

Report Number: 19734 DLS Project: 6333

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators Section 15.247

Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz,

and 24.0 - 24.25 GHz.

PART 1 - thru Section B5.0

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: EPMP AP 2.4 GHz OFDM MIMO Radio

Kind of Equipment: Point-to-Point or Point-to-Multipoint Digital Transmission Transceiver

Frequency Range: 2412to 2462 MHz (20 MHz bandwidth)

2422 to 2452 MHz (40 MHz bandwidth)

Please see the Users' Manual for the channel specifications for use with the Dish antenna.

Test Configuration: Stand-alone

Model Number(s): C024900P011A, C024900A011A

Model(s) Tested: C024900P011A

Serial Number(s): MAC Address: 000456C1A853

Date of Tests: January 13th to February 4th, 2014

Test Conducted For: Cambium Networks

3800 Golf Road, Suite 360

Rolling Meadows, IL 60008, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2014, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Company: Model Tested: Report Number: DLS Project: Cambium Networks C024900P011A 19734 6333

SIGNATURE PAGE

Tested By:

Craig Brandt Senior Test Engineer

Craig Branott

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Company: Cambium Networks
Model Tested: C024900P011A
Report Number: 19734

DLS Project: 6333

Table of Contents

i. Co	over Page	1
ii. Sig	gnature Page	2
iii. Ta	able of Contents	3
iv. N	VLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	7
3.0	Test Facilities	7
4.0	Description of Test Sample	7
5.0	Test Equipment	9
6.0	Test Arrangements	10
7.0	Test Conditions	10
8.0	Modifications Made To EUT for Compliance	11
9.0	Additional Descriptions	
10.0	Results	
11.0	Conclusion	11
Appe	endix A – Test Photos	
• •	ndix B – Measurement Data	
	1.0 DTS Bandwidth – 6 dB bandwidth - Conducted	
B1	1.0a - 20MHz Bandwidth	19
B1	1.0b - 40MHz Bandwidth	22
B2	2.0 Fundamental Emission Output Power - Conducted	25
	2.0a - With Omni Antenna	
B2	2.0b - With Sector Antenna	32
B2	2.0c - With Dish Antenna	
В3	3.0 Maximum Power Spectral Density – Conducted	44
	1	45
В3	3.0b – 40MHz Bandwidth	48
В4	4.0 Maximum Unwanted Emission Levels – Conducted	54
B4	4.0a – 20MHz Bandwidth with Omni Antenna	55
	4.0b – 40MHz Bandwidth with Omni Antenna	
	4.0c – 20MHz Bandwidth with Sector Antenna	
	4.0d – 40MHz Bandwidth with Sector Antenna	
	4.0f – 40MHz Bandwidth with Dish Antenna	

Report Number: 19734
DLS Project: 6333

B5.0 Conducted Measurements for Radiated Restricted Band Compliance - with Dish	145
B5.0a – 20MHz Bandwidth	146
B5.0b – 40MHz Bandwidth	173
B6.0 Maximum Unwanted Emission Levels – Conducted Band-Edge	200
B6.0a – Operating Band Edge	201
B6.0b – Restricted Band Edge - with Omni Antenna	219
B6.0c – Restricted Band Edge - with Sector Antenna	251
B6.0d – Restricted Band Edge - with Dish Antenna	283
B7.0 Maximum Unwanted Emission Levels into Restricted Frequency Bands - Radiated	315
B7.0a – With Omni Antenna	316
B7.0b – With Sector Antenna	323
B8.0 Maximum Unwanted Emission Levels – Radiated Band-Edge from Cabinet	330
B8.0a – 20MHz Bandwidth	331
B8.0b – 40MHz Bandwidth	339
B9.0 Duty Cycle of Test Unit	347
B10.0 AC Line Conducted Emissions	350

Company: Model Tested: Report Number: DLS Project: Cambium Networks C024900P011A 19734 6333

Report Number: 19734 DLS Project: 6333

1.0 Summary of Test Report

It was determined that the Cambium Networks EPMP AP 2.4 GHz OFDM MIMO Radio, Model C024900P011A, complies with the requirements of CFR 47 Part 15 Subpart C Section 15.247.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
15.247(a)(2)	6 dB Emission Bandwidth - Conducted	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 8.1 Option 1	1	Yes
15.247(b)(3)	Fundamental Emission Output Power – Average	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 9.2.3.1-AVGPM	1	Yes
15.247(e)	Maximum Power Spectral Density - Conducted	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 10.3-AVGPSD-1	1	Yes
15.247(d)	Maximum Unwanted Emission Levels – Conducted	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 11.0	1	Yes
15.247 (d), 15.205	Conducted Measurements for Radiated Restricted Band Compliance - with Dish	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 12.1/12.2.2	1	Yes
15.247(d), 15.205	Maximum Unwanted Emission Levels – Conducted - Operating Band-Edge	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 11.0	1	Yes
15.247(d), 15.205	Maximum Unwanted Emission Levels into Restricted Frequency Bands - Radiated	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 Section 12.0 & 12.1	2	Yes
15.247(d), 15.205	Maximum Unwanted Emissions - Radiated Band- Edge - from Cabinet	FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01	2	Yes
15.35(c)	Duty Cycle of Test Unit	ANSI C63.10-2009 Section 7.5	1	NA
15.207(a)	AC Line Conducted Emissions	ANSI C63.10-2009 Section 6.2		Yes

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

Report Number: 19734 DLS Project: 6333

2.0 Introduction

From January 13th through February 4th, 2014 the EPMP AP 2.4 GHz OFDM MIMO Radio, Model C024900P011A, as provided from Cambium Networks, was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.247. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Point-to-Point or Point-to-Multipoint 2.4 GHz DTS Transceiver with either Sector (17 dBi) or Omni (8dBi) or Dish (25dBi) external antenna with 20 MHz or 40 MHz channel bandwidth. OFDM modulation

Type of Equipment / Frequency Range:

Stand-Alone / 2412 to 2462 MHz (20 MHz bandwidth) 2422 to 2452 MHz (40 MHz bandwidth)

Please see the Users' Manual for the channel specifications for use with the Dish antenna.

Physical Dimensions of Equipment Under Test:

Length: 8.5 in. Width: 3 in. Height: 1 in.

Power Source:

30 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Power supply model: PSA15M-300 (AP)

Report Number: 19734 DLS Project: 6333

Internal Frequencies:

292kHz, 940-1000kHz, 4MHz (Switching Power Supply Frequencies) 40 MHz, 25 MHz

Transmit Frequencies Used For Test Purpose:

20 MHz Channel Bandwidth: Low channel: 2412 MHz

Middle channel: 2437 MHz High channel: 2462 MHz

High Channel with Dish antenna: 2462 MHz

40 MHz Channel Bandwidth: Low channel: 2422 MHz

Middle channel: 2437 MHz High channel: 2452 MHz

High Channel with Dish antenna: 2447 MHz

Type of Modulations:

OFDM: MCS15 (worst case) used for testing

Description of Circuit Board(s) / Part Number:

Cambium Networks PC Board	P005153
17 dBi Sector antenna	Laird SKS240045-18-CA1
8 dBi Omni antenna	AFR-SP(2400-2500)-8-2A
25 dBi Dish antenna	MA-WP2556-DP12
Connector x 2	PMP090003
1 dB cable x 2	LMR E203950

Report Number: 19734 DLS Project: 6333

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	7-23-13	7-23-14
LISN	Solar	9252-50-R- 24-BNC	961019	9 kHz – 30 MHz	5-24-13	5-24-14
Filter- High- Pass	SOLAR	7930-120	090702	120 kHz – 30 MHz	1-3-14	1-3-15
Limiter	Electro-Metrics	EM-7600	706	9 kHz – 30 MHz	1-3-14	1-3-15
Preamp	Miteq	AMF-7D- 01001800-22- 10P	1809602	1GHz-18GHz	5-29-13	5-29-14
Horn Antenna	EMCO	3115	9502-4451	1-18GHz	3-18-13	3-18-15
Filter- High- Pass	Q-Microwave	100462	2	4.2GHz-18GHz	5-28-13	5-28-14
Preamp	Miteq	AMF-8B- 180265-40- 10P-H/S	438727	18GHz-26GHz	8-12-13	8-12-14
Horn Antenna	EMCO	3116	2549	18 – 40GHz	9-6-12	9-6-14
High Pass Filter	Planar	CL22500- 9000-CD-SS	PF1229/0728	15-40 GHz	8-14-13	8-14-14
20 dB attenuator	Aeroflex/weinschel	75A-20-12	1071	DC – 40 GHz	8-14-13	8-14-14
10 dB attenuator	Pasternack	PE7014-10	DLS#198	DC – 18 GHz	3-16-13	3-16-14
Preamplifier	Rohde & Schwarz	TS-PR10	032001/005	9 kHz – 1 GHz	1-4-14	1-4-15
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	8-22-12	8-22-14
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	9-6-12	9-6-14
Filter- Low- Pass	Mini-Circuits	VLFX1125	RUU92600920	30 - 1000 MHz	8-13-13	8-13-14
Thermal Power Sensor	Rohde & Schwarz	NRP-Z51	1138.0005.03 -104290-Wq	DC - 18GHz	12-12-13	12-12-14
20 dB attenuator	Anritsu	42N50-20	000451	DC – 18 GHz	3-16-13	3-16-14

Report Number: 19734 DLS Project: 6333

6.0 Test Arrangements

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up.

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity:

67°F at 27% RH

Supply Voltage:

30 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Phihong power supply model: PSA15M-300 (AP)

Report Number: 19734 DLS Project: 6333

8.0 Modifications Made To EUT for Compliance

No modifications were needed for the OFDM transmitters.

9.0 Additional Descriptions

Mode of operation: Measurements were taken for MCS15 modulation (as worst case) at the lowest, middle, and highest channels of operation. Port 0 & Port 1 were tested. Port 0 was tested as representative of Port 1. Port 0 was equal to/or worst case over Port 1 per Cambium Networks. 20 and 40 MHz channel bandwidths were tested. EUT was set to transmit continuously (at various power settings) with 100% duty cycle.

Emission Designators: 20M0X1D, 40M0X1D

Please see the Users' Manual for the channel specifications for use with the Dish antenna.

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 and ANSI C63.10-2009. Graphical and tabular data can be found in Appendix B at the end of this report.

11.0 Conclusion

The EPMP AP 2.4 GHz OFDM MIMO Radio, Model C024900P011A, as provided from Cambium Networks tested from January 13th to February 4th, 2014 **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.247.

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

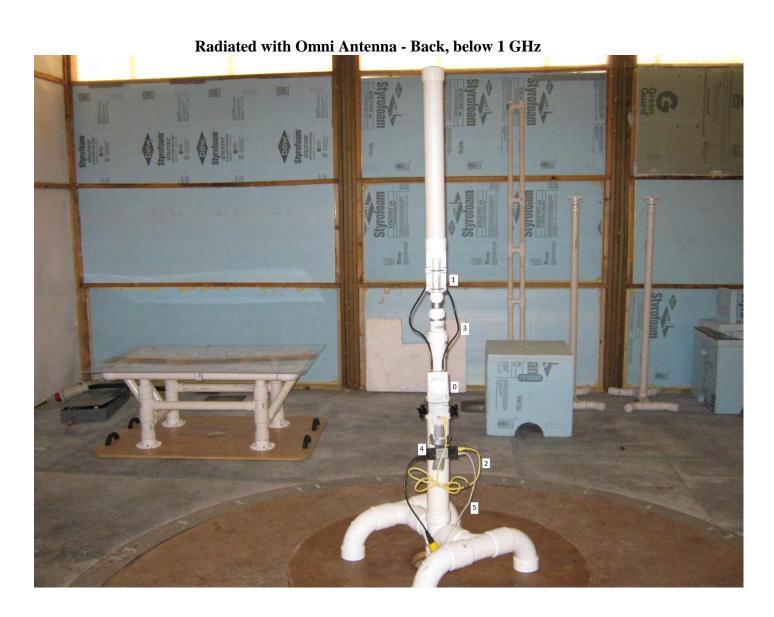
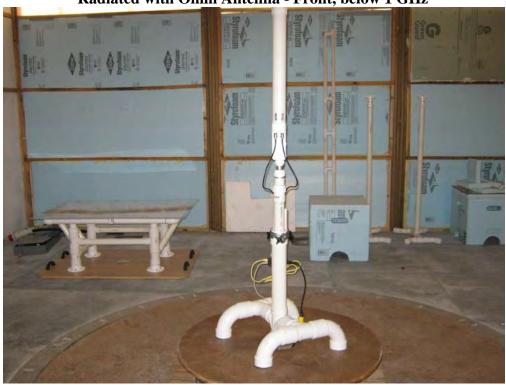

Appendix A – Test Photos

Photo Information and Test Setup:

Item 0: Cambium Networks EPMP AP 2.4 GHz OFDM MIMO Radio, Model C024900P011A

Item 1: 2.4 GHz OMNI MIMO Antenna, Model AFR-SP(2400-2500)-8-2A

Item 2: Unshielded Ethernet cable, 6ft long
Item 3: Shielded Coax cable 2 x @ 2ft long
Item 4: Power Supply, Model PSA15m-300 (AP)
Item 5: Unshielded Ethernet cable, 100ft long


166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

Appendix A – Test Photos

Radiated with Omni Antenna - Front, below 1 GHz

Radiated with Sector Antenna - Front, below 1 GHz

Report Number: 19734 DLS Project: 6333

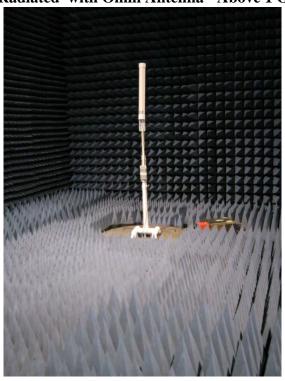
Appendix A – Test Photos

Item 0: Cambium Networks EPMP AP 2.4 GHz OFDM MIMO Radio, Model C024900P011A

Item 1: Laird Sector Antenna, Model SKS240045-18-CA1

Item 2: Unshielded Ethernet cable, 6ft long
Item 3: Shielded Coax cable 2 x @ 2ft long
Item 4: Power Supply, Model PSA15m-300 (AP)

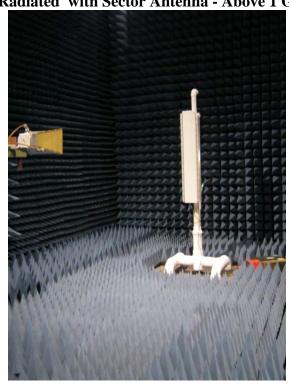
Item 4: Power Supply, Model PSA15m-300 (AF Unshielded Ethernet cable, 100ft long

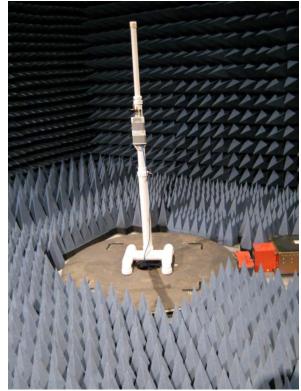


166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

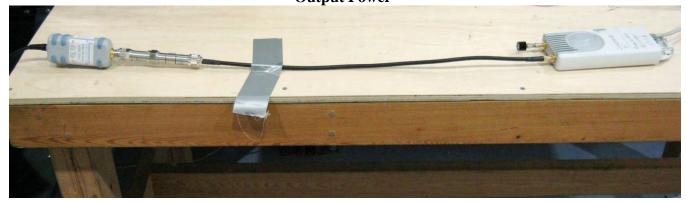

Radiated with Omni Antenna - Above 1 GHz


Radiated with Sector Antenna
- Side View Above 1 GHz

Radiated with Sector Antenna - Above 1 GHz

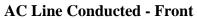
Radiated from Cabinet - Above 1 GHz

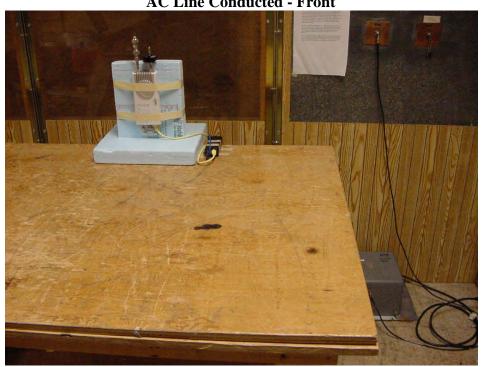
Company: Model Tested: Cambium Networks C024900P011A Report Number: 19734


DLS Project: 6333

Appendix A – Test Photos

Output Power




166 South Carter, Genoa City, WI 53128

Appendix A – Test Photos

Company: Model Tested: Cambium Networks C024900P011A 19734

Report Number: DLS Project: 6333

AC Line Conducted - Back

Page **17** of **355**

166 South Carter, Genoa City, WI 53128

Appendix B – Measurement Data

Cambium Networks Company: Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

DTS Bandwidth – 6 dB bandwidth - Conducted **B1.0**

Rule Section: FCC 15.247(a)(2)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 8.1 Option 1

Description: RBW = 100kHz

> $VBW \ge 3 \times RBW$ Detector = Peak

Trace mode = max holdSweep = auto couple

Measure the maximum width of the emission between the lower and upper frequencies that measure 6 dB below the maximum level of the in-band emission.

Measurements were taken for OFDM MCS15 with 20 MHz and 40 MHz channel bandwidths at the low, middle and high channels of operation. EUT was set to transmit continuously with a 100% duty cycle.

Per Cambium Networks request, measurements were only performed on output

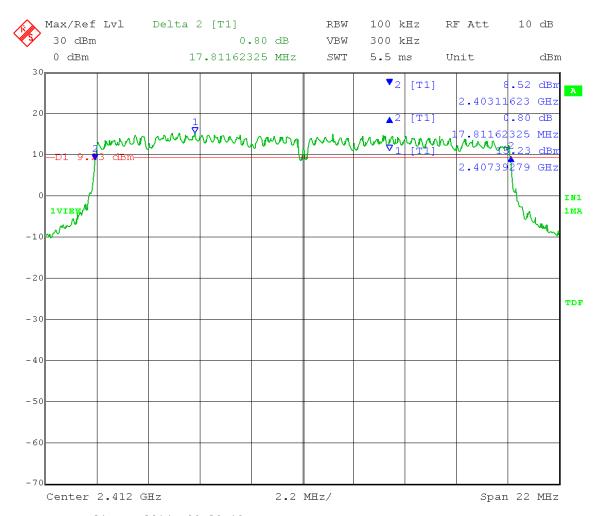
port 0.

Limit: DTS Bandwidth shall be at least 500 kHz

Passed **Results:**

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: Low Channel: Transmit = 2.412 GHz

Output power setting: 26 20 MHz channel BW

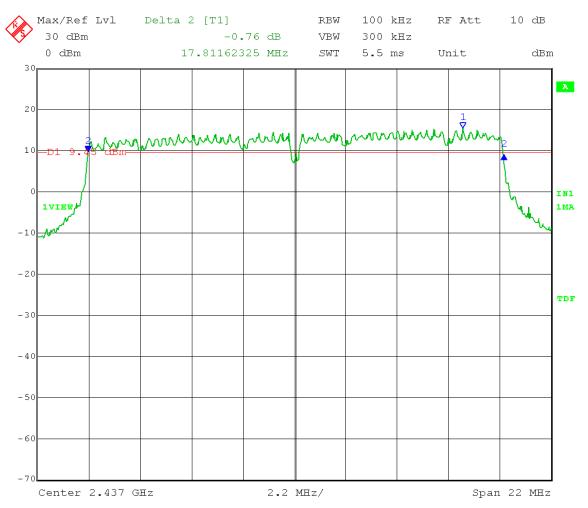
Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 17.81 MHz

Date: 21.JAN.2014 09:29:10

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: Mid Channel: Transmit = 2.437 GHz

Output power setting: 26 20 MHz channel BW

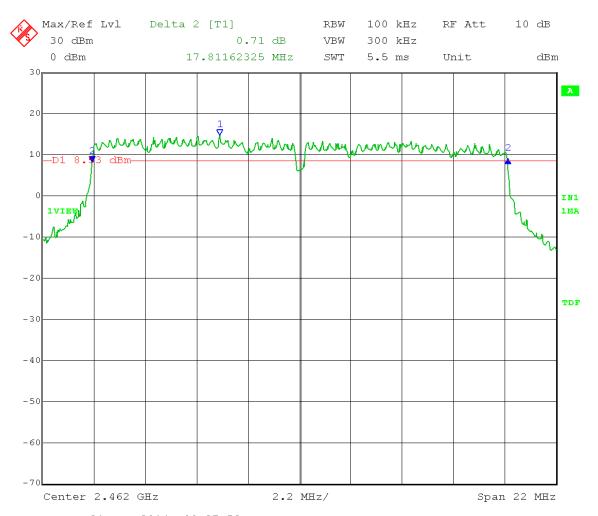
Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 17.81 MHz

Date: 21.JAN.2014 09:34:59

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: High Channel: Transmit = 2.462 GHz

Output power setting: 26 20 MHz channel BW

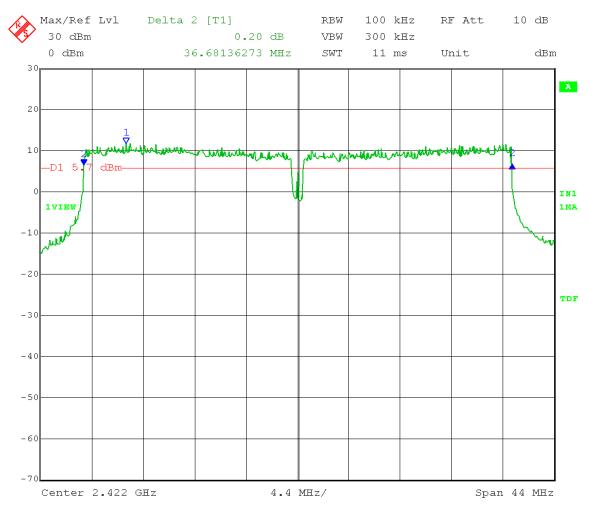
Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 17.81 MHz

Date: 21.JAN.2014 09:37:53

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: Low Channel: Transmit = 2.422 GHz

Output power setting: 26 40 MHz channel BW

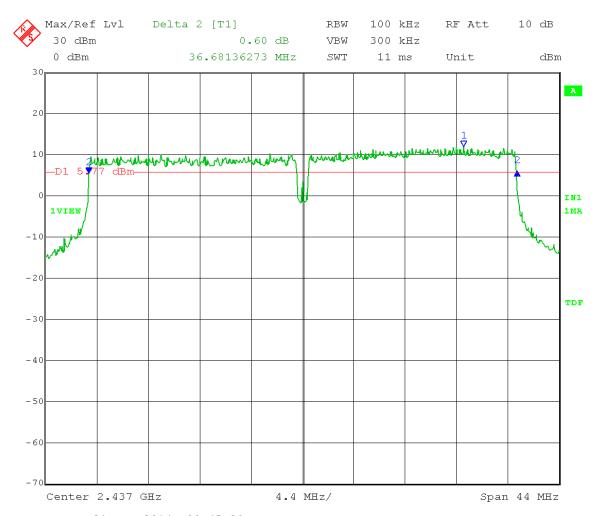
Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 36.68 MHz

Date: 21.JAN.2014 09:42:52

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: Mid Channel: Transmit = 2.437 GHz

Output power setting: 26 40 MHz channel BW

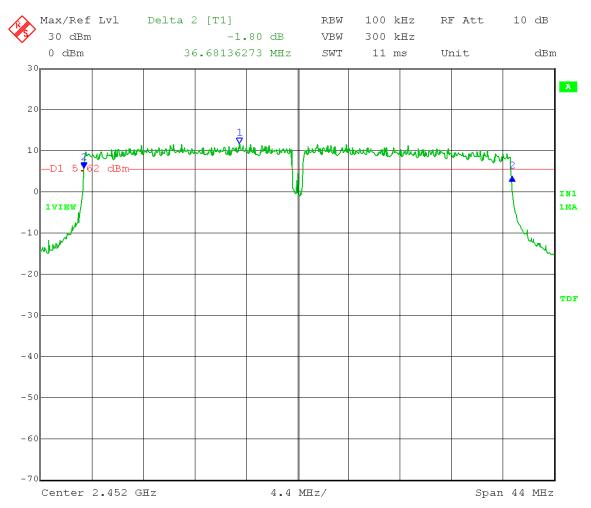
Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 36.68 MHz

Date: 21.JAN.2014 09:45:20

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853 Test: Emission Bandwidth (6 dB) - Conducted


Operator: Craig B

Comment: High Channel: Transmit = 2.452 GHz

Output power setting: 26 40 MHz channel BW

Output port 0 Modulation: OFDM MCS15

6 dB Emission Bandwidth = 36.68 MHz

Date: 21.JAN.2014 09:48:10

Report Number: 19734 DLS Project: 6333

Appendix B – Measurement Data

B2.0 Fundamental Emission Output Power - Conducted

Rule Section: FCC 15.247(b)(3)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing Compliance

Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Section 9.2.3.1 – AVGPM (Measurement using an RF average power

meter with a thermocouple detector)

Description: Measurements were performed using a wideband RF power

meter with a thermocouple detector.

The EUT was transmitting continuously with a 100% duty cycle.

The average power of the transmitter was measured.

Measurements were taken for OFDM MCS15 with 20 MHz and 40 MHz channel bandwidths at

the low, middle and high channels of operation.

