

EMC TEST REPORT	
TEST REPORT NUMBER	DBN 1604TEL544-A
TEST REPORT DATE	10-Jun-2016
TEST REPORT VERSION	1.0
MANUFACTURER	Cambium Networks
PRODUCT NAME	ePMP2000
PRODUCT MODEL	C050900P031A
CONDITION OF EUT WHEN RECEIVED	GOOD and in proper working condition
ISSUED TO	Cambium Networks, 3800 Golf Road, Suite 360, Rolling Meadows, IL, USA 60008
ISSUED BY	<p>TARANG Lab Wipro Technologies, SJP2, Survey#70,77,78/8A, Dodd Kanelli, Sarjapur road, Bangalore. Karnataka. India - 560 035 Tel: +91-80-30292929 Fax: +91-80-30298200 Email: tarang.planet@wipro.com Web: www.wipro.com</p>

AMENDMENT HISTORY

Amendment Number	Amendment Date	Author of Amendment	Previous Report Version	Previous Report Date
Amendment Details				

TABLE OF CONTENTS

1	TEST REPORT SUMMARY	12
2	GENERAL INFORMATION	13
2.1	ACCREDITATION DETAILS	13
2.2	MEASUREMENT UNCERTAINTY	13
3	INSTRUMENTATION AND CALIBRATION	14
3.1	TEST AND MEASURING EQUIPMENT	14
3.2	EQUIPMENTS USED	14
4	PRODUCT INFORMATION	15
4.1	DESCRIPTION OF THE PRODUCT	15
4.2	SOFTWARE AND FIRMWARE DETAILS	15
5	TEST DETAILS.....	16
5.1	PRODUCT AND TEST SETUP.....	16
5.1.1	PRODUCT CONFIGURATION.....	16
5.1.2	TEST SETUP DETAILS.....	17
5.1.3	ACCESSORIES	17
5.2	APPLICABLE TESTS	18
5.3	TEST RESULT	19
5.3.1	DUTY CYCLE (X) AND TRANSMISSION DURATION (T).....	19
5.3.2	26 DB BANDWIDTH MEASUREMENT.....	22
5.3.3	MAXIMUM CONDUCTED OUTPUT POWER	37
5.3.4	POWER SPECTRAL DENSITY	46
5.3.5	TRANSMITTER UNWANTED EMISSIONS (CONDUCTED)	61
5.3.6	BAND EDGE EMISSIONS	175
5.3.7	99% OCCUPIED CHANNEL BANDWIDTH	185
	ANNEXURE I: EUT SOFTWARE SETTINGS	200
	ANNEXURE II: ACRONYMS	204

LIST OF FIGURES

Figure 1: Block diagram of the EUT test setup.....	17
Figure 2: Typical test setup for Conducted RF Test	19
Figure 3: Measured ON time	20
Figure 4: Measured Transmission Period (T)	21
Figure 5: Typical test setup for Conducted RF Test	22
Figure 6: 40MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0	23
Figure 7: 40MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1	24
Figure 8: 40MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0.....	24
Figure 9: 40MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1	25
Figure 10: 40MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0.....	25
Figure 11: 40MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1.....	26
Figure 12: 40MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0	26
Figure 13: 40MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1	27
Figure 14: 40MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0.....	27
Figure 15: 40MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1	28
Figure 16: 40MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0.....	28
Figure 17: 40MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1.....	29
Figure 18: 5MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0	29
Figure 19: 5MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1	30
Figure 20: 5MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0.....	30
Figure 21: 5MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1	31
Figure 22: 5MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0.....	31
Figure 23: 5MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1.....	32
Figure 24: 5MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0	32
Figure 25: 5MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1	33
Figure 26: 5MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0.....	33
Figure 27: 5MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1	34
Figure 28: 5MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0.....	34
Figure 29: 5MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1.....	35
Figure 30: Typical test setup for Conducted RF Test	37
Figure 31: 40MHz, 17dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	38
Figure 32: 40MHz, 17dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	39
Figure 33: 40MHz, 17dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	39
Figure 34: 40MHz, 6dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	40
Figure 35: 40MHz, 6dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1.....	40
Figure 36: 40MHz, 6dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	41
Figure 37: 5MHz, 17dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	41
Figure 38: 5MHz, 17dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	42
Figure 39: 5MHz, 17dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	42
Figure 40: 5MHz, 6dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	43
Figure 41: 5MHz, 6dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1.....	43
Figure 42: 5MHz, 6dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1	44
Figure 43: Typical test setup for Conducted Test	46
Figure 44: 40MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 0	47
Figure 45: 40MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 1	48
Figure 46: 40MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 0	48
Figure 47: 40MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 1	49
Figure 48: 40MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 0	49
Figure 49: 40MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 1	50
Figure 50: 40MHz, 6dBi, Low Channel: Power Spectral density Measured at Ch. 0	50
Figure 51: 40MHz, 6dBi, Low Channel: Power Spectral density Measured at Ch. 1	51
Figure 52: 40MHz, 6dBi, Mid Channel: Power Spectral density Measured at Ch. 0	51

Figure 53: 40MHz, 6dBi, Mid Channel: Power Spectral density Measured at Ch. 1	52
Figure 54: 40MHz, 6dBi, High Channel: Power Spectral density Measured at Ch. 0	52
Figure 55: 40MHz, 6dBi, High Channel: Power Spectral density Measured at Ch. 1	53
Figure 56: 5MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 0	53
Figure 57: 5MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 1	54
Figure 58: 5MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 0	54
Figure 59: 5MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 1	55
Figure 60: 5MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 0	55
Figure 61: 5MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 1	56
Figure 62: 5MHz, 6dBi, Low Channel: Power Spectral density Measured at Ch. 0	56
Figure 63: 5MHz, 6dBi, Low Channel: Power Spectral density Measured at Ch. 1	57
Figure 64: 5MHz, 6dBi, Mid Channel: Power Spectral density Measured at Ch. 0	57
Figure 65: 5MHz, 6dBi, Mid Channel: Power Spectral density Measured at Ch. 1	58
Figure 66: 5MHz, 6dBi, High Channel: Power Spectral density Measured at Ch. 0	58
Figure 67: 5MHz, 6dBi, High Channel: Power Spectral density Measured at Ch. 1	59
Figure 68: Typical test setup for Conducted Test	62
Figure 69: 40MHz, 17dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	63
Figure 70: 40MHz, 17dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	63
Figure 71: 40MHz, 17dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	64
Figure 72: 40MHz, 17dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	64
Figure 73: 40MHz, 17dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	65
Figure 74: 40MHz, 17dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	65
Figure 75: 40MHz, 17dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	66
Figure 76: 40MHz, 17dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	66
Figure 77: 40MHz, 17dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	67
Figure 78: 40MHz, 17dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	67
Figure 79: 40MHz, 17dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	68
Figure 80: 40MHz, 17dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	68
Figure 81: 40MHz, 17dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	69
Figure 82: 40MHz, 17dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	69
Figure 83: 40MHz, 17dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	70
Figure 84: 40MHz, 17dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	70
Figure 85: 40MHz, 17dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	71
Figure 86: 40MHz, 17dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	71
Figure 87: 40MHz, 17dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	72
Figure 88: 40MHz, 17dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	72
Figure 89: 40MHz, 17dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	73
Figure 90: 40MHz, 17dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	73
Figure 91: 40MHz, 17dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	74
Figure 92: 40MHz, 17dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	74
Figure 93: 40MHz, 17dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	75
Figure 94: 40MHz, 17dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	75
Figure 95: 40MHz, 17dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	76
Figure 96: 40MHz, 17dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	76
Figure 97: 40MHz, 17dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	77
Figure 98: 40MHz, 17dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	77
Figure 99: 40MHz, 17dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	78
Figure 100: 40MHz, 17dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	78
Figure 101: 40MHz, 17dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	79
Figure 102: 40MHz, 17dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	79
Figure 103: 40MHz, 17dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	80
Figure 104: 40MHz, 17dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	80
Figure 105: 40MHz, 17dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	81

Figure 106: 40MHz, 17dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	81
Figure 107: 40MHz, 17dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0.....	82
Figure 108: 40MHz, 17dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	82
Figure 109: 40MHz, 17dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0.....	83
Figure 110: 40MHz, 17dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0.....	83
Figure 111: 40MHz, 17dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	84
Figure 112: 40MHz, 17dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	84
Figure 113: 40MHz, 17dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	85
Figure 114: 40MHz, 17dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	85
Figure 115: 40MHz, 17dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	86
Figure 116: 40MHz, 17dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	86
Figure 117: 40MHz, 17dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	87
Figure 118: 40MHz, 17dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1.....	87
Figure 119: 40MHz, 17dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1.....	88
Figure 120: 40MHz, 17dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	88
Figure 121: 40MHz, 17dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	89
Figure 122: 40MHz, 17dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	89
Figure 123: 40MHz, 6dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0.....	90
Figure 124: 40MHz, 6dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	90
Figure 125: 40MHz, 6dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	91
Figure 126: 40MHz, 6dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	91
Figure 127: 40MHz, 6dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	92
Figure 128: 40MHz, 6dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	92
Figure 129: 40MHz, 6dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	93
Figure 130: 40MHz, 6dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	93
Figure 131: 40MHz, 6dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	94
Figure 132: 40MHz, 6dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	94
Figure 133: 40MHz, 6dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	95
Figure 134: 40MHz, 6dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	95
Figure 135: 40MHz, 6dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	96
Figure 136: 40MHz, 6dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	96
Figure 137: 40MHz, 6dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	97
Figure 138: 40MHz, 6dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	97
Figure 139: 40MHz, 6dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	98
Figure 140: 40MHz, 6dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	98
Figure 141: 40MHz, 6dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	99
Figure 142: 40MHz, 6dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	99
Figure 143: 40MHz, 6dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	100
Figure 144: 40MHz, 6dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	100
Figure 145: 40MHz, 6dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	101
Figure 146: 40MHz, 6dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	101
Figure 147: 40MHz, 6dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	102
Figure 148: 40MHz, 6dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0.....	102
Figure 149: 40MHz, 6dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0.....	103
Figure 150: 40MHz, 6dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	103
Figure 151: 40MHz, 6dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	104
Figure 152: 40MHz, 6dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	104
Figure 153: 40MHz, 6dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	105
Figure 154: 40MHz, 6dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	105
Figure 155: 40MHz, 6dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	106
Figure 156: 40MHz, 6dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1.....	106
Figure 157: 40MHz, 6dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1.....	107
Figure 158: 40MHz, 6dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1.....	107

Figure 159: 40MHz, 6dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	108
Figure 160: 40MHz, 6dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	108
Figure 161: 40MHz, 6dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0.....	109
Figure 162: 40MHz, 6dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	109
Figure 163: 40MHz, 6dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0.....	110
Figure 164: 40MHz, 6dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0.....	110
Figure 165: 40MHz, 6dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	111
Figure 166: 40MHz, 6dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	111
Figure 167: 40MHz, 6dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	112
Figure 168: 40MHz, 6dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	112
Figure 169: 40MHz, 6dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	113
Figure 170: 40MHz, 6dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1.....	113
Figure 171: 40MHz, 6dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	114
Figure 172: 40MHz, 6dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1.....	114
Figure 173: 40MHz, 6dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1.....	115
Figure 174: 40MHz, 6dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	115
Figure 175: 40MHz, 6dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	116
Figure 176: 40MHz, 6dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	116
Figure 177: 5MHz, 17dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0.....	117
Figure 178: 5MHz, 17dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	117
Figure 179: 5MHz, 17dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	118
Figure 180: 5MHz, 17dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	118
Figure 181: 5MHz, 17dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	119
Figure 182: 5MHz, 17dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	119
Figure 183: 5MHz, 17dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	120
Figure 184: 5MHz, 17dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	120
Figure 185: 5MHz, 17dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	121
Figure 186: 5MHz, 17dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1.....	121
Figure 187: 5MHz, 17dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	122
Figure 188: 5MHz, 17dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	122
Figure 189: 5MHz, 17dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	123
Figure 190: 5MHz, 17dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	123
Figure 191: 5MHz, 17dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	124
Figure 192: 5MHz, 17dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	124
Figure 193: 5MHz, 17dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	125
Figure 194: 5MHz, 17dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	125
Figure 195: 5MHz, 17dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	126
Figure 196: 5MHz, 17dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	126
Figure 197: 5MHz, 17dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	127
Figure 198: 5MHz, 17dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	127
Figure 199: 5MHz, 17dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	128
Figure 200: 5MHz, 17dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	128
Figure 201: 5MHz, 17dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	129
Figure 202: 5MHz, 17dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	129
Figure 203: 5MHz, 17dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	130
Figure 204: 5MHz, 17dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	130
Figure 205: 5MHz, 17dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	131
Figure 206: 5MHz, 17dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	131
Figure 207: 5MHz, 17dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	132
Figure 208: 5MHz, 17dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	132
Figure 209: 5MHz, 17dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	133
Figure 210: 5MHz, 17dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1.....	133
Figure 211: 5MHz, 17dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1.....	134

