

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart E – Unlicensed National Information Infrastructure Devices Section 15.407 General Technical Requirements.

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

(DFS not tested by DLS Electronic Systems Inc.)

Formal Name: ePMP Station 5.4GHz (or 5.2GHz or 5.7GHz) Radio

with 23dBi Panel or 30dBi Dish antenna

Kind of Equipment: Point-to-Point or Point-to-Multipoint Digital Transmission Transceiver

Frequency Range: 5495 to 5600, 5650 to 5705MHz (20 MHz bandwidth)

5510 to 5600, 5650 to 5695MHz (40 MHz bandwidth)

5270 to 5330 MHz (5.2 GHz xcvr with panel or dish antenna) reported to the FCC in report # 19892 5740 to 5835 MHz (5.7 GHz xcvr with panel or dish antenna) reported to the FCC in report # 19896

Test Configuration: Stand-alone

Model Number(s): C058900P122A (connectorized model)

Model(s) Tested: C058900P122A

Serial Number(s): ESN/MAC Address: 000456C560B4

Date of Tests: March 31 to April 15, 2014

Test Conducted For: Cambium Networks

3800 Golf Road, Suite 360

Rolling Meadows, IL 60008, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2014, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Company: Cambium Networks
Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

SIGNATURE PAGE

Tested By:

Craig Brandt

Senior Test Engineer

Craig Branott

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

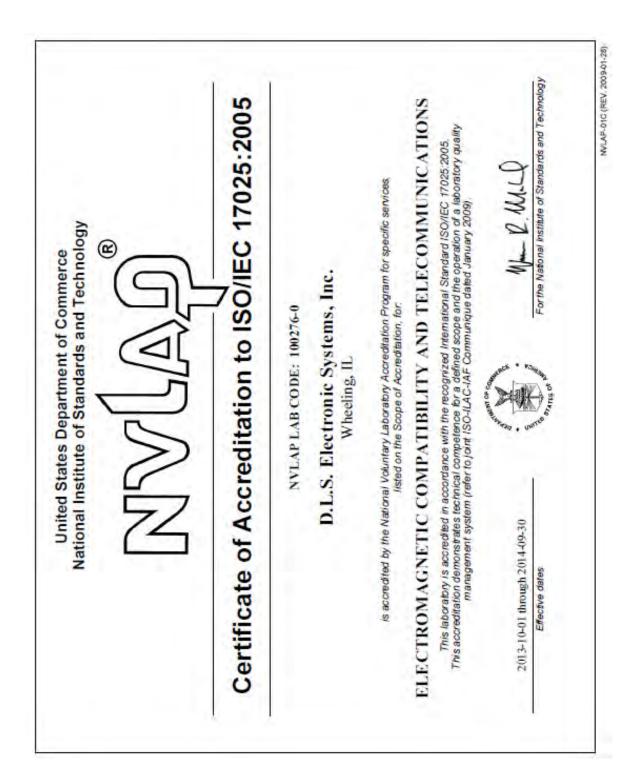
Company: Cambium Networks
Models Tested: C058900P122A
Report Number: 19894

Report Number: 19894 DLS Project: 6493

Table of Contents

i. Co	ver Page	1
ii. Sig	gnature Page	2
iii.Ta	ble of Contents	3
iv. NV	VLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	
3.0	Test Facilities	
4.0	Description of Test Sample	
5.0	Test Equipment	
6.0	Test Arrangements	
7.0	Test Conditions	
8.0	Modifications Made To EUT For Compliance	10
9.0	Additional Descriptions	11
10.0	Results	11
11.0	Conclusion	11
Anne	ndix A – Test Photos	
	ndix B – Measurement Data	
- PP		
B1	T	
	.0a - 20MHz Channel Bandwidth w-Panel	
	.0b - 40MHz Channel Bandwidth w-Panel	
	.0c - 20MHz Channel Bandwidth w-Dish	
B1	.0d - 40MHz Channel Bandwidth w-Dish	25
В2	.0 Peak Power Spectral Density – Conducted	28
	.0a - 20MHz Channel Bandwidth w-Panel	
	.0b - 40MHz Channel Bandwidth w-Panel	
B2	.0c - 20MHz Channel Bandwidth w-Dish	35
B2	.0d - 40MHz Channel Bandwidth w-Dish	38
В3	.0 Unwanted Emission Levels – Radiated Band-Edge with antenna connected	41
	.0a - 20MHz Channel Bandwidth w-Panel	
	.0b - 40MHz Channel Bandwidth w-Panel	
	.0c - 20MHz Channel Bandwidth w-Dish	
	.0d - 40MHz Channel Bandwidth w-Dish	

166 South Carter, Genoa City, WI 53128


Company:	Cambium Networks
Models Tested:	C058900P122A

Report Number: 19894 DLS Project: 6493

B4.0	Unwanted Emission Levels – Radiated with antenna connected	74
B4.0a	- Radiated, 30 to 1000MHz (w-Dish antenna is worst case)	75
B4.0b	- Restricted Band, 1 to 5.46GHz - 20MHz Channel BW w-Panel	81
B4.0c	- Restricted Band, 1 to 5.46GHz - 40MHz Channel BW w-Panel	93
B4.0d	- Restricted Band, 1 to 5.46GHz - 20MHz Channel BW w-Dish	105
B4.0e	- Restricted Band, 1 to 5.46GHz - 40MHz Channel BW w-Dish	117
B4.0f	- Restricted Band, 7.25 to 7.75GHz - 20 & 40MHz Channel BW's w-Panel	129
B4.0g	- Restricted Band, 7.25 to 7.75GHz - 20 & 40MHz Channel BW's w-Dish	131
B4.0h	- Non-Restricted Band, 1 to 7.25GHz - 20MHz Channel BW w-Panel	133
B4.0i	- Non-Restricted Band, 1 to 7.25GHz - 40MHz Channel BW w-Panel	139
B4.0j	- Non-Restricted Band, 1 to 7.25GHz - 20MHz Channel BW w-Dish	145
B4.0k	- Non-Restricted Band, 1 to 7.25GHz - 40MHz Channel BW w-Dish	151
B4.01	- Radiated, 7.75 to 40GHz - 20 & 40MHz Channel BW's w-Panel	157
B4.0m	- Radiated, 7.75 to 40GHz - 20 & 40MHz Channel BW's w-Dish	175

Company: Models Tested: Report Number: DLS Project: Cambium Networks C058900P122A 19894 6493

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

1.0 Summary of Test Report

Subpart E Section 15.407 Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
15.407(a)(2)	Maximum Conducted Output Power	FCC KDB 789033 D01 General UNII Test Procedures v01r03 Section E(3)(a)	1	Yes
15.407(a)(2)	Peak Power Spectral Density - Conducted	FCC KDB 789033 D01 General UNII Test Procedures v01r03 Sections F & E(2)(b)	1	Yes
15.407(b)(3) 15.407(b)(5)	Unwanted Emission Levels – Radiated Band-Edge with antenna connected	FCC KDB 789033 D01 General UNII Test Procedures v01r03 Sections H, H(1), H(2), H(3)	2	Yes
15.407(b)(3) & 15.407(b)(6)	Unwanted Emission Levels – Radiated with antenna connected	FCC KDB 789033 D01 General UNII Test Procedures v01r03 Sections H(1), H(2), H(3)	2	Yes
15.407(h)(2)	Dynamic Frequency Selection (DFS)	Not tested by DLS		NA

Note 1: RF Conducted emission measurement.

Note 2: Radiated emission measurement.

1.0 Summary of Test Report - continued

It was determined that the Cambium Networks ePMP Station 5.4GHz Radio, Connectorized model: C058900P122A with 23dBi Panel or 30dBi Dish antenna added, complies with the requirements of CFR 47 Part 15 Subpart E Section 15.407. The data demonstrating FCC compliance of the 5.2 GHz and 5.7GHz radios is found in D.L.S. Electronics, Inc. Reports #19892 and #19896.

2.0 Introduction

From March 31 to April 15, 2014 the ePMP Station 5.4GHz Radio, Model C058900P122A, as provided from Cambium Networks, was tested with a 23dBi Panel or a 30dBi Dish antenna to the requirements of CFR 47 Part 15 Subpart E Section 15.407. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

166 South Carter, Genoa City, WI 53128

Company: **Cambium Networks** Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

3.0 **Test Facilities**

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 **Description of Test Sample**

Description:

Point-to-Point or Point-to-Multipoint 5.4GHz (or 5.2GHz or 5.7GHz) 802.11 fixed indoor/outdoor transceiver with either 20 MHz or 40 MHz channel bandwidth. OFDM modulation. This is a software defined radio. This report includes data to show compliance of the radio with a 23dBi Panel or 30dBi Dish antenna added

Type of Equipment / Frequency Range:

Stand-Alone / **5495** to **5600**, **5650** to **5705** MHz (**20** MHz bandwidth) (in this report) 5510 to 5600, 5650 to 5695 MHz (40 MHz bandwidth) (in this report)

5270 to 5330 MHz (5.2 GHz xcvr) reported to the FCC in report # 19892 5740 to 5835 MHz (5.7 GHz xcvr) reported to the FCC in report # 19896

Physical Dimensions of Equipment Under Test:

Connectorized Unit: Length: 3 in. Width: 1 in. Height: 8.5 in. (tested with Panel or Dish antenna) Integrated Unit:: Length: 4 in. Width: 2 in. Height: 10 in. (not tested) - it is larger with an

integral antenna

Power Source:

29 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using power supply model: PSA-15M-300 (SM)

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Internal Frequencies:

940 - 1000 kHz (Switching Power Supply Frequency) 40 MHz, 25 MHz, 4 MHz

Transmit / Receive Frequencies Used For Test Purpose:

20 MHz Channel Bandwidth: Low channel: 5495 MHz, Middle channel: 5575 MHz,

High channel: 5705 MHz

40 MHz Channel Bandwidth: Low channel: 5510 MHz, Middle channel: 5575 MHz,

High channel: 5695 MHz

Type of Modulation(s):

OFDM: 802.11n: MCS15

Description of Circuit Board(s) / Part Number:

Cambium Networks Connectorized	00456C560B4
PC Board ESN/MAC Address	
MARS 23dBi Panel Antenna	MA-WA56-DP23
ARC Wireless Solutions 30dBi Dish Antenna	ARC-DA5830SD1

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

5.0

Test EquipmentA list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	7-23-13	7-23-14
Preamplifier	Rohde & Schwarz	TS-PR10	032001/003	9 kHz – 1 GHz	1-4-14	1-4-15
Preamp	Ciao	CA118-4010	101	1GHz-18GHz	2-14-14	2-14-15
Horn Antenna	EMCO	3115	9903-5731	1-18GHz	7-11-13	7-11-15
Filter- High- Pass	Planar	HP8G-7G8- CD-SFF	PF1225/0782	7.5GHz-18GHz	8-14-13	8-14-14
Preamp	Miteq	AMF-8B- 180265-40- 10P-H/S	438727	18GHz-26GHz	8-13-13	8-13-14
Preamp	Rohde & Schwarz	TS-PR40	052002/025	26GHz-40GHz	5-28-13	5-28-14
Preamp	DLS	642-1	1	1GHz-26GHz	8-15-13	8-15-14
Horn Antenna	EMCO	3116	2549	18 – 40GHz	9-6-12	9-6-14
High Pass Filter	K & I	11SH10- 18000/T40000- K-K	8	18-40GHz	3-6-14	3-6-15
10 dB attenuator	Pasternack Enterprises	PE7014-10	DLS#198	DC – 18 GHz	3-16-13	3-16-15
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	7-23-13	7-23-14
Low Pass Filter	Mini-Circuits	VLFX-1125	RUU926009 20	DC-1 GHz	8-13-13	8-13-14
Preamplifier	Rohde & Schwarz	TS-PR10	032001/004	9 kHz – 1 GHz	1-4-14	1-4-15
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	9-13-12	9-13-14
Antenna	EMCO	3146	1205	200 MHz – 1 GHz	9-19-12	9-19-14
Thermal Power Sensor	Rohde & Schwarz	NRP-Z51	1138.0005.03 -104290-Wq	DC - 18GHz	12-12-13	12-12-14

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

6.0 Test Arrangements

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 789033 D01 General UNII test Procedures v01r03 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for photos of the test set up.

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity:

68°F at 32% RH (or noted on the test data)

Supply Voltage:

29 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using power supply model: PSA-15M-300 (SM)

8.0 Modifications Made To EUT For Compliance

No modifications were made to the EUT at the time of test.

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

9.0 **Additional Descriptions**

Testing was performed at low, mid, and high channels over 2 modulation bandwidths (20MHz & 40MHz). The antenna ports were tested (Channel 0 & 1) using the connectorized model attached to either the 23dBi Panel or 30dBi Dish antenna.. Worst case emissions were recorded.

Testing with the 23dBi Panel antenna was performed with the antenna rotated 45° from standard horizontal/vertical. Testing included a 3dB attenuator on the antenna & 3dB attenuator on the radio. The final Power Settings for the 5.4GHz radio with the Panel antenna are:

For the 20MHz Bandwidth: Low Channel 8.0, Mid Channel 9.0, High Channel 9.5 For the 40MHz Bandwidth: Low Channel 6.0, Mid Channel 9.0, High Channel 5.5

Testing with the 30dBi Dish antenna was also performed with the antenna rotated 45° from standard horizontal/vertical. Testing included a 3dB attenuator on the antenna & 3dB attenuator on the radio. The Cal Table was changed so that power setting 24.0 = 0.0. The final Power Settings for the 5.4GHz radio with the Dish antenna are:

For the 20MHz Bandwidth: Low Channel 26.0, Mid Channel 26.5, High Channel 27.5 For the 40MHz Bandwidth: Low Channel 26.0, Mid Channel 27.0, High Channel 26.5

Power Settings are noted on the test data.

The Emission Designators are: 20M0x1D, 40M0x1D

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 789033 D01 General UNII test Procedures v01r03 and ANSI C63.10-2009. Graphical and tabular data can be found in Appendix B at the end of this report.

11.0 **Conclusion**

Dynamic Frequency Selection (DFS) testing was not performed by DLS Electronic Systems, Inc. Otherwise, the ePMP Station 5.4GHz Radio, Model C058900P122A with either the 23dBi Panel or 30dBi Dish antenna, as provided from Cambium Networks tested from March 31 to April 15, 2014 **meets** the requirements of CFR 47 Part 15 Subpart E Section 15.407.

