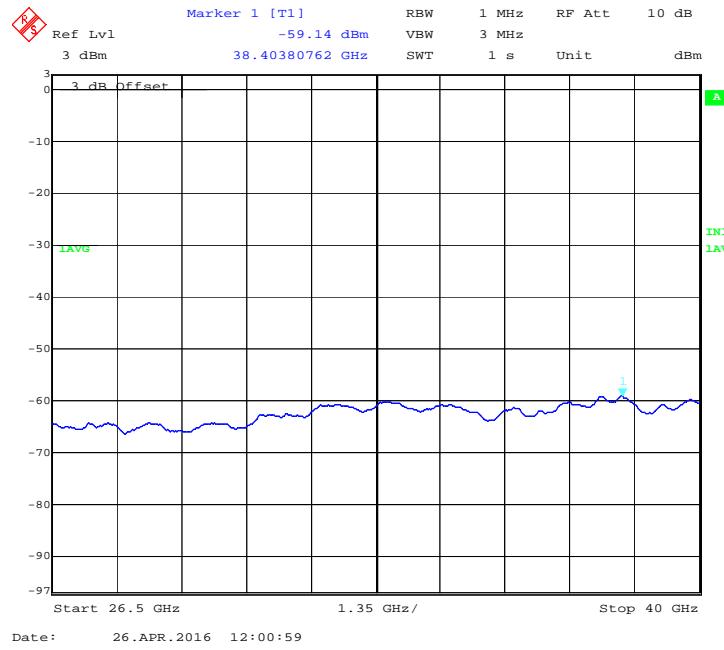


Figure 69: 40 MHz, 17 dBi, Low channel: Average emission from 26.5 GHz to 40 GHz at Ch. 0 –5280 MHz

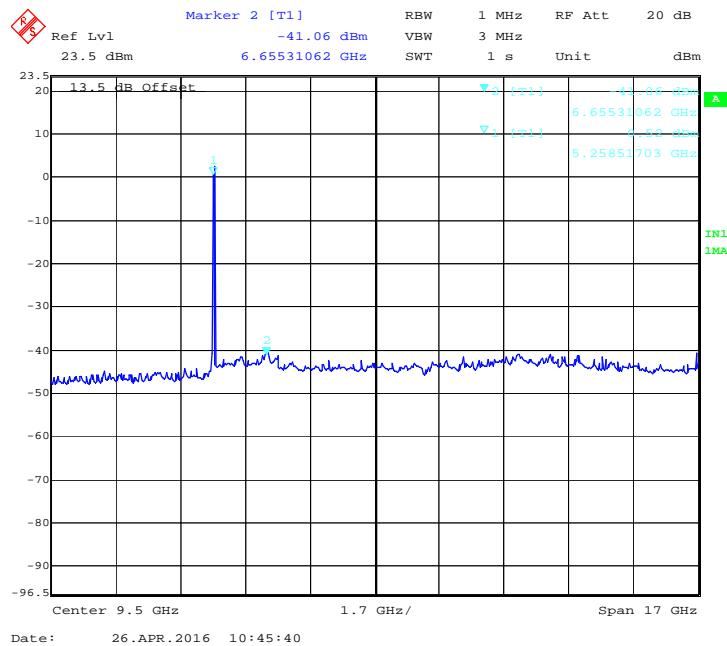


Figure 70: 40 MHz, 17 dBi, Low channel: Peak emission from 1 GHz to 18 GHz at Ch. 0 –5280 MHz