Figure 212: 5MHz, 17dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1.....	134
Figure 213: 5MHz, 17dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	135
Figure 214: 5MHz, 17dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	135
Figure 215: 5MHz, 17dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0.....	136
Figure 216: 5MHz, 17dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	136
Figure 217: 5MHz, 17dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0.....	137
Figure 218: 5MHz, 17dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0.....	137
Figure 219: 5MHz, 17dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	138
Figure 220: 5MHz, 17dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	138
Figure 221: 5MHz, 17dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	139
Figure 222: 5MHz, 17dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	139
Figure 223: 5MHz, 17dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	140
Figure 224: 5MHz, 17dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1.....	140
Figure 225: 5MHz, 17dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	141
Figure 226: 5MHz, 17dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	141
Figure 227: 5MHz, 17dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1.....	142
Figure 228: 5MHz, 17dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	142
Figure 229: 5MHz, 17dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	143
Figure 230: 5MHz, 17dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	143
Figure 231: 5MHz, 6dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0.....	144
Figure 232: 5MHz, 6dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	144
Figure 233: 5MHz, 6dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	145
Figure 234: 5MHz, 6dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	145
Figure 235: 5MHz, 6dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	146
Figure 236: 5MHz, 6dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	146
Figure 237: 5MHz, 6dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	147
Figure 238: 5MHz, 6dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	147
Figure 239: 5MHz, 6dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	148
Figure 240: 5MHz, 6dBi, Low Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	148
Figure 241: 5MHz, 6dBi, Low Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	149
Figure 242: 5MHz, 6dBi, Low Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	149
Figure 243: 5MHz, 6dBi, Low Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	150
Figure 244: 5MHz, 6dBi, Low Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	150
Figure 245: 5MHz, 6dBi, Low Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	151
Figure 246: 5MHz, 6dBi, Low Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1.....	151
Figure 247: 5MHz, 6dBi, Low Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	152
Figure 248: 5MHz, 6dBi, Low Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	152
Figure 249: 5MHz, 6dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	153
Figure 250: 5MHz, 6dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	153
Figure 251: 5MHz, 6dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0	154
Figure 252: 5MHz, 6dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	154
Figure 253: 5MHz, 6dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0.....	155
Figure 254: 5MHz, 6dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0.....	155
Figure 255: 5MHz, 6dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0.....	156
Figure 256: 5MHz, 6dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	156
Figure 257: 5MHz, 6dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	157
Figure 258: 5MHz, 6dBi, Mid Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	157
Figure 259: 5MHz, 6dBi, Mid Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	158
Figure 260: 5MHz, 6dBi, Mid Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1	158
Figure 261: 5MHz, 6dBi, Mid Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	159
Figure 262: 5MHz, 6dBi, Mid Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	159
Figure 263: 5MHz, 6dBi, Mid Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	160
Figure 264: 5MHz, 6dBi, Mid Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1.....	160

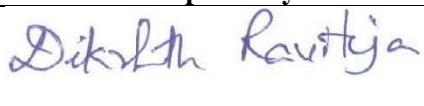
Figure 265: 5MHz, 6dBi, Mid Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1.....	161
Figure 266: 5MHz, 6dBi, Mid Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1.....	161
Figure 267: 5MHz, 6dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 0	162
Figure 268: 5MHz, 6dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 0	162
Figure 269: 5MHz, 6dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 0.....	163
Figure 270: 5MHz, 6dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 0	163
Figure 271: 5MHz, 6dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 0	164
Figure 272: 5MHz, 6dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 0	164
Figure 273: 5MHz, 6dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 0	165
Figure 274: 5MHz, 6dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 0	165
Figure 275: 5MHz, 6dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 0	166
Figure 276: 5MHz, 6dBi, High Channel: Peak Emission from 9 kHz to 150 kHz at Ch. 1	166
Figure 277: 5MHz, 6dBi, High Channel: Peak Emission from 150 kHz to 30 MHz at Ch. 1	167
Figure 278: 5MHz, 6dBi, High Channel: Peak Emission from 30 MHz to 1 GHz at Ch. 1.....	167
Figure 279: 5MHz, 6dBi, High Channel: Average Emission from 1 GHz to 18 GHz at Ch. 1	168
Figure 280: 5MHz, 6dBi, High Channel: Average Emission from 18 GHz to 26.5 GHz at Ch. 1	168
Figure 281: 5MHz, 6dBi, High Channel: Average Emission from 26.5 GHz to 40 GHz at Ch. 1	169
Figure 282: 5MHz, 6dBi, High Channel: Peak Emission from 1 GHz to 18 GHz at Ch. 1	169
Figure 283: 5MHz, 6dBi, High Channel: Peak Emission from 18 GHz to 26.5 GHz at Ch. 1	170
Figure 284: 5MHz, 6dBi, High Channel: Peak Emission from 26.5 GHz to 40 GHz at Ch. 1	170
Figure 285: Typical test setup for Conducted Test	175
Figure 286: 40 MHz, 17 dBi, Low Channel: Band Edge: Measured at Ch.0.....	176
Figure 287: 40 MHz, 17 dBi, Low Channel: Band Edge: Measured at Ch.1	177
Figure 288: 40 MHz, 17 dBi, High Channel: Band Edge: Measured at Ch.0	177
Figure 289: 40 MHz, 17 dBi, High Channel: Band Edge: Measured at Ch.1	178
Figure 290: 40 MHz, 6 dBi, Low Channel: Band Edge: Measured at Ch.0.....	178
Figure 291: 40 MHz, 6 dBi, Low Channel: Band Edge: Measured at Ch.1	179
Figure 292: 40 MHz, 6 dBi, High Channel: Band Edge: Measured at Ch.0	179
Figure 293: 40 MHz, 6 dBi, High Channel: Band Edge: Measured at Ch.1	180
Figure 294: 5 MHz, 17 dBi, Low Channel: Band Edge: Measured at Ch.0.....	180
Figure 295: 5 MHz, 17 dBi, Low Channel: Band Edge: Measured at Ch.1	181
Figure 296: 5 MHz, 17 dBi, High Channel: Band Edge: Measured at Ch.0	181
Figure 297: 5 MHz, 17 dBi, High Channel: Band Edge: Measured at Ch.1	182
Figure 298: 5 MHz, 6 dBi, Low Channel: Band Edge: Measured at Ch.0.....	182
Figure 299: 5 MHz, 6 dBi, Low Channel: Band Edge: Measured at Ch.1	183
Figure 300: 5 MHz, 6 dBi, High Channel: Band Edge: Measured at Ch.0	183
Figure 301: 5 MHz, 6 dBi, High Channel: Band Edge: Measured at Ch.1	184
Figure 302: Typical test setup for Conducted Test	185
Figure 303: 40 MHz, 17 dBi, Low Channel: 99% OBW: Measured at Ch.0.....	186
Figure 304: 40 MHz, 17 dBi, Low Channel: 99% OBW: Measured at Ch.1	187
Figure 305: 40 MHz, 17 dBi, Mid Channel: 99% OBW: Measured at Ch.0	187
Figure 306: 40 MHz, 17 dBi, Mid Channel: 99% OBW: Measured at Ch.1	188
Figure 307: 40 MHz, 17 dBi, High Channel: 99% OBW: Measured at Ch.0	188
Figure 308: 40 MHz, 17 dBi, High Channel: 99% OBW: Measured at Ch.1	189
Figure 309: 40 MHz, 6 dBi, Low Channel: 99% OBW: Measured at Ch.0.....	189
Figure 310: 40 MHz, 6 dBi, Low Channel: 99% OBW: Measured at Ch.1	190
Figure 311: 40 MHz, 6 dBi, Mid Channel: 99% OBW: Measured at Ch.0	190
Figure 312: 40 MHz, 6 dBi, Mid Channel: 99% OBW: Measured at Ch.1	191
Figure 313: 40 MHz, 6 dBi, High Channel: 99% OBW: Measured at Ch.0	191
Figure 314: 40 MHz, 6 dBi, High Channel: 99% OBW: Measured at Ch.1	192
Figure 315: 5 MHz, 17 dBi, Low Channel: 99% OBW: Measured at Ch.0	192
Figure 316: 5 MHz, 17 dBi, Low Channel: 99% OBW: Measured at Ch.1	193
Figure 317: 5 MHz, 17 dBi, Mid Channel: 99% OBW: Measured at Ch.0	193

Figure 318: 5 MHz, 17 dBi, Mid Channel: 99% OBW: Measured at Ch.1	194
Figure 319: 5 MHz, 17 dBi, High Channel: 99% OBW: Measured at Ch.0	194
Figure 320: 5 MHz, 17 dBi, High Channel: 99% OBW: Measured at Ch.1	195
Figure 321: 5 MHz, 6 dBi, Low Channel: 99% OBW: Measured at Ch.0	195
Figure 322: 5 MHz, 6 dBi, Low Channel: 99% OBW: Measured at Ch.1	196
Figure 323: 5 MHz, 6 dBi, Mid Channel: 99% OBW: Measured at Ch.0	196
Figure 324: 5 MHz, 6 dBi, Mid Channel: 99% OBW: Measured at Ch.1	197
Figure 325: 5 MHz, 6 dBi, High Channel: 99% OBW: Measured at Ch.0	197
Figure 326: 5 MHz, 6 dBi, High Channel: 99% OBW: Measured at Ch.1	198
Figure 327: tftpd32 application screenshot	200
Figure 328: tftpd32 application initialization root_ screenshot.....	200
Figure 329: Tera term application screenshot	201
Figure 330: Tera term application Login screenshot.....	201
Figure 331: Initializing EUT screenshot	202
Figure 332: Atheros Radio Test GUI screenshot-1	202
Figure 333: Atheros Radio Test GUI screenshot -2	203

LIST OF TABLES

Table 1: List of Equipment used for Conducted RF Test.....	14
Table 2: EUT details	15
Table 3: List of cables	15
Table 4: Result for 6 dB Bandwidth in both 40 MHz and 5 MHz modulation bandwidth.....	36
Table 5: Max RF out power for 17 dBi configuration	44
Table 6: Consolidated values across channels and final power for 17 dBi configuration.....	45
Table 7: Max RF out power for 6 dBi configuration	45
Table 8: Consolidated values across channels and final power for 6 dBi configuration.....	45
Table 9: Result of PSD for 17 dBi configuration for both 40 MHz and 5 MHz modulation bandwidth	60
Table 10: Result of PSD for 6dBi configuration for both 40 MHz and 5 MHz modulation bandwidth	60
Table 11: Unwanted emission Limit	61
Table 12: General Field strength limit below 30 MHz	61
Table 13: General Field strength limit above 30 MHz.....	61
Table 14: Result for 17 dBi configuration – 40 MHz modulation bandwidth	171
Table 15: Result for 17 dBi configuration - 5 MHz modulation bandwidth	172
Table 16: Result for 6 dBi configuration – 40 MHz modulation bandwidth	173
Table 17: Result for 6 dBi configuration -5 MHz modulation bandwidth	174
Table 18: Result for 99% OBW for 40 MHz Modulation Bandwidth	198
Table 19: Result for 99% OBW for 5 MHz Modulation Bandwidth	199

1 TEST REPORT SUMMARY


Applicant	Cambium Networks
Manufacturer	Cambium Networks
Product Name	ePMP2000
Product Model	C050900P031A
Product Serial Number	000456D18469
Date of Test	22 nd Jan 2016 to 30 th Mar 2016
Venue of Test	Tarang Lab

Applicable Standard	Description	Results
47 CFR Part 15 Feb 2016	Duty cycle and Transmission Duration	NA
	§15.407 (a) (1)- 26 dB Bandwidth measurement	NA
	§15.407 (a) (1)- Maximum Conducted Output Power	PASS
	§15.407 (a) (1)- Power Spectral Density	PASS
	§15.407 b (1) –Transmitter unwanted emission (Conducted)	PASS
	§15.407 b(1)- Band Edge Emissions	PASS
	99% Occupied Channel Bandwidth	NA

ePMP2000 was tested by Tarang Lab as per the standards that are listed in the table above. Based on the observations during the test and interpretations by Tarang lab, results have been indicated. The test results produced in this report shall apply only to the above sample that has been tested under the specific conditions and modes of testing as described in the report. Other similar equipment may not necessarily reproduce same result due to production tolerances and measurement uncertainties. Any measurement uncertainties listed in this report are for information purpose only.