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix A – Test Photos

Photo Information and Test Setup:

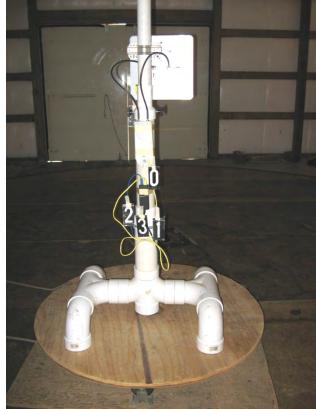
Item0: Cambium Networks ePMP Station 5.4 GHz OFDM MIMO Radio,

Model C058900P122A

Item1: Unshielded CAT 5e POE Cable - 1.5 meters long

Item2: Unshielded CAT 5e Ethernet Cable - not terminated - 8 meters long

Item3: Phihong Power Supply PSA-15M-300(SM)


Item4: MARS model MA-WA56-DP23 4.9-6.1 GHz 23 dBi Panel antenna, SN: 5111

or ARC Wireless Solutions model ARC-DA5830SD1 4.94-5.875 GHz 30 dBi

Dish antenna, SN: none

Radiated - Below 1 GHz - Front & Back - with 23 dBi Panel Antenna

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix A – Test Photos

Radiated - Above 1 GHz - Front & Back - with 23 dBi Panel Antenna

RF Conducted

Page **13** of **193**

166 South Carter, Genoa City, WI 53128

Appendix A – Test Photos


Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Radiated - Below 1 GHz - Front & Back - with 30 dBi Dish Antenna

Radiated - Above 1 GHz - Front & Back - with 30 dBi Dish Antenna

Page **14** of **193**

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix B – Measurement Data

B1.0 Maximum Conducted Output Power

Rule Section: Section 15.407(a)(2)

Test Procedure: FCC KDB 789033 D01 General UNII Test Procedures v01r03 – *Guidance for*

Compliance Testing of Unlicensed National Information Infrastructure (U-NII)

Devices - Part 15, Subpart E

Section E(3)(a) Method PM (Measurement using an RF average power meter):

Measurements performed using a wideband RF power meter with a thermocouple

detector

Description: Measure the average power of the transmitter

Add $10 \log (1/x)$, where x is the duty cycle, to the measured power

Add 10 log(N), where N is the number of outputs, for MIMO operation

(according to FCC KDB 662911)

Limit: Lesser of: 250 mW (24 dBm) or 11 dBm + 10 log B, where B is

the 26 dB emission bandwidth in MHz.

Limit shall be reduced by the amount in dB that the directional

gain of the antenna exceeds 6 dBi

Results: Passed

Notes: Measurements were taken for MCS15 OFDM modulation at the lowest, middle,

and highest channels of operation. EUT was set to transmit continuously with

100% duty cycle.

Tested output port 1 only as it was determined to be worst case from

previous testing of this device (original certification).

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

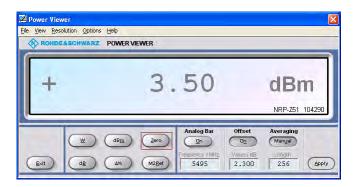
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm


Low Channel: Transmit = 5.495 GHz 20MHz BW

Output power setting: 2

Port 1:

Maximum conducted output power = 3.50 dBm + 3 dB (MIMO)

= 6.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm


Mid Channel: Transmit = 5.575 GHz 20MHz BW

Output power setting: 3

Port 1:

Maximum conducted output power = 3.50 dBm + 3 dB (MIMO)

= 6.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm

High Channel: Transmit = 5.705 GHz 20MHz BW

Output power setting: 3.5

Port 1:

Maximum conducted output power = 3.50 dBm + 3 dB (MIMO)

= 6.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm

Low Channel: Transmit = 5.510 GHz 40MHz BW

Output power setting: 2

Port 1:

Maximum conducted output power = 3.99 dBm + 3 dB (MIMO)

= 6.99 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

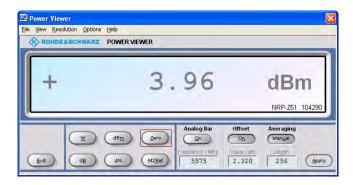
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm


Mid Channel: Transmit = 5.575 GHz 40MHz BW

Output power setting: 3

Port 1:

Maximum conducted output power = 3.96 dBm + 3 dB (MIMO)

= 6.96 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 23 dBi

EUT Limit: 24-(23-6) = 7 dBm

High Channel: Transmit = 5.695 GHz 40MHz BW

Output power setting: 3

Port 1:

Maximum conducted output power = 3.99 dBm + 3 dB (MIMO)

= 6.99 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

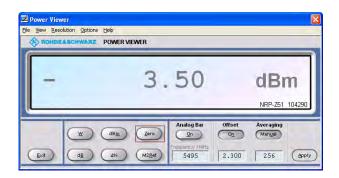
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm


Low Channel: Transmit = 5.495 GHz 20MHz BW

Output power setting: 20.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.50 dBm + 3 dB (MIMO) = -0.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

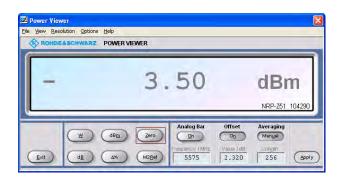
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm


Mid Channel: Transmit = 5.575 GHz 20MHz BW

Output power setting: 20.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.50 dBm + 3 dB (MIMO) = -0.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

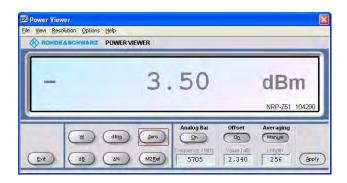
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm


High Channel: Transmit = 5.705 GHz 20MHz BW

Output power setting: 21.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.50 dBm + 3 dB (MIMO) = -0.50 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

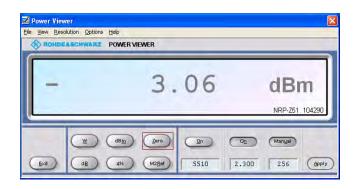
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm


Low Channel: Transmit = 5.510 GHz 40MHz BW

Output power setting: 20.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.06 dBm + 3 dB (MIMO) = -0.06 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

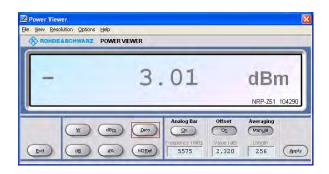
Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm


Mid Channel: Transmit = 5.575 GHz 40MHz BW

Output power setting: 21.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.01 dBm + 3 dB (MIMO) = -0.01 dBm

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Maximum conducted output power – Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

E)3) Measurement using an average power meter with a thermocouple detector

Limit: [15.407(a)(2)]: 24.0 dBm conducted.

Antenna Gain = 30 dBi

EUT Limit: 24-(30-6) = 0 dBm

High Channel: Transmit = 5.695 GHz 40MHz BW

Output power setting: 20.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

Maximum conducted output power = -3.02 dBm + 3 dB (MIMO) = -0.02 dBm

Company: Cambium Networks
Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix B – Measurement Data

B2.0 Peak Power Spectral Density – Conducted

Rule Section: Section 15.407(a)(2)

Test Procedure: FCC KDB 789033 D01 General UNII Test Procedures v01r03 – *Guidance for*

Compliance Testing of Unlicensed National Information Infrastructure (U-NII)

Devices - Part 15, Subpart E

Section F – Peak power spectral density (PPSD) Using method E(2)(b) SA-1 for power spectrum

Description: SPAN: set to encompass entire emission bandwidth

RBW = 1 MHz $VBW \ge 3 MHz$

Number of points $\geq 2 \times \text{Span/RBW}$

Sweep time: auto Detector = RMS

Sweep: trace average 200 sweeps in RMS mode Use peak search to find the peak of the spectrum

Limit: 11 dBm in any 1 MHz band

Limit shall be reduced by the amount in dB that the directional gain of the

antenna exceeds 6 dBi

Results: Passed

Notes: Measurements were taken for MCS15 OFDM modulation at the lowest, middle,

and highest channels of operation. EUT was set to transmit continuously with

100% duty cycle.

Tested output port 1 only as it was determined to be worst case from

previous testing of this device (original certification).

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

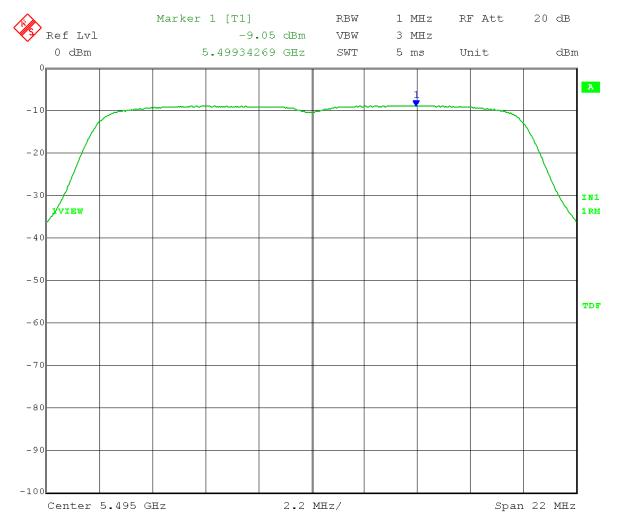
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

Low Channel: Transmit = 5.495 GHz 20MHz BW

Output power setting: 2.0

Port 1:

PPSD = -9.05 dBm/MHz + 3 dB (MIMO) = -6.05 dBm/MHz

Date: 2.APR.2014 09:35:30

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

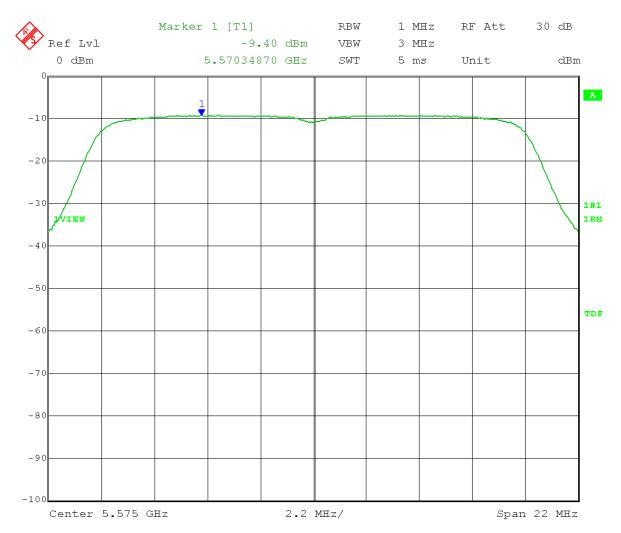
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

Mid Channel: Transmit = 5.575 GHz 20MHz BW

Output power setting: 3.0

Port 1:

PPSD = -9.40 dBm/MHz + 3 dB (MIMO) = -6.40 dBm/MHz

Date: 1.APR.2014 16:09:42

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

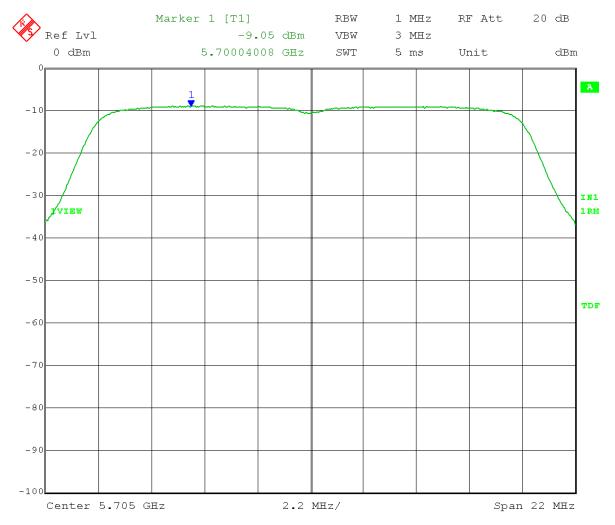
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

High Channel: Transmit = 5.705 GHz 20MHz BW

Output power setting: 3.5

Port 1:

PPSD = -9.05 dBm/MHz + 3 dB (MIMO) = -6.05 dBm/MHz

Date: 2.APR.2014 09:38:17

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

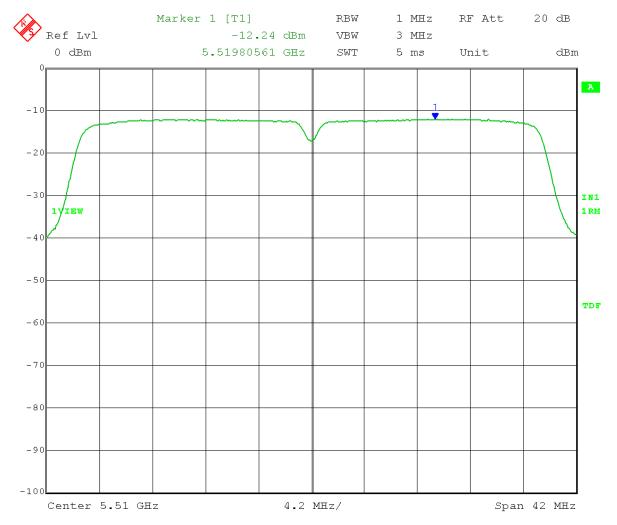
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

Low Channel: Transmit = 5.510 GHz 40MHz BW

Output power setting: 2.0

Port 1:

PPSD = -12.24 dBm/MHz + 3 dB (MIMO) = -9.24 dBm/MHz

Date: 2.APR.2014 09:49:28

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

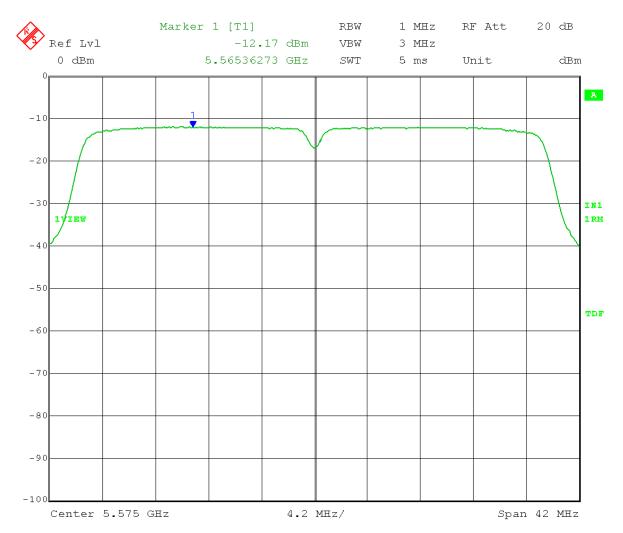
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