Limit: Limit with 8 dBi Omni antenna: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2

dB greater than the 6 dB allowed) = 28 dBm conducted.

Limit with 17 dBi Sector antenna: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is

11 dB greater than the 6 dB allowed) = 19 dBm conducted.

Limit with 25 dBi Dish antenna (used for point-to-point operation only): [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted

power limit is reduced by 7 dB. RF conducted limit = 23 dBm.

* It was later decided that the 25 dBi Dish could also be used in point-to-multipoint operation. Test rest results show that the output power used for point-to-point mode also passes the point-to-multipoint limit. Point-to-multipoint limit: [15.247(b)(3)&(4)]:

30 dBm (1 Watt) – 19 dB (antenna gain is 19 dB greater than

the 6 dB allowed) = 11 dBm conducted.

Results: Passed

Notes: The RF conducted power limit was reduced by the amount by which the antenna gain exceeds 6

dBi.

Measure and add 10 log(N) dB, where N is the number of outputs.

= 10 log(2) = 3 dB. 3 dB was added to power measurements to account for MIMO cross-polarized

operation.

The fundamental output power setting was limited in order to pass near-by restricted band

emission limits.

Per Cambium Networks request, measurements were only performed on output port 0.

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Low Channel Frequency: 2.412 GHz

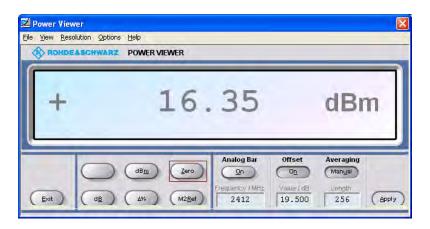
Test software setting: 16.5 (used to get 15.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 16.35 dBm + 3 dB (MIMO Cross-Pole) = 19.35 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

Test software setting: 26 (used to get 25 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 24.99 dBm + 3 dB (MIMO Cross-Pole) = 27.99 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; High Channel Frequency: 2.462 GHz

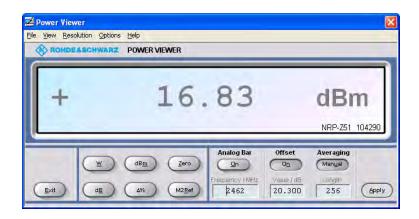
Test software setting: 17.5 (used to get 16.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 16.83 dBm + 3 dB (MIMO Cross-Pole) = 19.83 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Low Channel Frequency: 2.422 GHz

Test software setting: 13 (used to get 12 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 11.95 dBm + 3 dB (MIMO Cross-Pole) = 14.95 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

Test software setting: 26 (used to get 25 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 24.99 dBm + 3 dB (MIMO Cross-Pole) = 27.99 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; High Channel Frequency: 2.452 GHz

Test software setting: 12 (used to get 11 dBm output);

Modulation Type: OFDM MCS15

Antenna gain (Omni): 8 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 2 dB (antenna gain is 2 dB greater than the 6 dB

allowed) = 28 dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 11.88 dBm + 3 dB (MIMO Cross-Pole) = 14.88 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Low Channel Frequency: 2.412 GHz

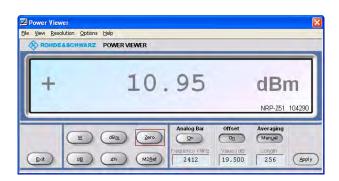
Test software setting: 12 (used to get 11 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 10.95 dBm + 3 dB (MIMO Cross-Pole) = 13.95 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

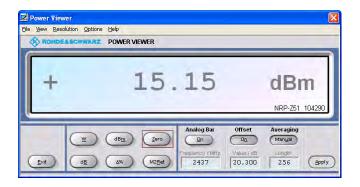
Test software setting: 17 (used to get 16 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 15.15 dBm + 3 dB (MIMO Cross-Pole) = 18.15 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; High Channel Frequency: 2.462 GHz

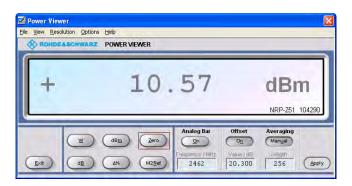
Test software setting: 12 (used to get 11 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 10.57 dBm + 3 dB (MIMO Cross-Pole) = 13.57 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Low Channel Frequency: 2.422 GHz

Test software setting: 12 (used to get 11 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 11.21 dBm + 3 dB (MIMO Cross-Pole) = 14.21 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

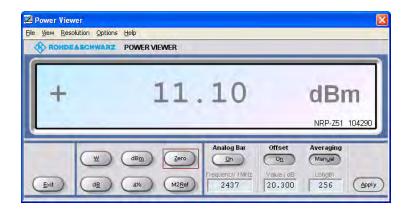
Test software setting: 12 (used to get 11 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 11.10 dBm + 3 dB (MIMO Cross-Pole) = 14.10 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; High Channel Frequency: 2.452 GHz

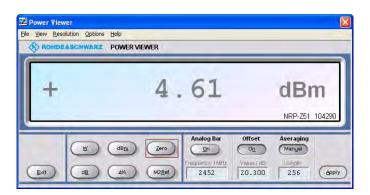
Test software setting: 4.5 (used to get 3.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 17 dBi; Point-to-Multipoint operation

Limit: [15.247(b)(3)&(4)]: 30 dBm (1 Watt) – 11 dB (antenna gain is 11 dB greater than the 6 dB

allowed) = 19 dBm conducted.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Correction for duty cycle = 100%

Fundamental Emission AVERAGE Output Power = 4.61 dBm + 3 dB (MIMO Cross-Pole) = 7.61 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Low Channel Frequency: 2.412 GHz

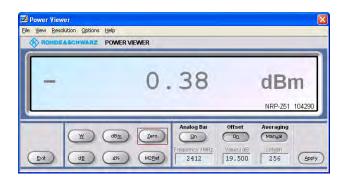
Test software setting: 1 (used to get 0 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = -0.38 dBm + 3 dB (MIMO Cross-Pole) = 2.62 dBm

Test Date: 01-30-2014

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

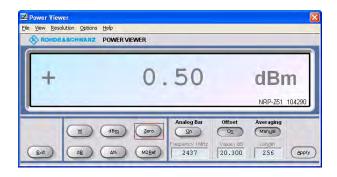
Test software setting: 1.5 (used to get 0.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = 0.50 dBm + 3 dB (MIMO Cross-Pole) = 3.50 dBm

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 20 MHz

Output port: Channel 0; High Channel Frequency: 2.462 GHz

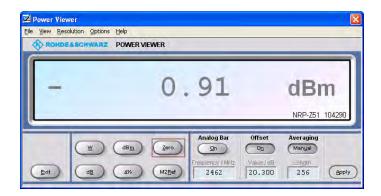
Test software setting: 0 (used to get -1 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = -0.91 dBm + 3 dB (MIMO Cross-Pole) = 2.09 dBm

Test Date: 02-03-2014

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Low Channel Frequency: 2.422 GHz

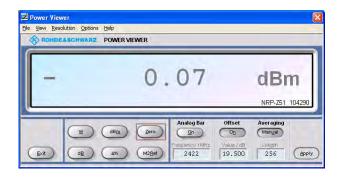
Test software setting: 1 (used to get 0 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = -0.07 dBm + 3 dB (MIMO Cross-Pole) = 2.93 dBm

Test Date: 02-03-2014

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; Mid Channel Frequency: 2.437 GHz

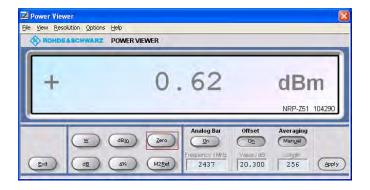
Test software setting: 1.5 (used to get 0.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = 0.62 dBm + 3 dB (MIMO Cross-Pole) = 3.62 dBm

Test Date: 02-03-2014

Company: Cambium Networks

EUT: EPMP 2.4 GHz OFDM MAC: 000456C1A853

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Craig B

EUT nominal channel bandwidth: 40 MHz

Output port: Channel 0; High Channel Frequency: 2.447 GHz

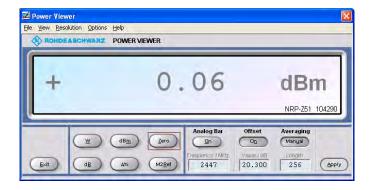
Test software setting: 0.5 (used to get -0.5 dBm output);

Modulation Type: OFDM MCS15

Antenna gain 25 dBi; Point-to-Point operation

Limit: [15.247(b)(3)&(c)(1)(i)]: 30 dBm conducted with 6 dBi antenna gain allowed. Conducted limit is lowered 1 dB for every 3 dB antenna gain exceeds 6 dB. Antenna gain exceeds 6 dBi by 19 dB, therefore RF conducted power limit is reduced by 7 dB.

RF conducted limit = 23 dBm.


MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna:

Measure and add 10 log(N) dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

Duty cycle of test unit = 100%, (no correction required)

Fundamental Emission AVERAGE Output Power = 0.06 dBm + 3 dB (MIMO Cross-Pole) = 3.06 dBm

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

Appendix B - Measurement Data

B3.0 Maximum Power Spectral Density – Conducted

Rule Section: FCC 15.247(e)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – *Guidance for Performing*

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

10.3 Method AVGPSD-1 (trace averaging with EUT transmitting at full power

throughout each sweep)

Description: Set instrument center frequency to DTS channel center frequency.

Set span to at least 1.5 times the OBW. Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.

Set $VBW \ge 3 \times RBW$

Detector = power averaging (RMS).

Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.

Sweep time = auto couple.

Trace mode: trace average 200 traces

Use the peak marker function to determine the maximum amplitude level. If necessary, zoom in on the emission of interest in order to meet the minimum

measurement point requirement.

Limit: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time

interval of continuous transmission.

Results: Passed

Notes: Measurements were taken for OFDM MCS15 with 20 MHz and 40 MHz channel

bandwidths at the low, middle and high channels of operation. EUT was set to

transmit continuously with a 100% duty cycle.

Measurements were taken using the power settings used with the 8 dBi gain

antenna (highest usable conducted output power).

Per Cambium Networks request, measurements were only performed on output

port 0.

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

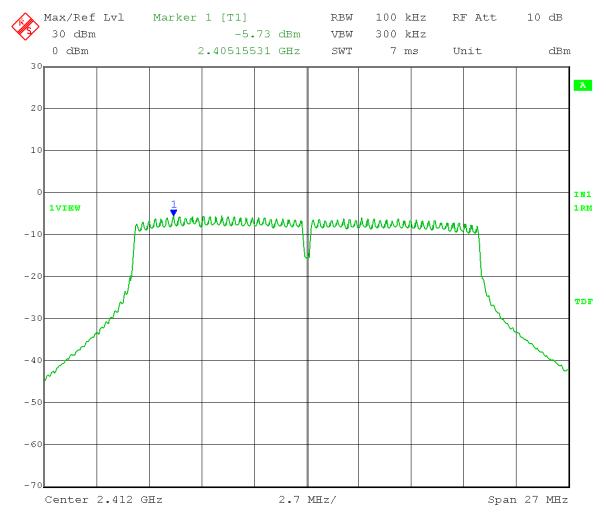
Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: Low Channel: Frequency = 2412 MHz

Output Power Setting = 16.5 20 MHz channel BW RBW = 100 kHz VBW = 300 kHz Span = 1.5 x DTS bandwidth Detector = RMS

Sweep = auto couple Trace mode: average 200 traces


Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log(N)$ dB, where N is the number of outputs.

$$= 10 \log(2) = 3 dB$$

PSD = -5.73 dBm + 3 dB (MIMO) = -2.73 dBm / 100 kHz

Date: 21.JAN.2014 10:35:14

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: Mid Channel: Frequency = 2437 MHz

Output Power Setting = 26

RBW = 100 kHz

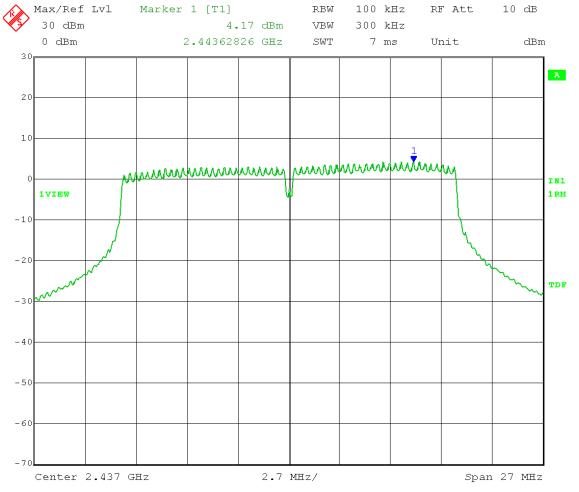
Span = 1.5 x DTS bandwidth

20 MHz channel BW

VBW = 300 kHz

Detector = RMS

Sweep = auto couple Trace mode: average 200 traces


Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log(N)$ dB, where N is the number of outputs.

 $= 10 \log(2) = 3 dB$

PSD = 4.17 dBm + 3 dB (MIMO) = 7.17 dBm / 100 kHz

Date: 21.JAN.2014 10:14:03

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

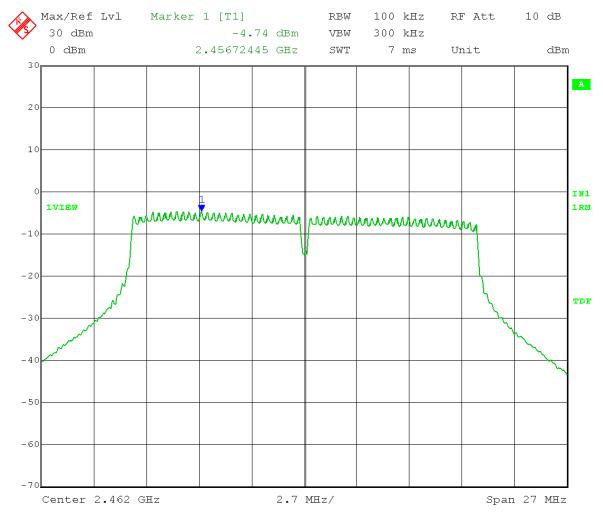
Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: High Channel: Frequency = 2462 MHz

Output Power Setting = 17.5 20 MHz channel BW RBW = 100 kHz VBW = 300 kHz Span = 1.5 x DTS bandwidth Detector = RMS

Sweep = auto couple Trace mode: average 200 traces


Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log(N)$ dB, where N is the number of outputs.

$$= 10 \log(2) = 3 dB$$

PSD = -4.74 dBm + 3 dB (MIMO) = -1.74 dBm / 100 kHz

Date: 21.JAN.2014 10:40:53

Company: Cambium Networks

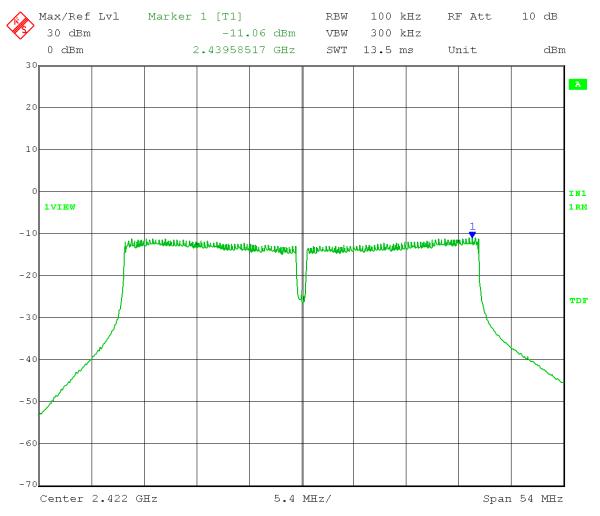
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: Low Channel: Frequency = 2422 MHz

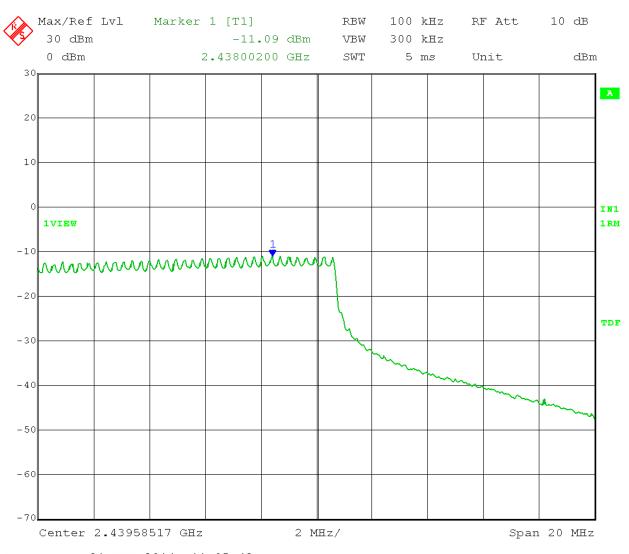
Output Power Setting = 13 40 MHz channel BW RBW = 100 kHz VBW = 300 kHz Span = 1.5 x DTS bandwidth Detector = RMS


Sweep = auto couple Trace mode: average 200 traces

Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log(N)$ dB, where N is the number of outputs.


 $= 10 \log(2) = 3 dB$

Date: 21.JAN.2014 11:04:17

Zoom in on the emission of interest and reduce the span in order to meet the minimum measurement point requirement:

PSD = -11.09 dBm + 3 dB (MIMO) = -8.09 dBm / 100 kHz

Date: 21.JAN.2014 11:05:42

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: Mid Channel: Frequency = 2437 MHz

Output Power Setting = 17

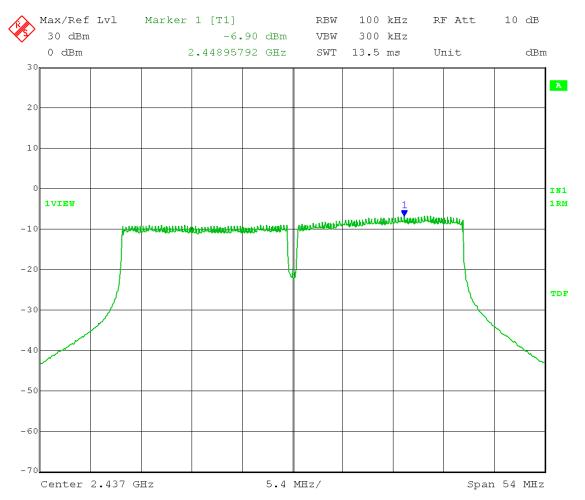
RBW = 100 kHz

Span = 1.5 x DTS bandwidth

40 MHz channel BW

VBW = 300 kHz

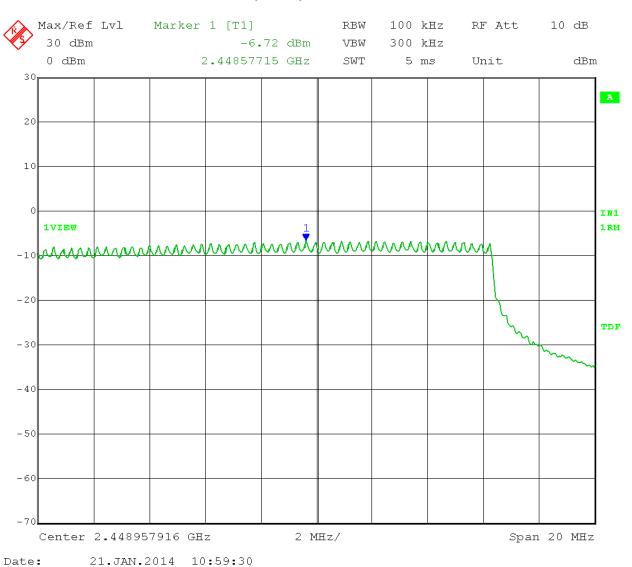
Detector = RMS


Sweep = auto couple Trace mode: average 200 traces

Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log(N) dB$, where N is the number of outputs.


 $= 10 \log(2) = 3 dB$

Date: 21.JAN.2014 10:56:07

Zoom in on the emission of interest and reduce the span in order to meet the minimum measurement point requirement:

PSD = -6.72 dBm + 3 dB (MIMO) = -3.72 dBm / 100 kHz

Company: Cambium Networks

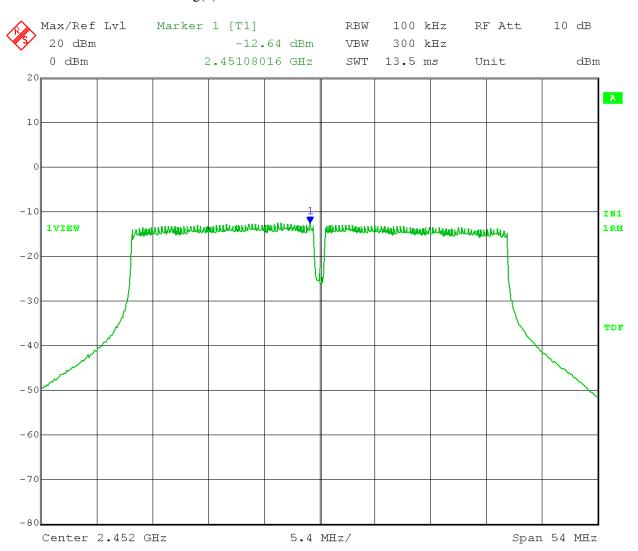
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Power Spectral Density level in the fundamental emission

Operator: Craig B

Comment: High Channel: Frequency = 2452 MHz

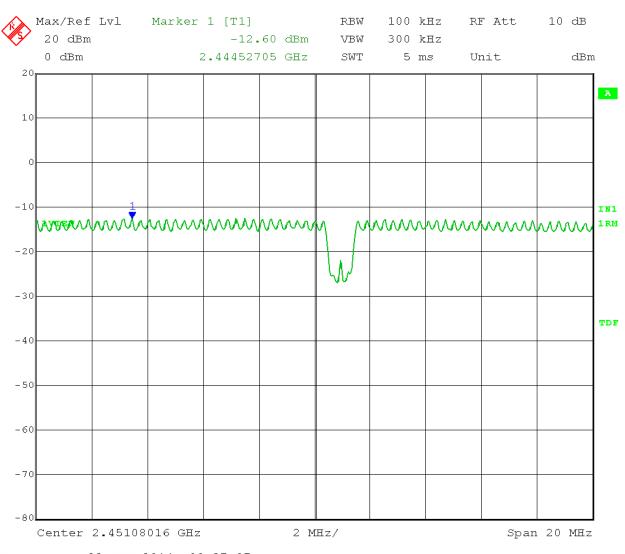
Output Power Setting = 12 40 MHz channel BW RBW = 100 kHz VBW = 300 kHz Span = 1.5 x DTS bandwidth Detector = RMS


Sweep = auto couple Trace mode: average 200 traces

Output port 0

Limit: +8 dBm / 3 kHz

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log(N) dB, where N is the number of outputs.


 $= 10 \log(2) = 3 dB$

Date: 22.JAN.2014 09:25:49

Zoom in on the emission of interest and reduce the span in order to meet the minimum measurement point requirement:

PSD = -12.60 dBm + 3 dB (MIMO) = -9.60 dBm / 100 kHz

Date: 22.JAN.2014 09:27:07

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

Appendix B - Measurement Data

B4.0 Maximum Unwanted Emission Levels – Conducted

Rule Section: FCC 15.247(d)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

11.0 Emissions in non-restricted frequency bands

Description: RBW = 100 kHz

 $VBW \ge 300 \text{ kHz}$

Span to ≥ 1.5 times the *DTS bandwidth* (Reference Level)

Set the center frequency and span to encompass frequency range to be measured.

(Emission Level) Detector = peak Sweep = auto couple Trace mode = max hold

Measurements were taken for OFDM MCS15 with 20 MHz and 40 MHz channel bandwidths at the low, middle and high channels of operation. EUT was set to

transmit continuously with a 100% duty cycle.

Per Cambium Networks request, measurements were only performed on output

port 0.

Limit: 30 dB below maximum in-band average PSD level (maximum level in any 100

kHz band). Average output power procedure was used to measure the

fundamental emission power.