The results shall stand invalid, in case there are any modifications / additions / removals to the hardware or software or end use atmosphere to the product tested. This report shall not be modified or in any way revised unless it is expressly permitted and endorsed by Tarang lab, through a duly authorized representative. Particulars on Manufacturer / Supplier / Product configuration / performance criteria, given in this report, are based on the information given by the customer, along with test request. Tarang does not assume any responsibility for the correctness of such information for the above mentioned equipment under test.

Customer acknowledges that this is a test report and not a certificate to gain market access for the product. To gain market access, Customer needs appropriate clearance from the Government or authorized agency for the target market. For markets that allow self-declaration, customer needs to follow the procedure defined by the target market.

Prepared by	Reviewed by	Approved by
 Dikshit Raviteja	 Narendra M	 Satheesh I
EMI/EMC Test Engineer	Lead EMI/EMC Test Engineer	Technical Manager

2 GENERAL INFORMATION

2.1 ACCREDITATION DETAILS

Following are the accreditation and listing details for Tarang.

Accreditation / Listing body	Registration / Company / Certificate Number
NABL, India	Certificate No: T-1533, T-1534 http://www.nabl-india.org/
FCC (Federal Communications Commission)	Registration Number: 799247 http://www.fcc.gov/
IC (Industry Canada)	Company Number: 9023A-1 http://www.ic.gc.ca

2.2 MEASUREMENT UNCERTAINTY

NA

3 INSTRUMENTATION AND CALIBRATION

3.1 TEST AND MEASURING EQUIPMENT

The list of following measuring equipment used for this testing conforms to the applicable standards. Performance of all test and measuring equipment including any accessories are checked periodically to ensure accuracy.

3.2 EQUIPMENTS USED

Name of Equipment	Manufacturer	Model No	Serial No	Calibration Due
Spectrum Analyzer	Keysight Technologies	N9020A	MY54420183	31 st Mar 2016
X series USB Peak and Average Power sensor	Keysight Technologies	U2021XA	MY55050001	31 st Mar 2016
X series USB Peak and Average Power sensor	Keysight Technologies	U2021XA	MY54390014	31 st Mar 2016
EMI Test Receiver	R&S	ESIB40	100306	21 st Jan 2017

Table 1: List of Equipment used for Conducted RF Test

4 PRODUCT INFORMATION

4.1 DESCRIPTION OF THE PRODUCT

EUT is a point to point & point to multipoint fixed outdoor Transceiver with the following defined channels.

40 MHz channel for 17 dBi and 6 dBi antenna	5 MHz channel for 17 dBi and 6 dBi antenna
Low – 5180 MHz	Low – 5155 MHz
Mid - 5200 MHz	Mid – 5200 MHz
High - 5220 MHz	High – 5245 MHz

Product	ePMP2000
Model Number	C050900P031A
Serial Number	000456D18469
Product Category / Type of Equipment	ITE
EUT Operating Voltage	120 V AC
EUT Operating frequency range	60 Hz
Max EUT Operating Current	<1 A

Table 2: EUT details

Cable No.	Cable Name	Cable Length	Power / Interconnection cable	Shielded / Unshielded
Cable - 1	Power cable	0.8 meter	Power	Unshielded
Cable - 2	Ethernet Cable	1.5 meter	Interconnection	Unshielded
Cable - 3	Ethernet Cable	3.0 meter	Interconnection	Unshielded

Table 3: List of cables

4.2 SOFTWARE AND FIRMWARE DETAILS

Atheros Radio Test 2 (ART2-GUI) Version 2.3

5 TEST DETAILS

5.1 PRODUCT AND TEST SETUP

5.1.1 PRODUCT CONFIGURATION

The EUT was powered through AC power supply (120 V AC / 60 Hz). The EUT was connected to Ethernet switch by using RJ45 cable. Figure 1 shows the product configuration during the tests. POE module was used during the test to power ON the EUT.

The 5.1 GHz ePMP Integrated Radio was configured with test software and configured to have the following settings during the course of testing:

- 40 MHz modulation bandwidth for low, mid & high channels
 - Rate - HT40,
 - 54 Mbps OFDM, MCS15 / 270 Mbps
 - Tx Power is 11 dBm Tx99 for 17 dBi antenna configuration-Low channel
 - Tx Power is 18 dBm Tx100 for 17 dBi antenna configuration-Mid channel
 - Tx Power is 11 dBm Tx99 for 17 dBi antenna configuration-High channel
 - Tx Power is 20 dBm Tx99 for 6 dBi antenna configuration-Low channel
 - Tx Power is 17.5 dBm Tx100 for 6 dBi antenna configuration-Mid channel
 - Tx Power is 22.5 dBm Tx100 for 6 dBi antenna configuration-High channel
- 5 MHz modulation bandwidth for low, mid & high channels
 - Rate – Legacy,
 - 54 Mbps OFDM, MCS15 / 130 Mbps
 - Tx Power is 12.5 dBm Tx99 for 17 dBi antenna configuration-Low channel
 - Tx Power is 14 dBm Tx99 for 17 dBi antenna configuration-Mid channel
 - Tx Power is 11.5 dBm Tx99 for 17 dBi antenna configuration-High channel
 - Tx Power is 22 dBm Tx99 for 6 dBi antenna configuration-Low channel
 - Tx Power is 24 dBm Tx99 for 6 dBi antenna configuration-Mid channel
 - Tx Power is 22 dBm Tx99 for 6 dBi antenna configuration-High channel

The unit was continuously monitored for transmission using an auxiliary antenna during the radiated tests.

5.1.2 TEST SETUP DETAILS

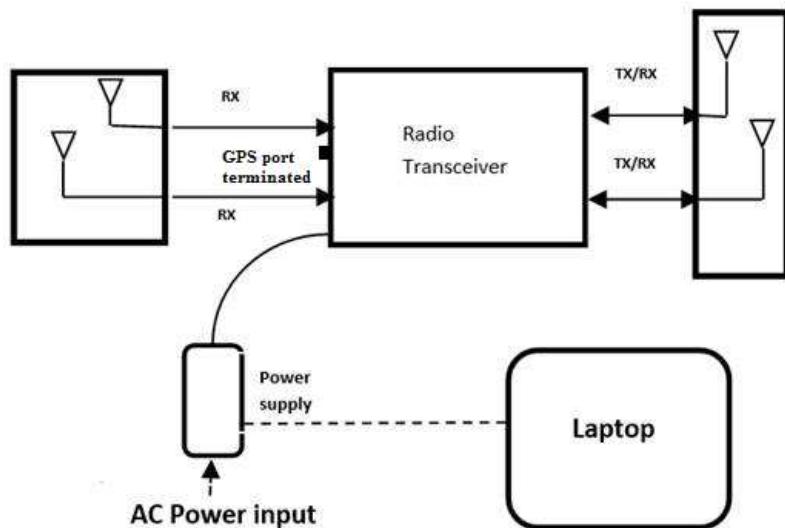


Figure 1: Block diagram of the EUT test setup

5.1.3 ACCESSORIES

Name of the Equipment	Manufacturer	Model Number	Serial Number
17 dBi Antenna Beam steer- Rx	Cambium Networks	C050900D020A	NA
17 dBi Antenna sector- Tx	Cambium Networks	C050900D021A	NA
Power Supply	Cambium Networks	NET P30 56	031-326-6719
6 dBi Antenna	Cambium Networks	C005095D360A	NA
Switching Power Supply Gigabit Compatible	Cambium Networks	NET-P30-56	N000000L034A

5.2 APPLICABLE TESTS

Applicable Standard	Description	Test level / Test Voltage	Applicability
47 CFR Part 15, Feb 2016	Duty Cycle and transmission duration	NA	Antenna port
	26 dB Bandwidth measurement	NA	Antenna port
	Maximum Conducted Output Power	≤ 1 Watts	Antenna port
	Power Spectral Density	Power spectral density should be ≤ 17 dBm in 1 MHz bandwidth	Antenna port
	Transmitter Unwanted emission (Conducted)	9 kHz to 40 GHz	Antenna port
	Band Edge Emissions	≤ -27 dBm in any 1MHz band Limit,(for 6 dBi antenna configuration) : ≤ -36 dBm/MHz Limit (for 17 dBi antenna configuration) : ≤ 47 dBm/MHz	Antenna port
	99% Occupied Channel Bandwidth	NA	Antenna port

5.3 TEST RESULT

5.3.1 DUTY CYCLE (X) AND TRANSMISSION DURATION (T)

5.3.1.1 TEST SPECIFICATION

Test Standard	47 CFR, Part 15 Feb 2016
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Resolution Bandwidth	3 MHz
Video Bandwidth	50 MHz
Sweep Time	Auto
Attenuation	Auto
Test Mode	Conducted
Detector	RMS
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	21.0 °C
Humidity	54.0 %
Tested By	Nishanth
Test Date	8 th Feb 2016

5.3.1.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR, Part 15, Feb 2016	NA	5150 MHz to 5250 MHz	NA

5.3.1.3 TEST SETUP

Figure 2: Typical test setup for Conducted RF Test

5.3.1.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per section II B of “**789033 D2 General U-NII Test Procedures New Rule V01r01**”. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and recorded.

5.3.1.5 MEASUREMENT GRAPHS / DATA

Figure 3: Measured ON time

Figure 4: Measured Transmission Period (T)

5.3.1.6 RESULT

The Duty cycle and Transmission duration data were recorded.

Mode	ON time (μsec)	T (μsec)	Duty Cycle X (Linear)	Duty Cycle (%)	50/T Minimum RBW and VBW (kHz)
Tx ON	84	114.7	0.732	73.2%	435.92

Note: Duty cycle = (ON time / Period)*100

5.3.2 26 DB BANDWIDTH MEASUREMENT

5.3.2.1 TEST SPECIFICATION

Test Standard	47 CFR Part 15 Feb 2016
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Resolution Bandwidth	30 kHz, 300 kHz
Video Bandwidth	100 kHz, 1 MHz
Sweep Time	Auto
Attenuation	Auto
Test Mode	Conducted
Detector	Peak
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	24.0 °C
Humidity	55.0 %
Tested By	Nishanth / Suresh GN
Test Date	8 th Feb 2016

5.3.2.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR, Part 15, Feb 2016	§15.407 (a) (1)	5150 MHz to 5250 MHz	NA

5.3.2.3 TEST SETUP

Figure 5: Typical test setup for Conducted RF Test

5.3.2.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per the “**789033 D2 General U-NII Test Procedures New Rule V01r01**”. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and recorded.