Mid Channel: Transmit = 5.575 GHz 40MHz BW

Output power setting: 3.0

Port 1:

PPSD = -12.17 dBm/MHz + 3 dB (MIMO) = -9.17 dBm/MHz

Date: 2.APR.2014 09:46:14

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

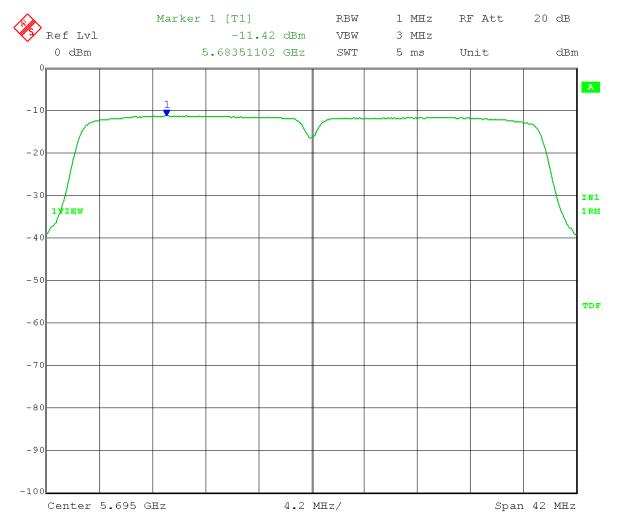
Operator: Craig

Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 17 dB (amount antenna gain exceeds 6 dBi) = -6 dBm/MHzRBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces


Sweep Time = Auto

High Channel: Transmit = 5.695 GHz 40MHz BW

Output power setting: 3.0

Port 1:

PPSD = -11.42 dBm/MHz + 3 dB (MIMO) = -8.42 dBm/MHz

Date: 2.APR.2014 09:52:01

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

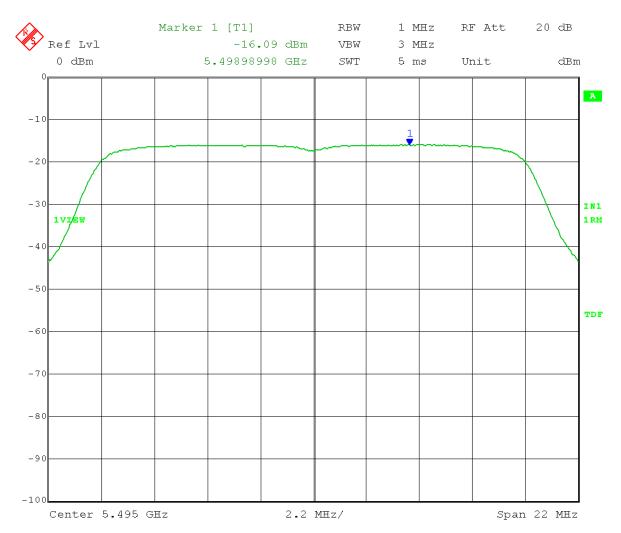
F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces

Sweep Time = Auto


Low Channel: Transmit = 5.495 GHz 20MHz BW

Output power setting: 20.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -16.09 dBm/MHz + 3 dB (MIMO) = -13.09 dBm/MHz

Date: 2.APR.2014 13:54:30

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

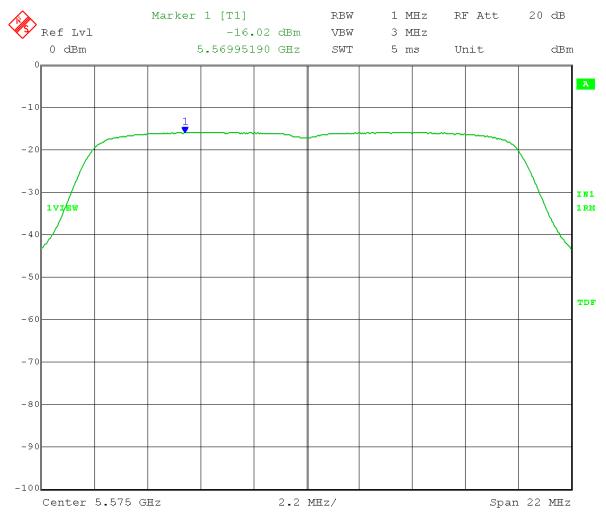
F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces

Sweep Time = Auto


Mid Channel: Transmit = 5.575 GHz 20MHz BW

Output power setting: 20.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -16.02 dBm/MHz + 3 dB (MIMO) = -13.02 dBm/MHz

Date: 2.APR.2014 13:52:09

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

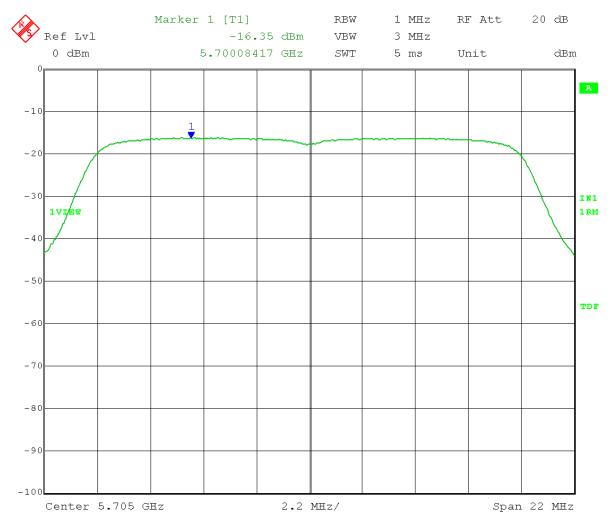
F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces

Sweep Time = Auto


High Channel: Transmit = 5.705 GHz 20MHz BW

Output power setting: 21.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -16.35 dBm/MHz + 3 dB (MIMO) = -13.35 dBm/MHz

Date: 2.APR.2014 13:56:51

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

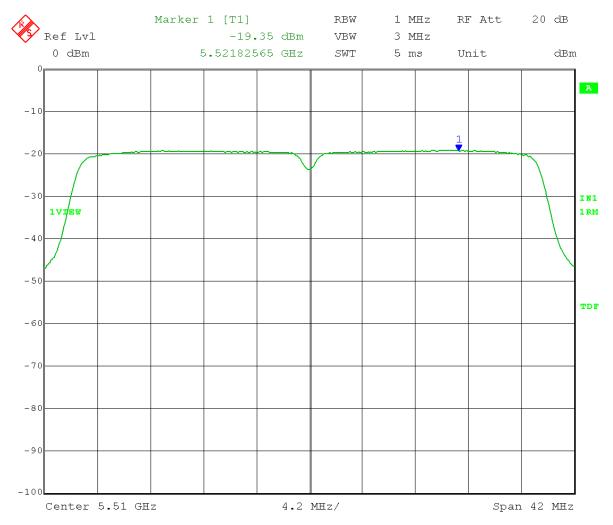
Comment: FCC UNII operating under 15.407

F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz
Detector = RMS Trace = average 200 traces

Sweep Time = Auto


Low Channel: Transmit = 5.510 GHz 40MHz BW

Output power setting: 20.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -19.35 dBm/MHz + 3 dB (MIMO) = -16.35 dBm/MHz

Date: 2.APR.2014 14:01:44

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

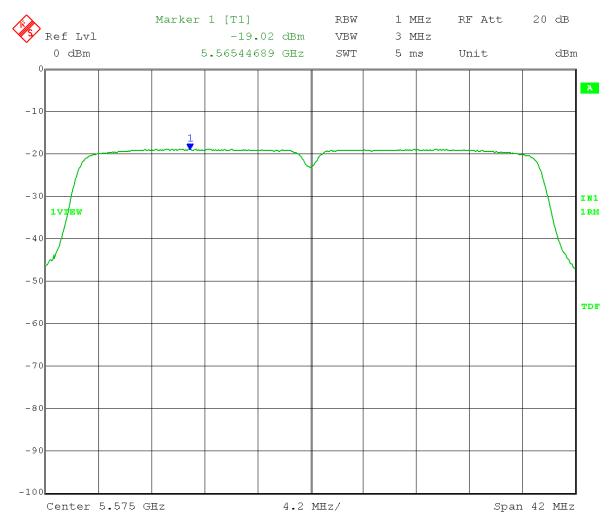
F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces

Sweep Time = Auto


Mid Channel: Transmit = 5.575 GHz 40MHz BW

Output power setting: 21.0*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -19.02 dBm/MHz + 3 dB (MIMO) = -16.02 dBm/MHz

Date: 2.APR.2014 14:03:34

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Test: Peak Power Spectral Density - Conducted

Operator: Craig B

Comment: FCC UNII operating under 15.407

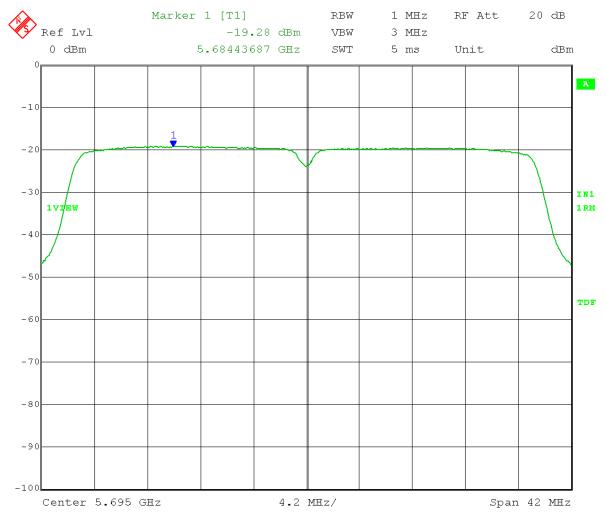
F) PPSD – using E)2 method SA-1 Limit:[15.407(a)(2)]: 11 dBm/MHz

11 - 24 dB (amount antenna gain exceeds 6 dBi) = -13 dBm/MHz

RBW = 1 MHz VBW = 3 MHz

Detector = RMS Trace = average 200 traces

Sweep Time = Auto


High Channel: Transmit = 5.695 GHz 40MHz BW

Output power setting: 20.5*

*Software cal table was modified so that power setting 24.0 = 0.0

Port 1:

PPSD = -19.28 dBm/MHz + 3 dB (MIMO) = -16.28 dBm/MHz

Date: 2.APR.2014 14:05:03

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix B – Measurement Data

B3.0 Unwanted Emission Levels – Radiated Band-Edge with antenna connected

Rule Section: Sections 15.407(b)(3) and 15.407(b)(5)

Test Procedure: FCC KDB 789033 D01 General UNII Test Procedures v01r03 – *Guidance for*

Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices –

Part 15, Subpart E

Section H – Unwanted emission levels

Section H(1) – Unwanted emissions in the restricted bands

Section H(2) – Unwanted emissions that fall outside of the restricted bands Section H(3) – General Requirements for Unwanted Emissions Measurements

Description: Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-

band emission that complies with both the average and peak limits of 15.209 is not

required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit."

Measure the band-edge emission level using the following settings

PEAK measurements:

RBW = 1 MHz

VBW > 3 MHz

 $\frac{1}{1}$ Detector = peak

Sweep time = auto

Trace mode = max hold

AVERAGE measurements:

RBW = 1 MHz

 $VBW \ge 3 MHz$

Detector = AVERAGE

Sweep time = auto

Trace mode = max hold

Limit: Peak and Average limits of 15.209 were used instead of the -27 dBm/MHz limit of FCC

Part 15.407(b)(3).

Results: Passed

Notes: Measurements were taken for MCS15 OFDM modulation at the lowest and highest channels of

operation. EUT was set to transmit continuously with 100% duty cycle. Both transmit chains

were active.

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

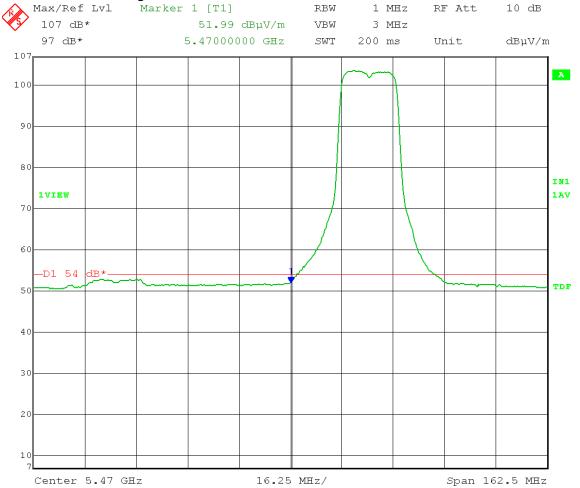
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

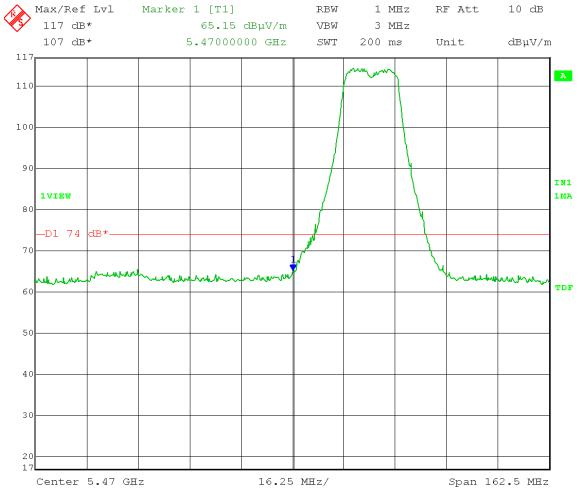
(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

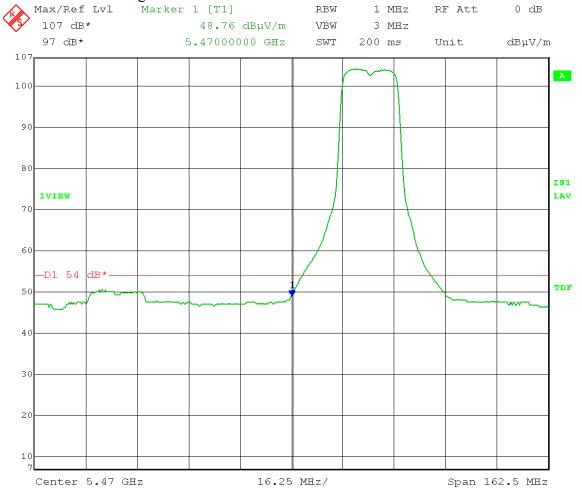
Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