Results: Passed

Company: Cambium Networks

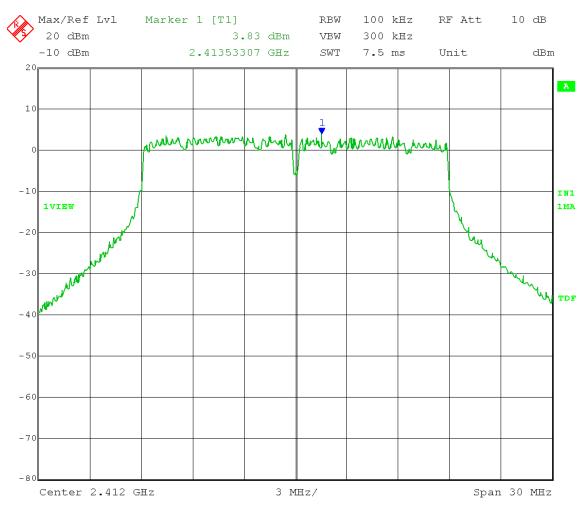
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 16.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 3.83 dBm - 30 dB = -26.17 dBm

Date: 21.JAN.2014 12:01:34

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

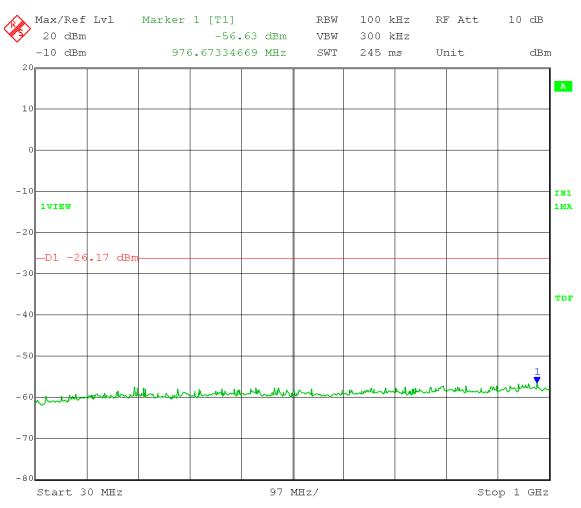
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 16.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 3.83 dBm - 30 dB = -26.17 dBm

Frequency range: 30 – 1000 MHz

Date: 22.JAN.2014 10:11:17

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

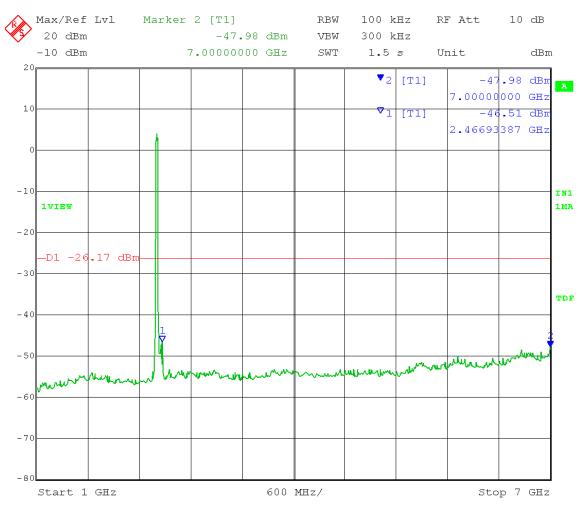
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 16.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 3.83 dBm - 30 dB = -26.17 dBm

Frequency range: 1 - 7 GHz

Date: 22.JAN.2014 10:04:17

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

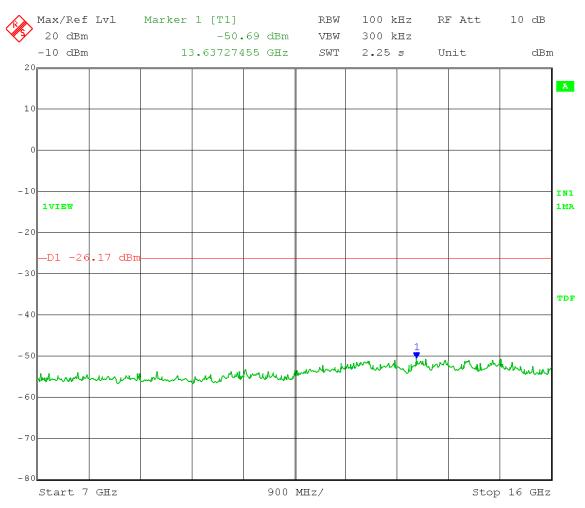
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 16.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 3.83 dBm - 30 dB = -26.17 dBm

Frequency range: 7 – 16 GHz

Date: 22.JAN.2014 10:06:06

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

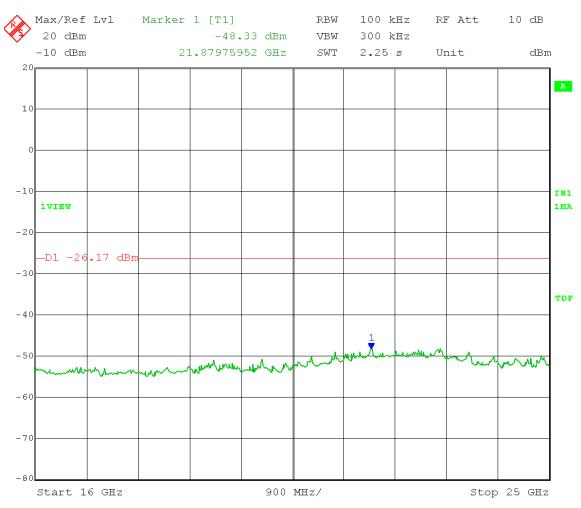
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 16.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 3.83 dBm - 30 dB = -26.17 dBm

Frequency range: 16 – 25 GHz

Date: 22.JAN.2014 10:08:54

Company: Cambium Networks

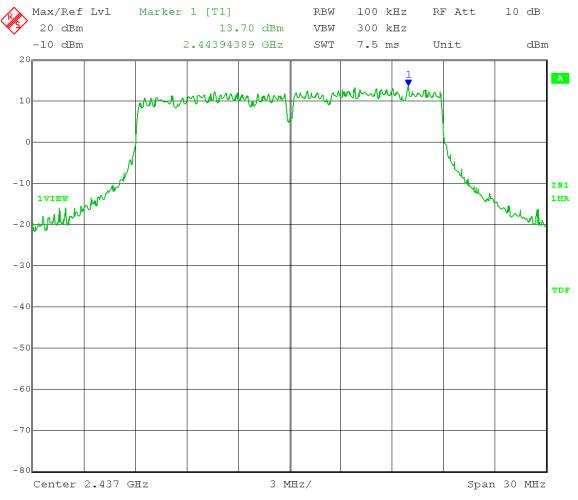
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 26 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 13.70 dBm - 30 dB = -16.30 dBm

Date: 21.JAN.2014 11:57:17

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

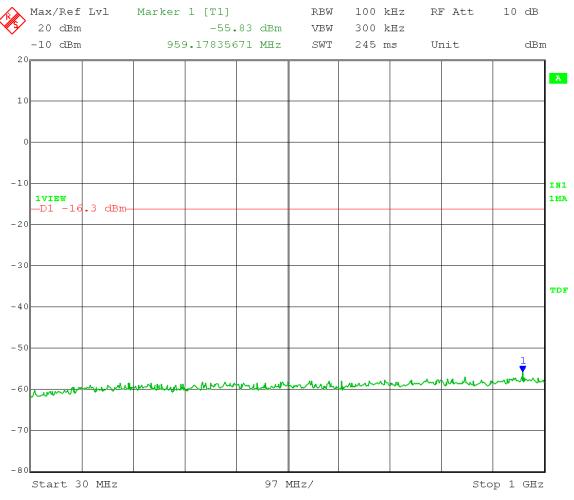
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 26 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 13.70 dBm - 30 dB = -16.30 dBm

Frequency range: 30 – 1000 MHz

Date: 22.JAN.2014 10:19:45

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

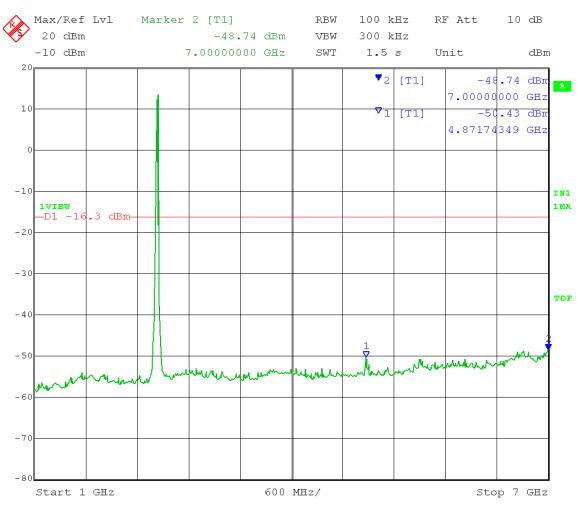
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 26 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 13.70 dBm - 30 dB = -16.30 dBm

Frequency range: 1 - 7 GHz

Date: 22.JAN.2014 10:14:36

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

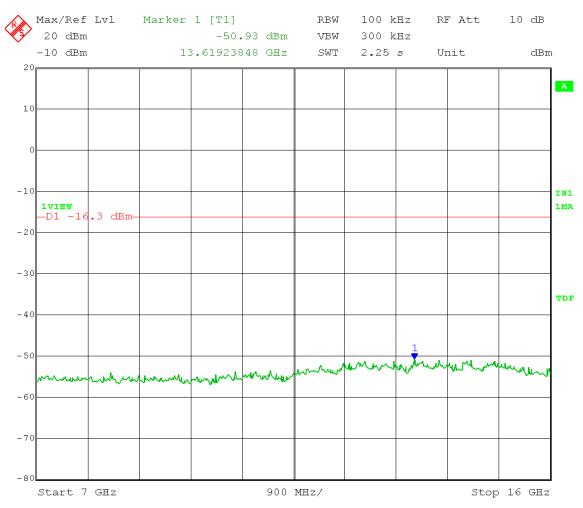
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 26 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 13.70 dBm - 30 dB = -16.30 dBm

Frequency range: 7 – 16 GHz

Date: 22.JAN.2014 10:16:12

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

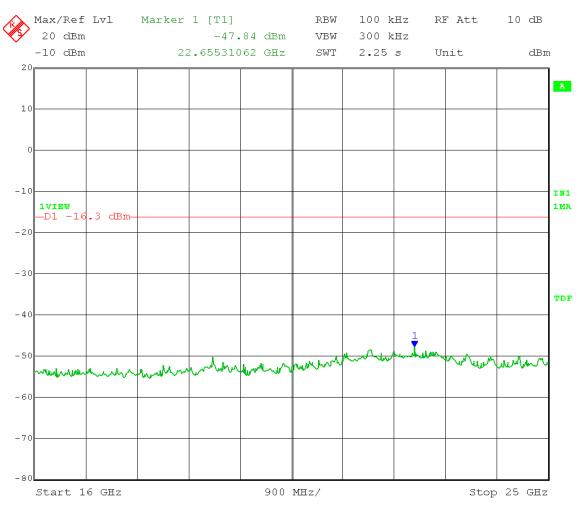
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 26 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 13.70 dBm - 30 dB = -16.30 dBm

Frequency range: 16 – 25 GHz

Date: 22.JAN.2014 10:17:49

Company: Cambium Networks

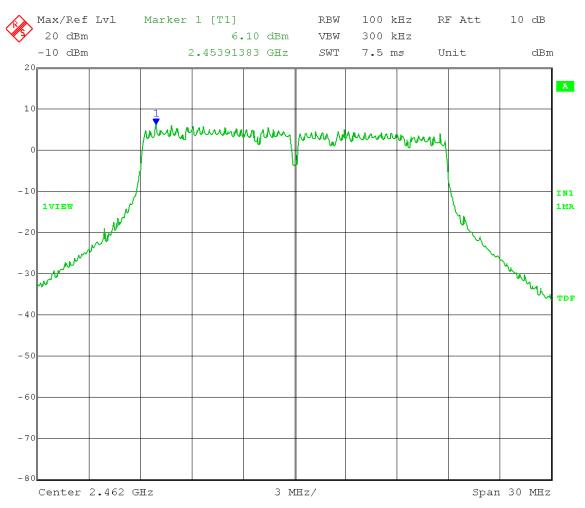
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 17.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 6.10 dBm - 30 dB = -23.9 dBm

Date: 22.JAN.2014 09:47:00

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

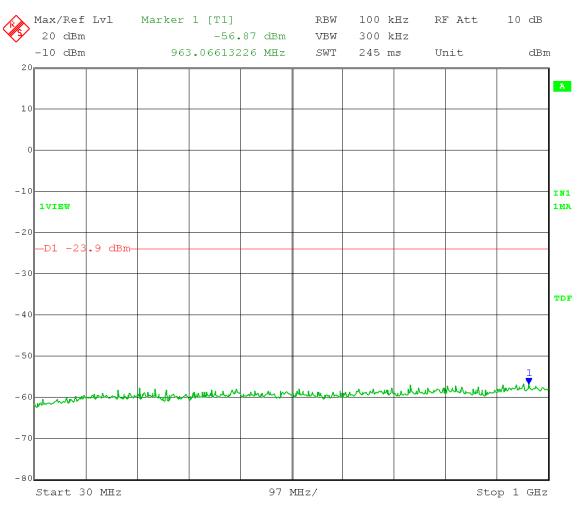
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 17.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 6.10 dBm - 30 dB = -23.90 dBm

Frequency range: 30 – 1000 MHz

Date: 22.JAN.2014 10:00:00

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

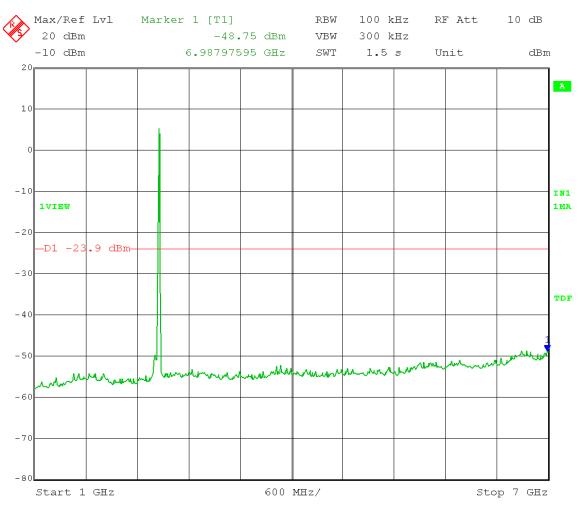
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 17.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 6.10 dBm - 30 dB = -23.90 dBm

Frequency range: 1 - 7 GHz

Date: 22.JAN.2014 09:52:00

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

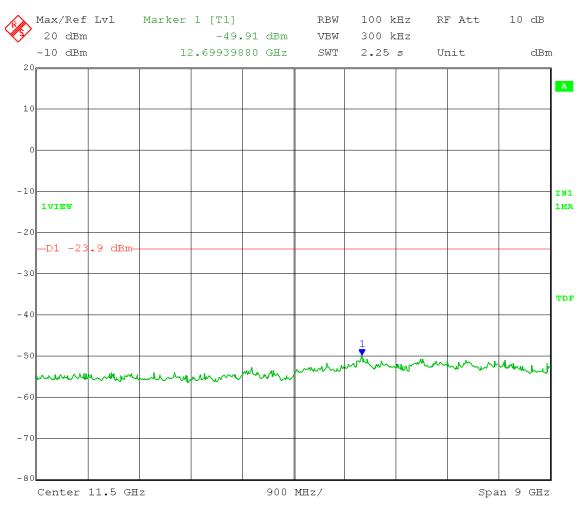
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 17.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 6.10 dBm - 30 dB = -23.90 dBm

Frequency range: 7 – 16 GHz

Date: 22.JAN.2014 09:56:20

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

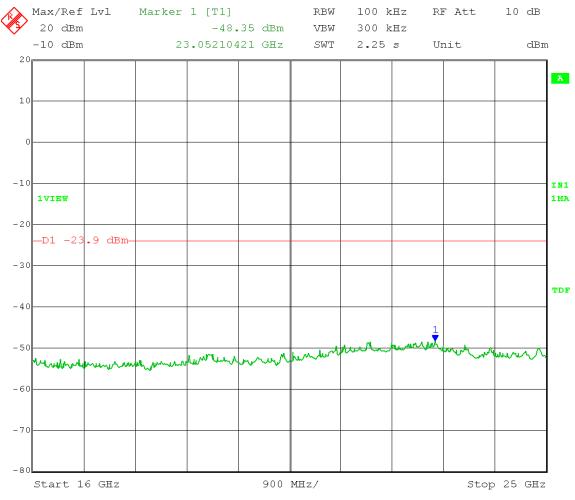
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 17.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 6.10 dBm - 30 dB = -23.90 dBm

Frequency range: 16 – 25 GHz

Date: 22.JAN.2014 09:58:26

Company: Cambium Networks

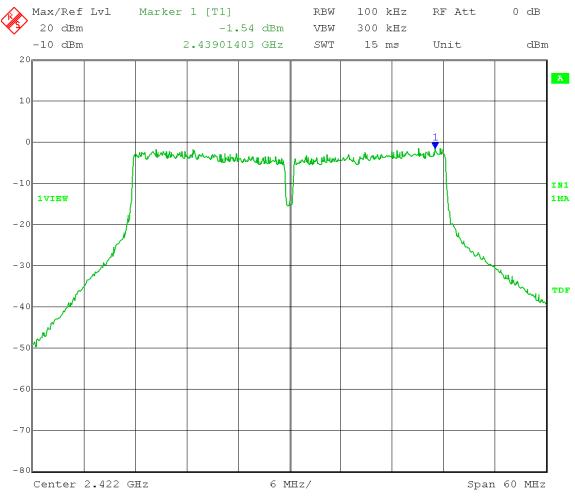
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 13 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -1.54 dBm - 30 dB = -31.54 dBm

Date: 22.JAN.2014 11:30:49

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 13 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -1.54 dBm - 30 dB = -31.54 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 11:38:15

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

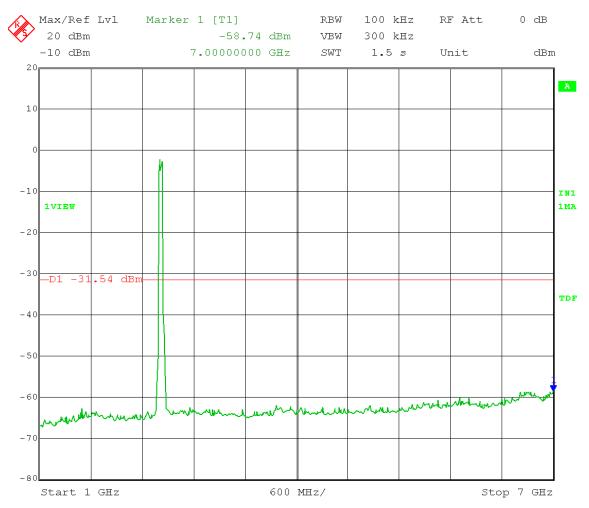
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 13 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -1.54 dBm - 30 dB = -31.54 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 11:32:59

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

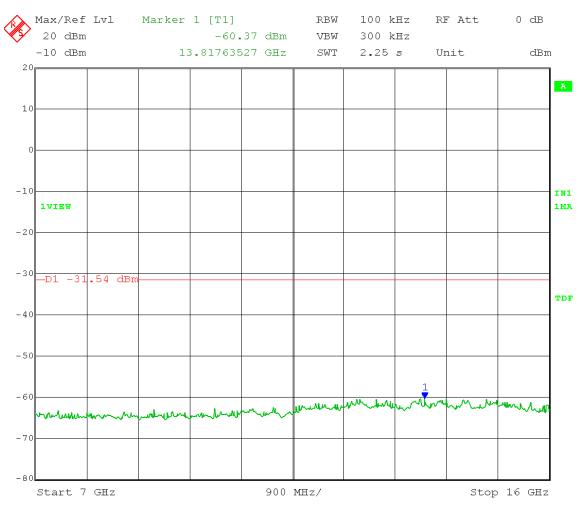
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 13 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -1.54 dBm - 30 dB = -31.54 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 11:34:38

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

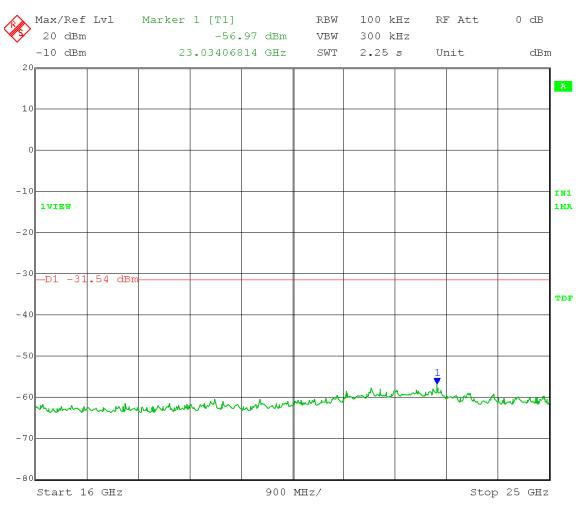
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 13 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -1.54 dBm - 30 dB = -31.54 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 11:36:24

Company: Cambium Networks

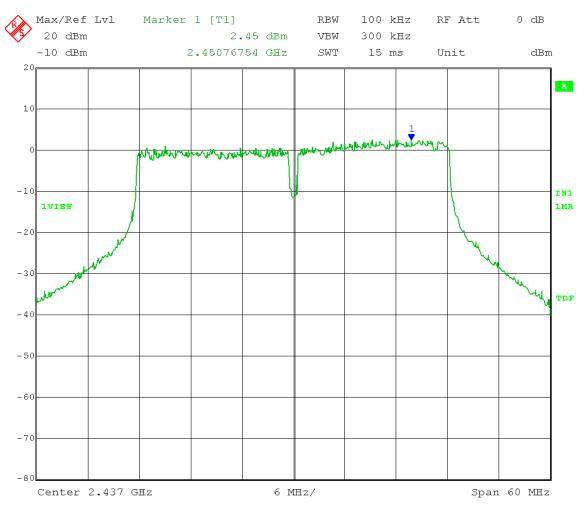
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 17 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 2.45 dBm - 30 dB = -27.55 dBm

Date: 22.JAN.2014 12:33:46

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

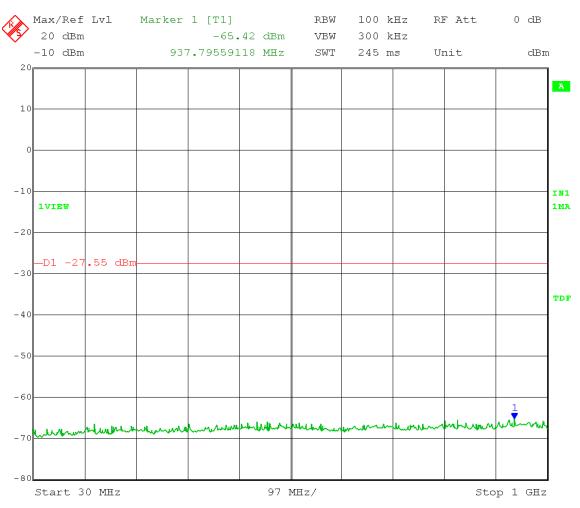
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 2.45 dBm - 30 dB = -27.55 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 12:43:13

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

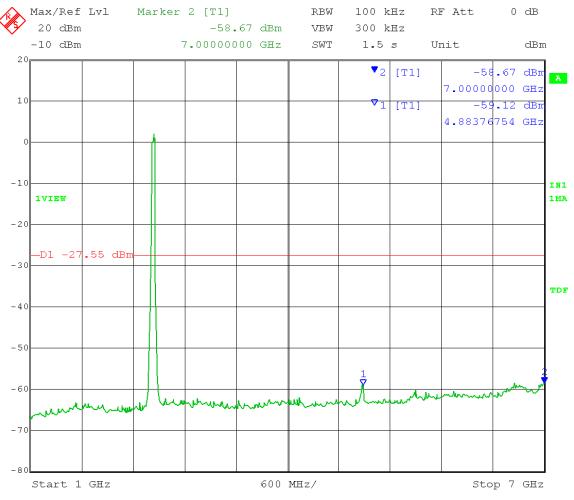
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 2.45 dBm - 30 dB = -27.55 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 12:37:53

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

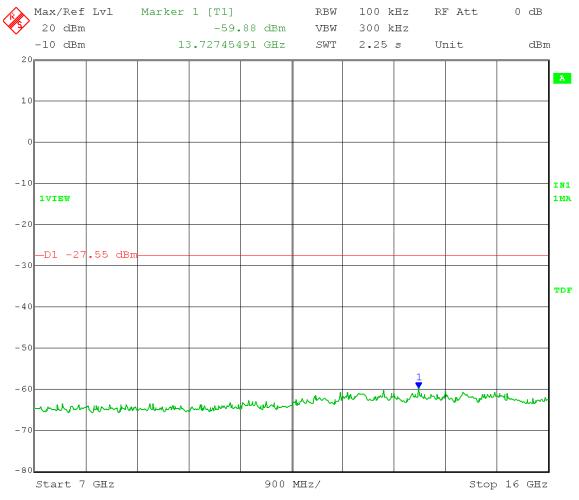
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 2.45 dBm - 30 dB = -27.55 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 12:39:34

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

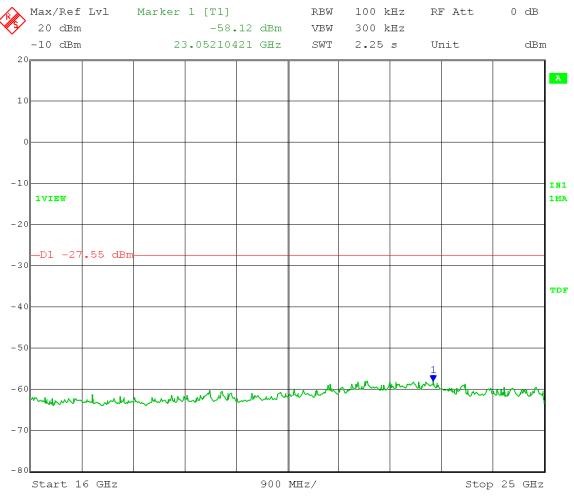
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 2.45 dBm - 30 dB = -27.55 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 12:41:30