5.3.2.5 MEASUREMENT GRAPHS / DATA

5.3.2.5.1 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, LOW CHANNEL - 5180 MHz

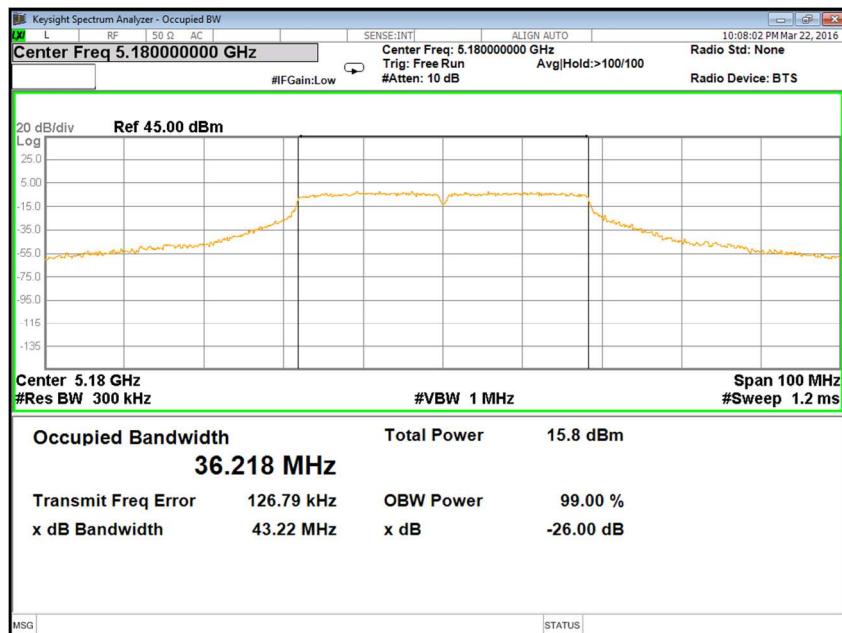


Figure 6: 40MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0

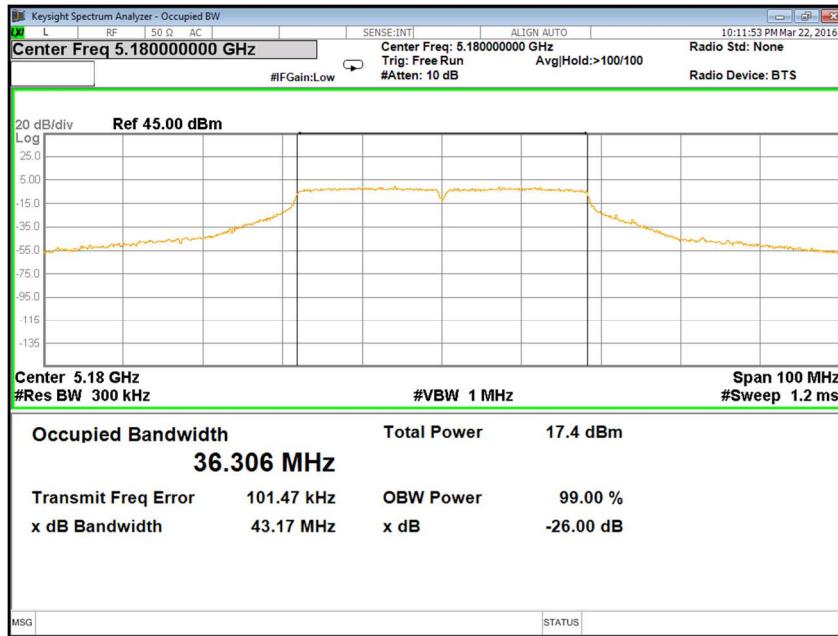


Figure 7: 40MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.2 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, MID CHANNEL - 5200 MHz

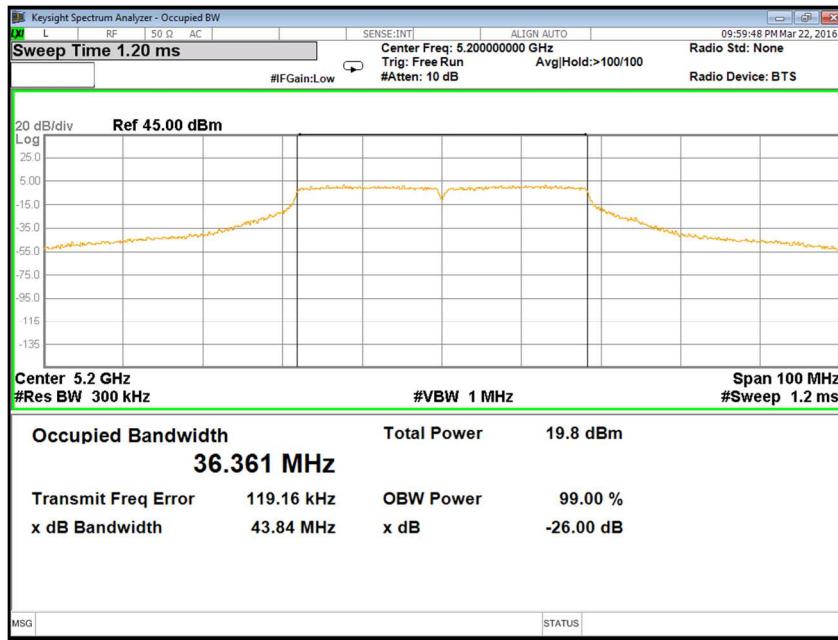


Figure 8: 40MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0

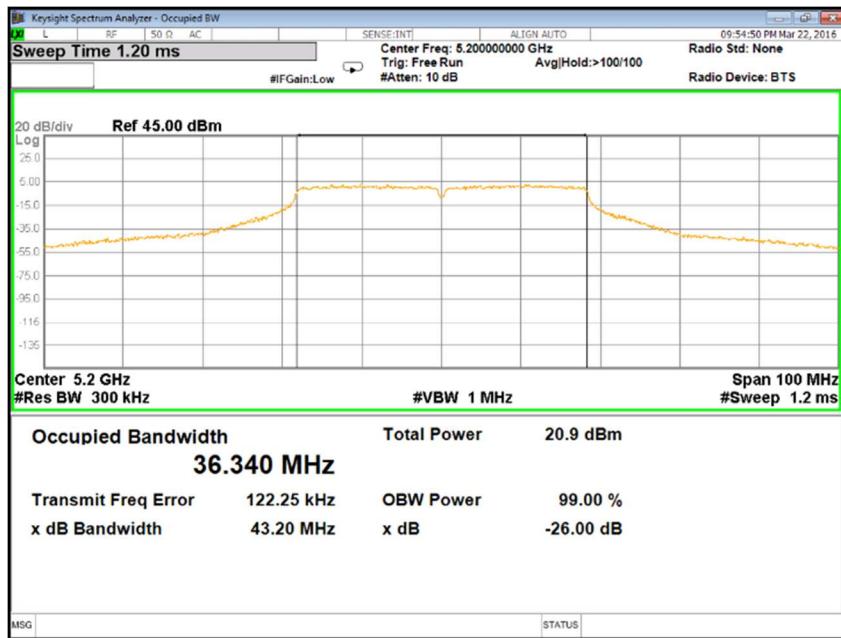


Figure 9: 40MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.3 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, HIGH CHANNEL - 5220 MHz

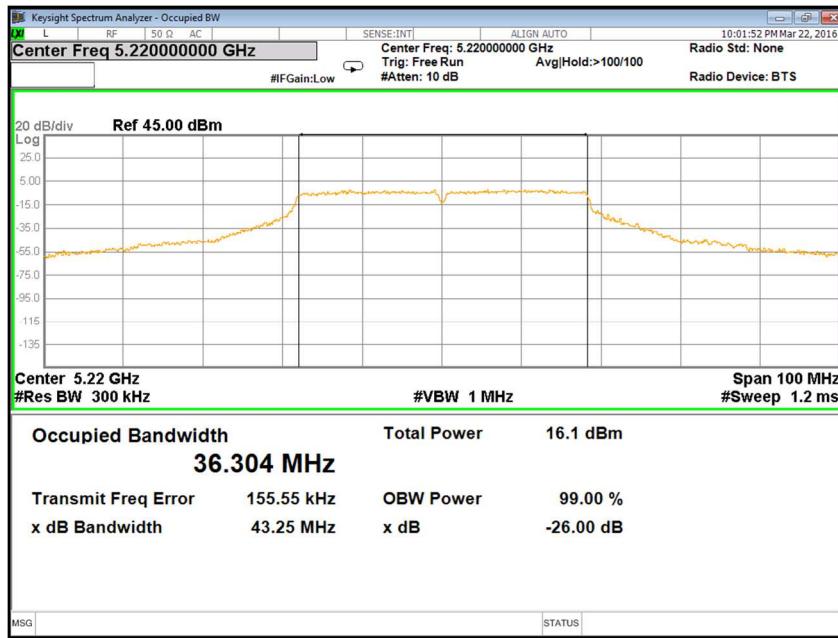


Figure 10: 40MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0

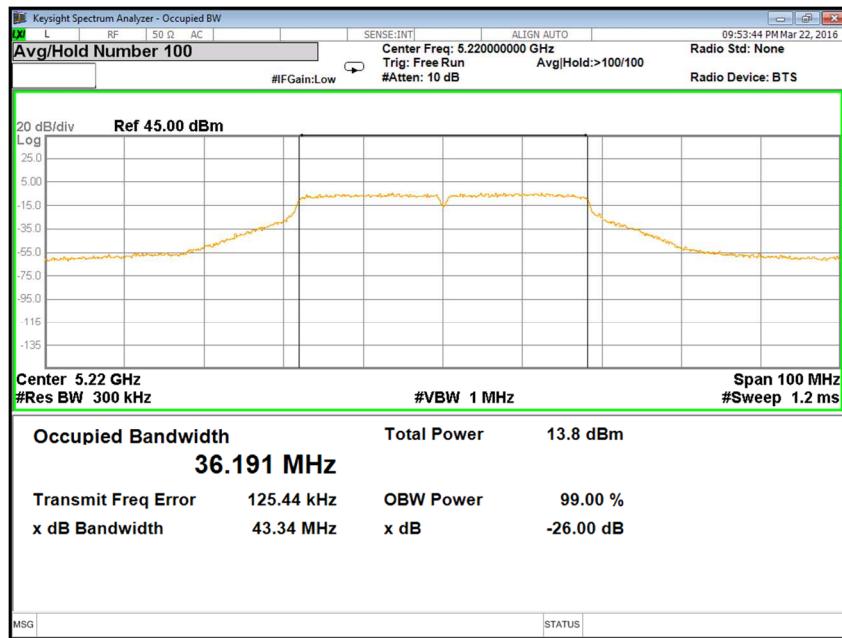


Figure 11: 40MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.4 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, LOW CHANNEL - 5180 MHz

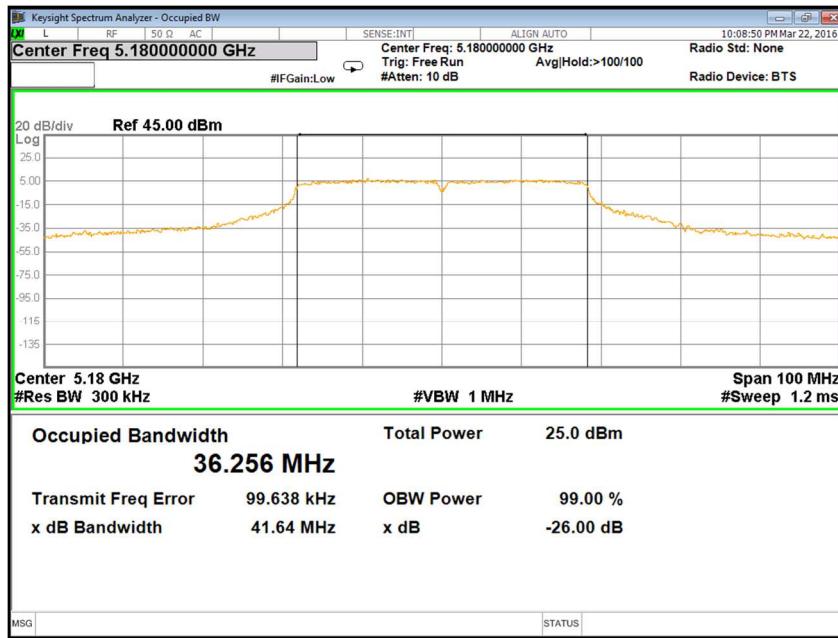


Figure 12: 40MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0

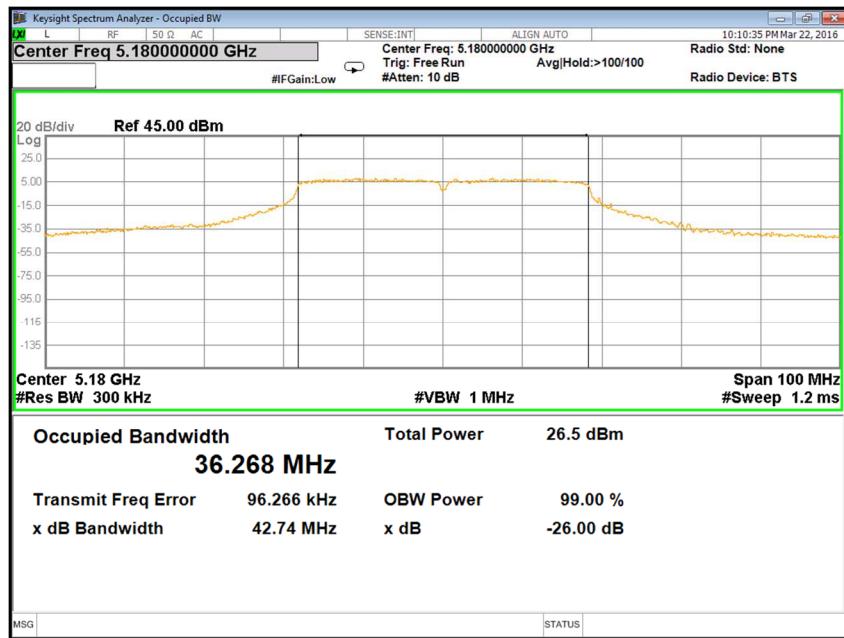


Figure 13: 40MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.5 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, MID CHANNEL - 5200 MHz