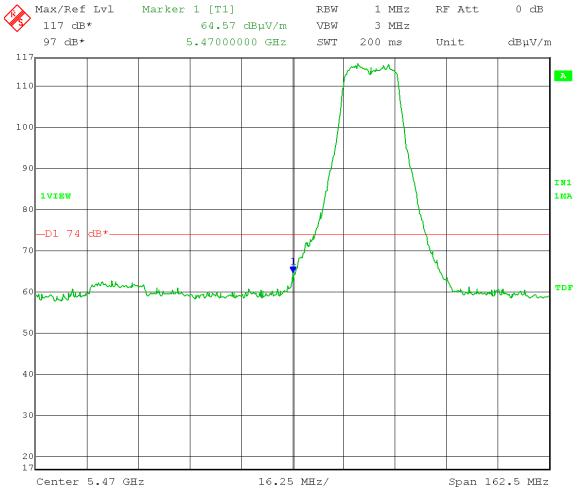
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

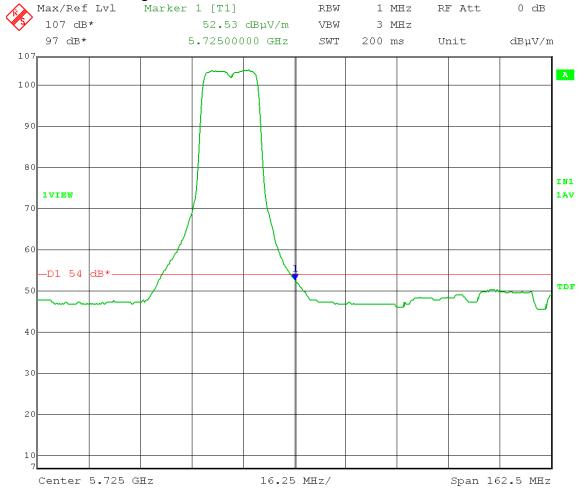
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

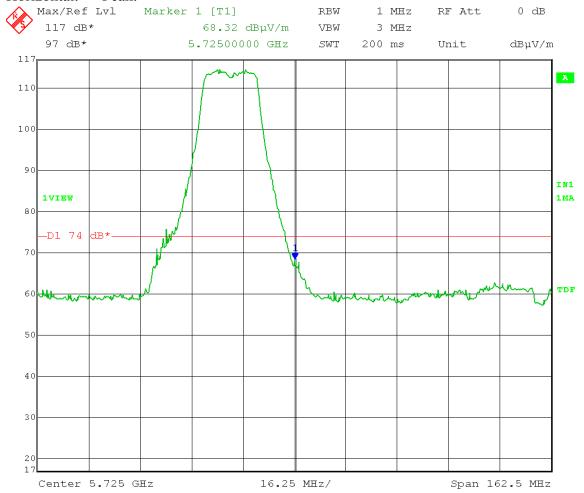
(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Peak:

Date: 11.APR.2014 10:48:55

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

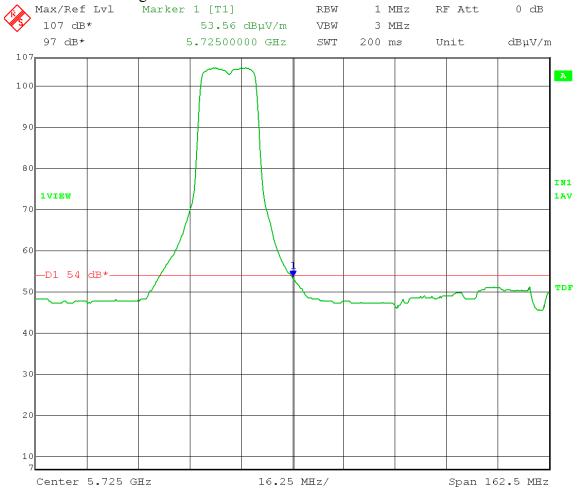
Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

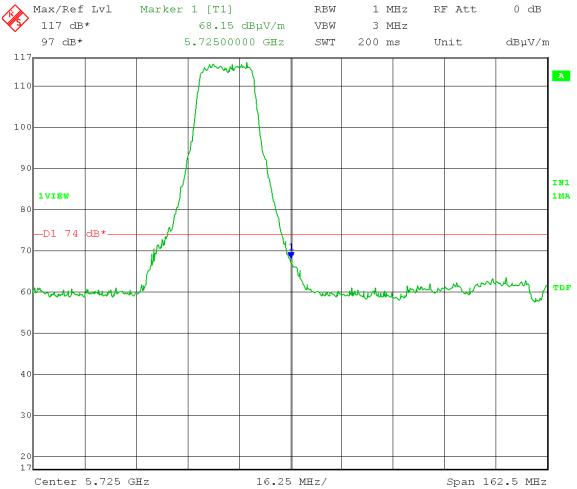
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Peak:

Date: 11.APR.2014 11:20:10

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

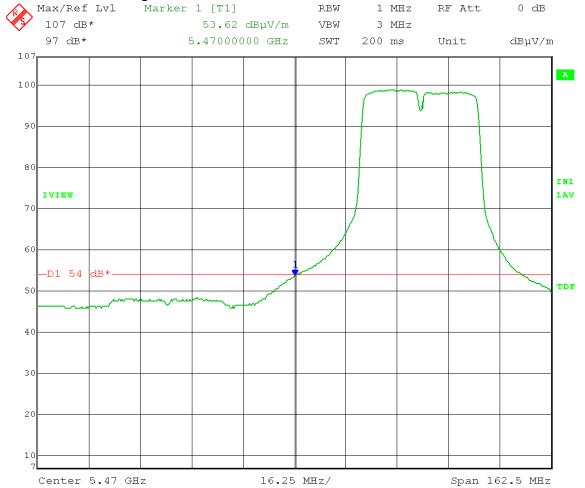
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 6.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

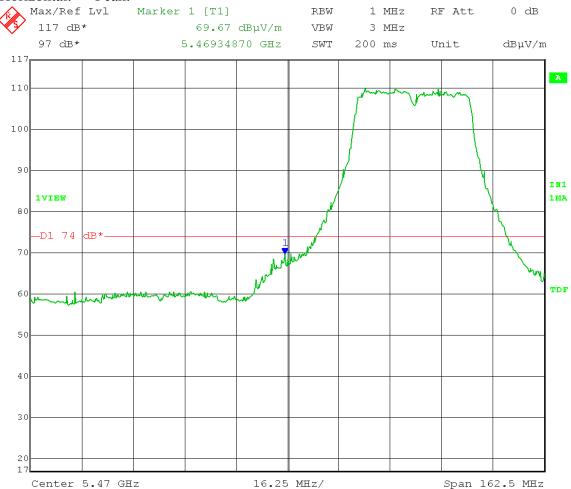
(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 6.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

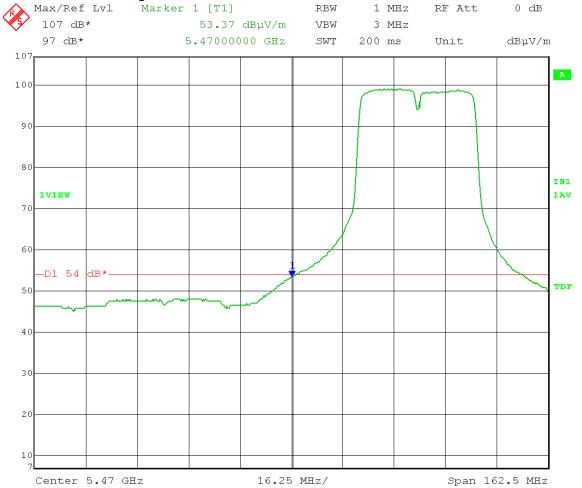
Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 6.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

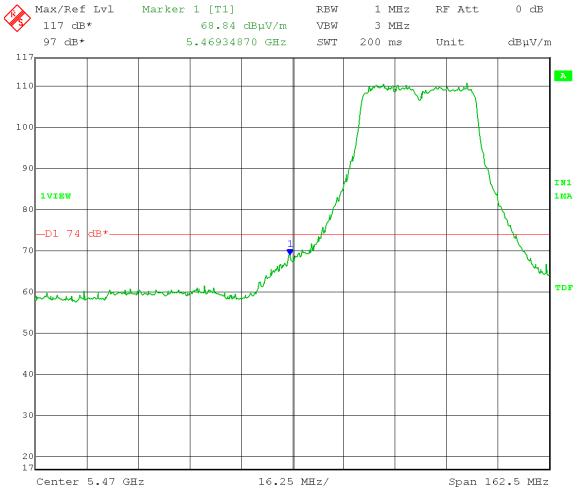
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 6.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

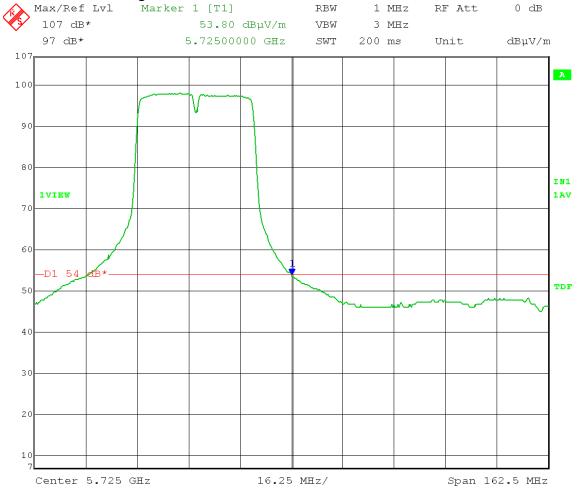
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 5.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

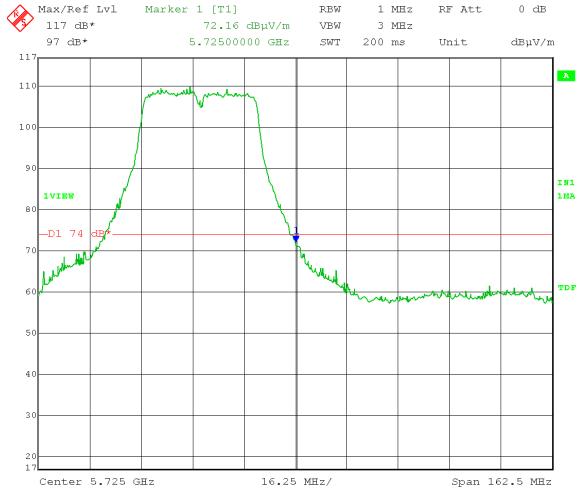
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 5.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

Operator: Craig B

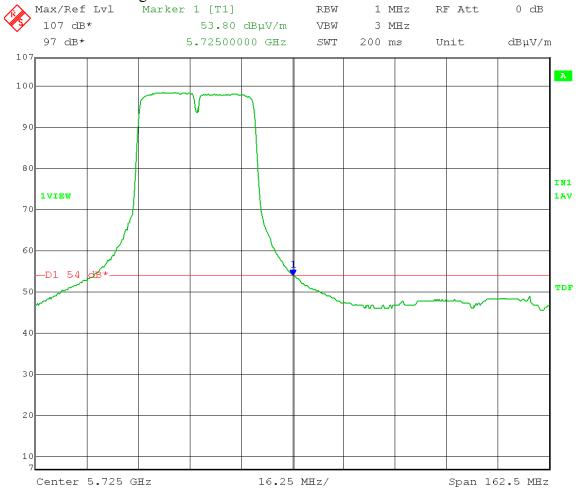
Comment: High Channel: Frequency – 5695 MHz

Output power setting: 5.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 23 dBi Panel antenna

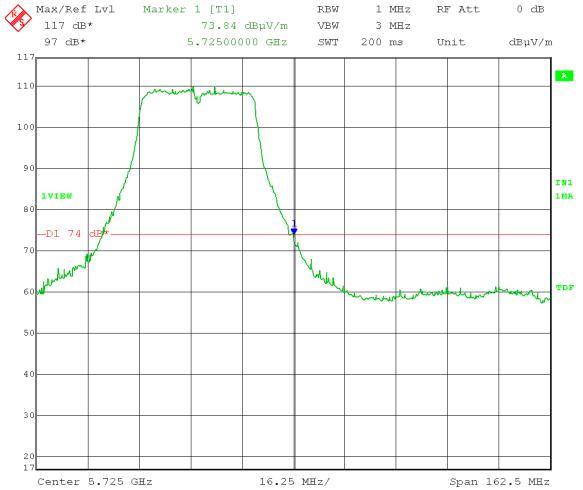
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 5.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17

dBm/MHz peak emission limit."