Company: Cambium Networks

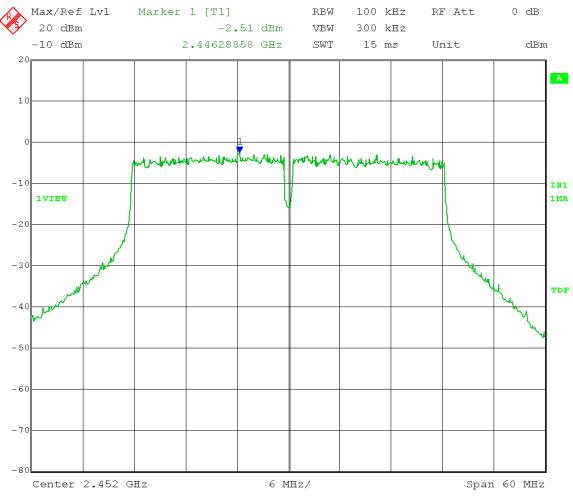
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2452 MHz

Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -2.51 dBm - 30 dB = -32.51 dBm

Date: 22.JAN.2014 11:09:39

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz

Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.51 dBm - 30 dB = -32.51 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 11:17:07

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

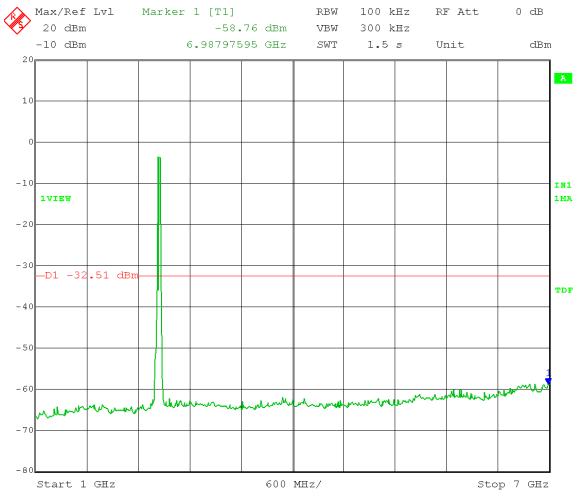
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.51 dBm - 30 dB = -32.51 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 11:11:34

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

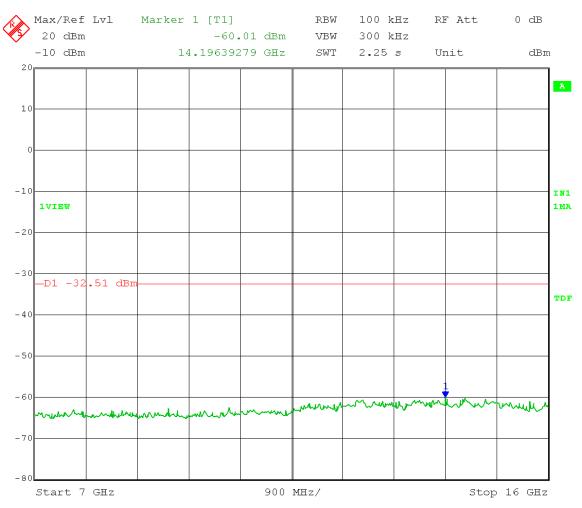
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.51 dBm - 30 dB = -32.51 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 11:13:41

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

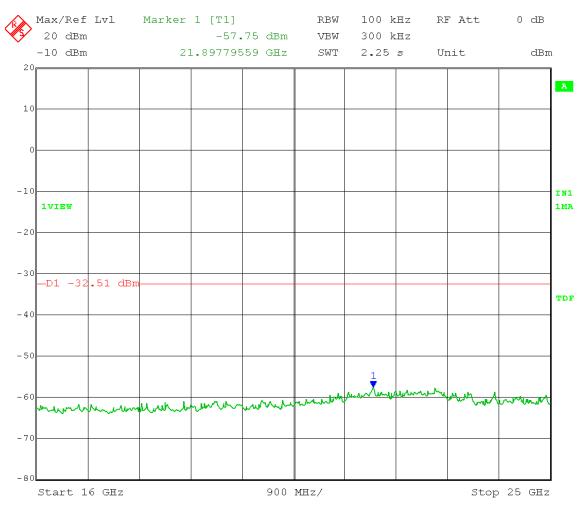
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.51 dBm - 30 dB = -32.51 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 11:15:16

Company: Cambium Networks

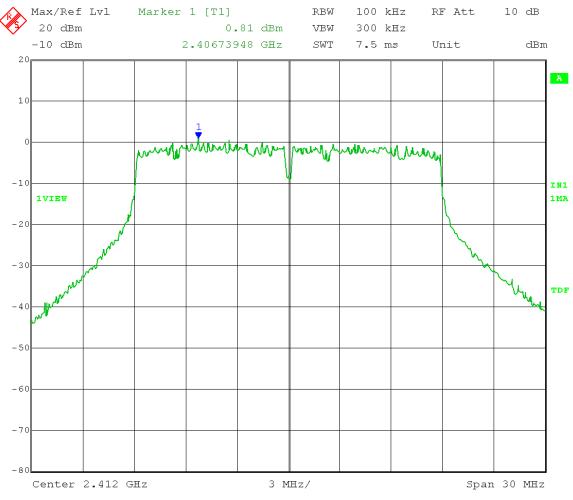
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 0.81 dBm - 30 dB = -29.19 dBm

Date: 22.JAN.2014 10:42:09

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

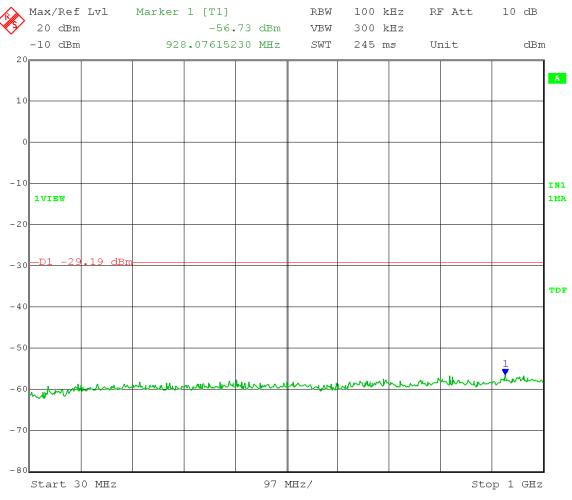
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 0.81 dBm - 30 dB = -29.19 dBm

Frequency range: 30 – 1000 MHz

Date: 22.JAN.2014 10:50:35

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

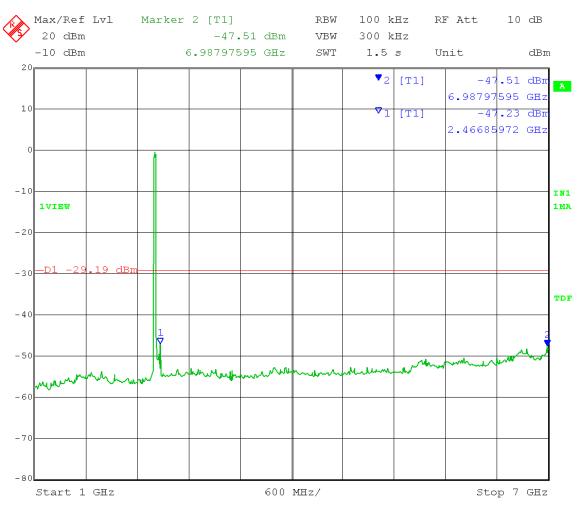
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 0.81 dBm - 30 dB = -29.19 dBm

Frequency range: 1 - 7 GHz

Date: 22.JAN.2014 10:45:00

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

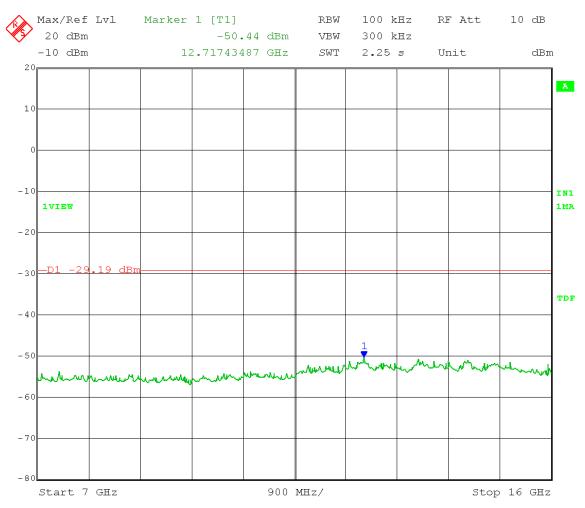
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 0.81 dBm - 30 dB = -29.19 dBm

Frequency range: 7 – 16 GHz

Date: 22.JAN.2014 10:46:50

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

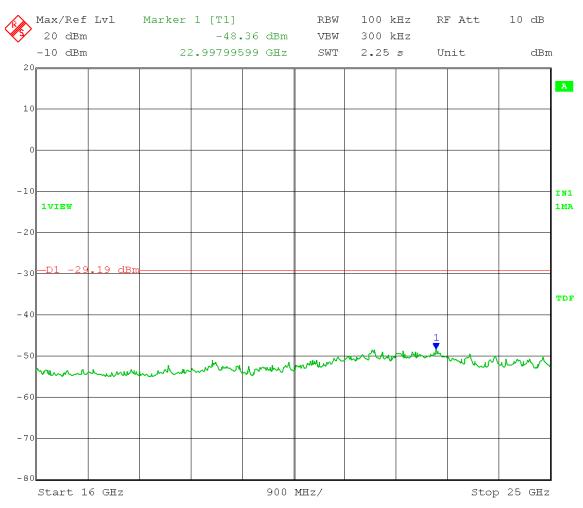
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 0.81 dBm - 30 dB = -29.19 dBm

Frequency range: 16 – 25 GHz

Date: 22.JAN.2014 10:48:41

Company: Cambium Networks

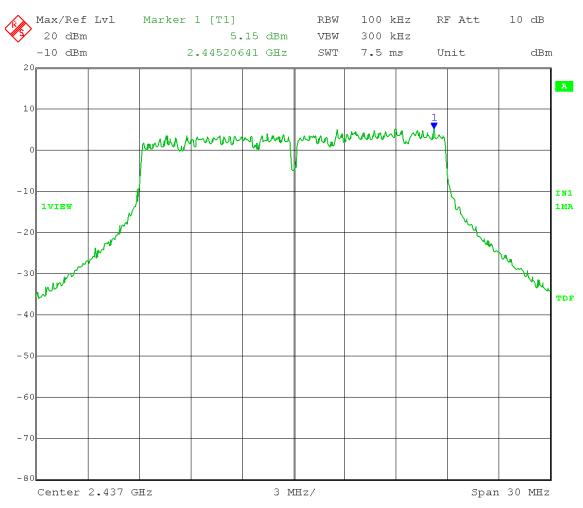
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 17 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = 5.15 dBm - 30 dB = -24.85 dBm

Date: 22.JAN.2014 10:55:13

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 17 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 5.15 dBm - 30 dB = -24.85 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 11:03:49

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

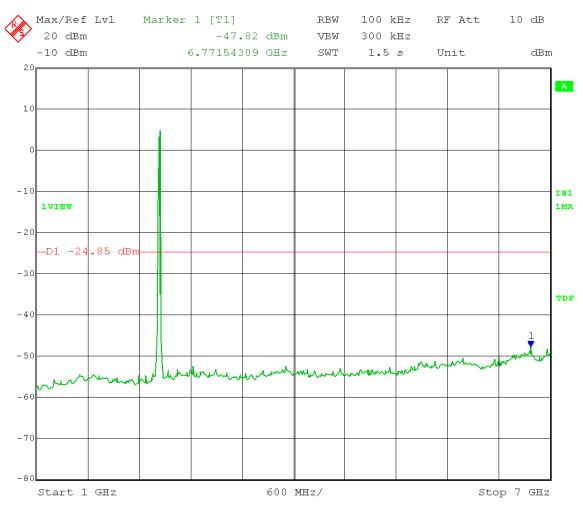
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 5.15 dBm - 30 dB = -24.85 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 10:57:53

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

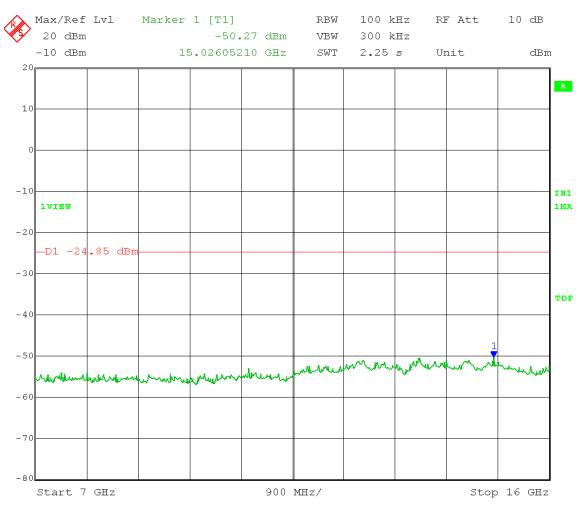
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 5.15 dBm - 30 dB = -24.85 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 10:59:47

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

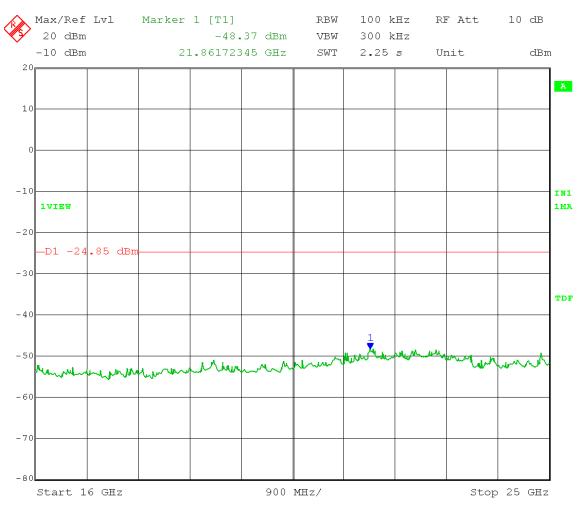
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 17 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = 5.15 dBm - 30 dB = -24.85 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 11:01:42

Company: Cambium Networks

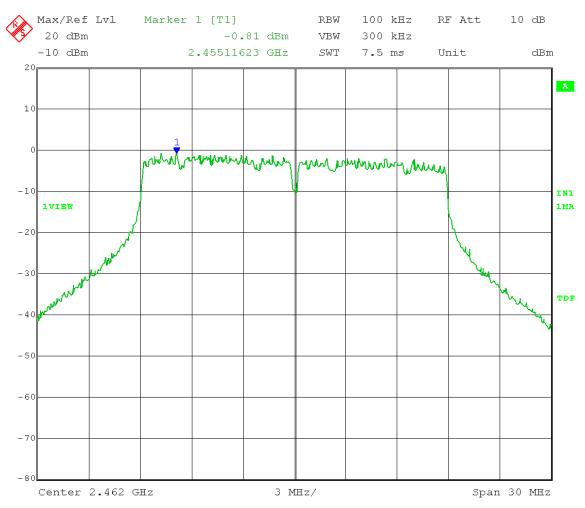
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -0.81 dBm - 30 dB = -30.81 dBm

Date: 22.JAN.2014 10:23:05

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

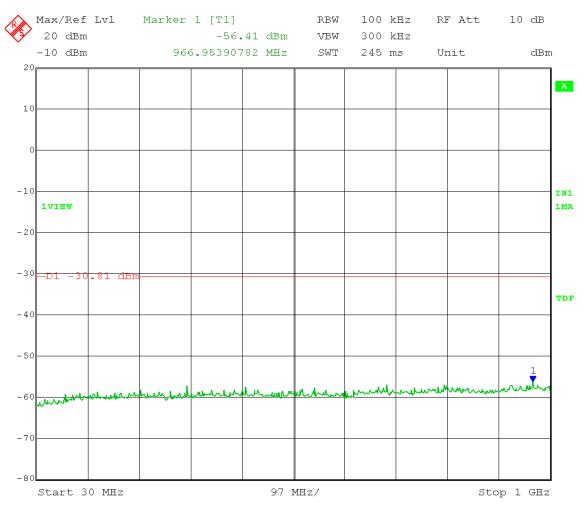
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -0.81 dBm - 30 dB = -30.81 dBm

Frequency range: 30 – 1000 MHz

Date: 22.JAN.2014 10:32:44

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

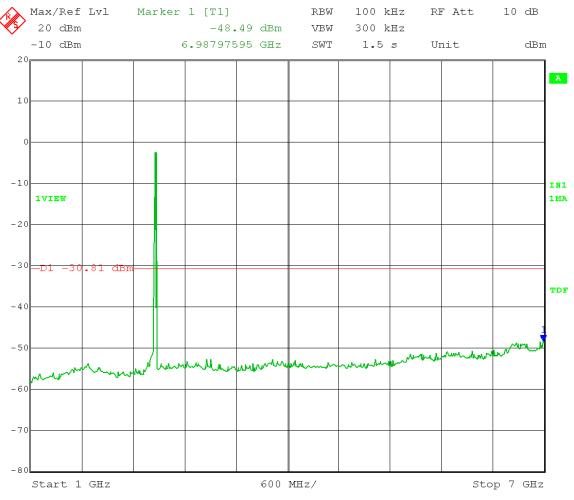
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -0.81 dBm - 30 dB = -30.81 dBm

Frequency range: 1 - 7 GHz

Date: 22.JAN.2014 10:27:18

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

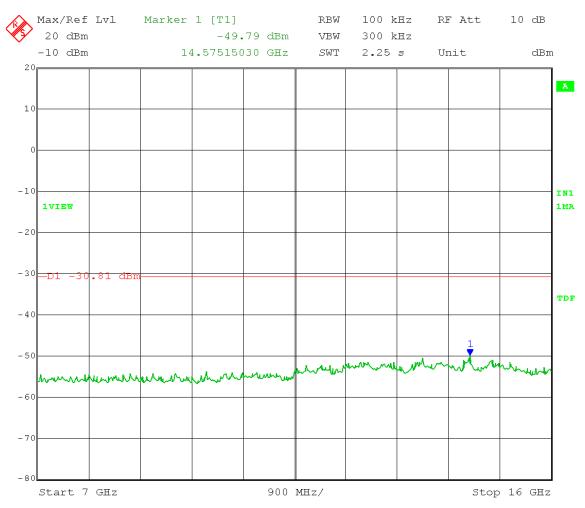
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -0.81 dBm - 30 dB = -30.81 dBm

Frequency range: 7 – 16 GHz

Date: 22.JAN.2014 10:29:10

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

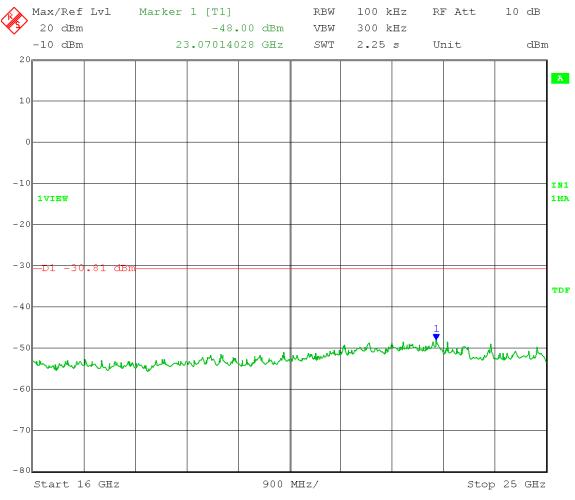
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 12 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -0.81 dBm - 30 dB = -30.81 dBm

Frequency range: 16 – 25 GHz

Date: 22.JAN.2014 10:30:45

Company: Cambium Networks

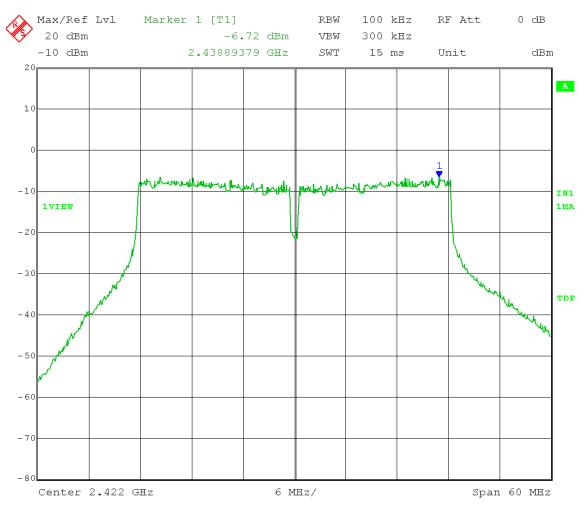
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 8 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -6.72 dBm - 30 dB = -36.72 dBm

Date: 22.JAN.2014 11:40:51

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 8 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -6.72 dBm - 30 dB = -36.72 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 12:30:53

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

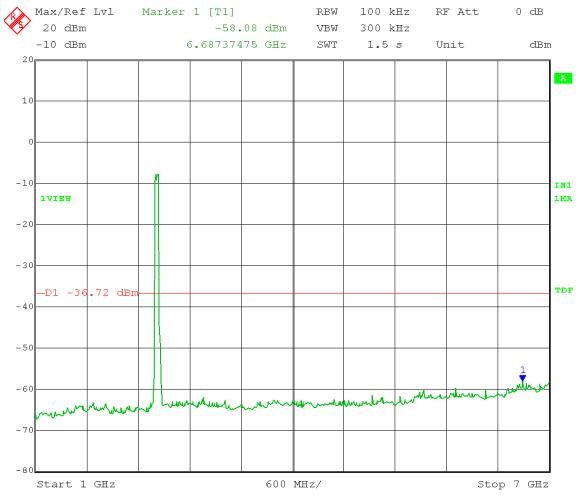
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 8 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -6.72 dBm - 30 dB = -36.72 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 11:42:57

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

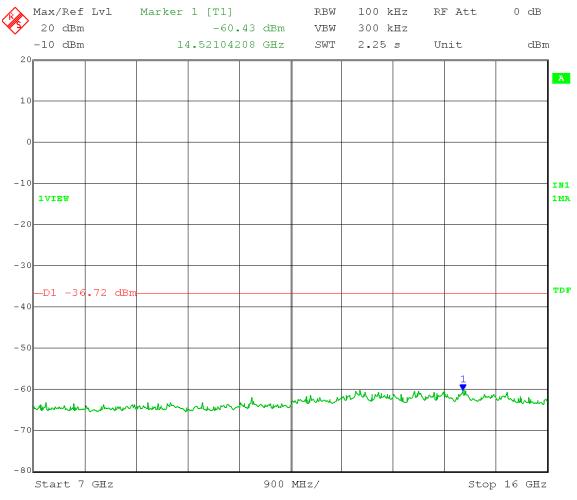
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 8 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -6.72 dBm - 30 dB = -36.72 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 12:26:46

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

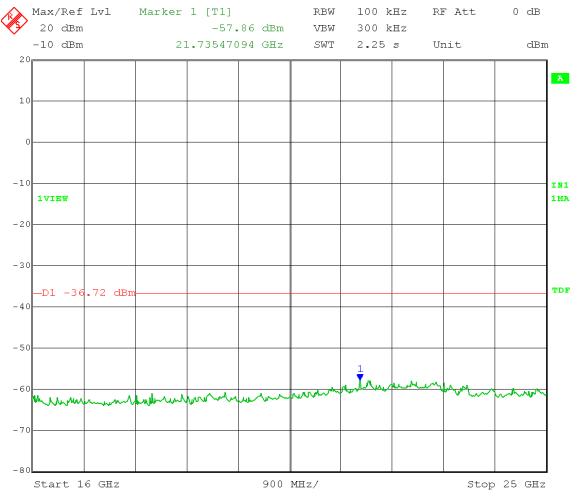
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 8 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -6.72 dBm - 30 dB = -36.72 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 12:28:27

Company: Cambium Networks

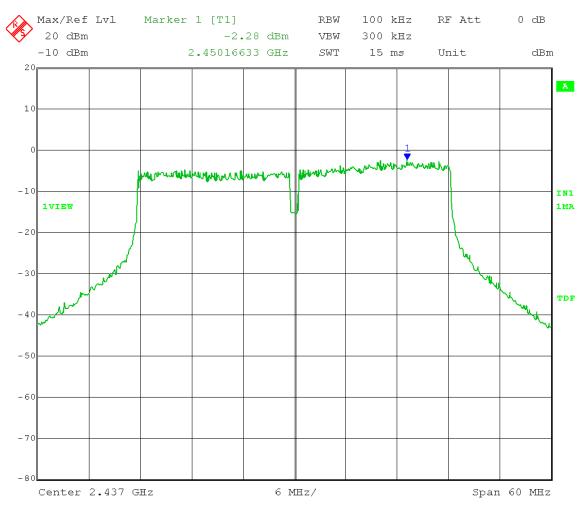
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -2.28 dBm - 30 dB = -32.28 dBm

Date: 22.JAN.2014 12:45:44

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.28 dBm - 30 dB = -32.28 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 12:52:09

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.28 dBm - 30 dB = -32.28 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 12:47:48