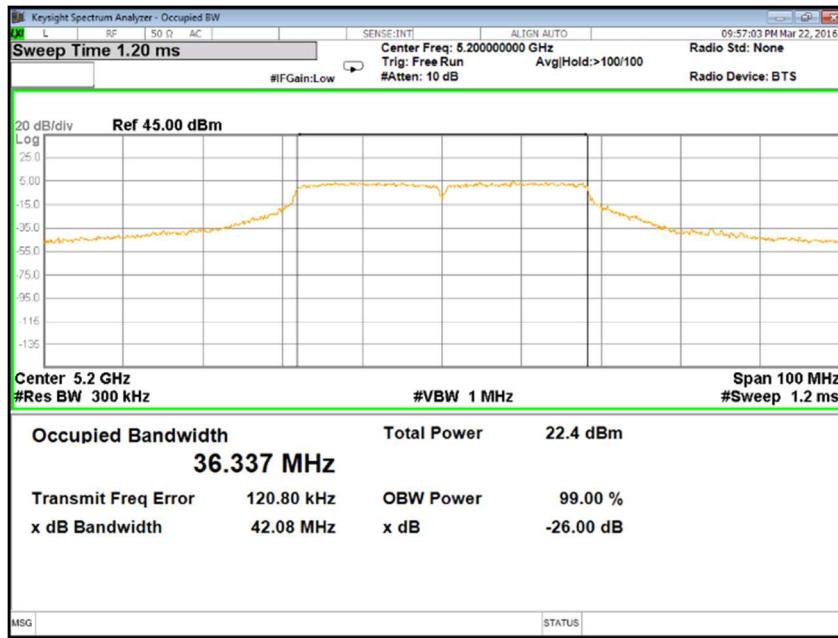


Figure 14: 40MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0

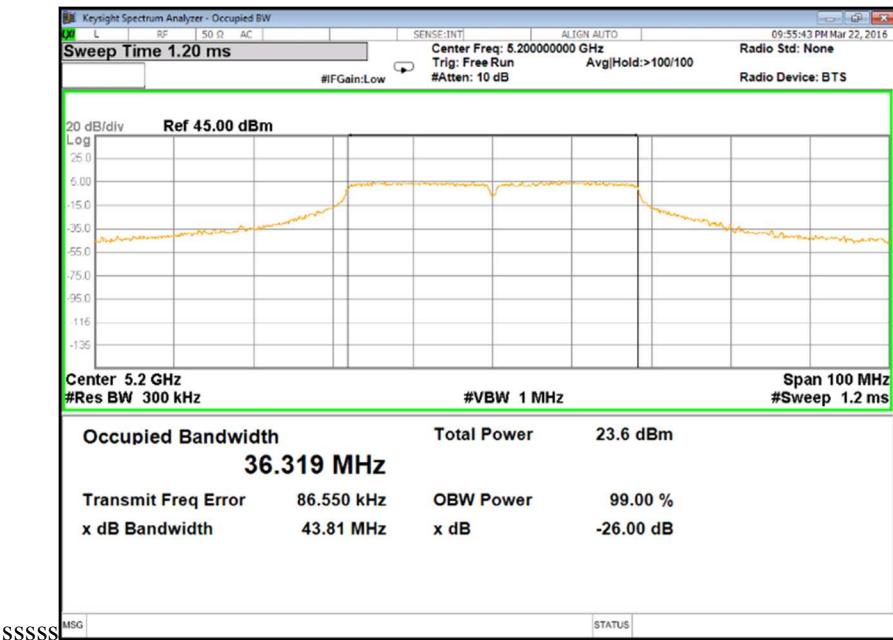


Figure 15: 40MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.6 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, HIGH CHANNEL - 5220 MHz

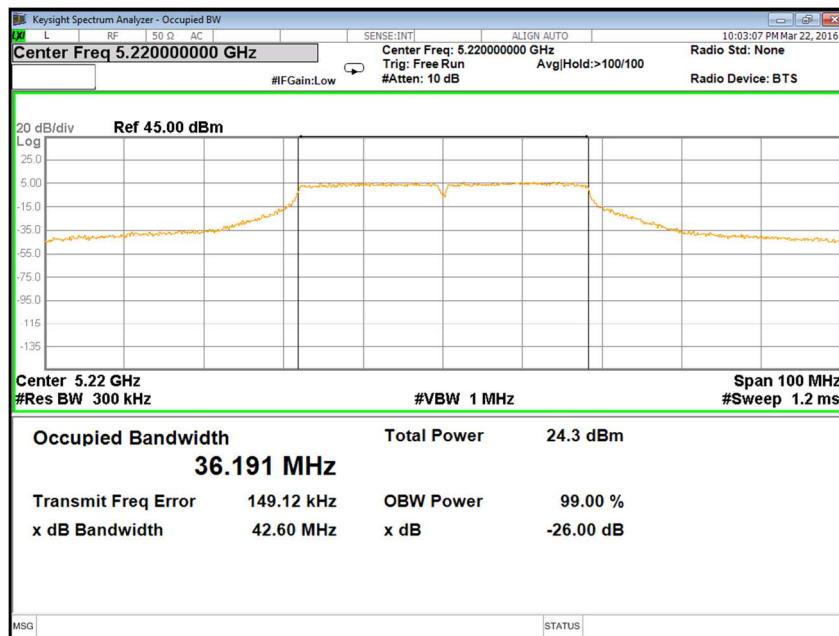


Figure 16: 40MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0

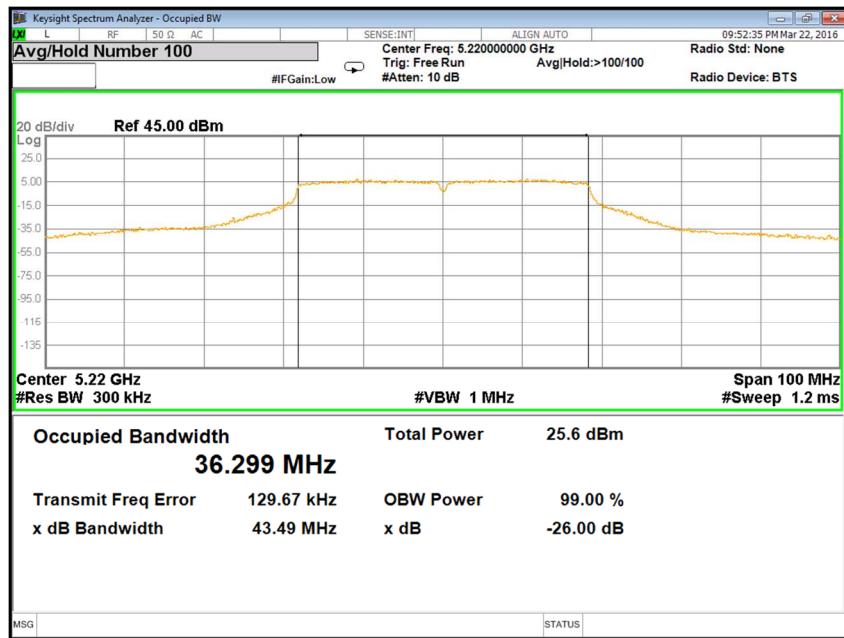


Figure 17: 40MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.7 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, LOW CHANNEL - 5115 MHz

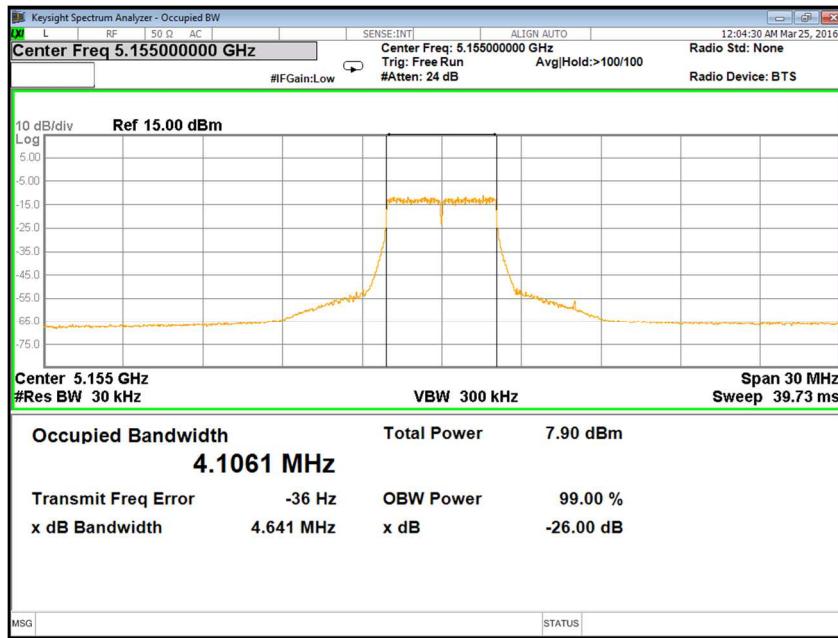


Figure 18: 5MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0

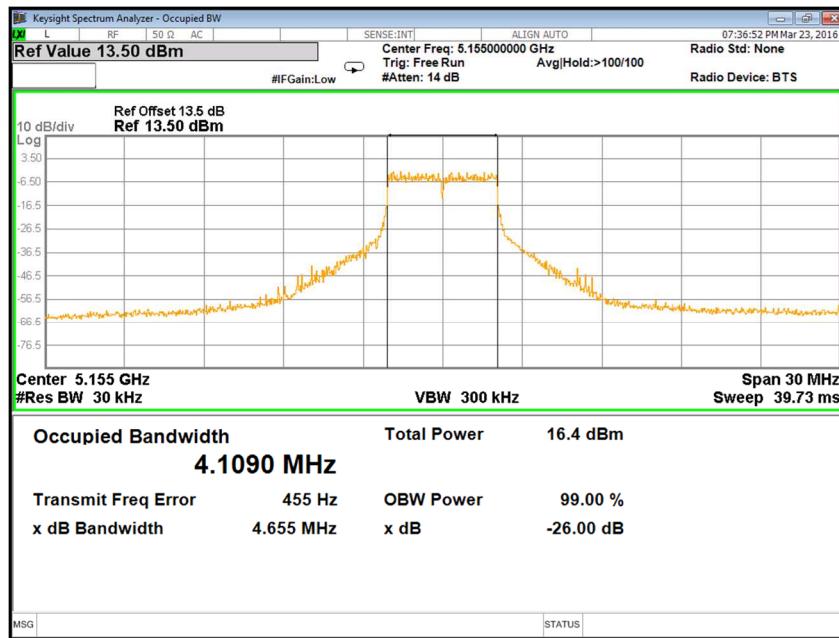


Figure 19: 5MHz, 17dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.8 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, MID CHANNEL - 5200 MHz