Vertical: Peak:

Date: 11.APR.2014 11:25:10

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

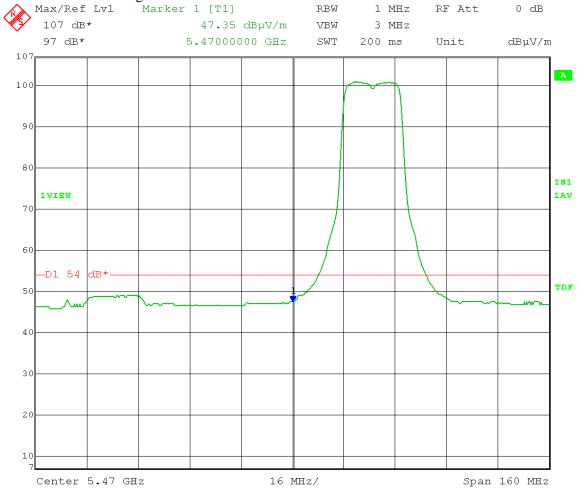
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software call table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

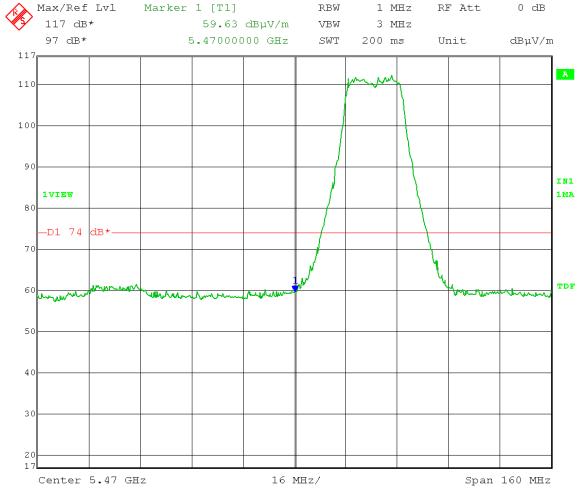
(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Peak:

Date: 14.APR.2014 10:59:51

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

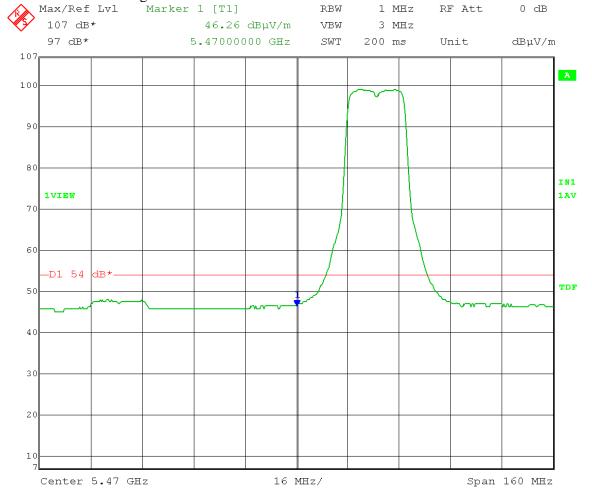
Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

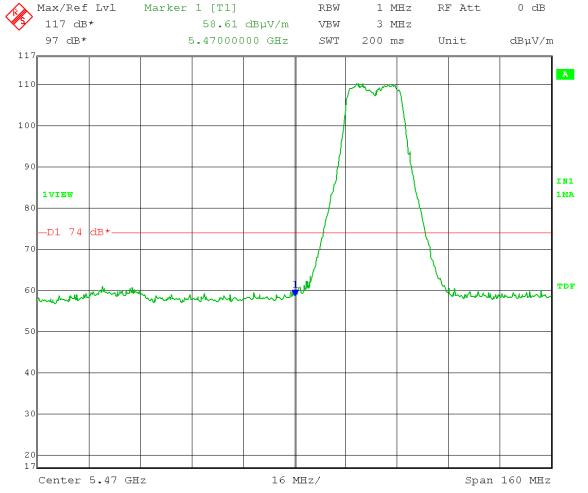
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

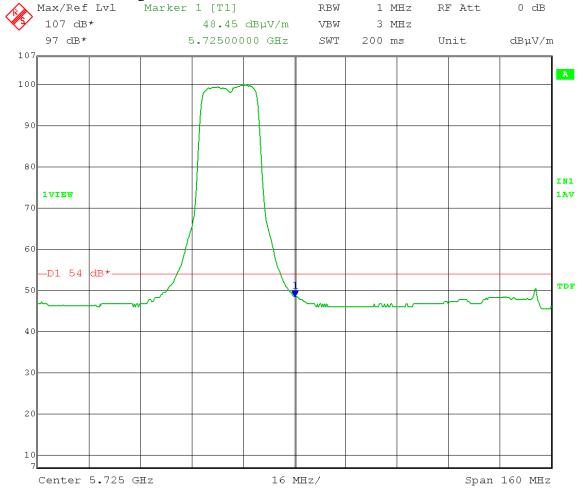
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBμV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Average:

Date: 14.APR.2014 12:44:05

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

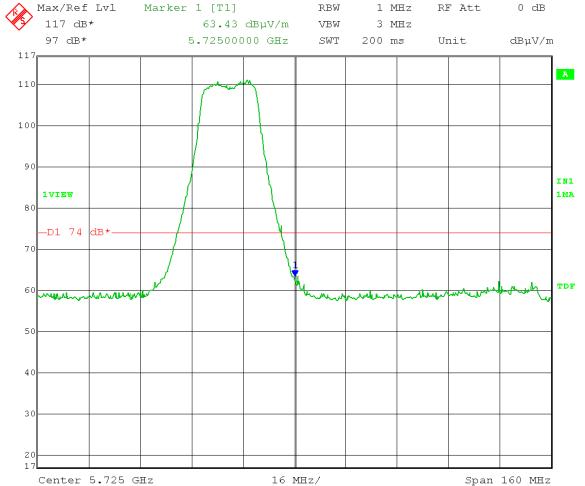
(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBμV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

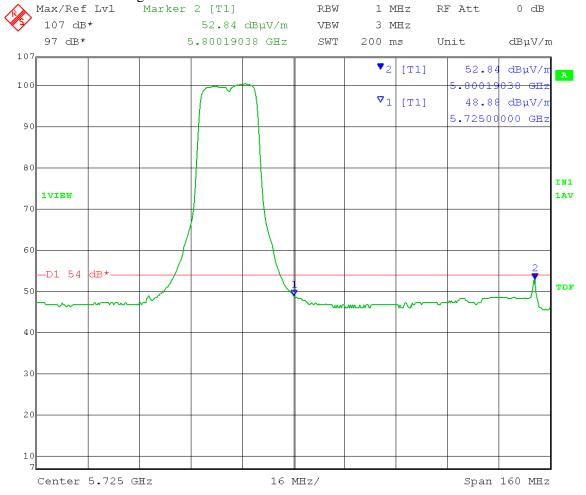
Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software call table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Vertical: Average:

Date: 14.APR.2014 12:57:24

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

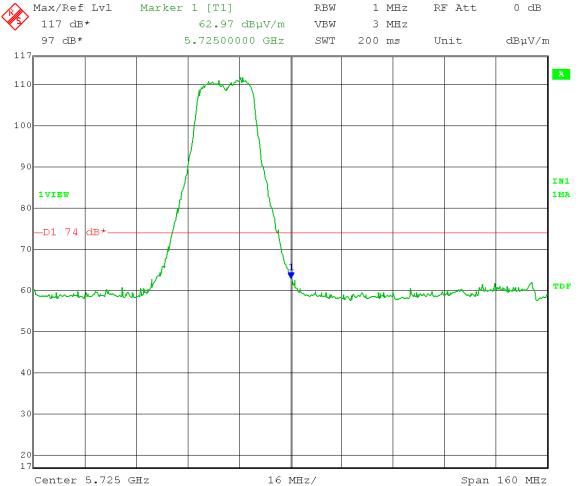
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Date: 14.APR.2014 12:58:14

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

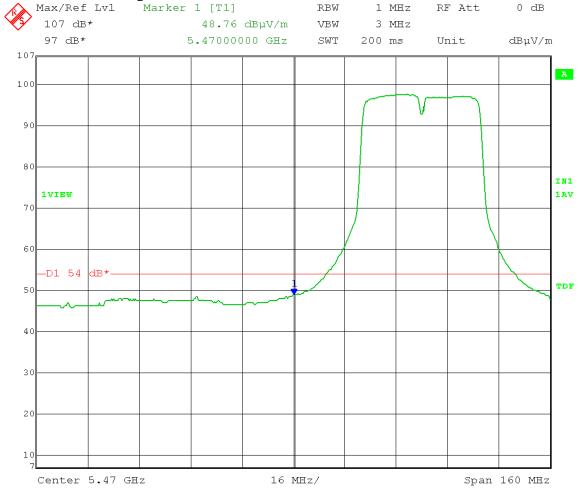
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Average:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

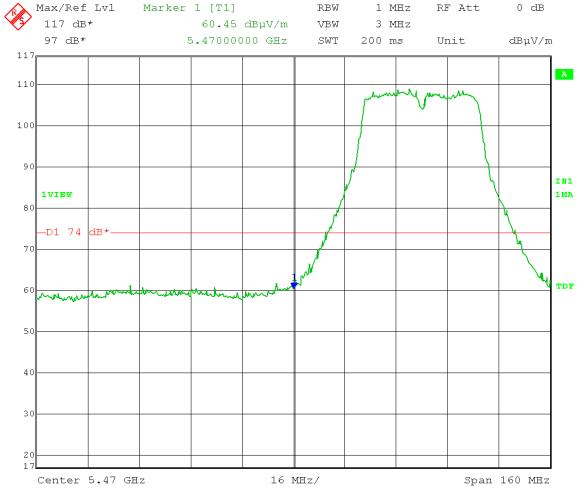
(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Peak:

Date: 14.APR.2014 11:03:41

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

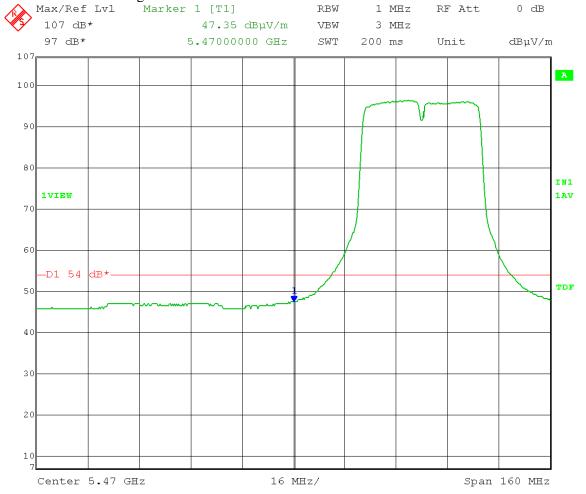
Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.47 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Date: 14.APR.2014 13:21:09

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Lower Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

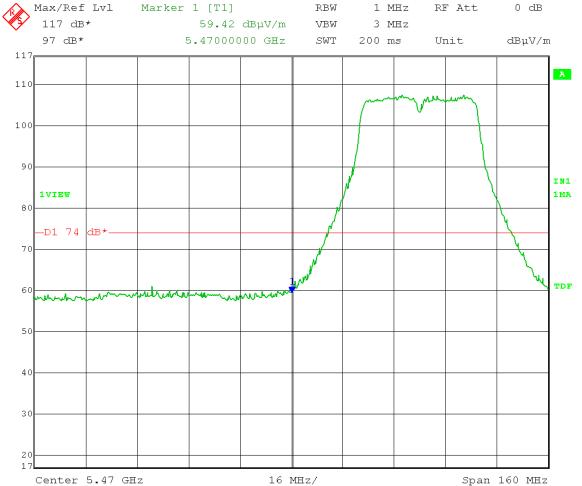
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.47 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Date: 14.APR.2014 13:21:54

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

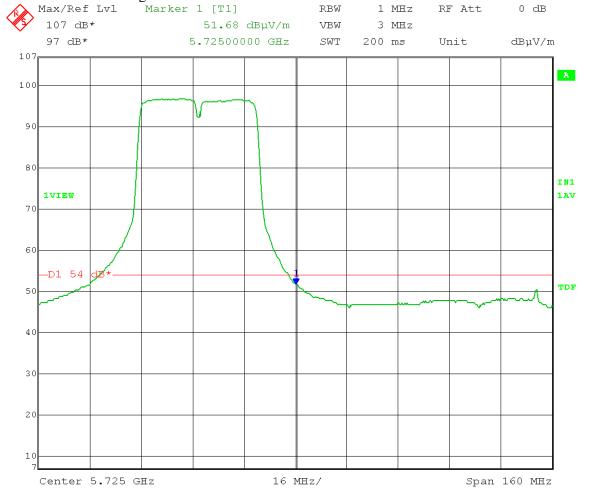
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Horizontal: Average:

Date: 14.APR.2014 12:47:32

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

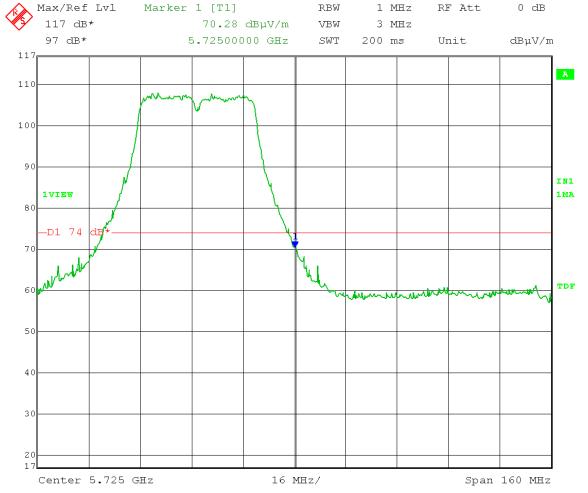
(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Date: 14.APR.2014 12:48:11

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

Operator: Craig B

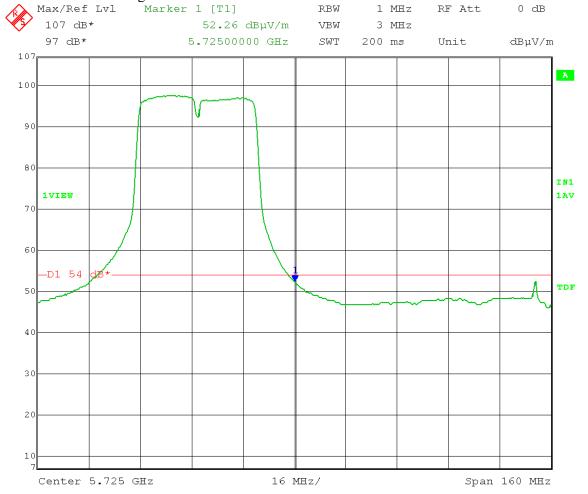
Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Operating Band-Edge Frequency: 5.725 GHz

Part 15.209 limit: 54 dBµV/m AVERAGE at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Date: 14.APR.2014 12:53:06

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Upper Operating Band-Edge Compliance - Radiated

(FCC 15.407(b)(3) - With 30 dBi Dish antenna

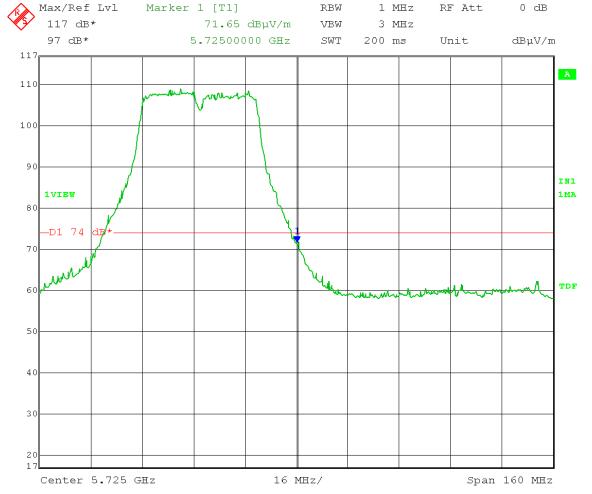
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Operating Band-Edge Frequency: 5.725 GHz Part 15.209 limit: 74 dBµV/m PEAK at 3 meters

Per 789033 D01 General UNII Test Procedures v01r03, section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak

emission limit."