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

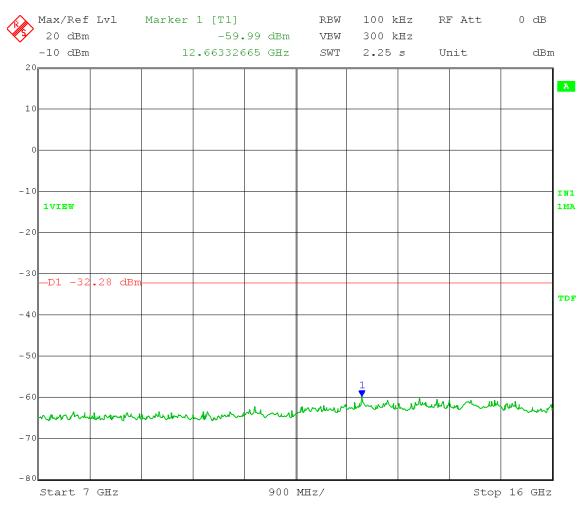
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.28 dBm - 30 dB = -32.28 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 12:49:02

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

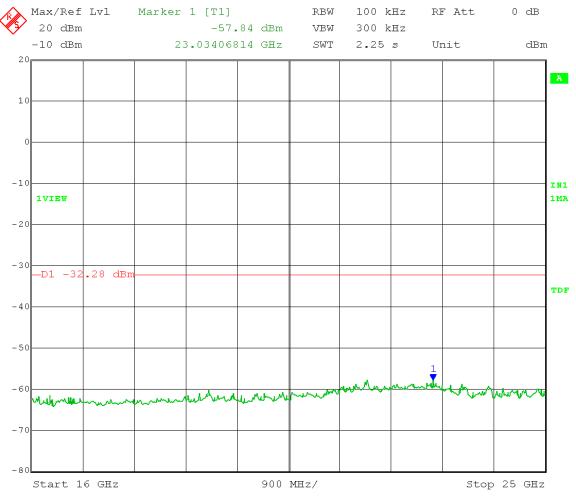
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 12 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -2.28 dBm - 30 dB = -32.28 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 12:50:28

Company: Cambium Networks

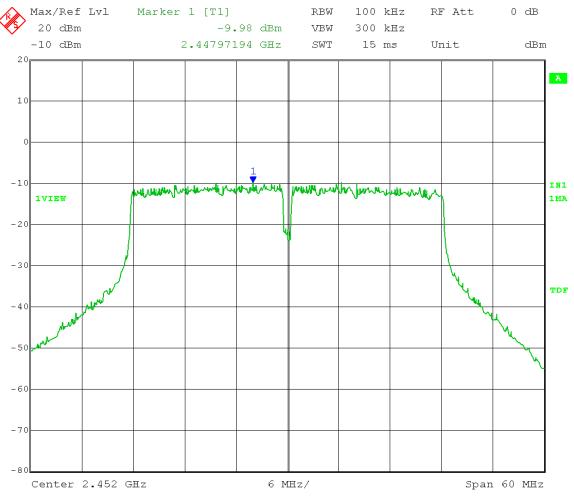
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2452 MHz

Output Power Setting 4.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -9.98 dBm - 30 dB = -39.98 dBm

Date: 22.JAN.2014 11:19:38

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 4.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -9.98 dBm - 30 dB = -39.98 dBm

Frequency Range: 30 – 1000 MHz

Date: 22.JAN.2014 11:27:57

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

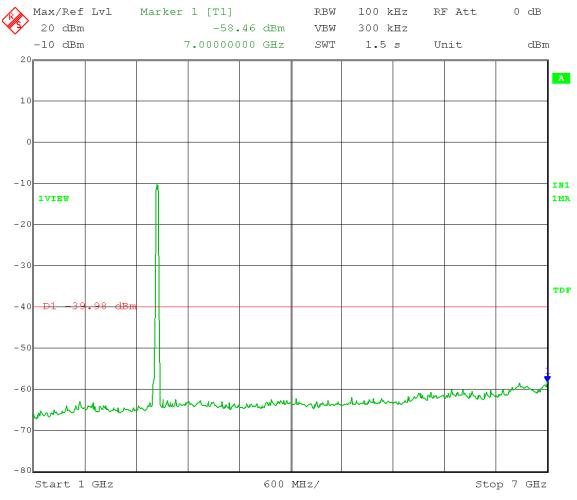
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 4.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -9.98 dBm - 30 dB = -39.98 dBm

Frequency Range: 1 – 7 GHz

Date: 22.JAN.2014 11:22:28

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

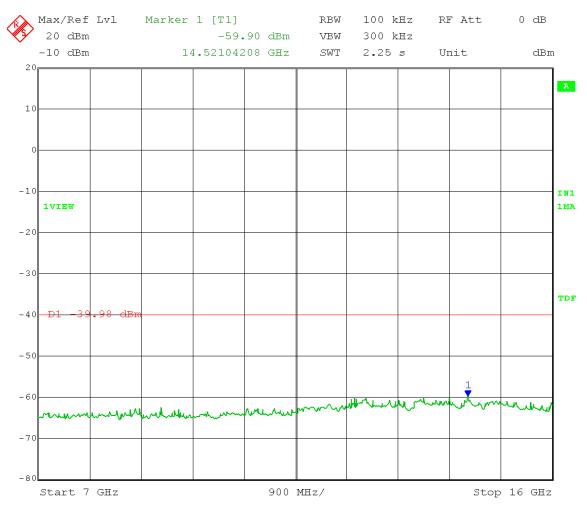
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 4.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -9.98 dBm - 30 dB = -39.98 dBm

Frequency Range: 7 – 16 GHz

Date: 22.JAN.2014 11:24:17

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

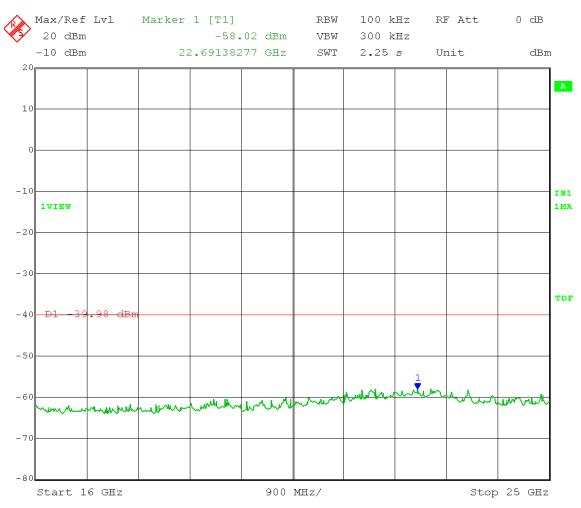
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2452 MHz


Output Power Setting 4.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -9.98 dBm - 30 dB = -39.98 dBm

Frequency Range: 16 – 25 GHz

Date: 22.JAN.2014 11:25:59

Company: Cambium Networks

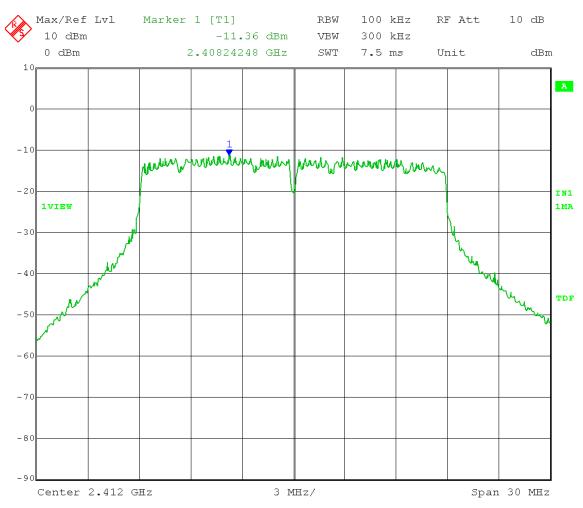
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -11.36 dBm - 30 dB = -41.36 dBm

Date: 31.JAN.2014 15:31:05

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -11.36 dBm - 30 dB = -41.36 dBm

Frequency Range: 30 – 1000 MHz

Date: 31.JAN.2014 15:36:55

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

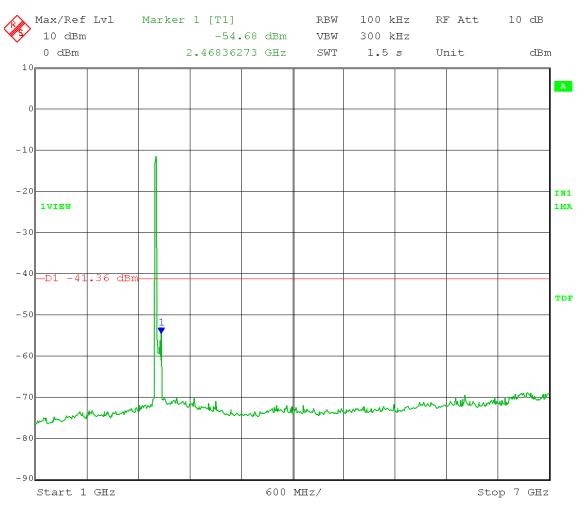
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -11.36 dBm - 30 dB = -41.36 dBm

Frequency Range: 1 - 7 GHz

Date: 31.JAN.2014 15:33:01

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

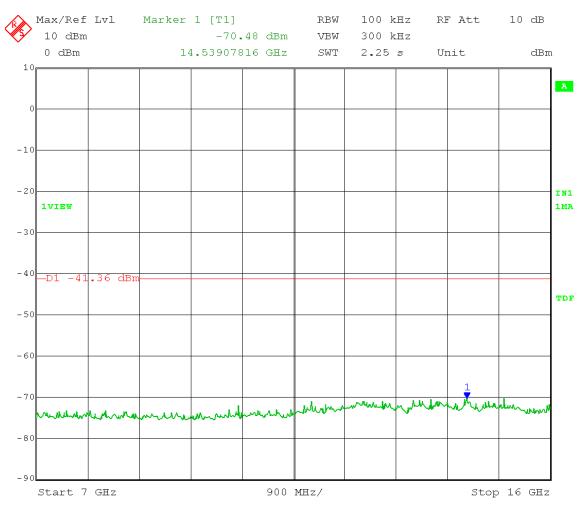
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz


Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -11.36 dBm - 30 dB = -41.36 dBm

Frequency Range: 7 – 16 GHz

Date: 31.JAN.2014 15:34:29

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -11.36 dBm - 30 dB = -41.36 dBm

Frequency Range: 16 – 25 GHz

Date: 31.JAN.2014 15:35:37

Company: Cambium Networks

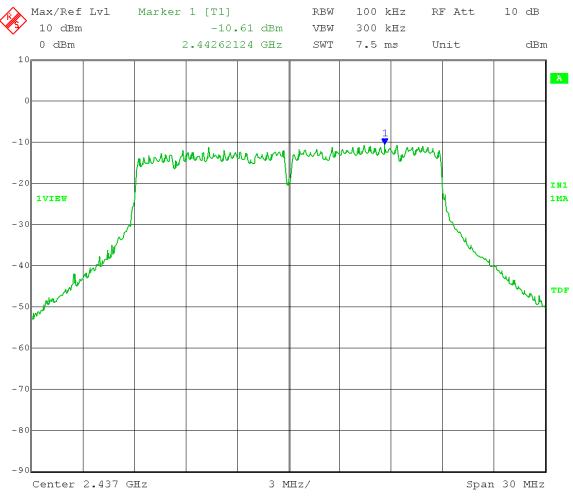
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -10.61 dBm - 30 dB = -40.61 dBm

Date: 31.JAN.2014 11:26:51

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

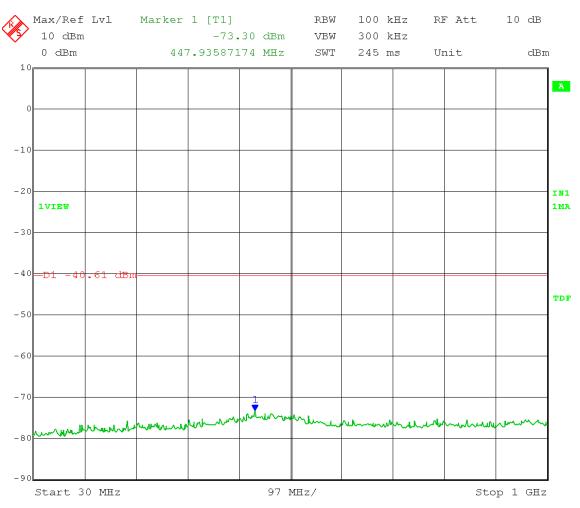
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -10.61 dBm - 30 dB = -40.61 dBm

Frequency Range: 30 – 1000 MHz

Date: 31.JAN.2014 11:33:43

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

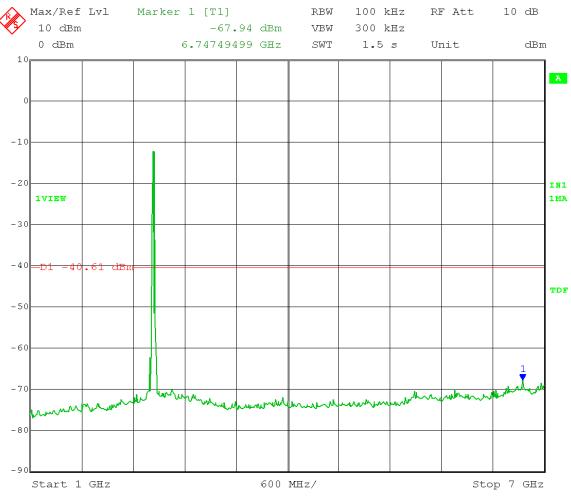
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -10.61 dBm - 30 dB = -40.61 dBm

Frequency Range: 1 - 7 GHz

Date: 31.JAN.2014 11:29:15

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

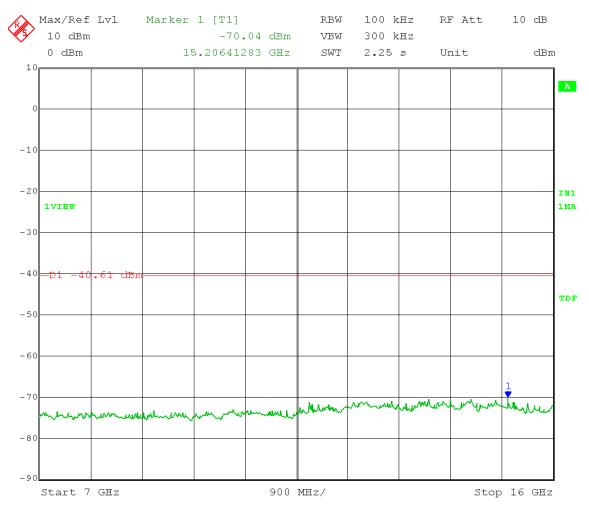
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -10.61 dBm - 30 dB = -40.61 dBm

Frequency Range: 1 - 7 GHz

Date: 31.JAN.2014 11:31:03

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

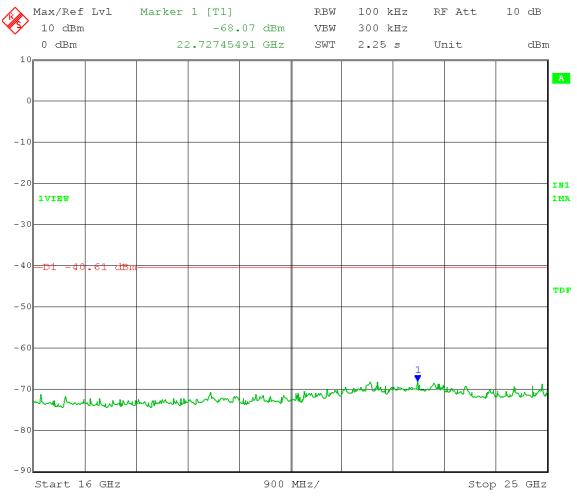
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -10.61 dBm - 30 dB = -40.61 dBm

Frequency Range: 16 – 25 GHz

Date: 31.JAN.2014 11:32:17

Company: Cambium Networks

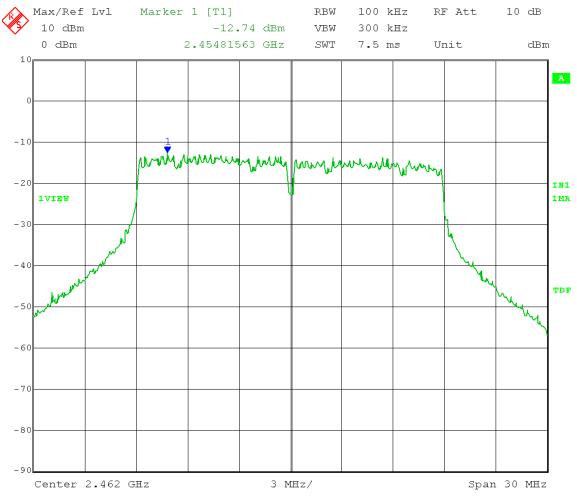
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -12.74 dBm - 30 dB = -42.74 dBm

Date: 31.JAN.2014 15:39:31

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.74 dBm - 30 dB = -42.74 dBm

Frequency Range: 30 – 1000 MHz

Date: 31.JAN.2014 15:45:46

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

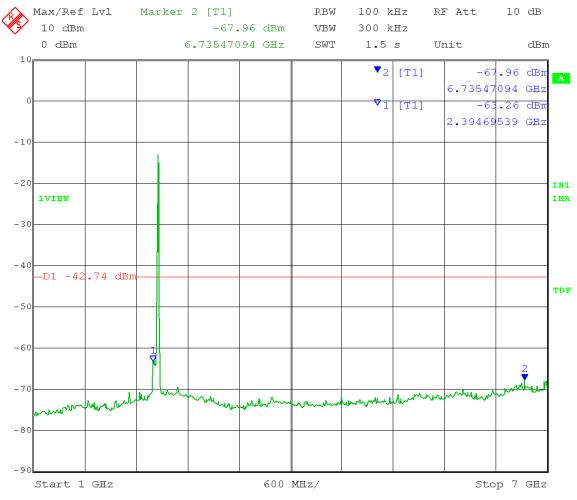
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.74 dBm - 30 dB = -42.74 dBm

Frequency Range: 1 - 7 GHz

Date: 31.JAN.2014 15:41:39

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

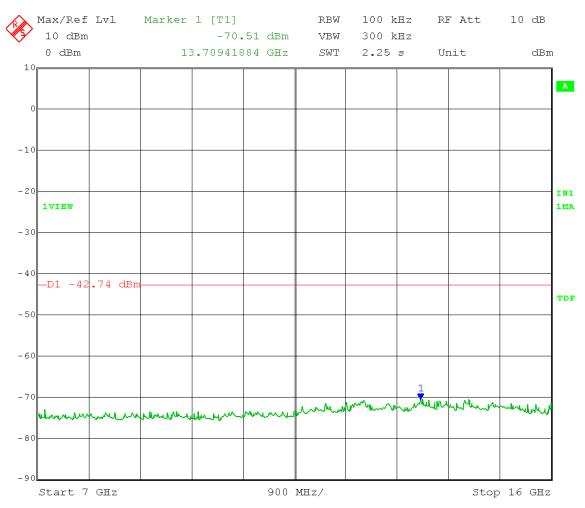
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.74 dBm - 30 dB = -42.74 dBm

Frequency Range: 7 – 16 GHz

Date: 31.JAN.2014 15:42:50

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

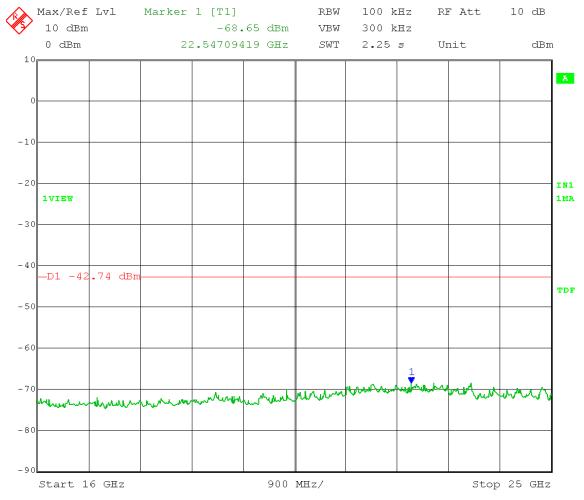
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz


Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.74 dBm - 30 dB = -42.74 dBm

Frequency Range: 16 - 25 GHz

Date: 31.JAN.2014 15:44:25

Company: Cambium Networks

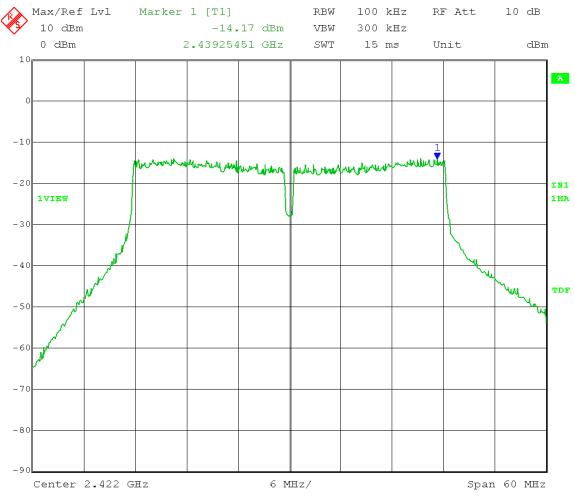
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -14.17 dBm - 30 dB = -44.17 dBm

Date: 3.FEB.2014 14:33:21

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

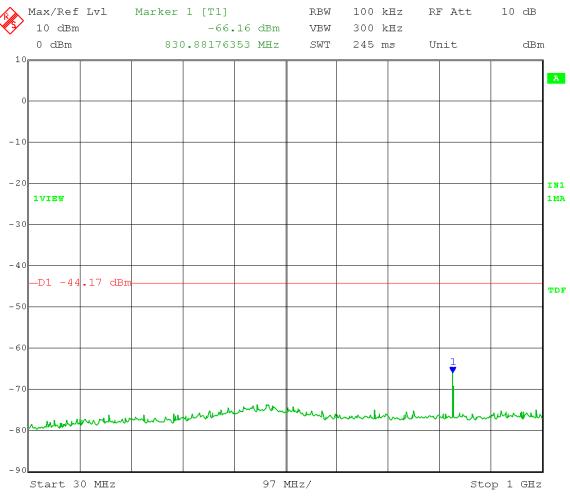
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -14.17 dBm - 30 dB = -44.17 dBm

Frequency Range: 30 – 1000 MHz

Date: 3.FEB.2014 14:38:36

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

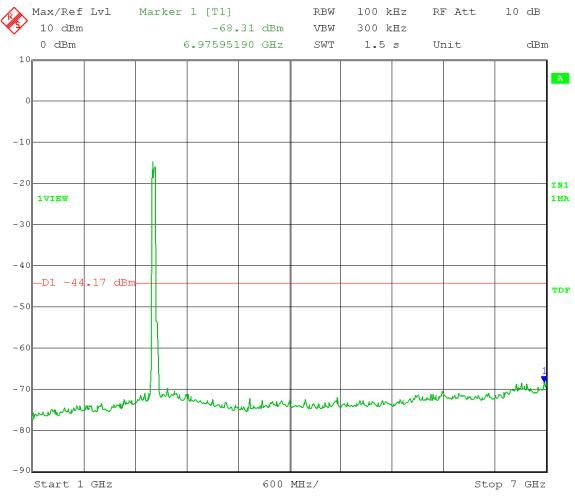
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -14.17 dBm - 30 dB = -44.17 dBm

Frequency Range: 1 - 7 GHz

Date: 3.FEB.2014 14:35:11

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -14.17 dBm - 30 dB = -44.17 dBm

Frequency Range: 7 – 16 GHz

Date: 3.FEB.2014 14:36:18

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

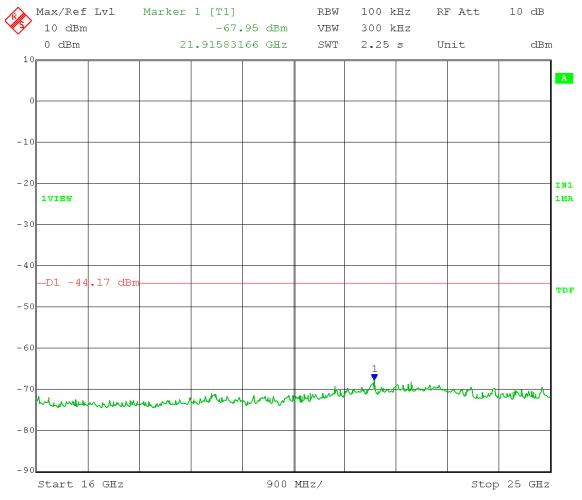
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz


Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -14.17 dBm - 30 dB = -44.17 dBm

Frequency Range: 16 - 25 GHz

Date: 3.FEB.2014 14:37:21

Company: Cambium Networks

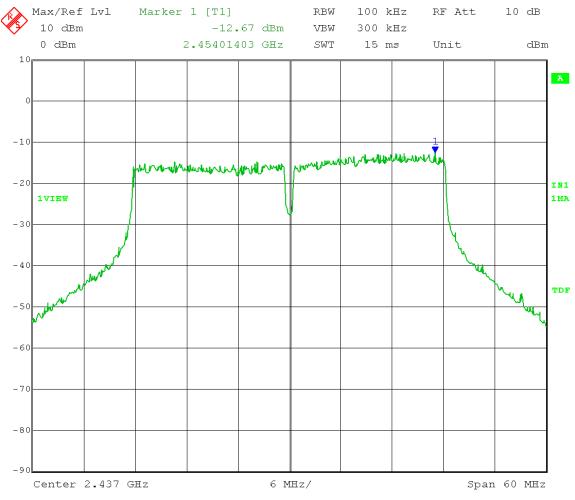
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -12.67 dBm - 30 dB = -42.67 dBm