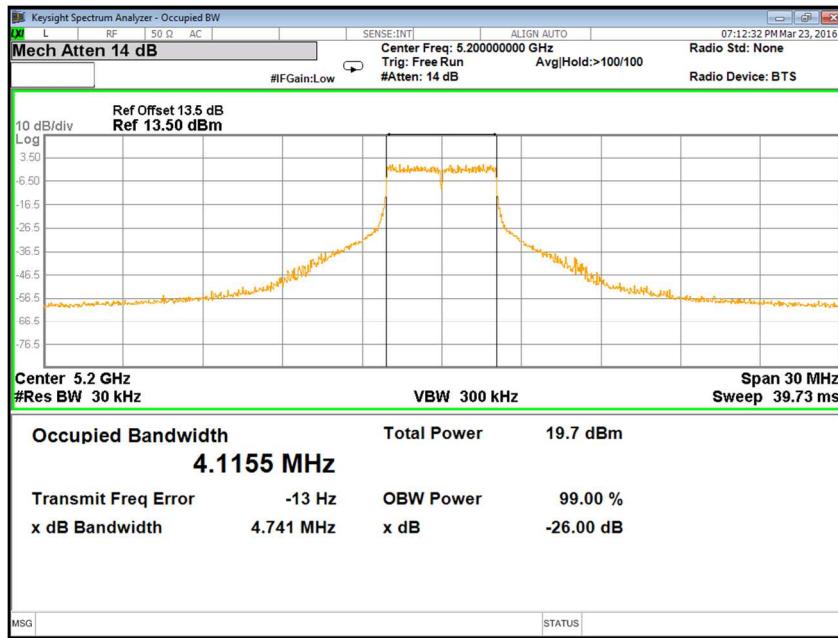


Figure 20: 5MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0

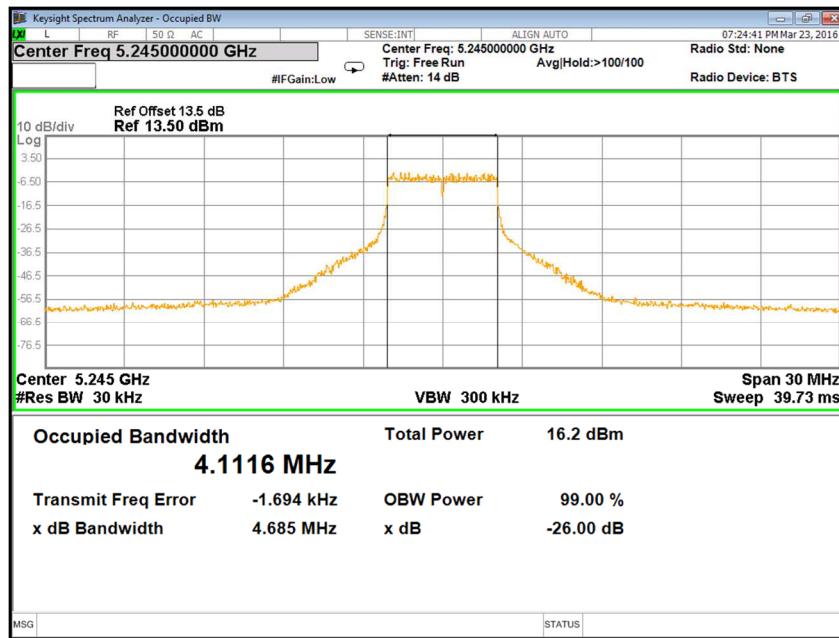


Figure 21: 5MHz, 17dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.9 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, HIGH CHANNEL - 5245 MHz

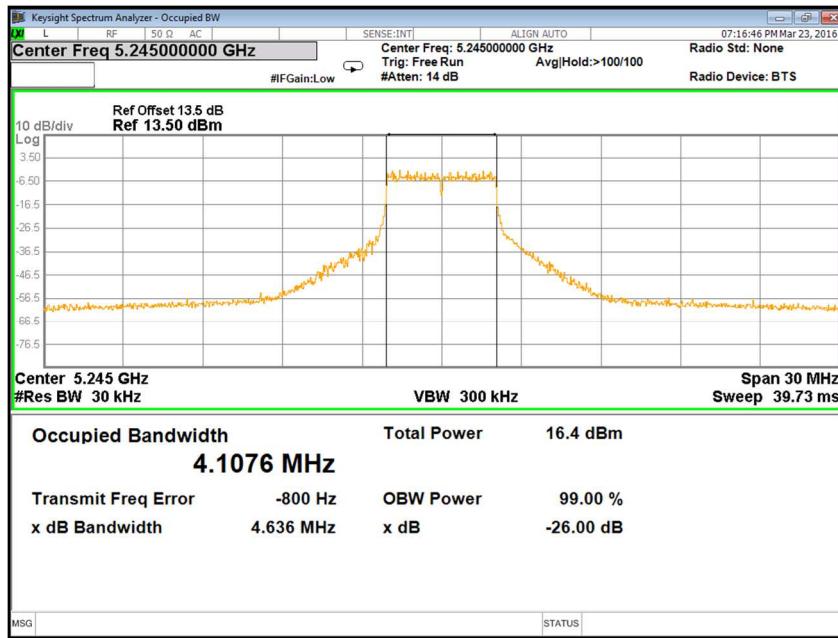


Figure 22: 5MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0

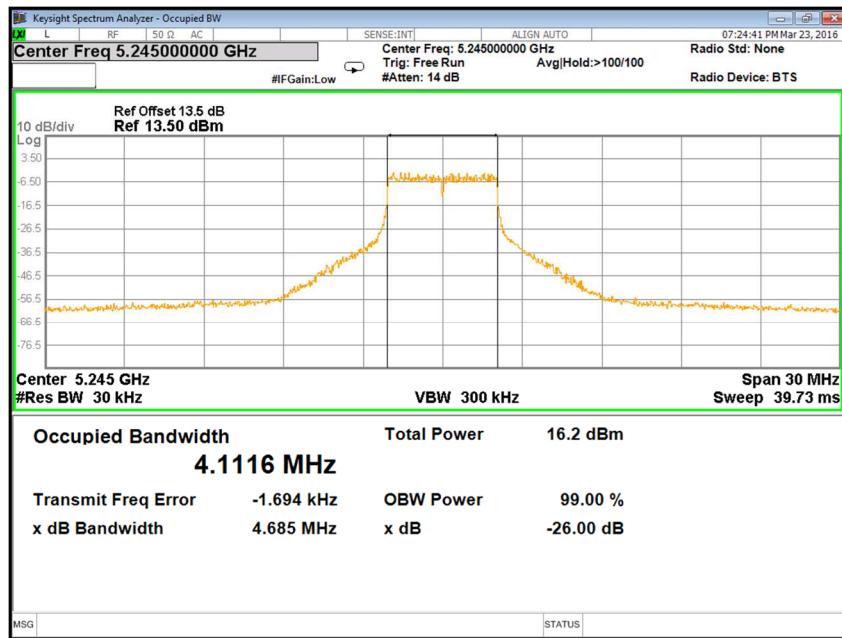


Figure 23: 5MHz, 17dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.10 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, LOW CHANNEL - 5115 MHz

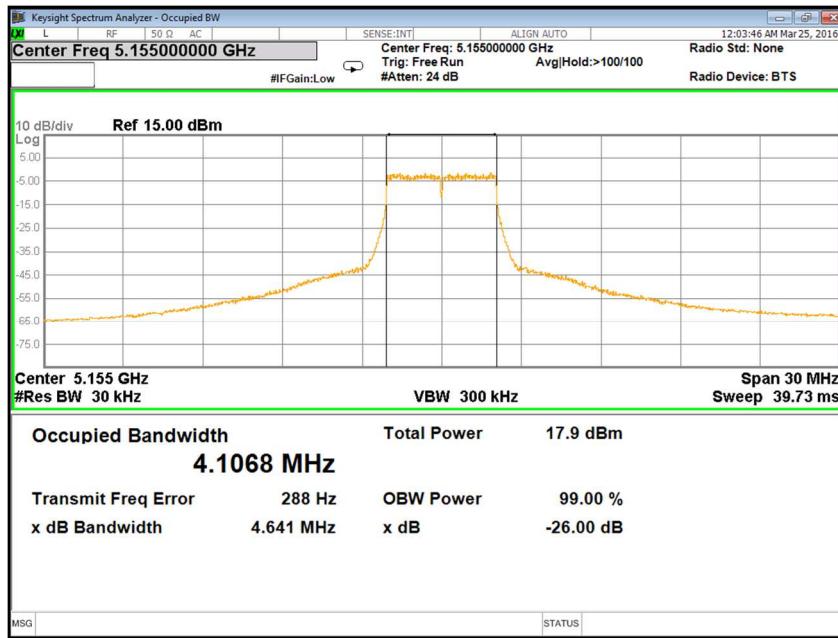


Figure 24: 5MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.0

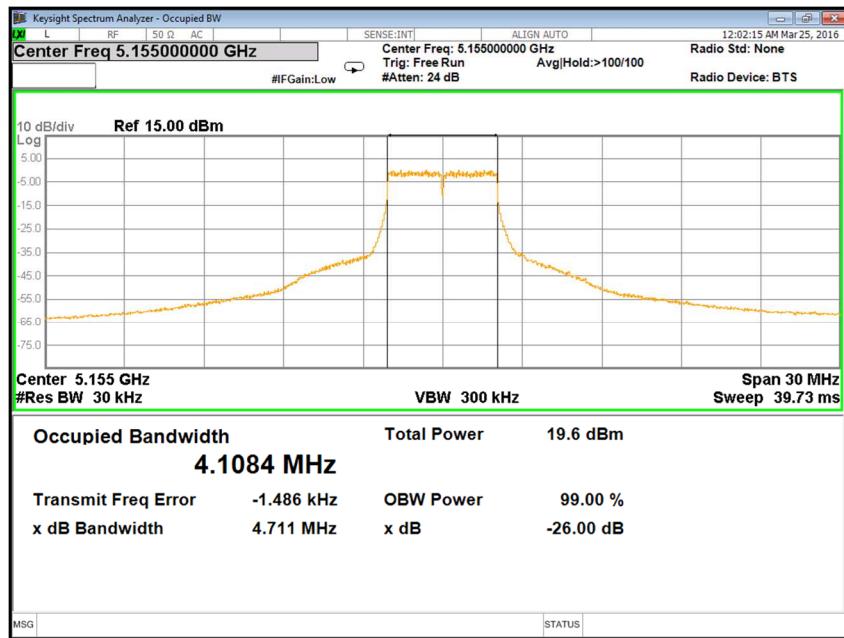


Figure 25: 5MHz, 6dBi, Low Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.11 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, MID CHANNEL - 5200 MHz

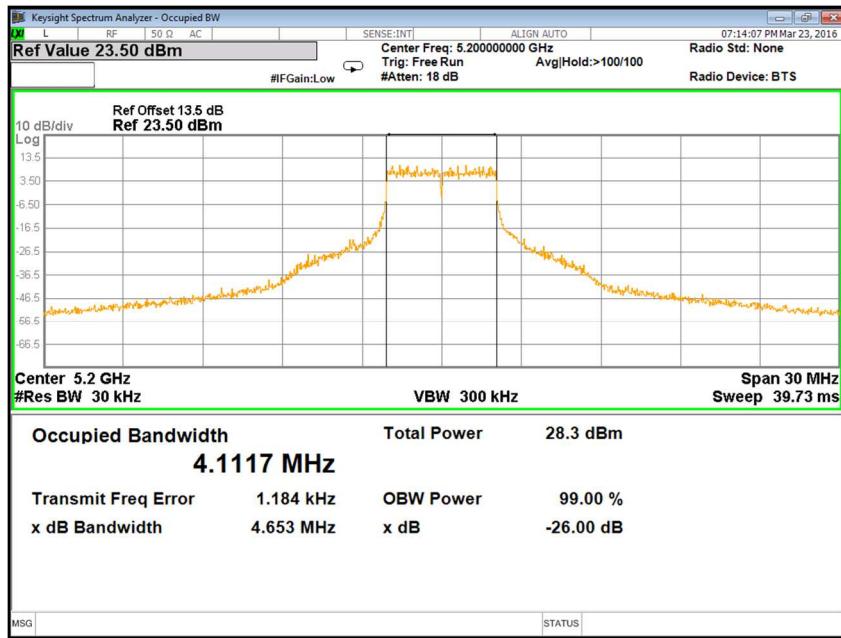


Figure 26: 5MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.0

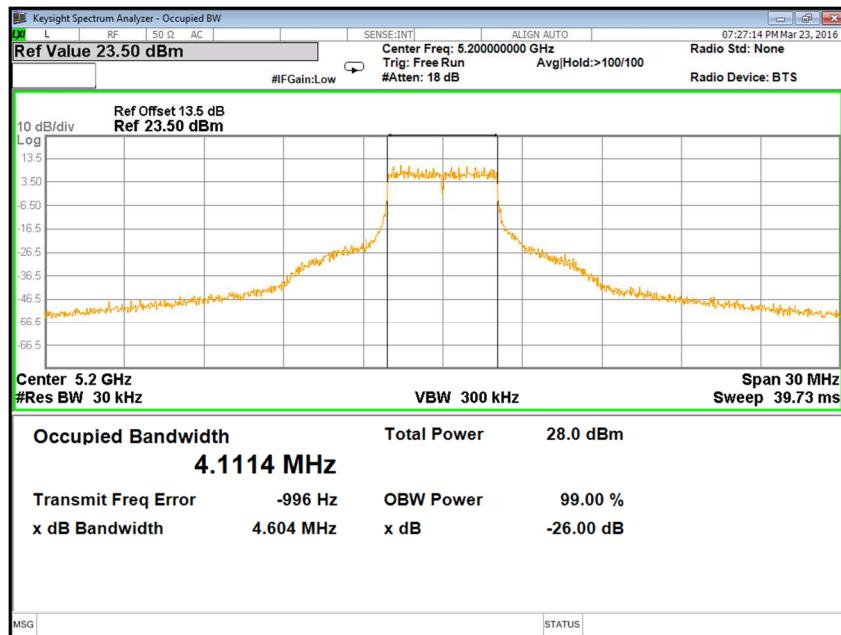


Figure 27: 5MHz, 6dBi, Mid Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.5.12 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, HIGH CHANNEL - 5245 MHz