Vertical: Peak:

Date: 14.APR.2014 12:54:22

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

Appendix B – Measurement Data

B4.0 Unwanted Emission Levels - Radiated with antenna connected

Rule Section: Sections 15.407(b)(3) and 15.407(b)(6)

Test Procedure: FCC KDB 789033 D01 General UNII Test Procedures v01r03 - Guidance for

Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices –

Part 15, Subpart E

Section H(1) – Unwanted emissions in the restricted bands

Section H(2) – Unwanted emissions that fall outside of the restricted bands Section H(3) – General Requirements for Unwanted Emissions Measurements

Below 1000 MHz

Detector = quasi-peak

Peak measurements above 1000 MHz

RBW = 1 MHz

 $VBW \ge 3 MHz$

Detector = peak

Sweep time = auto

Trace mode = max hold

Average measurements above 1000 MHz

RBW = 1 MHz

 $VBW \ge 3 MHz$

Detector = AVERAGE

Sweep time = auto

Trace mode = max hold

Limits: Outside restricted bands: Peak EIRP shall not exceed -27 dBm/MHz

Inside restricted bands: Peak and Average limits of FCC Part 15.209

Per Section H(2)(c)(i): "an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz

or -17 dBm/MHz peak emission limit."

Results: Passed

Notes: Both transmit chains active during test.

Measurements were taken for MCS15 OFDM modulation at the lowest, middle, and highest channels of

operation. EUT was set to transmit continuously with 100% duty cycle.

FCC Part 15.209

Electric Field Strength

EUT: ePMP STA 5.2, 5.4, 5.7 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 32% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Restricted Band emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 28.5; with 30 dBi Dish & 23 dBi Panel antennas

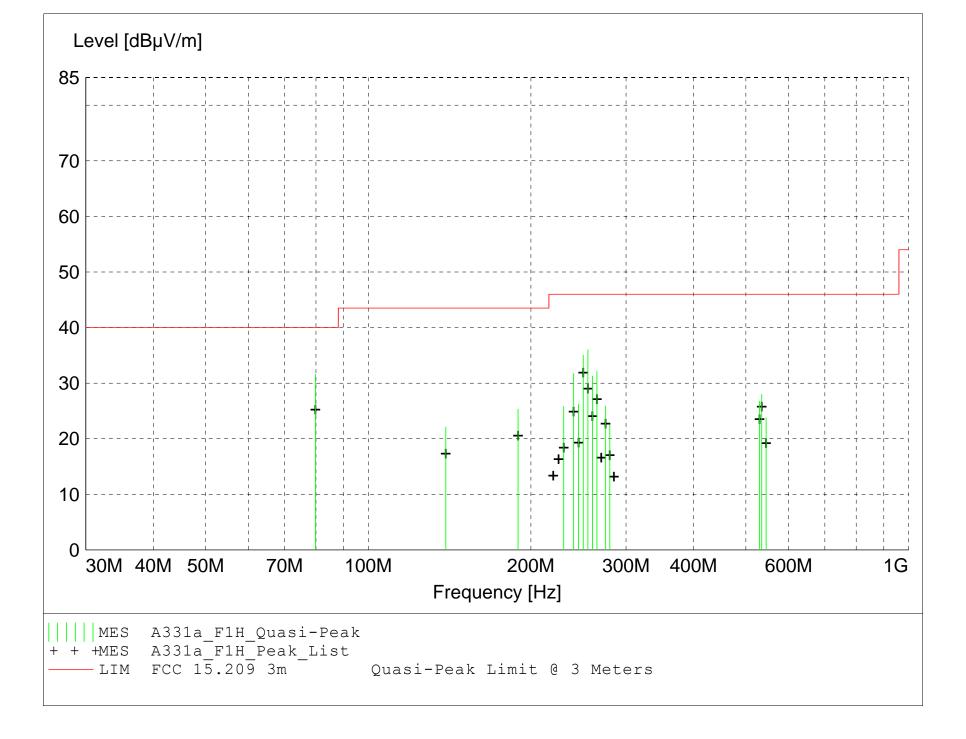
Date: 03-31-2014

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$


Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A331a_F1H_Final"

3/31/2014 11:23AM										
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
79.850000	48.80	6.07	-23.3	31.6	40.0	8.4	2.70	90	QUASI-PEAK	None
254.970000	45.05	12.70	-21.7	36.0	46.0	10.0	3.20	170	QUASI-PEAK	None
249.980000	44.41	12.40	-21.8	35.1	46.0	10.9	1.20	315	QUASI-PEAK	None
264.970000	40.52	13.20	-21.6	32.2	46.0	13.8	2.50	160	QUASI-PEAK	None
239.980000	41.53	12.00	-21.7	31.8	46.0	14.2	3.00	270	QUASI-PEAK	None
259.970000	39.98	13.00	-21.7	31.3	46.0	14.7	2.60	170	QUASI-PEAK	None
534.970000	29.27	18.40	-19.7	28.0	46.0	18.0	1.00	260	QUASI-PEAK	None
189.325000	30.25	17.33	-22.3	25.3	43.5	18.2	3.20	225	QUASI-PEAK	None
529.970000	28.13	18.40	-19.8	26.7	46.0	19.3	1.00	270	QUASI-PEAK	None
244.970000	35.80	12.20	-21.7	26.3	46.0	19.7	3.00	270	QUASI-PEAK	None
274.970000	34.09	13.40	-21.6	25.9	46.0	20.1	2.00	160	QUASI-PEAK	None
229.970000	36.28	11.40	-21.9	25.8	46.0	20.2	3.10	90	QUASI-PEAK	None
139.165000	32.55	12.28	-22.7	22.1	43.5	21.4	1.90	270	QUASI-PEAK	None
544.970000	25.34	18.20	-19.8	23.8	46.0	22.2	1.10	265	QUASI-PEAK	None
279.970000	30.54	13.50	-21.5	22.5	46.0	23.5	2.00	170	QUASI-PEAK	None

FCC Part 15.209

Electric Field Strength

EUT: ePMP STA 5.2, 5.4, 5.7 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 68 deg. F; 32% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Restricted Band emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 28.5; with 30 dBi Dish & 23 dBi Panel antennas

Date: 03-31-2014

TEXT: "Vert 3 meters"

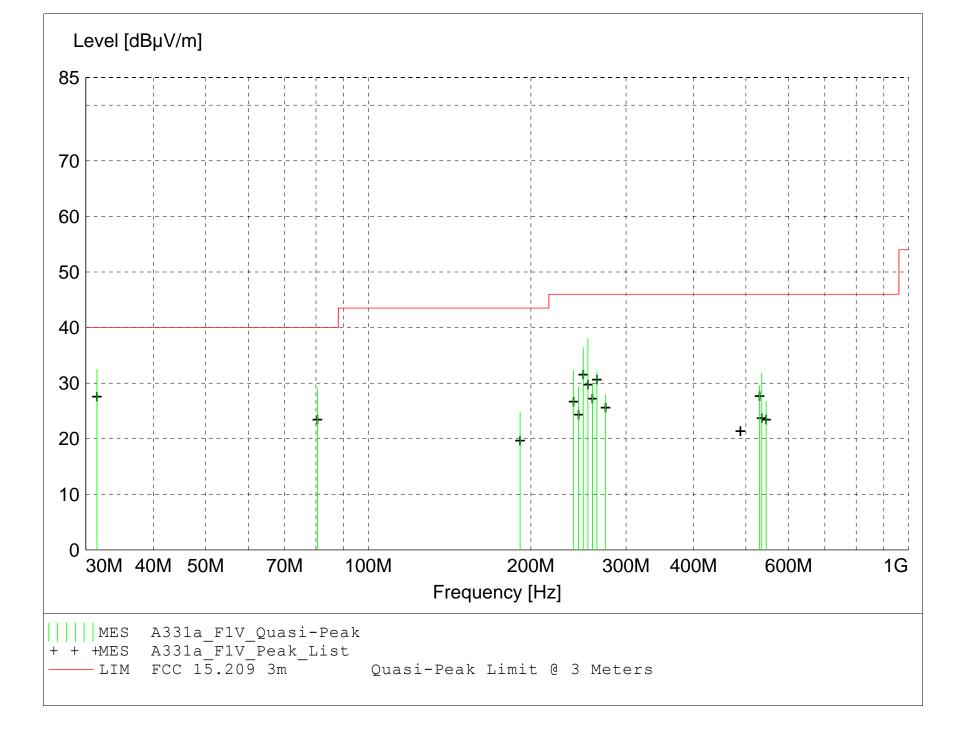
Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A331a_F1V_Final"

3/31/2014 11:12AM										
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
31.470000	45.34	11.25	-24.1	32.4	40.0	7.6	1.00	350	OUASI-PEAK	None
254.980000	47.06	12.70	-21.7	38.0	46.0	8.0	1.50	180	QUASI-PEAK	None
249.980000	45.74	12.40	-21.8	36.4	46.0	9.6	1.60	340	QUASI-PEAK	None
80.525000	46.15	6.15	-23.3	29.0	40.0	11.0	1.00	315	QUASI-PEAK	None
239.970000	41.97	12.00	-21.7	32.2	46.0	13.8	1.60	330	QUASI-PEAK	None
264.970000	40.39	13.20	-21.6	32.0	46.0	14.0	1.30	180	QUASI-PEAK	None
534.970000	33.09	18.40	-19.7	31.8	46.0	14.2	1.30	225	QUASI-PEAK	None
259.980000	38.79	13.00	-21.7	30.1	46.0	15.9	1.50	180	QUASI-PEAK	None
529.970000	30.92	18.40	-19.8	29.5	46.0	16.5	2.00	225	QUASI-PEAK	None
244.970000	38.87	12.20	-21.7	29.3	46.0	16.7	1.60	340	QUASI-PEAK	None
274.970000	36.05	13.40	-21.6	27.9	46.0	18.1	1.30	180	QUASI-PEAK	None
191.025000	29.72	17.30	-22.2	24.8	43.5	18.7	1.00	170	QUASI-PEAK	None
544.970000	28.24	18.20	-19.8	26.7	46.0	19.3	1.90	225	QUASI-PEAK	None

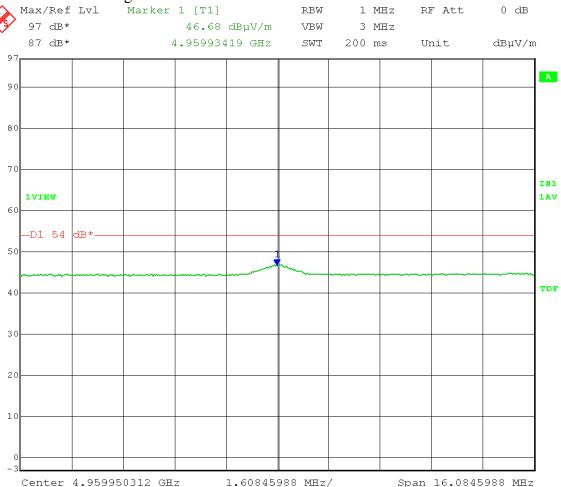
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz


Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:16:01

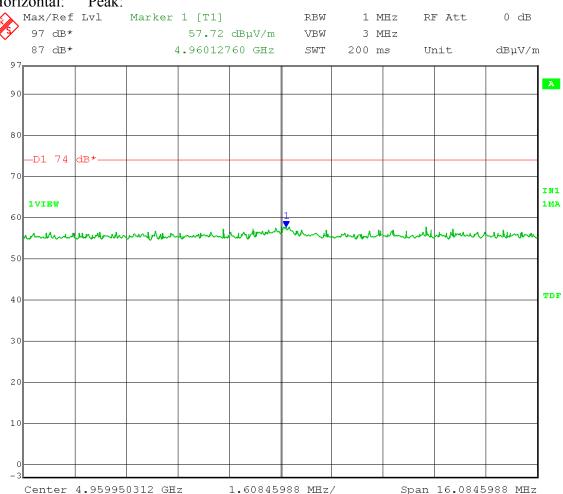
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz


Output power setting: 8.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:16:26

Company: Cambium Networks

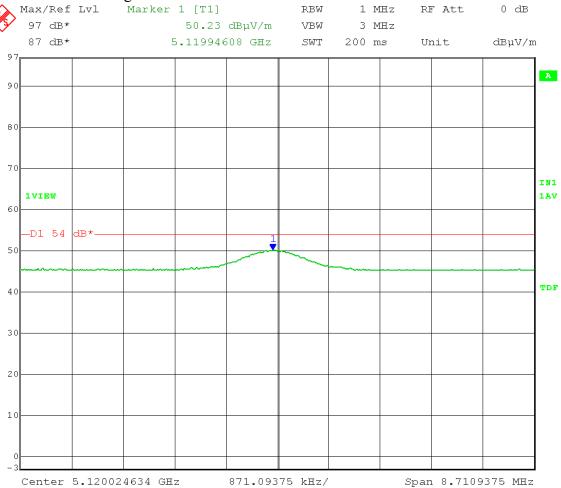
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:32:04

Company: Cambium Networks

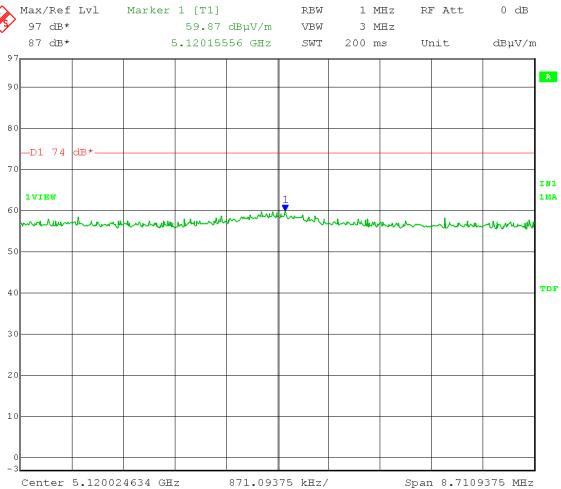
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 8.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:32:40