Date: 3.FEB.2014 14:25:02

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

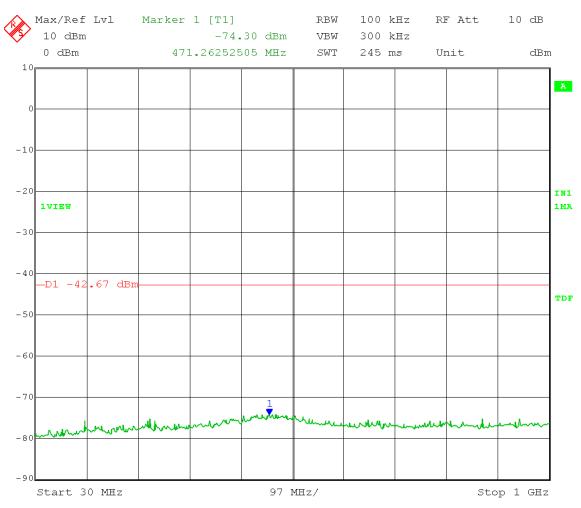
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.67 dBm - 30 dB = -42.67 dBm

Frequency Range: 30 – 1000 MHz

Date: 3.FEB.2014 14:30:46

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

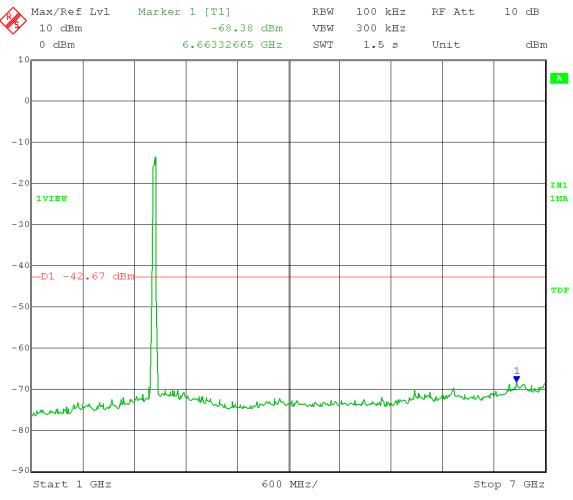
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.67 dBm - 30 dB = -42.67 dBm

Frequency Range: 1 - 7 GHz

Date: 3.FEB.2014 14:26:57

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

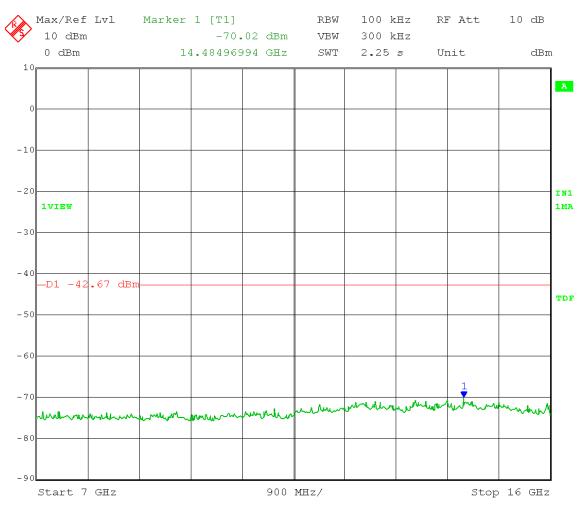
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.67 dBm - 30 dB = -42.67 dBm

Frequency Range: 7 – 16 GHz

Date: 3.FEB.2014 14:28:17

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

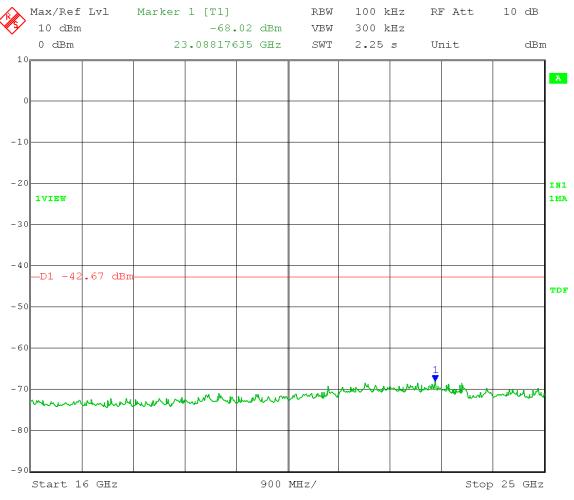
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -12.67 dBm - 30 dB = -42.67 dBm

Frequency Range: 16 – 25 GHz

Date: 3.FEB.2014 14:29:36

Company: Cambium Networks

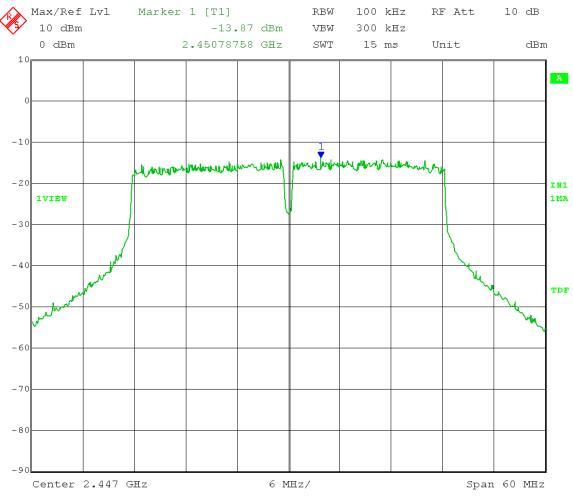
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Reference Level Measurement

Limit = -13.87 dBm - 30 dB = -43.87 dBm

Date: 3.FEB.2014 14:41:24

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

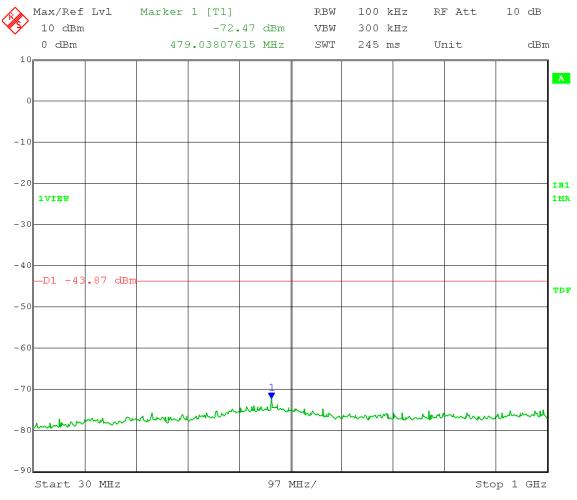
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz


Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -13.87 dBm - 30 dB = -43.87 dBm

Frequency Range: 30 – 1000 MHz

Date: 3.FEB.2014 14:47:34

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

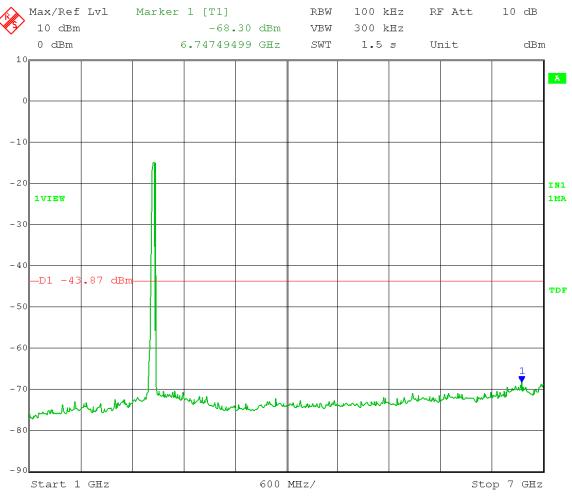
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz


Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -13.87 dBm - 30 dB = -43.87 dBm

Frequency Range: 1 - 7 GHz

Date: 3.FEB.2014 14:43:33

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

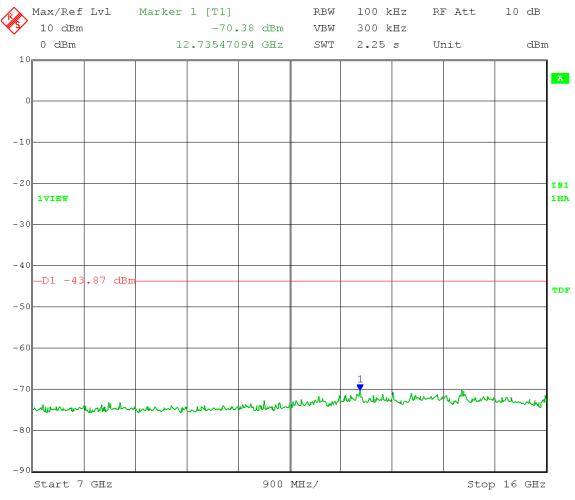
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz


Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -13.87 dBm - 30 dB = -43.87 dBm

Frequency Range: 7 – 16 GHz

Date: 3.FEB.2014 14:44:43

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

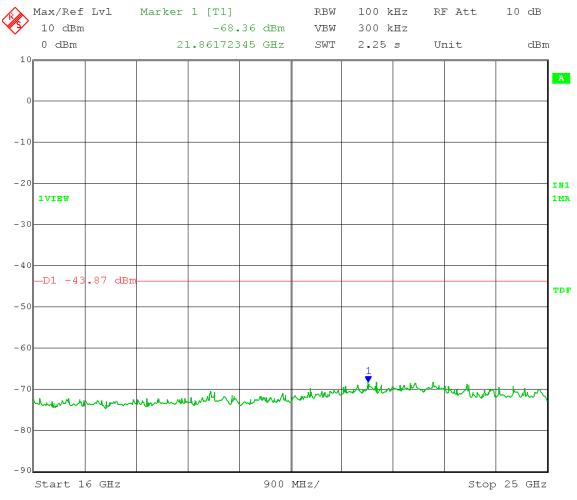
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz


Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Emission Level Measurement

Limit = -13.87 dBm - 30 dB = -43.87 dBm

Frequency Range: 16 – 25 GHz

Date: 3.FEB.2014 14:46:02

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

Appendix B – Measurement Data

B5.0 Conducted Measurements for Radiated Restricted Band Compliance - with Dish

Rule Section: FCC 15.247(d) & FCC 15.205

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – *Guidance for Performing*

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

12.1 Emissions in restricted frequency bands

12.2.2 General Procedure for conducted measurements in restricted bands

Description: Measure the conducted output power (in dBm) using the detector specified (section 12.2.4 used

for peak, and 12.2.5.1 used for average).

Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP level.

For devices with multiple antenna-ports, measure the power of each individual chain and sum the

EIRP of all chains in linear terms (e.g., Watts, mW).

Convert the resultant EIRP level to an equivalent electric field strength using the following

relationship:

E = EIRP - 20log D + 104.8

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

Compare the resultant electric field strength level to the applicable limit.

Limit: Average Limit = 54 dBuV/m @ 3 meters

Peak Limit = 74dBuV/m @ 3 meters

Results: Passed

Notes: Measurements were taken for OFDM MCS15 with 20 MHz and 40 MHz channel

bandwidths at the low, middle and high channels of operation. EUT was set to transmit

continuously with a 100% duty cycle.

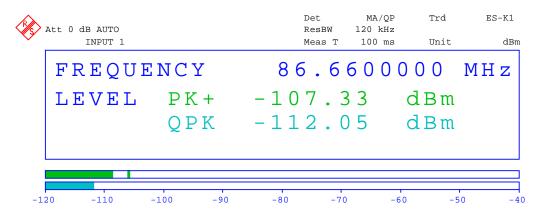
Company: Cambium Networks

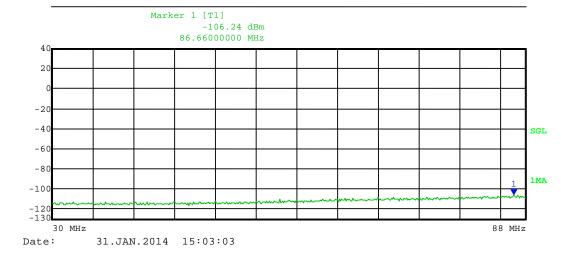
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = 40 dBµV/m at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -112.05 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 15.91 \text{ dB}\mu\text{V/m}$

Margin = 24.09 dB

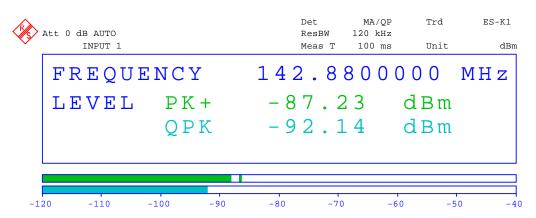
Company: Cambium Networks

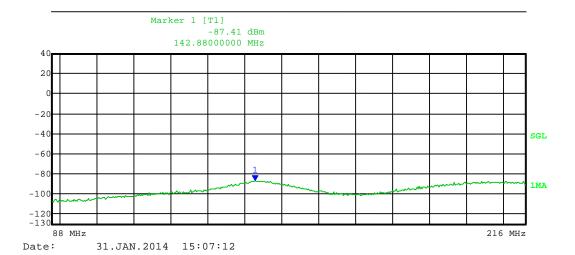
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -92.14 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 4.7 \text{ dB} + 3 \text{ dB}$ (MIMO operation)

 $= 35.82 \text{ dB}\mu\text{V/m}$

Margin = 7.68 dB

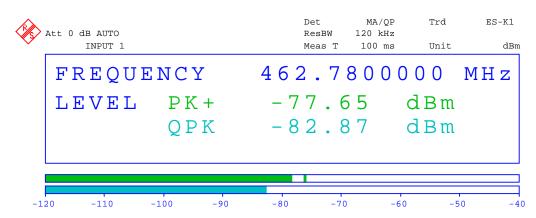
Company: Cambium Networks

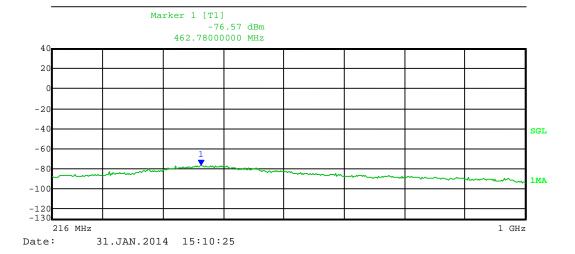
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $46 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 216 – 1000 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -82.87 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 45.09 \text{ dB}\mu\text{V/m}$

Margin = 0.91 dB

Company: Cambium Networks

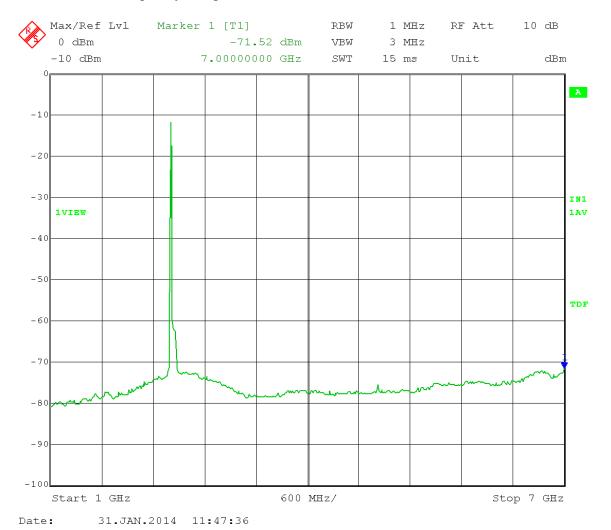
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -71.52 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.74 \, \mathrm{dB}\mu\mathrm{V/m}$

Margin = 2.26 dB (noise floor measurement)

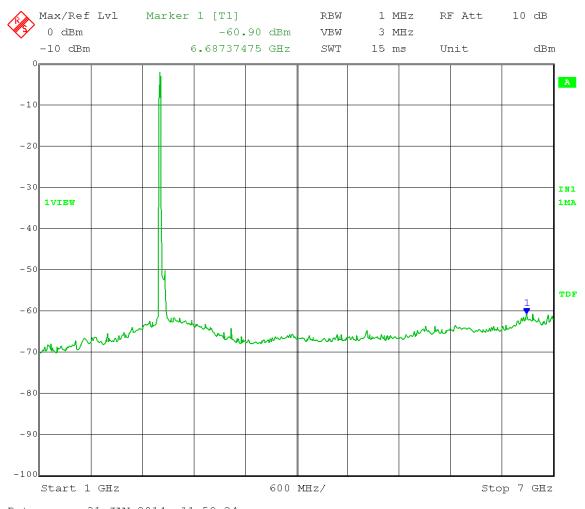
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 1 - 7 GHz

Date: 31.JAN.2014 11:59:24

E = EIRP - 20log D + 104.8

= -60.90 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.36 \text{ dB}\mu\text{V/m}$

Margin = 11.64 dB (noise floor measurement)

Company: Cambium Networks

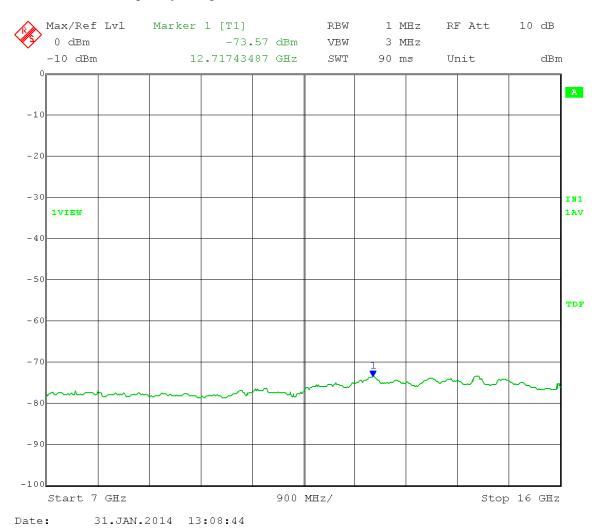
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

E = EIRP - 20log D + 104.8

 $= -73.57 \text{ dBm} + 25 \text{ dBi antenna gain} - 20\log (3 \text{ meters}) + 104.8 + 3 \text{ dB (MIMO operation)}$

 $= 49.69 \, dB\mu V/m$

Margin = 4.31 dB (noise floor measurement)

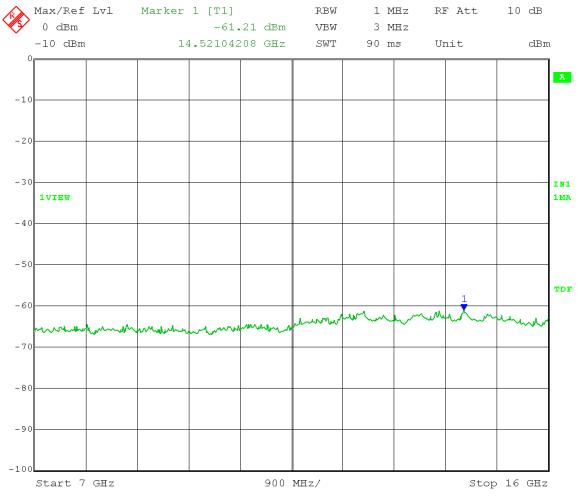
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

Date: 31.JAN.2014 13:10:43

E = EIRP - 20log D + 104.8

= -61.21 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.05 \text{ dB}\mu\text{V/m}$

Margin = 11.95 dB (noise floor measurement)

Company: Cambium Networks

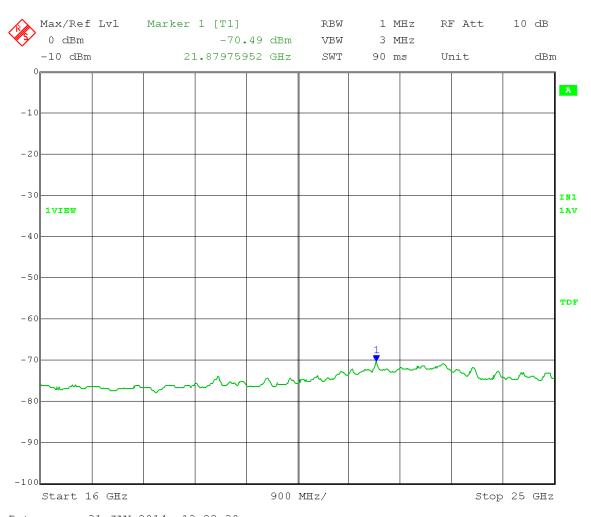
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

Date: 31.JAN.2014 13:22:30

E = EIRP - 20log D + 104.8

= -70.49 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.77 \, dB\mu V/m$

Margin = 1.23 dB (noise floor measurement)

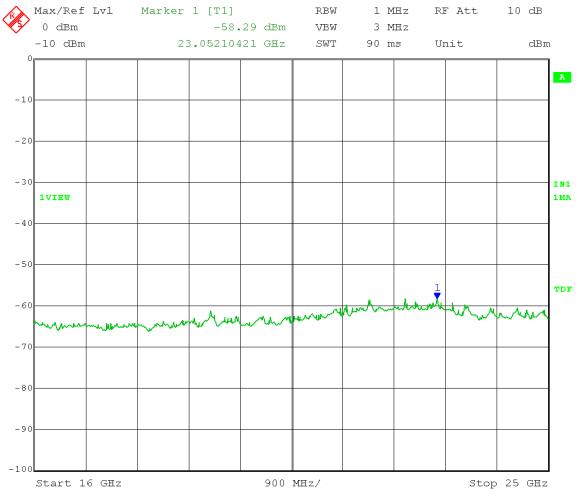
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2412 MHz

Output Power Setting 1 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

Date: 31.JAN.2014 13:24:14

E = EIRP - 20log D + 104.8

= -58.29 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 64.97 \text{ dB}\mu\text{V/m}$

Margin = 9.03 dB (noise floor measurement)

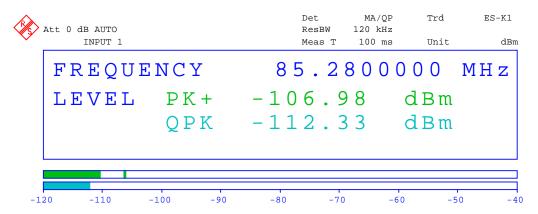
Company: Cambium Networks

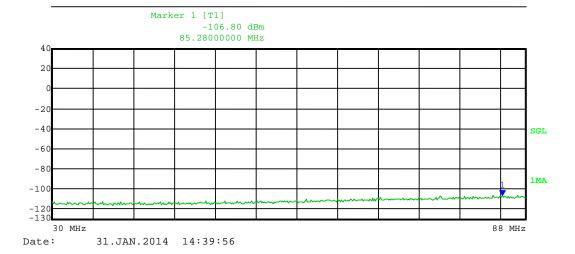
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = 40 dBµV/m at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -112.33 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 15.63 \text{ dB}\mu\text{V/m}$

Margin = 24.37 dB

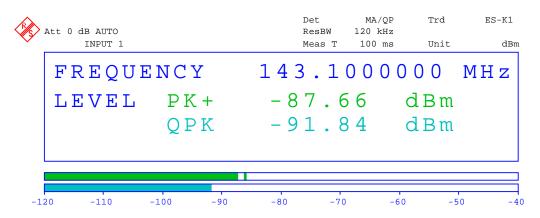
Company: Cambium Networks

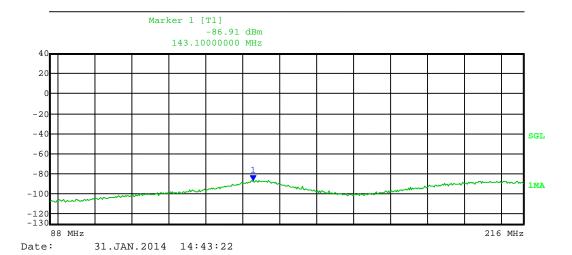
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -91.84 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 4.7 \text{ dB} + 3 \text{ dB}$ (MIMO operation)

 $= 36.12 \text{ dB}\mu\text{V/m}$

Margin = 7.38 dB

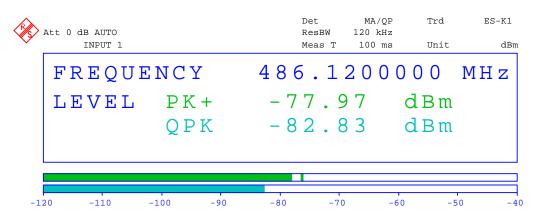
Company: Cambium Networks

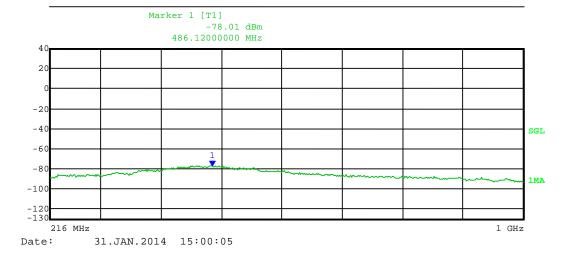
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $46 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 216 – 1000 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -82.83 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 45.13 \text{ dB}\mu\text{V/m}$