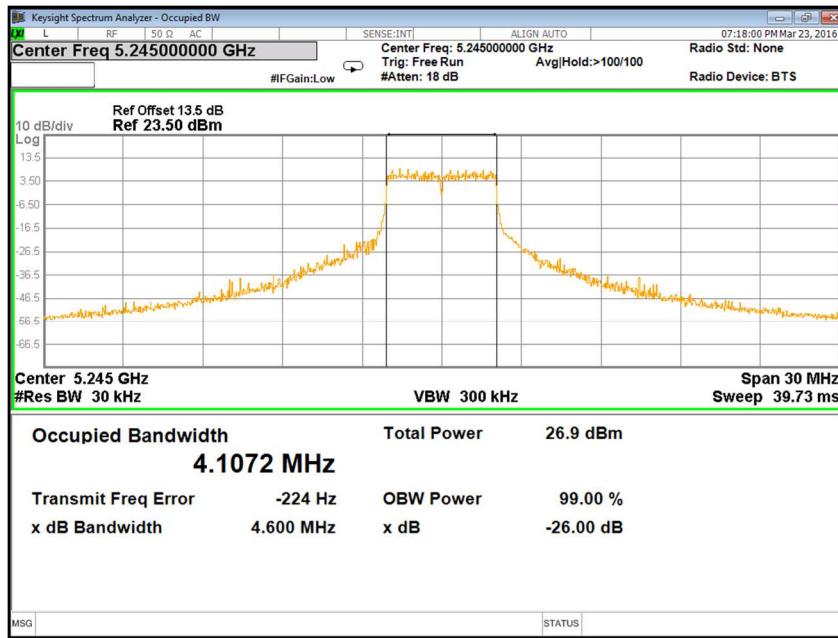


Figure 28: 5MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.0

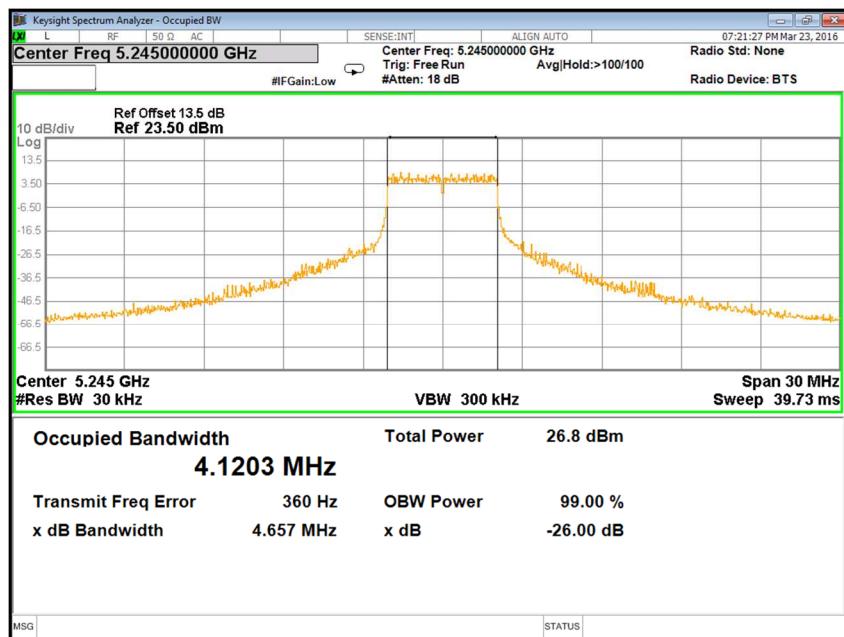


Figure 29: 5MHz, 6dBi, High Channel: 26 dB Bandwidth: Measured at Ch.1

5.3.2.6 RESULT

The 26 dB bandwidth for all channels in both 40 MHz & 5 MHz modulation bandwidth is more than 500 kHz. Refer below table for consolidated data.

Configuration	Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (MHz)	Limit (kHz)	Result
17 dBi	40	Ch. 0	5180	43.22	NA	NA
	40	Ch. 0	5180	43.17	NA	NA
	40	Ch. 0	5200	43.84	NA	NA
	40	Ch. 1	5200	43.20	NA	NA
	40	Ch. 1	5220	43.25	NA	NA
	40	Ch. 1	5220	43.34	NA	NA
	5	Ch. 0	5155	4.64	NA	NA
	5	Ch. 0	5155	4.65	NA	NA
	5	Ch. 0	5200	4.74	NA	NA
	5	Ch. 1	5200	4.68	NA	NA
	5	Ch. 1	5245	4.63	NA	NA
	5	Ch. 1	5245	4.68	NA	NA
6 dBi	40	Ch. 0	5180	41.64	NA	NA
	40	Ch. 0	5180	42.74	NA	NA
	40	Ch. 0	5200	42.08	NA	NA
	40	Ch. 1	5200	43.81	NA	NA
	40	Ch. 1	5220	42.60	NA	NA
	40	Ch. 1	5220	43.49	NA	NA
	5	Ch. 0	5155	4.64	NA	NA
	5	Ch. 0	5155	4.71	NA	NA
	5	Ch. 0	5200	4.65	NA	NA
	5	Ch. 1	5200	4.60	NA	NA
	5	Ch. 1	5245	4.60	NA	NA
	5	Ch. 1	5245	4.65	NA	NA

Table 4: Result for 6 dB Bandwidth in both 40 MHz and 5 MHz modulation bandwidth

5.3.3 MAXIMUM CONDUCTED OUTPUT POWER

5.3.3.1 TEST SPECIFICATION

Test Standard	47 CFR Part 15 Feb 2016
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Test Mode	Conducted
Detector	Average
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	24.0 °C
Humidity	55.0 %
Tested By	Nishanth / Suresh GN
Test Date	08 th Feb 2016

5.3.3.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR Part 15 Feb 2016	§15.407 a (1)(i) 905462 D0 6802.11 Channel plans New rules v01	5150 MHz to 5250 MHz	Max conducted Tx power \leq 30 dBm (1W) Max Limit (for 6 dBi antenna configuration) : \leq 30 dBm Max Limit (for 17 dBi antenna) : \leq 19 dBm

5.3.3.3 TEST SETUP

Figure 30: Typical test setup for Conducted RF Test

5.3.3.4 TEST PROCEDURE

The Conducted test was performed using the power meter. Measurements were done as per Section II E 3.b (Method PM-G) of KDB **“789033 DO2 General UNII Test Procedures New Rules v01r01”**. The RF output of the EUT was connected to the input port of Power meter using an attenuator. The graph and data captured from power meter and compared with the limits specified in the standard.

5.3.3.5 MEASUREMENT GRAPHS / DATA

5.3.3.5.1 40 MHz Modulation Bandwidth, 17 dBi Antenna, Low Channel - 5180 MHz

Figure 31: 40MHz, 17dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.2 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, MID CHANNEL - 5200 MHz

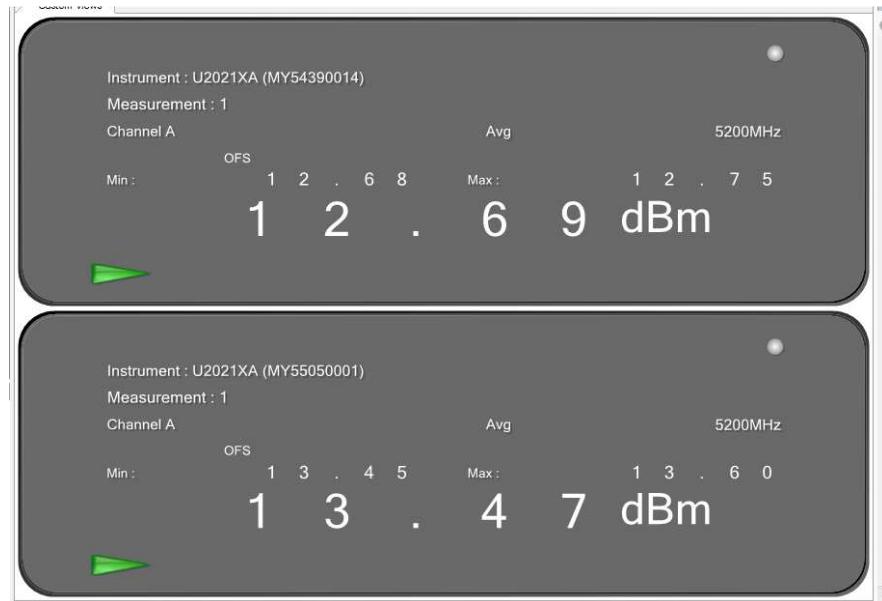


Figure 32: 40MHz, 17dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.3 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, HIGH CHANNEL - 5220 MHz

Figure 33: 40MHz, 17dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.4 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, LOW CHANNEL - 5180 MHz

Figure 34: 40MHz, 6dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.5 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, MID CHANNEL - 5200 MHz

Figure 35: 40MHz, 6dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.6 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, HIGH CHANNEL - 5220 MHz

Figure 36: 40MHz, 6dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.7 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, LOW CHANNEL - 5115 MHz

Figure 37: 5MHz, 17dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.8 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, MID CHANNEL - 5200 MHz

Figure 38: 5MHz, 17dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.9 5 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, HIGH CHANNEL - 5245 MHz

Figure 39: 5MHz, 17dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.10 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, LOW CHANNEL - 5115 MHz

Figure 40: 5MHz, 6dBi, Low Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.11 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, MID CHANNEL - 5200 MHz

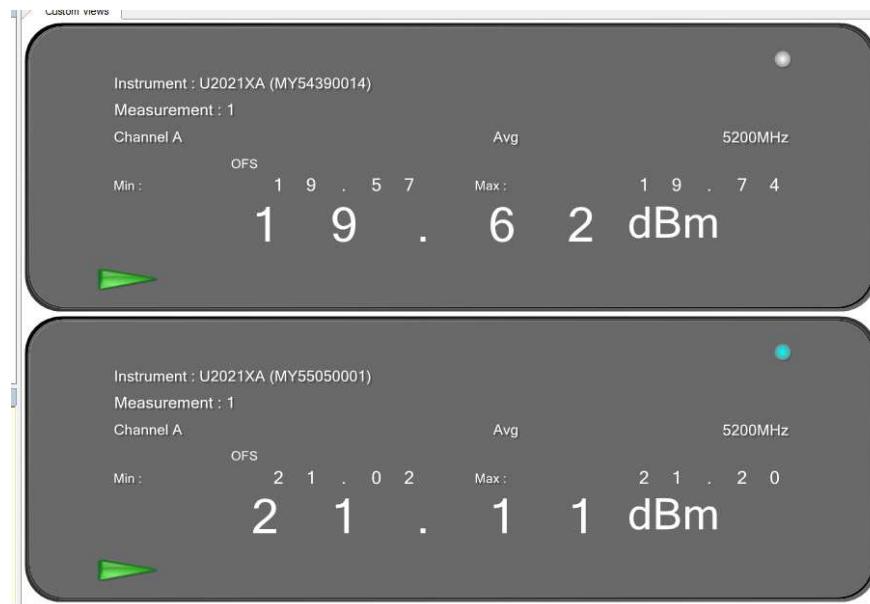


Figure 41: 5MHz, 6dBi, Mid Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.5.12 5 MHz MODULATION BANDWIDTH, 6 dBi POWER, HIGH CHANNEL - 5245 MHz

Figure 42: 5MHz, 6dBi, High Channel: Maximum Conducted Output power Measured at Ch.0 & Ch.1

5.3.3.6 RESULT

Maximum Conducted Output Power for all channels in both 40 MHz & 5 MHz modulation bandwidth is within the specified limits. Refer below table for consolidated data.