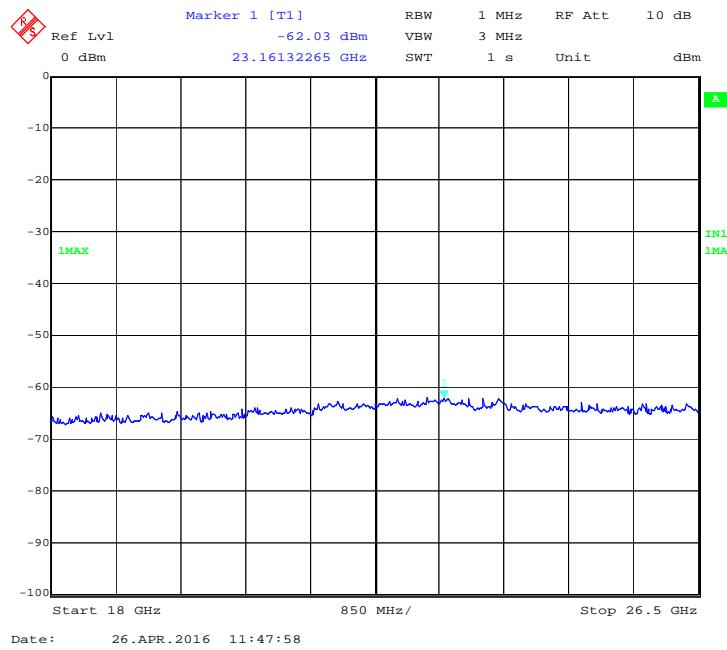


Figure 71: 40 MHz, 17 dBi, Low channel: Peak emission from 18 GHz to 26.5 GHz at Ch. 0 –5280 MHz

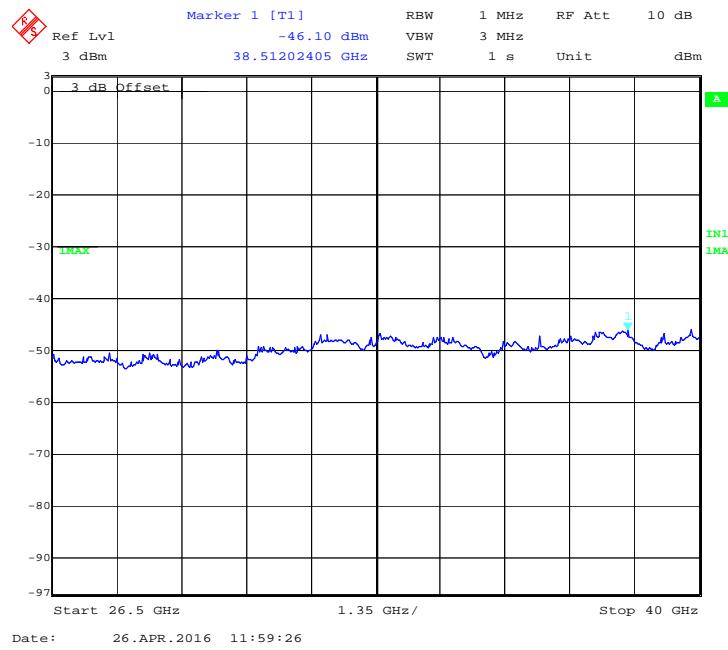


Figure 72: 40 MHz, 17 dBi, Low channel: Peak emission from 26.5 GHz to 40 GHz at Ch. 0 –5280 MHz

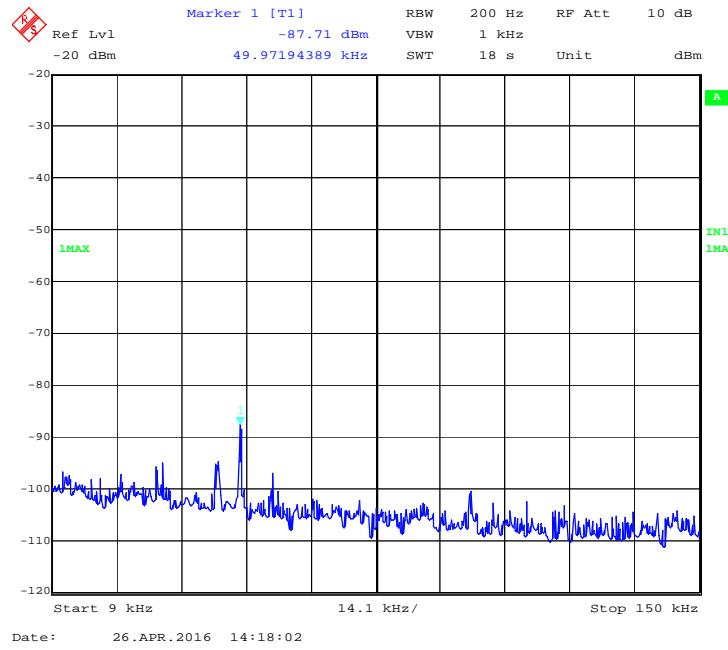


Figure 73: 40 MHz, 17 dBi, Low channel: Peak emission from 9 kHz to 150 kHz at Ch. 1 –5280 MHz