Margin = 0.87 dB

Company: Cambium Networks

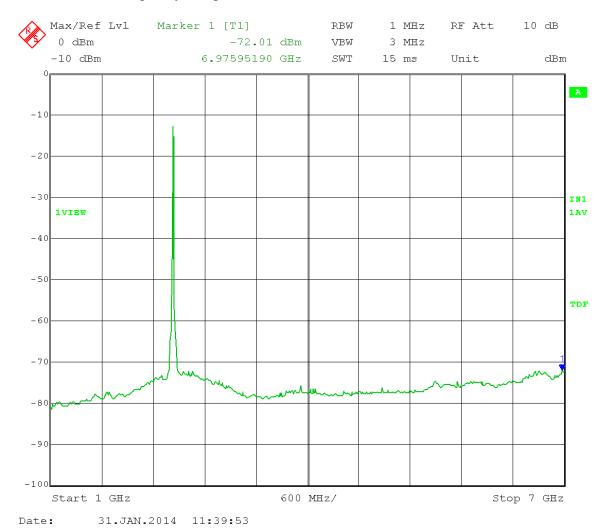
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -72.01 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.25 \text{ dB}\mu\text{V/m}$

Margin = 2.75 dB (noise floor measurement)

Company: Cambium Networks

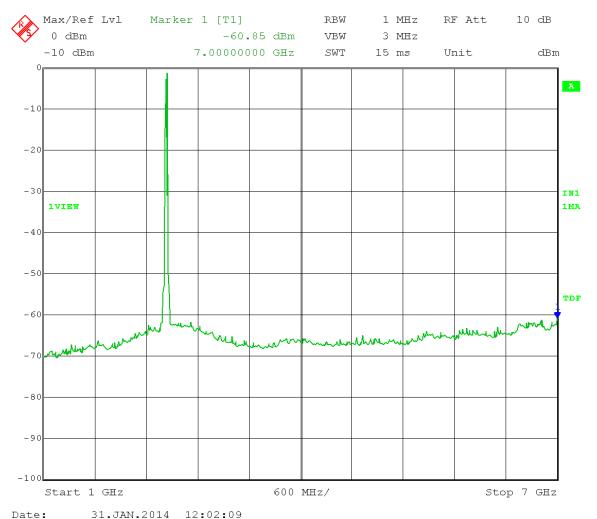
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

51101AV.2011 121021V

E = EIRP - 20log D + 104.8

= -60.85 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.41 \text{ dB}\mu\text{V/m}$

Margin = 11.59 dB (noise floor measurement)

Company: Cambium Networks

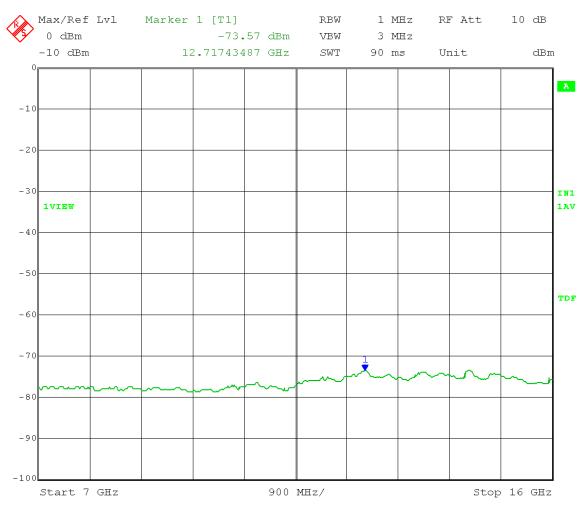
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

Date: 31.JAN.2014 13:03:53

E = EIRP - 20log D + 104.8

= -73.57 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 49.69 \, dB\mu V/m$

Margin = 4.31 dB (noise floor measurement)

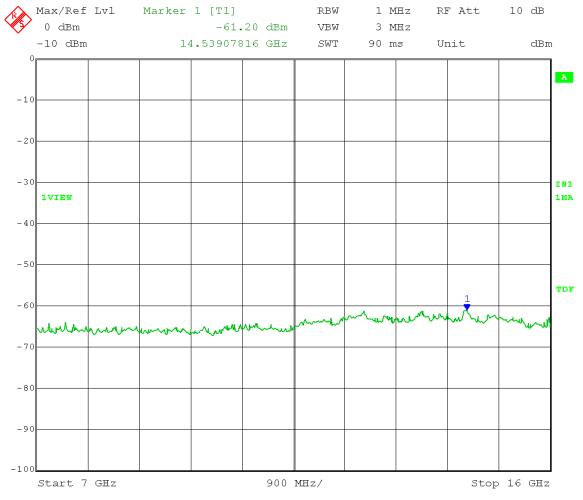
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

Date: 31.JAN.2014 13:06:02

E = EIRP - 20log D + 104.8

= -61.20 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.06 \text{ dB}\mu\text{V/m}$

Margin = 11.94 dB (noise floor measurement)

Company: Cambium Networks

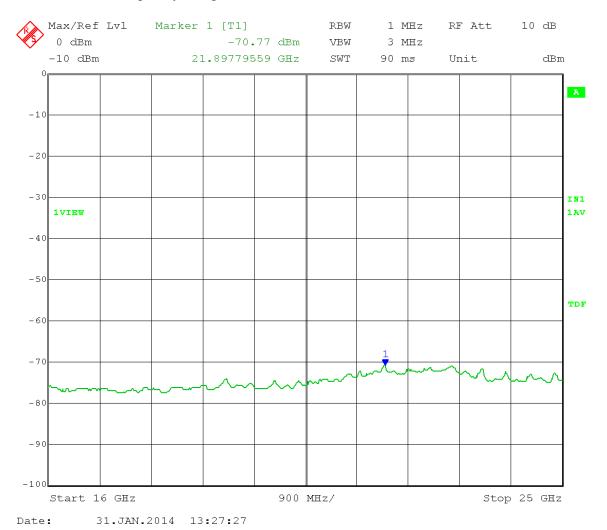
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

E = EIRP - 20log D + 104.8

= -70.77 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.49 \, dB\mu V/m$

Margin = 1.51 dB (noise floor measurement)

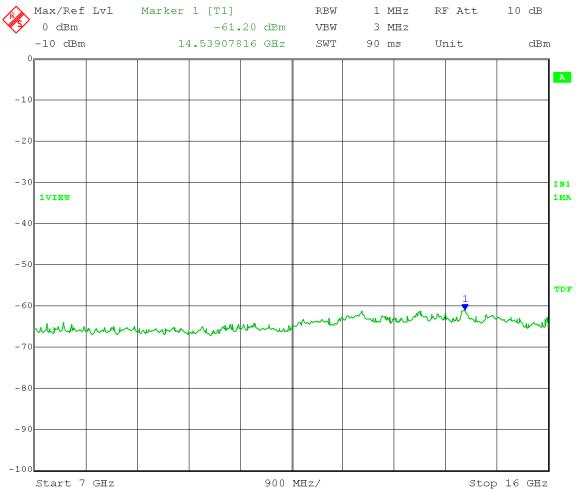
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

Date: 31.JAN.2014 13:06:02

E = EIRP - 20log D + 104.8

= -61.20 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.06 \text{ dB}\mu\text{V/m}$

Margin = 11.94 dB (noise floor measurement)

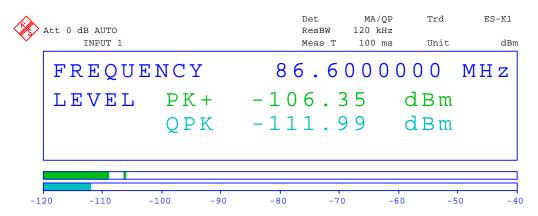
Company: Cambium Networks

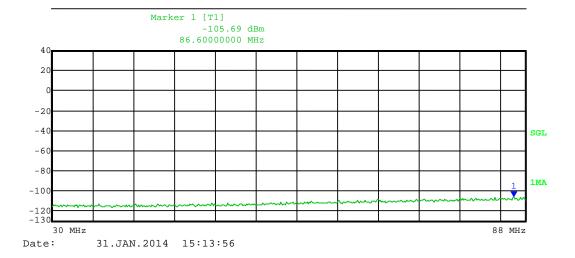
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = 40 dBµV/m at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -111.99 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 4.7 \text{ dB} + 3 \text{ dB}$ (MIMO operation)

 $= 15.97 \text{ dB}\mu\text{V/m}$

Margin = 24.03 dB

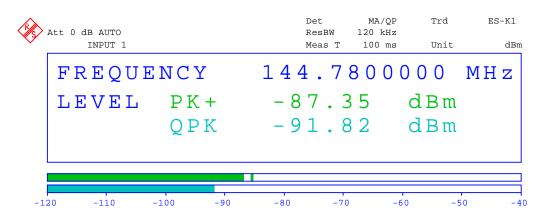
Company: Cambium Networks

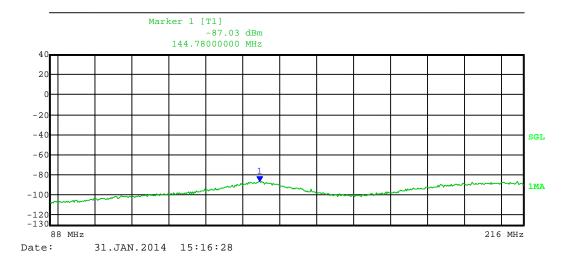
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -91.82 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 36.14 \, dB\mu V/m$

Margin = 7.36 dB

Company: Cambium Networks

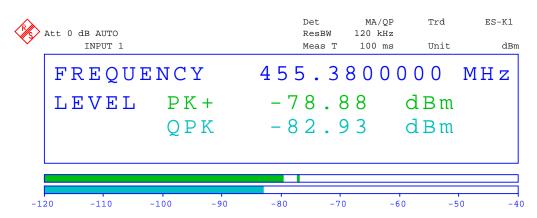
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

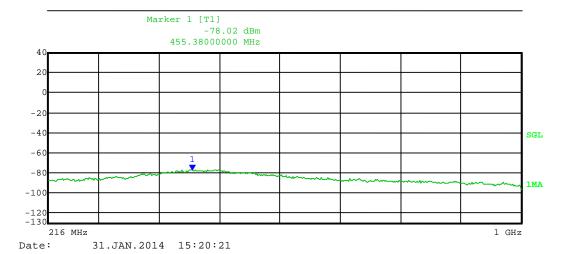
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz

Detector = Quasi-Peak


High Channel Transmit = 2462 MHz


Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Quasi-Peak limit = $46 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 216 – 1000 MHz

E = EIRP – 20log D + 104.8 + 4.7 dB (ground reflection) = -82 93 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3

= -82.93 dBm + 25 dBi antenna gain $-20\log(3 \text{ meters}) + 104.8 + 4.7$ dB + 3 dB (MIMO operation)

 $= 45.03 \text{ dB}\mu\text{V/m}$

Margin = 0.97 dB

Company: Cambium Networks

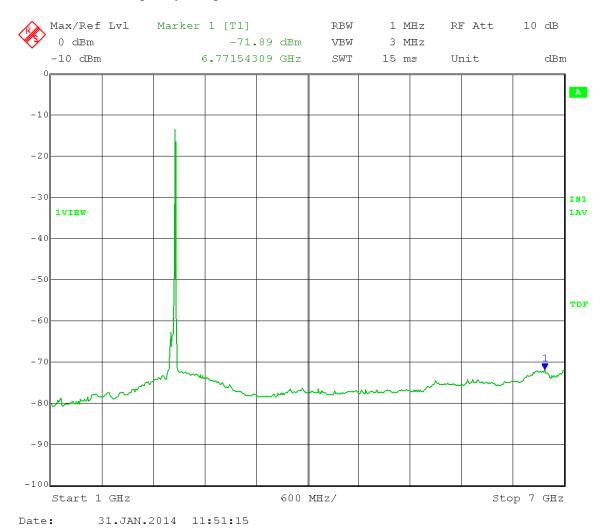
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -71.89 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.37 \, dB\mu V/m$

Margin = 2.63 dB (noise floor measurement)

Company: Cambium Networks

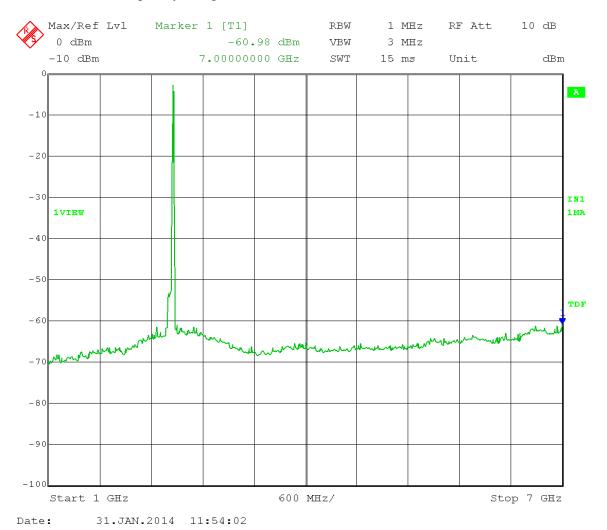
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -60.98 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.28 \text{ dB}\mu\text{V/m}$

Margin = 11.72 dB (noise floor measurement)

Company: Cambium Networks

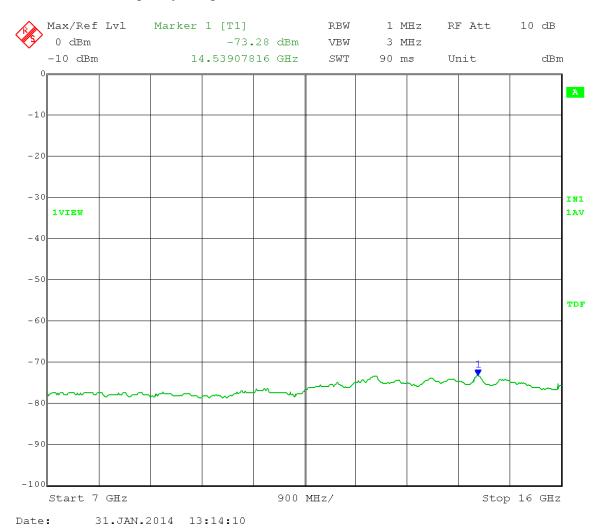
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

E = EIRP - 20log D + 104.8

= -73.28 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 49.98 \text{ dB}\mu\text{V/m}$

<u>Margin = 4.02 dB</u> (noise floor measurement)

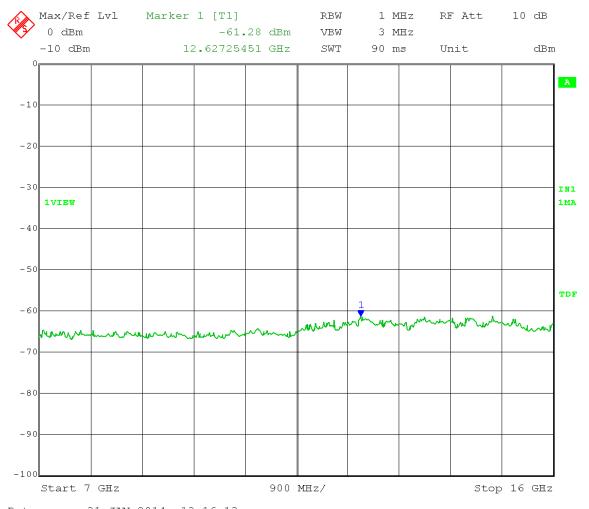
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

Date: 31.JAN.2014 13:16:13

E = EIRP - 20log D + 104.8

= -61.28 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 61.98 \text{ dB}\mu\text{V/m}$

Margin = 12.02 dB (noise floor measurement)

Company: Cambium Networks

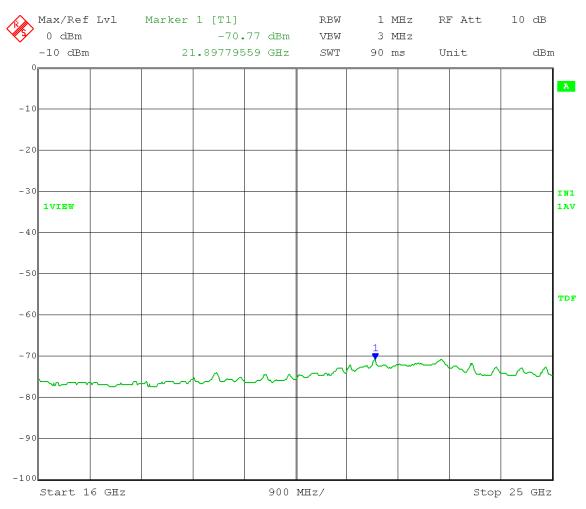
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

Date: 31.JAN.2014 13:18:28

E = EIRP - 20log D + 104.8

= -70.77 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.49 \text{ dB}\mu\text{V/m}$

Margin = 1.51 dB (noise floor measurement)

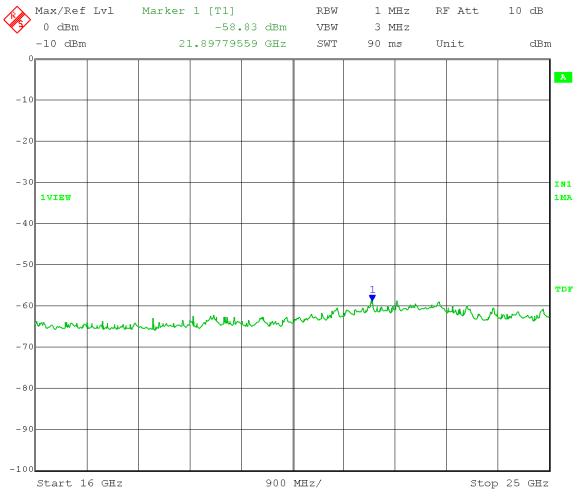
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2462 MHz

Output Power Setting 0 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

Date: 31.JAN.2014 13:19:57

E = EIRP - 20log D + 104.8

= -58.83 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 64.43 \text{ dB}\mu\text{V/m}$

Margin = 9.57 dB (noise floor measurement)

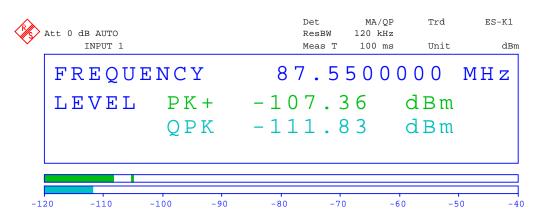
Company: Cambium Networks

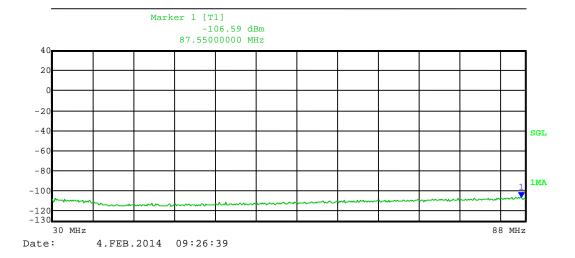
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = 40 dBµV/m at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -111.83 dBm + 25 dBi antenna gain $-20\log(3 \text{ meters}) + 104.8 + 4.7$ dB + 3 dB (MIMO operation)

 $= 16.13 \text{ dB}\mu\text{V/m}$

Margin = 23.87 dB

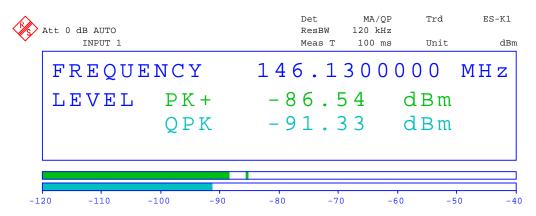
Company: Cambium Networks

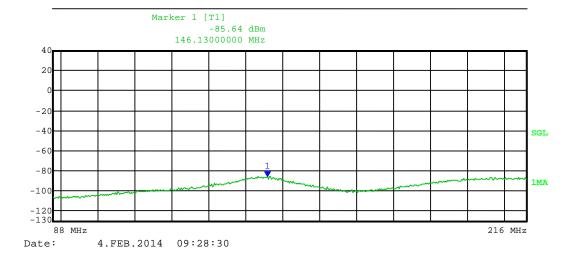
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -91.33 dBm + 25 dBi antenna gain - 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation) $= 36.63 dB\mu V/m$

Margin = 6.87 dB

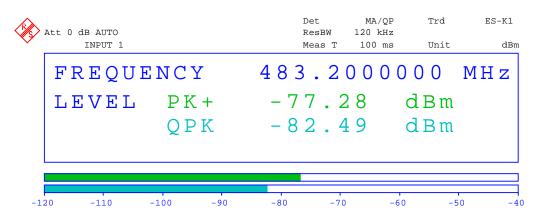
Company: Cambium Networks

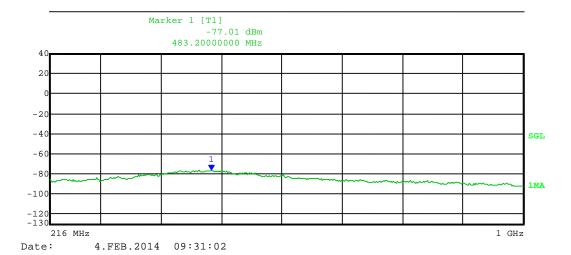
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $46 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 216 – 1000 MHz

 $E = EIRP - 20\log D + 104.8 + 4.7 \text{ dB (ground reflection)}$ $= 82.40 \text{ dPm} + 25 \text{ dPi enterne gain} + 20\log (3 \text{ maters}) + 104.8 + 4.8$

= -82.49 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 4.7 \text{ dB} + 3 \text{ dB}$ (MIMO operation)

 $= 45.47 \text{ dB}\mu\text{V/m}$

Margin = 0.53 dB

Company: Cambium Networks

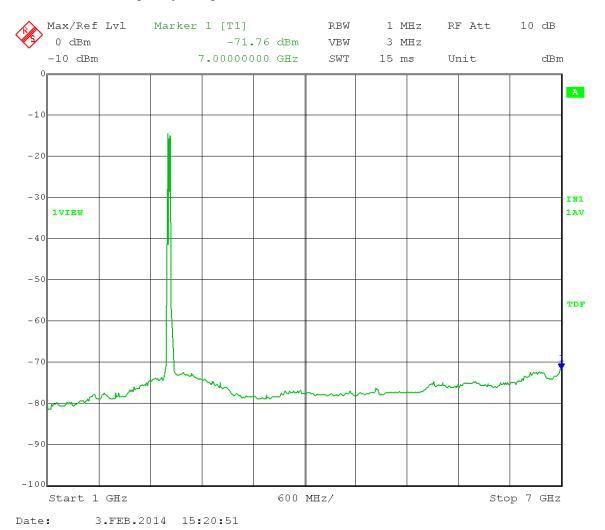
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -71.76 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.50 \text{ dB}\mu\text{V/m}$

Margin = 2.50 dB (noise floor measurement)

Company: Cambium Networks

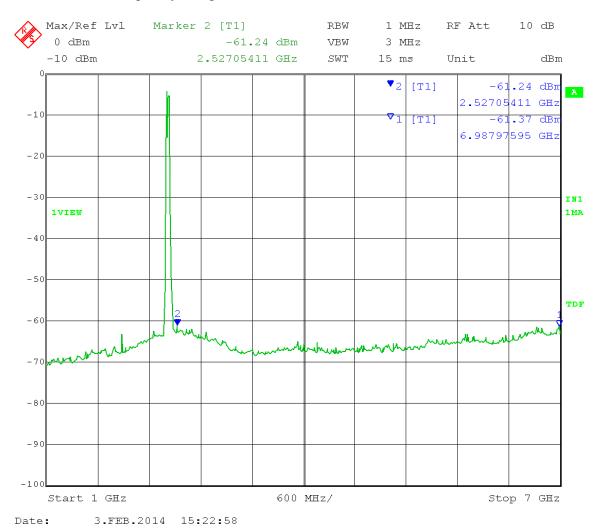
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 – 7 GHz

E = EIRP - 20log D + 104.8

= -61.24 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.02 \text{ dB}\mu\text{V/m}$

Margin = 11.98 dB (noise floor measurement)

Company: Cambium Networks

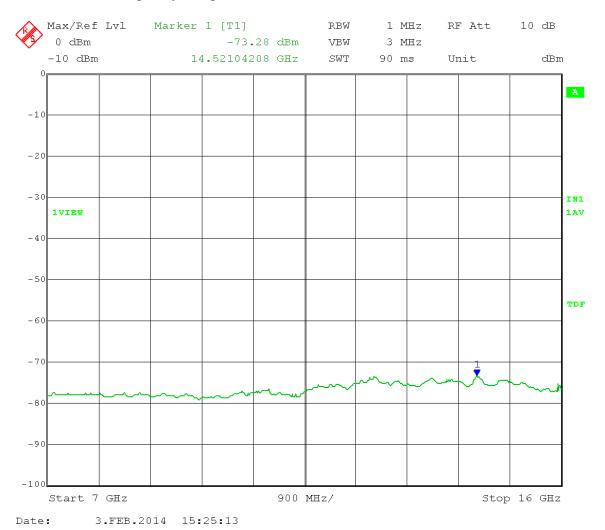
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

E = EIRP - 20log D + 104.8

= -73.28 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 49.98 \, dB\mu V/m$

Margin = 4.02 dB (noise floor measurement)