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (dBm)
40	Ch. 0	5180	6.22
40	Ch. 1	5180	7.87
40	Ch. 0	5200	12.69
40	Ch. 1	5200	13.47
40	Ch. 0	5245	7.03
40	Ch. 1	5245	8.77
5	Ch. 0	5155	7.88
5	Ch. 1	5155	8.94
5	Ch. 0	5200	9.30
5	Ch. 1	5200	10.91
5	Ch. 0	5245	6.75
5	Ch. 1	5245	8.20

Table 5: Max RF out power for 17 dBi configuration

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Consolidated Power (dBm)	Limit (dBm)	Result
40	Ch. 0 & Ch. 1	5180	10.13	19	PASS
40	Ch. 0 & Ch. 1	5200	16.11	19	PASS
40	Ch. 0 & Ch. 1	5220	10.99	19	PASS
5	Ch. 0 & Ch. 1	5155	11.45	19	PASS
5	Ch. 0 & Ch. 1	5200	13.19	19	PASS
5	Ch. 0 & Ch. 1	5254	10.54	19	PASS

Table 6: Consolidated values across channels and final power for 17 dBi configuration

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Recorded value (dBm)
40	Ch. 0	5180	15.70
40	Ch. 1	5180	17.34
40	Ch. 0	5200	13.91
40	Ch. 1	5200	14.91
40	Ch. 0	5245	16.78
40	Ch. 1	5245	18.27
5	Ch. 0	5155	17.89
5	Ch. 1	5155	18.69
5	Ch. 0	5200	19.62
5	Ch. 1	5200	21.11
5	Ch. 0	5245	17.50
5	Ch. 1	5245	18.86

Table 7: Max RF out power for 6 dBi configuration

Modulation Bandwidth (MHz)	Antenna path	Channel Frequency (MHz)	Consolidated Power (dBm)	Limit (dBm)	Result
40	Ch. 0 & Ch. 1	5180	19.61	30	PASS
40	Ch. 0 & Ch. 1	5200	17.45	30	PASS
40	Ch. 0 & Ch. 1	5220	20.59	30	PASS
5	Ch. 0 & Ch. 1	5155	21.32	30	PASS
5	Ch. 0 & Ch. 1	5200	23.44	30	PASS
5	Ch. 0 & Ch. 1	5254	21.24	30	PASS

Table 8: Consolidated values across channels and final power for 6 dBi configuration

The recorded power in dBm was converted into Watt, and then added and convert the result back to dBm

$$\text{dBm to mW} = \log(\text{mW}) * 10$$

$$\text{mW to dBm} = 10^{\log(\text{mW}) / 10}$$

5.3.4 POWER SPECTRAL DENSITY

5.3.4.1 TEST SPECIFICATION

Test Standard	47 CFR, Part 15, Feb 2016
Test Procedure	789033 D2 General U-NII Test Procedures New Rule V01r01
Frequency Range	5725 MHz to 5850 MHz
Resolution Bandwidth	1 MHz
Video Bandwidth	3 MHz
Sweep Time	1 ms
Attenuation	Auto
Test Mode	Conducted
Detector	RMS
Input Voltage	120 V AC
Input Frequency	60 Hz
Temperature	24.0 °C
Humidity	55.0 %
Tested By	Nishanth/Suresh GN
Test Date	8 th Feb 2016

5.3.4.2 LIMITS

Standard	Reference section	Frequency range	Limit
47 CFR, Part 15, Feb 2016	§15.407 a(1)	5150 MHz to 5250 MHz	≤ 17 dBm in any 1MHz band Limit (for 6 dBi antenna configuration) : ≤ 17 dBm/MHz Limit (for 17 dBi antenna configuration) : ≤ 6 dBm/MHz

5.3.4.3 TEST SETUP

Figure 43: Typical test setup for Conducted Test

5.3.4.4 TEST PROCEDURE

The Conducted test was performed using the Spectrum analyzer. Measurements were done as per Section II F (PSD) of KDB '789033 D02 General UNII Test Procedures New Rules v01r01'. The RF output of the EUT was connected to the input port of Spectrum analyzer using an attenuator. The graph and data captured from spectrum analyzer and compared with the limits specified in the standard.

5.3.4.5 MEASUREMENT GRAPHS / DATA

5.3.4.5.1 40 MHZ MODULATION BANDWIDTH, 17 dBi ANTENNA, LOW CHANNEL - 5180 MHz



Figure 44: 40MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 0

Figure 45: 40MHz, 17dBi, Low Channel: Power Spectral density Measured at Ch. 1

5.3.4.5.2 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, MID CHANNEL - 5200 MHz

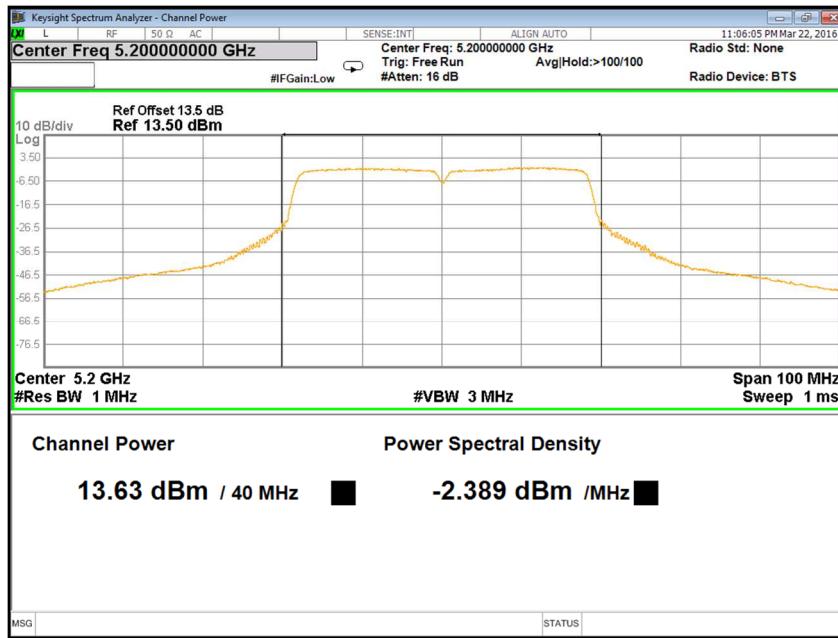


Figure 46: 40MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 0

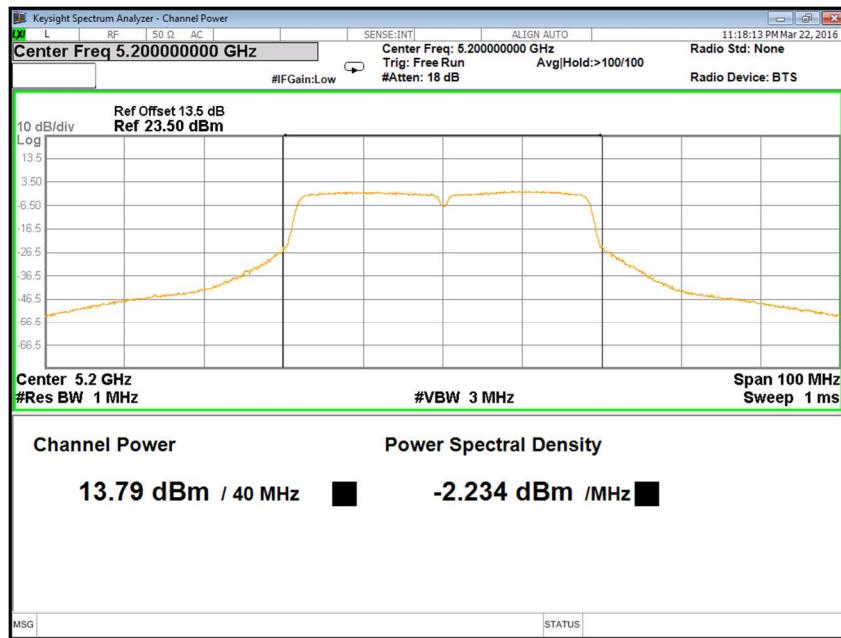


Figure 47: 40MHz, 17dBi, Mid Channel: Power Spectral density Measured at Ch. 1

5.3.4.5.3 40 MHz MODULATION BANDWIDTH, 17 dBi ANTENNA, HIGH CHANNEL - 5220 MHz

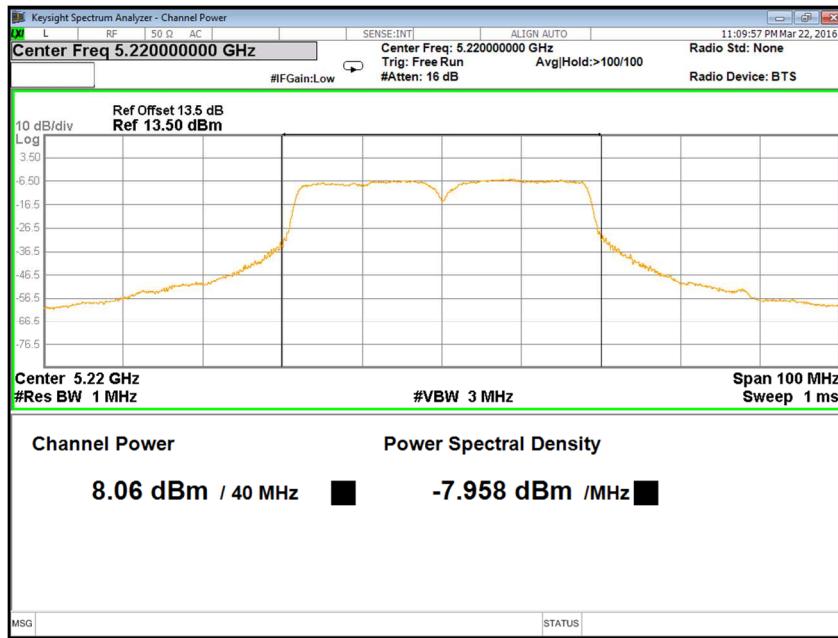


Figure 48: 40MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 0

Figure 49: 40MHz, 17dBi, High Channel: Power Spectral density Measured at Ch. 1

5.3.4.5.4 40 MHz MODULATION BANDWIDTH, 6 dBi POWER, LOW CHANNEL - 5180 MHz

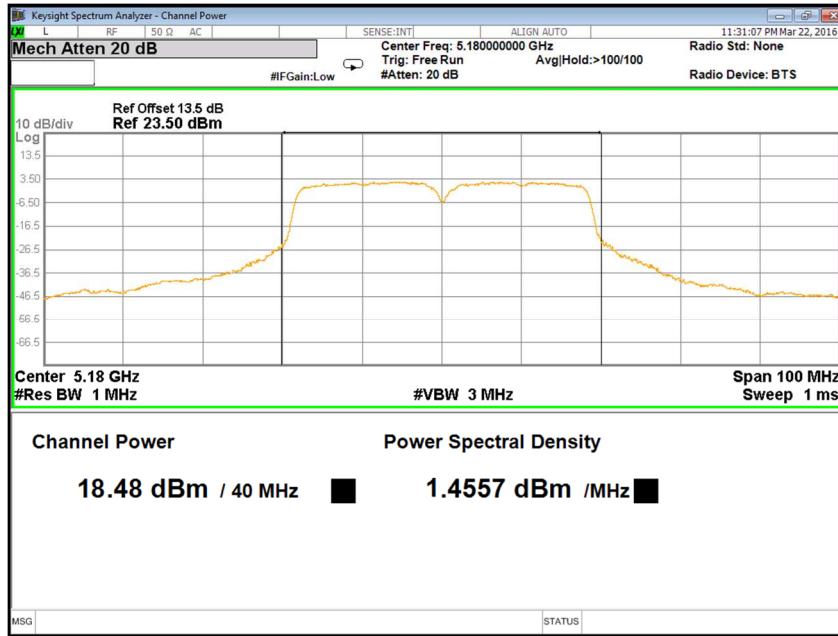


Figure 50: 40MHz, 6dBi, Low Channel: Power Spectral density Measured at Ch. 0