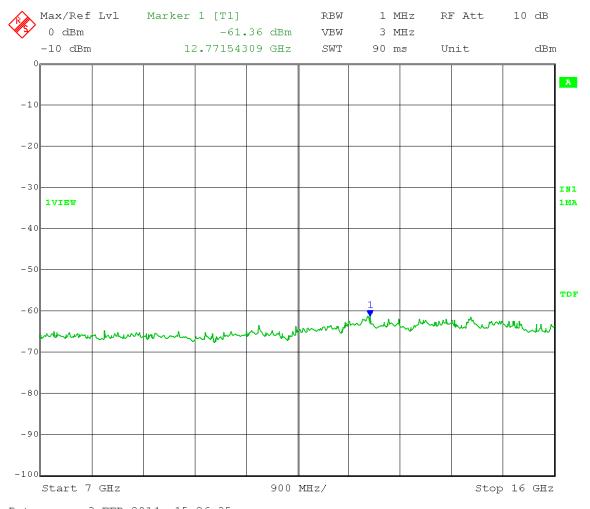
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

Date: 3.FEB.2014 15:26:35

E = EIRP - 20log D + 104.8

= -61.36 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 61.90 \text{ dB}\mu\text{V/m}$

Margin = 12.10 dB (noise floor measurement)

Company: Cambium Networks

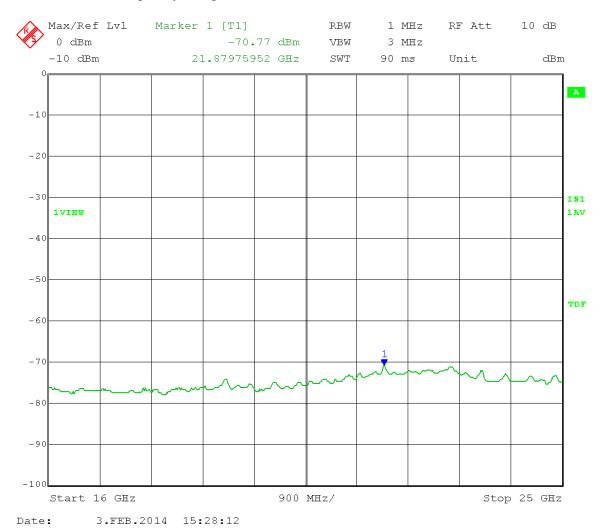
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

E = EIRP - 20log D + 104.8

= -70.77 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.49 \text{ dB}\mu\text{V/m}$

Margin = 1.51 dB (noise floor measurement)

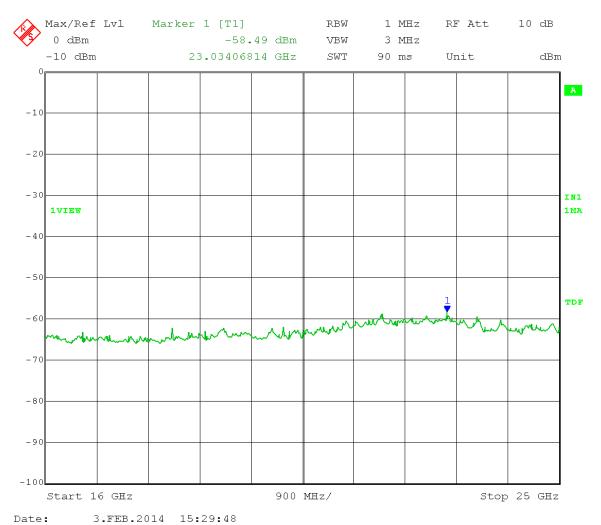
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 2422 MHz

Output Power Setting 1 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

E = EIRP - 20log D + 104.8

= -58.49 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 64.77 \text{ dB}\mu\text{V/m}$

Margin = 9.23 dB (noise floor measurement)

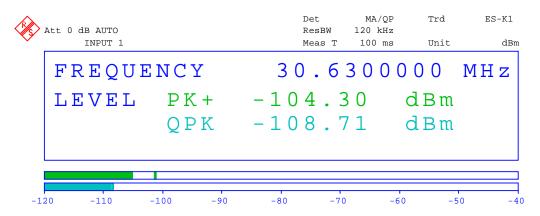
Company: Cambium Networks

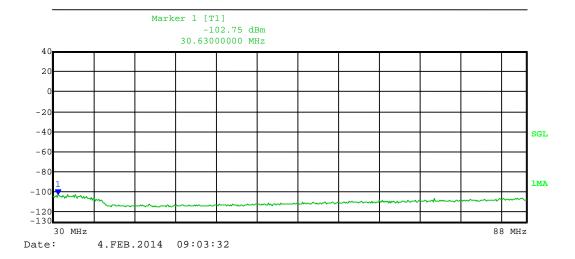
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = 40 dBµV/m at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -108.71 dBm + 25 dBi antenna gain - 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 19.25 \text{ dB}\mu\text{V/m}$

Margin = 20.75 dB

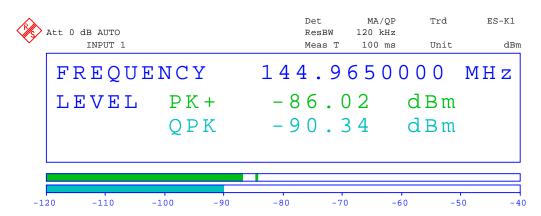
Company: Cambium Networks

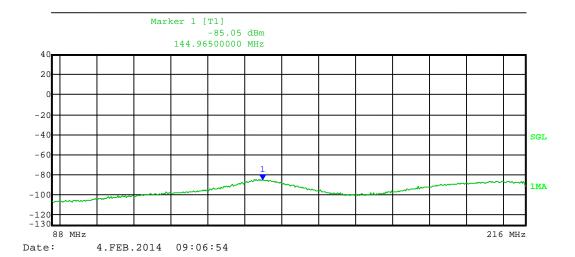
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -90.34 dBm + 25 dBi antenna gain - 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation) $= 37.62 dB\mu V/m$

Margin = 5.88 dB

Company: Cambium Networks

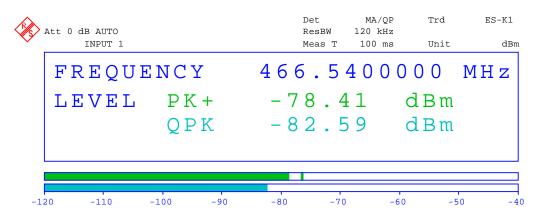
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

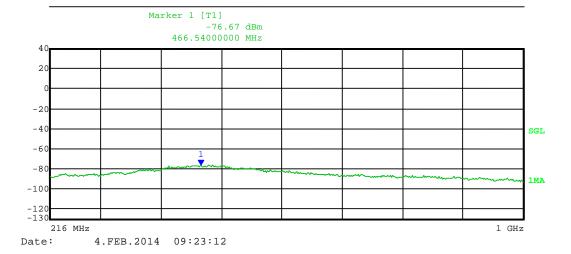
Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz

Detector = Quasi-Peak


Mid Channel Transmit = 2437 MHz


Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Quasi-Peak limit = 46 dBµV/m at 3 meters

Frequency Range: 216 – 1000 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -82.59 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 45.37 \text{ dB}\mu\text{V/m}$

Margin = 0.63 dB

Company: Cambium Networks

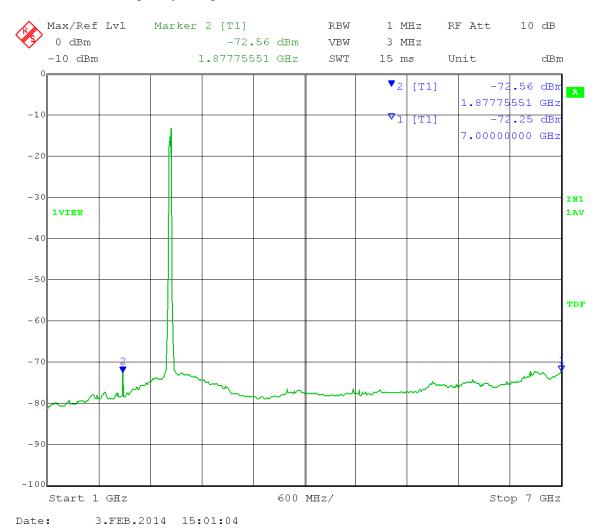
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -72.25 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.01 \text{ dB}\mu\text{V/m}$

Margin = 2.99 dB

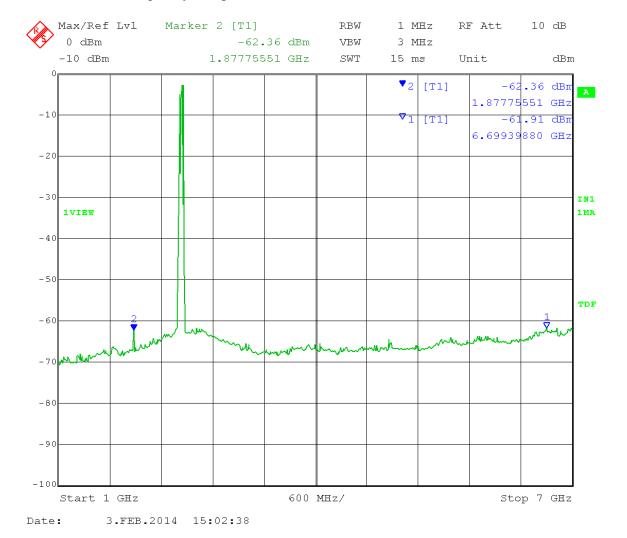
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -61.91 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 61.35 \text{ dB}\mu\text{V/m}$

Margin = 12.65 dB (noise floor measurement)

Company: Cambium Networks

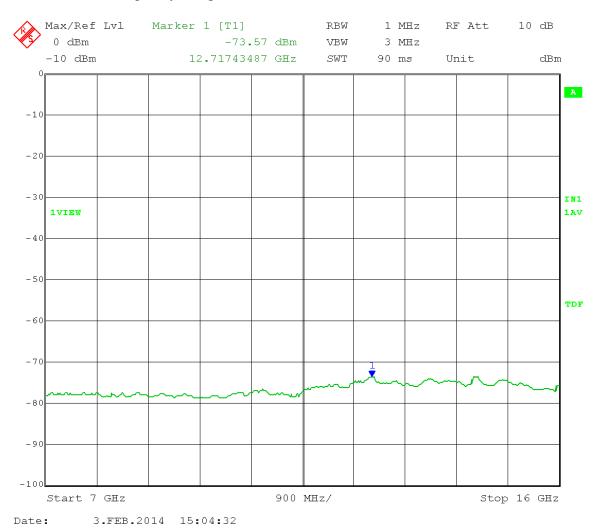
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

E = EIRP - 20log D + 104.8

= -73.57 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 3 \text{ dB (MIMO operation)}$

 $= 49.69 \, dB\mu V/m$

<u>Margin = 4.31 dB</u> (noise floor measurement)

Test Date: 01-31-14

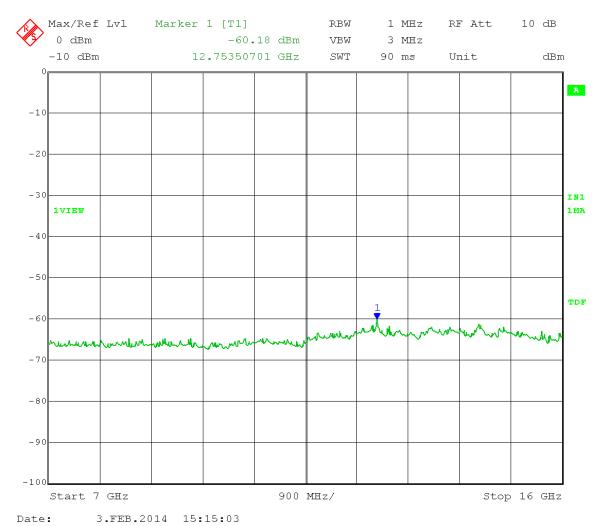
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 20MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

E = EIRP - 20log D + 104.8

= -60.18 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 63.08 \text{ dB}\mu\text{V/m}$

Margin = 10.92 dB (noise floor measurement)

Company: Cambium Networks

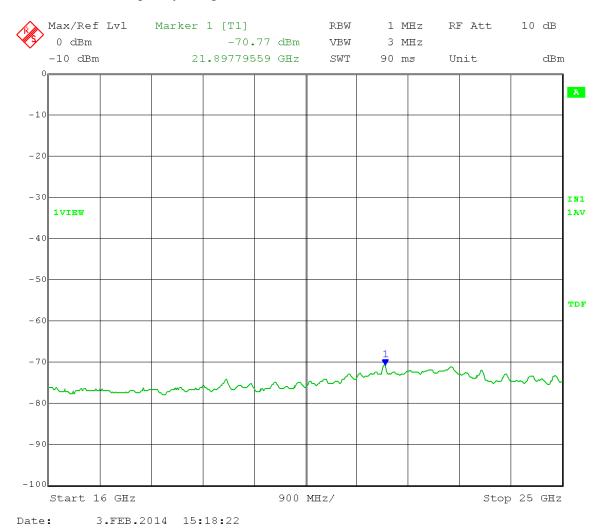
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

E = EIRP - 20log D + 104.8

= -70.77 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.49 \, dB\mu V/m$

Margin = 1.51 dB (noise floor measurement)

Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 2437 MHz

Output Power Setting 1.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

Date: 3.FEB.2014 15:17:04

E = EIRP - 20log D + 104.8

= -59.12 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 64.14 \text{ dB}\mu\text{V/m}$

Margin = 9.86 dB (noise floor measurement)

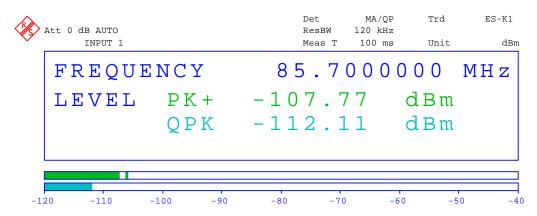
Company: Cambium Networks

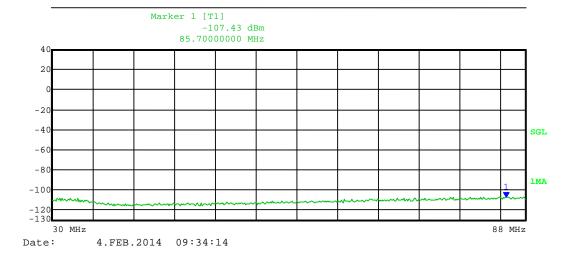
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


High Channel Transmit = $\frac{2447}{MHz}$

Output Power Setting 0 Channel bandwidth: 40MHz
Output port: 0.5 OFDM MCS15

Quasi-Peak limit = $40 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 30 – 88 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection)

= -112.11 dBm + 25 dBi antenna gain $-20\log (3 \text{ meters}) + 104.8 + 4.7 \text{ dB} + 3 \text{ dB}$ (MIMO operation)

 $= 15.85 \, dB \mu V/m$

Margin = 24.15 dB

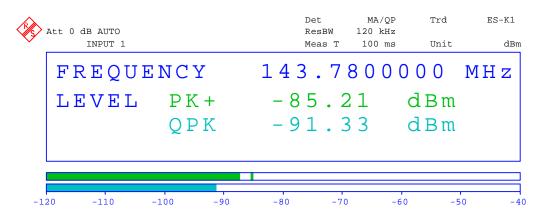
Company: Cambium Networks

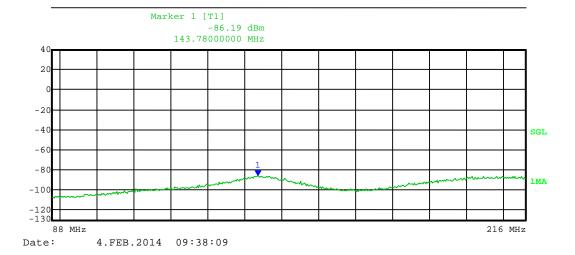
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $43.5 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 88 – 216 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -91.33 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 36.63 \text{ dB}\mu\text{V/m}$

Margin = 6.87 dB

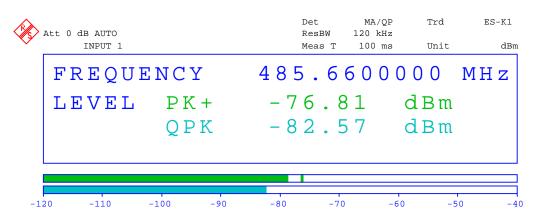
Company: Cambium Networks

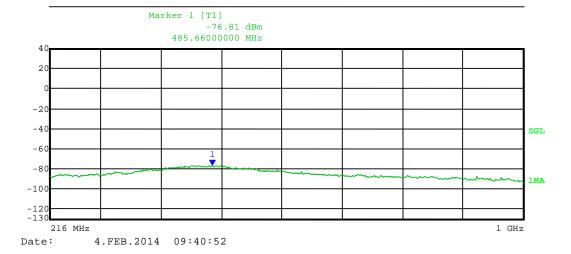
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: Detector bandwidth = 120 kHz


Detector = Quasi-Peak


High Channel Transmit = $\frac{2447}{MHz}$

Output Power Setting 0.5 Channel bandwidth: 40MHz

Output port: 0 OFDM MCS15 Quasi-Peak limit = $46 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 216 – 1000 MHz

E = EIRP - 20log D + 104.8 + 4.7 dB (ground reflection) = -82.57 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 4.7 dB + 3 dB (MIMO operation)

 $= 45.39 \text{ dB}\mu\text{V/m}$

Margin = 0.61 dB

Company: Cambium Networks

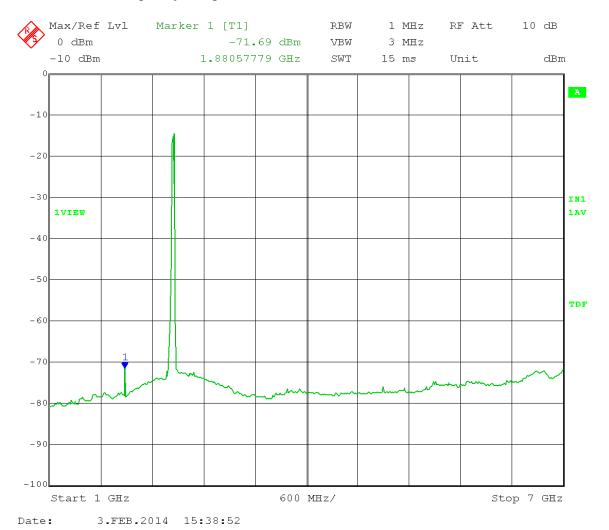
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -71.69 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 51.57 \, dB\mu V/m$

Margin = 2.43 dB

Company: Cambium Networks

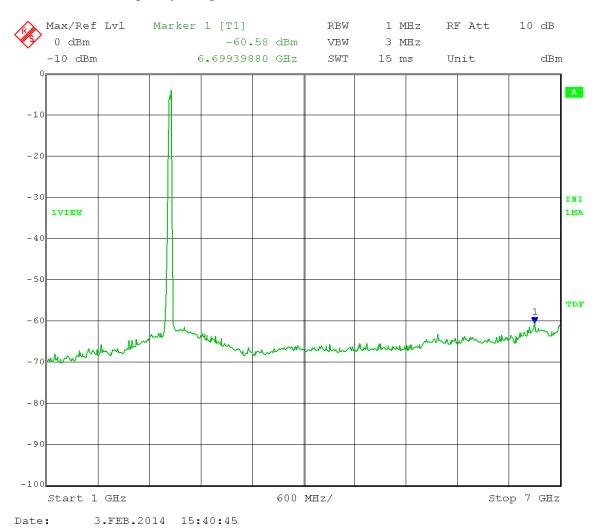
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Peak Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 1 - 7 GHz

E = EIRP - 20log D + 104.8

= -60.58 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 62.68 \text{ dB}\mu\text{V/m}$

Margin = 11.32 dB (noise floor measurement)

Company: Cambium Networks

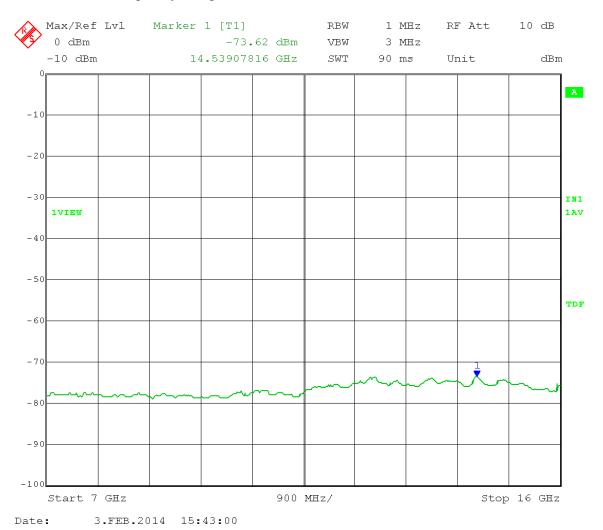
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 7 – 16 GHz

E = EIRP - 20log D + 104.8

= -73.62 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 49.64 \, dB\mu V/m$

Margin = 4.36 dB (noise floor measurement)

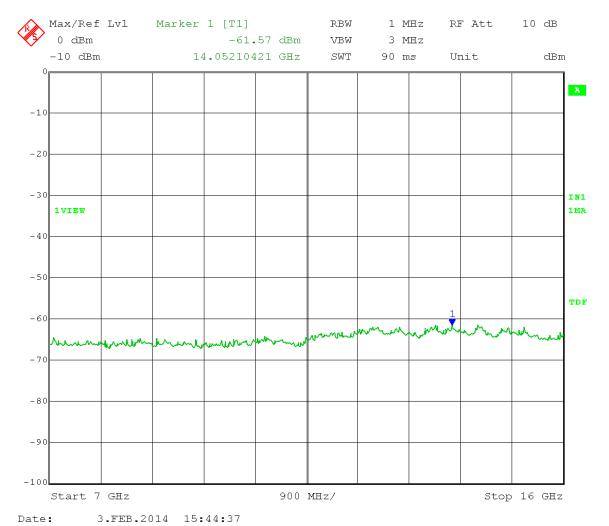
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 7 - 16 GHz

E = EIRP - 20log D + 104.8

= -61.57 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 61.69 \text{ dB}\mu\text{V/m}$

Margin = 12.31 dB (noise floor measurement)

Company: Cambium Networks

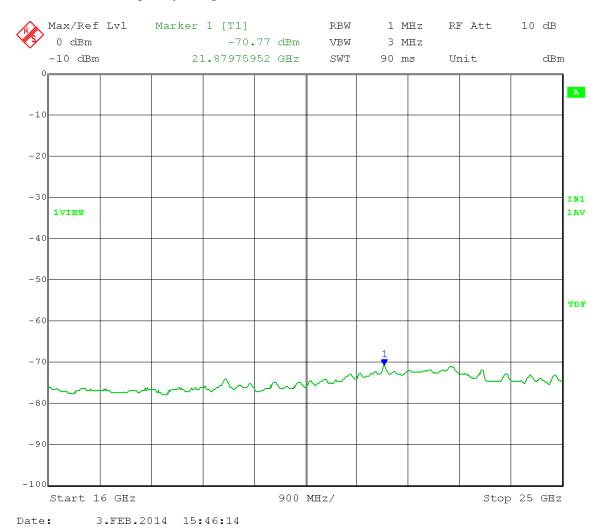
EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$

Detector = Average Sweep = Auto Couple


Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Average limit = $54 \text{ dB}\mu\text{V/m}$ at 3 meters

Frequency Range: 16 – 25 GHz

E = EIRP - 20log D + 104.8

= -70.77 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 52.49 \, dB\mu V/m$

Margin = 1.51 dB (noise floor measurement)

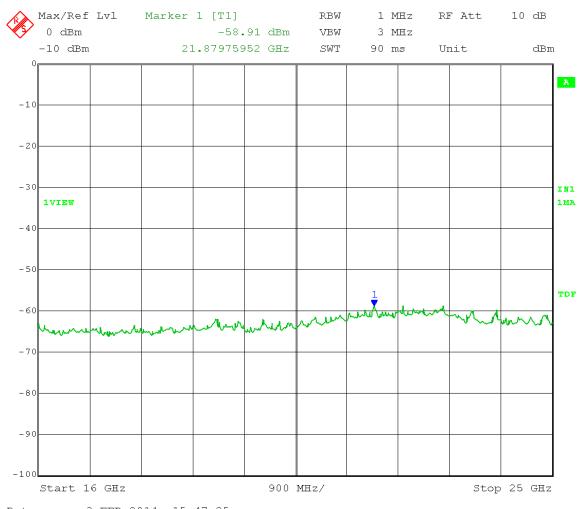
Company: Cambium Networks

EUT: EPMP 2.4 GHz AP MAC: 000456C1A853

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Craig B

Comment: RBW = 1 MHz $VBW \ge 3 MHz$


Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 2447 MHz

Output Power Setting 0.5 Channel bandwidth: 40 MHz

Output port: 0 OFDM MCS15

Peak limit = $74 \text{ dB}\mu\text{V/m}$ at 3 meters Frequency Range: 16 - 25 GHz

Date: 3.FEB.2014 15:47:25

E = EIRP - 20log D + 104.8

= -58.91 dBm + 25 dBi antenna gain – 20log (3 meters) + 104.8 + 3 dB (MIMO operation)

 $= 64.35 \text{ dB}\mu\text{V/m}$

Margin = 9.65 dB (noise floor measurement)

Company: Cambium Networks Model Tested: C024900P011A

Report Number: 19734 DLS Project: 6333

END OF REPORT

Revision #	Date	Comments	By
1.0	02-12-2014	Preliminary Release	JS
1.1	03-11-2014	Add pg 25 note & edit title pg 145 (& 6)	JS