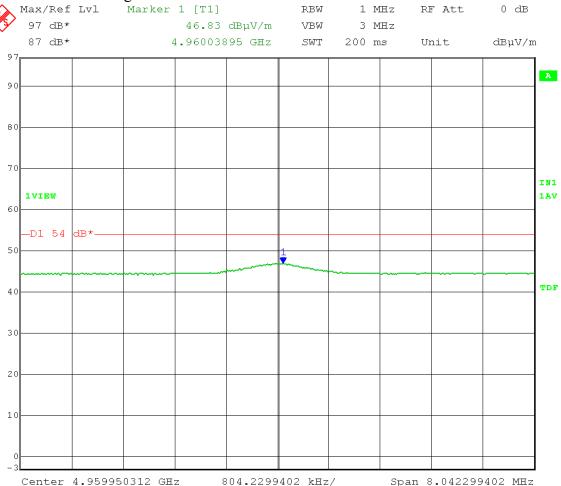
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 9.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:18:10

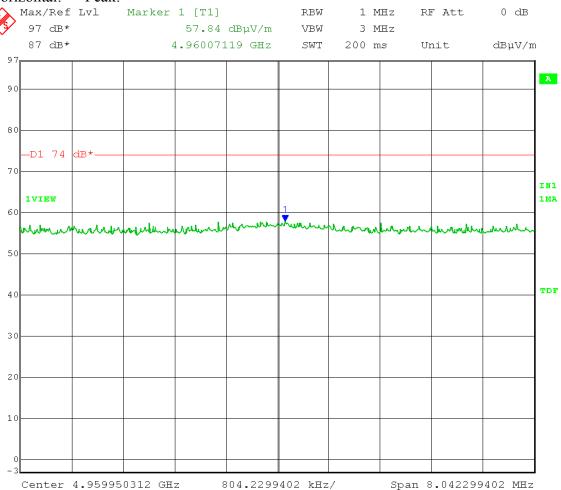
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 9.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:18:33

Company: Cambium Networks

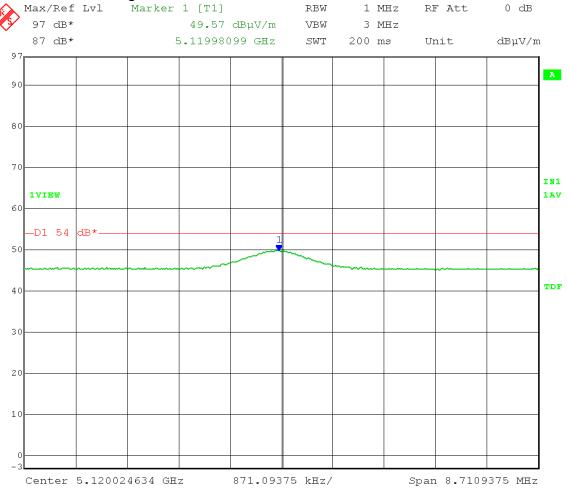
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 9.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:29:49

Company: Cambium Networks

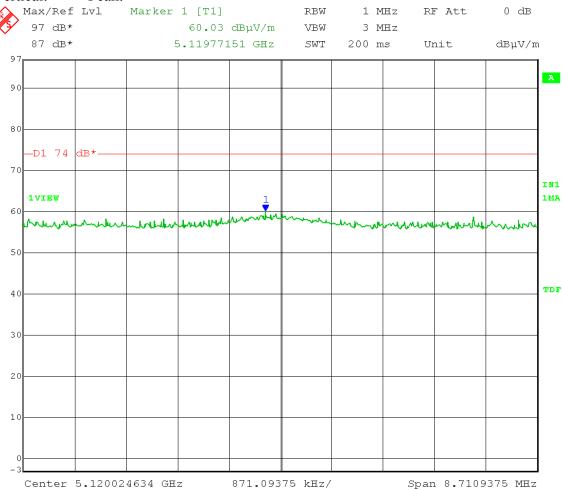
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 9.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:30:26

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:13:46

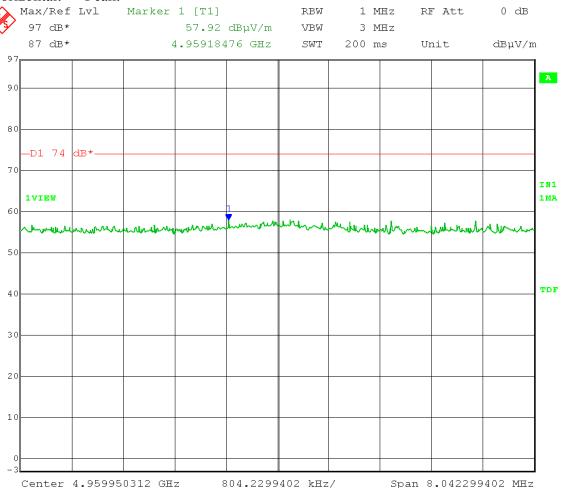
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz


Output power setting: 9.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:14:11

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:34:30

Company: Cambium Networks

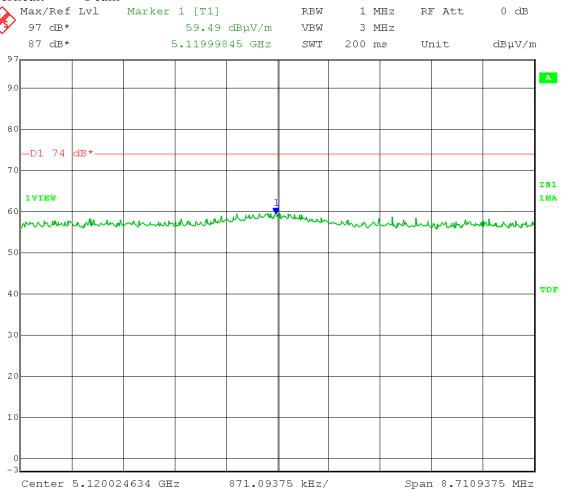
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 9.5 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:34:55

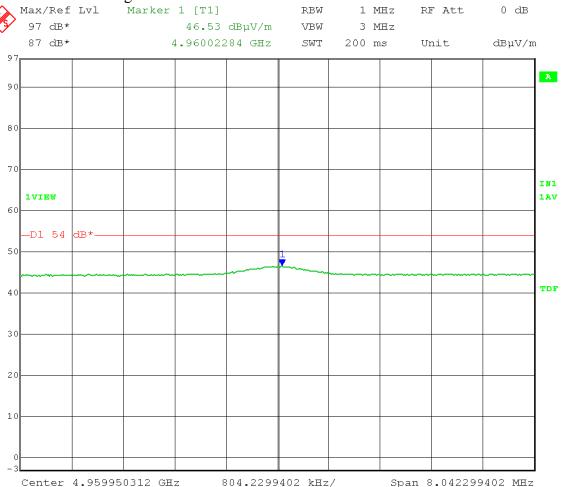
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz


Output power setting: 7.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:22:29

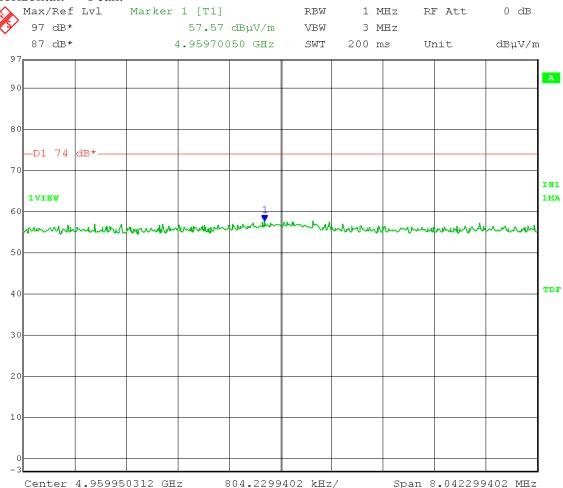
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz


Output power setting: 7.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:22:51

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 7.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:39:57

Company: Cambium Networks

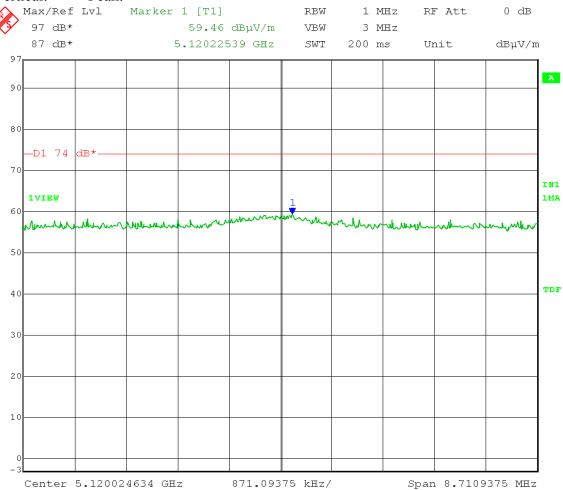
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 7.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:40:21

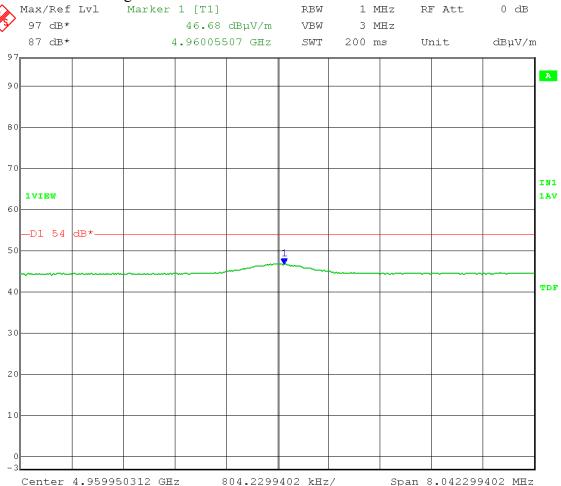
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 9.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:25:02

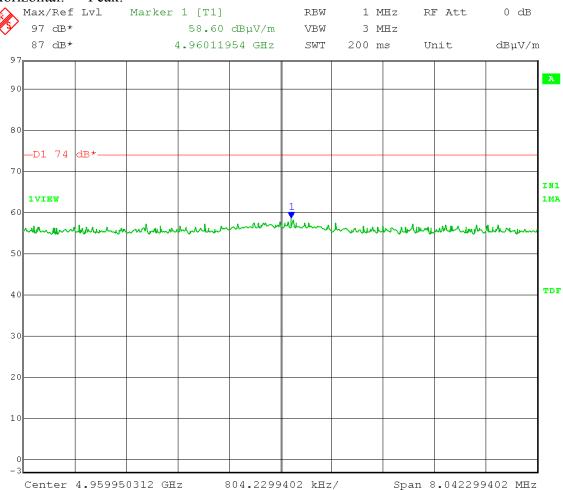
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 9.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:25:29

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 9.0 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:42:23

Company: Cambium Networks

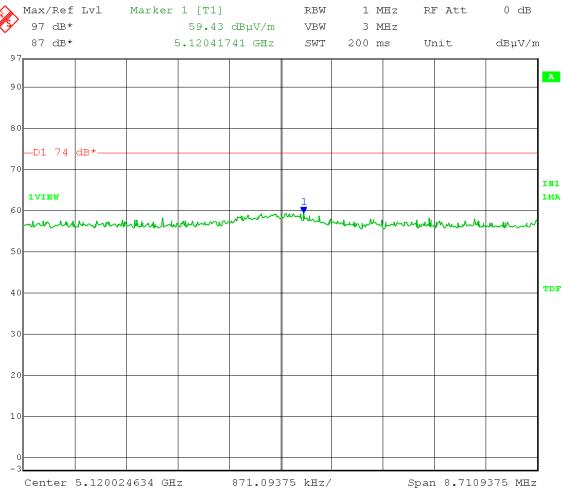
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 9.0 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:42:51

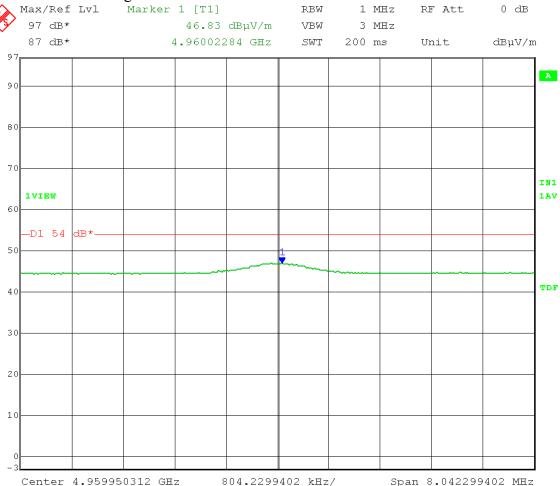
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz


Output power setting: 7.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 09:20:56

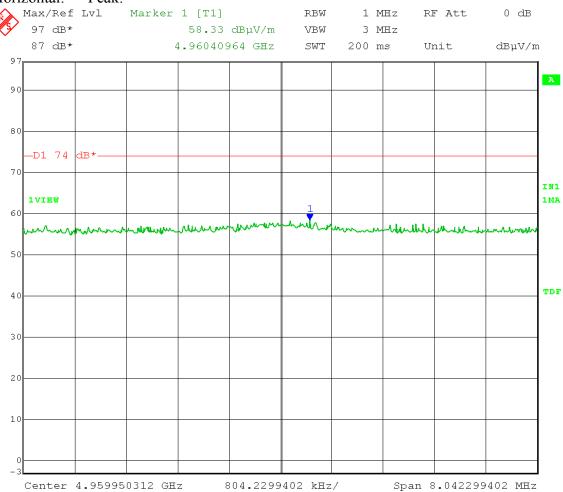
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz


Output power setting: 7.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 09:21:20

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 7.5 on both chains

with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters

Vertical: Average:

Date: 11.APR.2014 08:37:27

Company: Cambium Networks

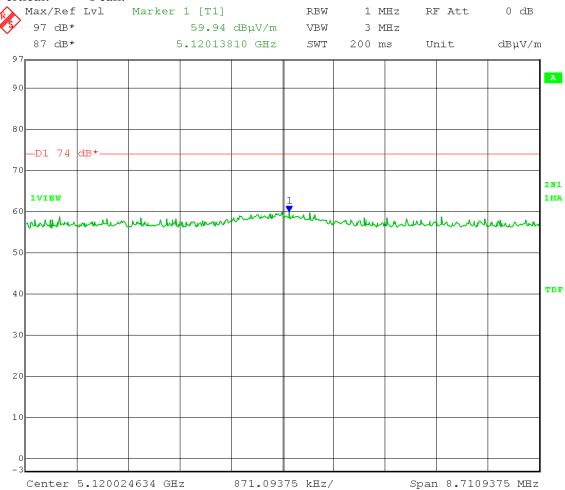
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 7.5 on both chains


with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 11.APR.2014 08:37:56

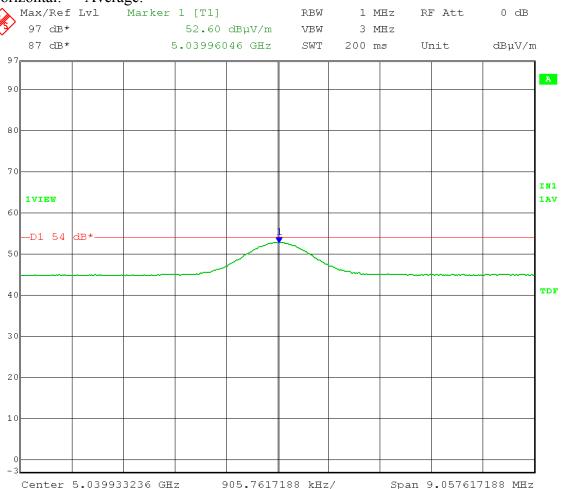
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz


Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 15:41:47

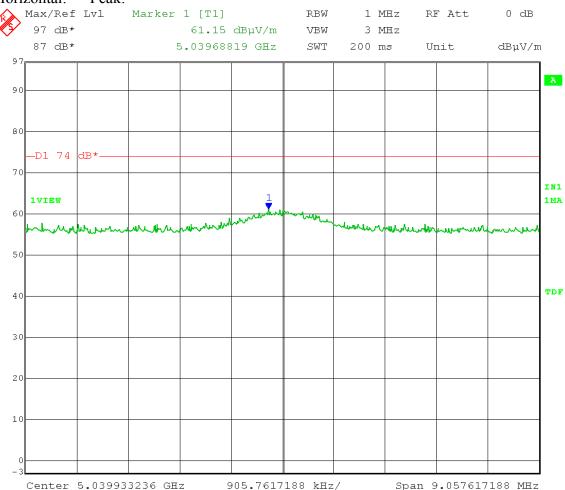
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz


Output power setting: 26.0^* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 15:42:21

Company: Cambium Networks

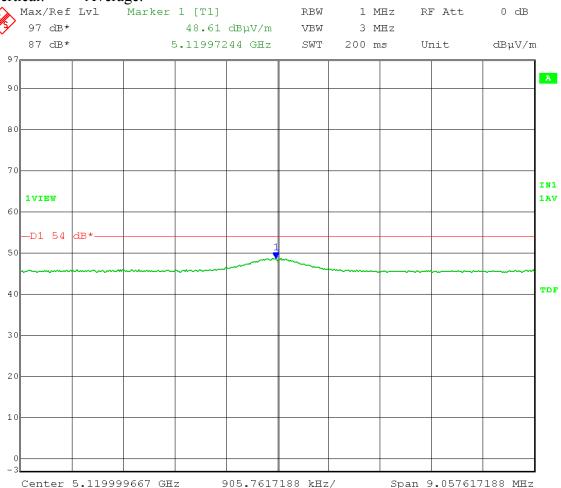
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 08:51:31

Company: Cambium Networks

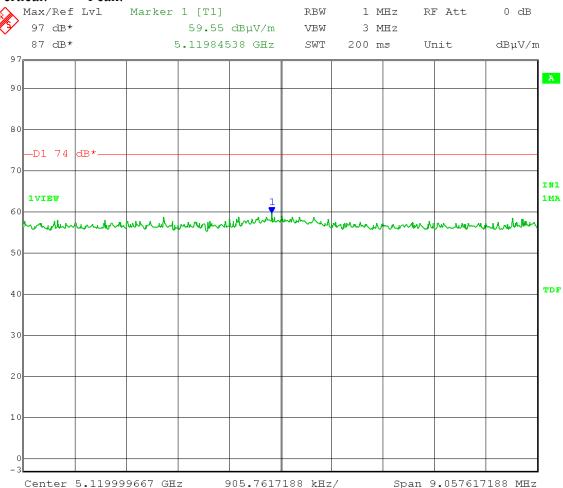
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.5^* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 08:51:54

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 26.5^* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 15:48:41

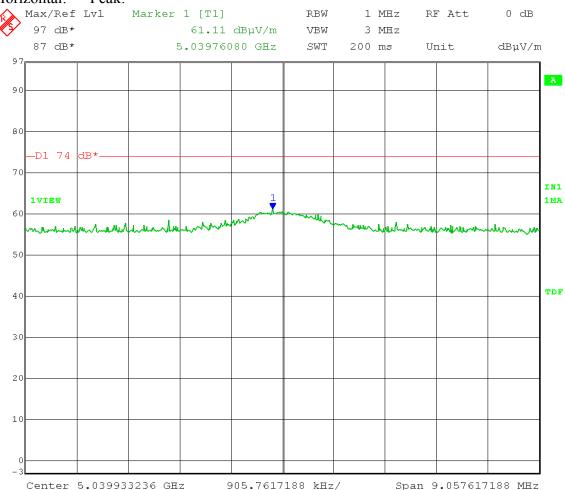
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 26.5^* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 15:49:09

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 26.5^* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 08:47:42

Company: Cambium Networks

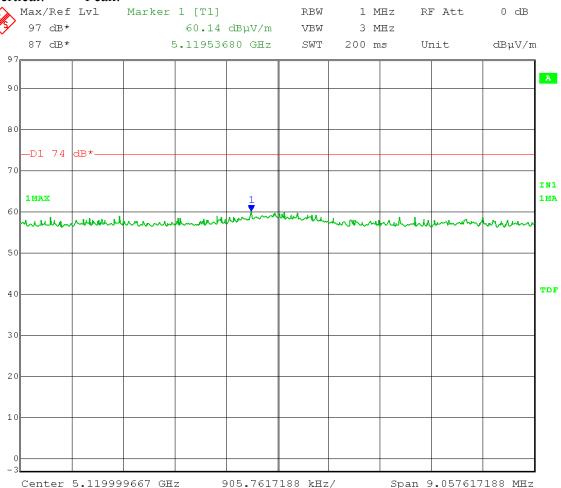
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 26.5^* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 08:48:11

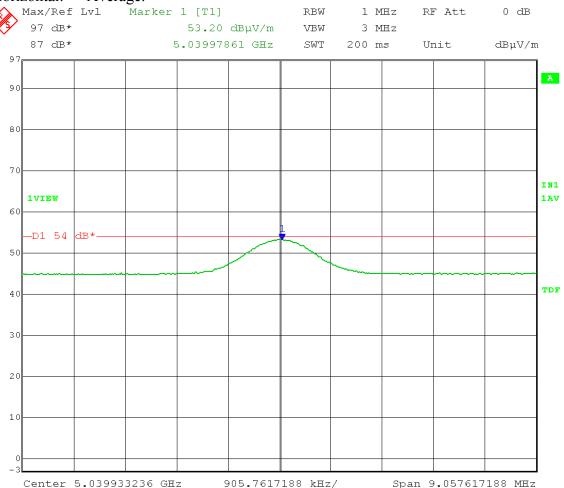
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz


Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 11.APR.2014 15:45:44

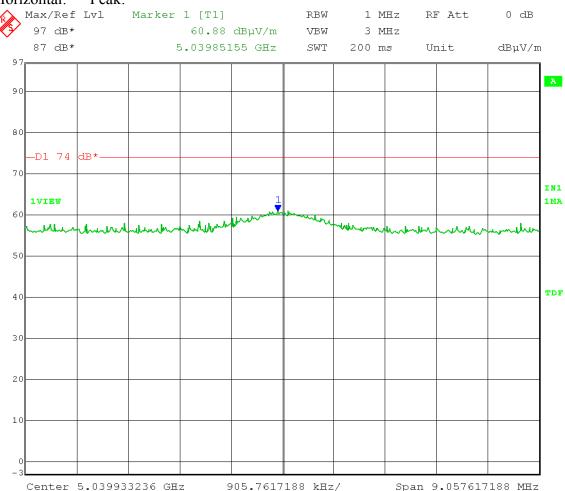
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz


Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 11.APR.2014 15:46:14

Company: Cambium Networks

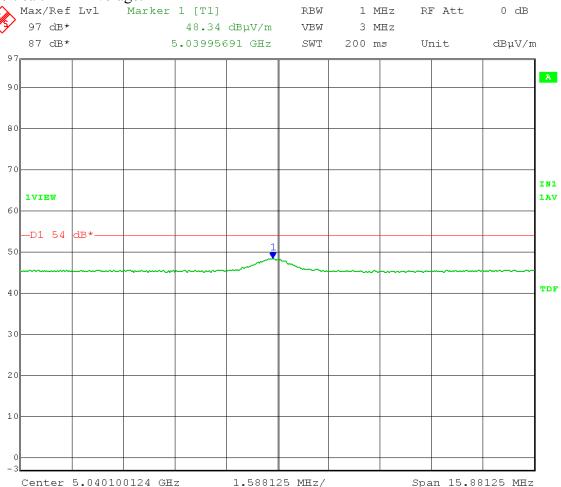
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 08:56:55

Company: Cambium Networks

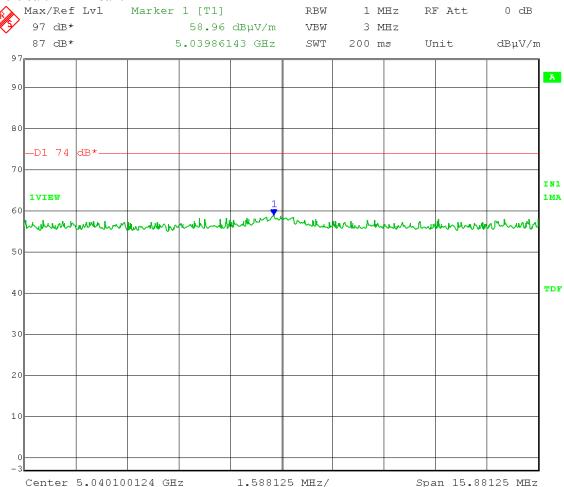
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 08:57:18

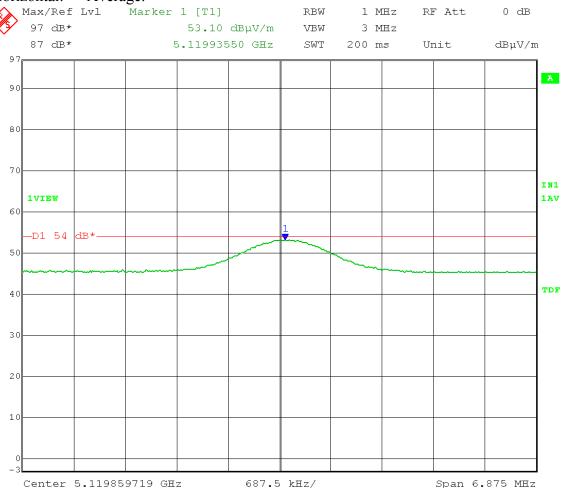
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz


Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 14.APR.2014 09:11:22

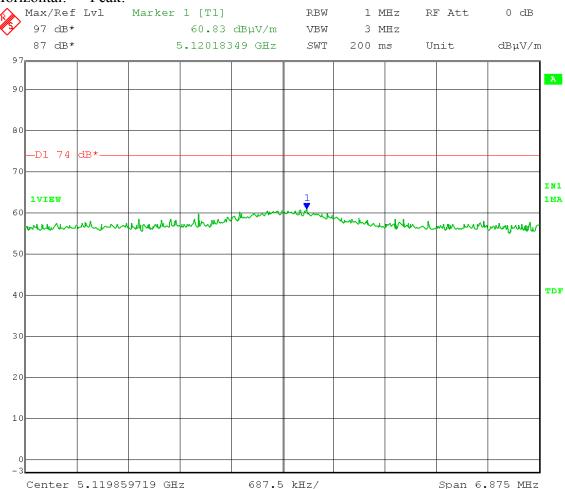
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz


Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 14.APR.2014 09:11:48

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0^* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 10:24:35

Company: Cambium Networks

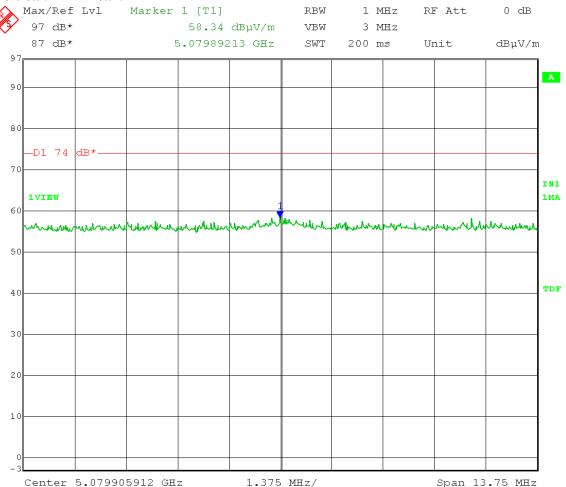
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 10:25:07

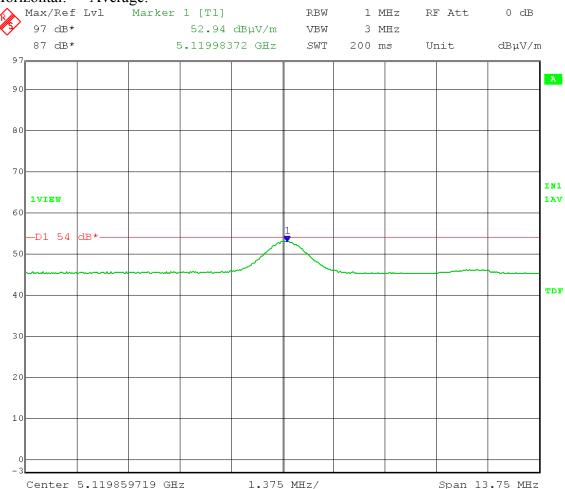
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 27.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 14.APR.2014 09:07:44

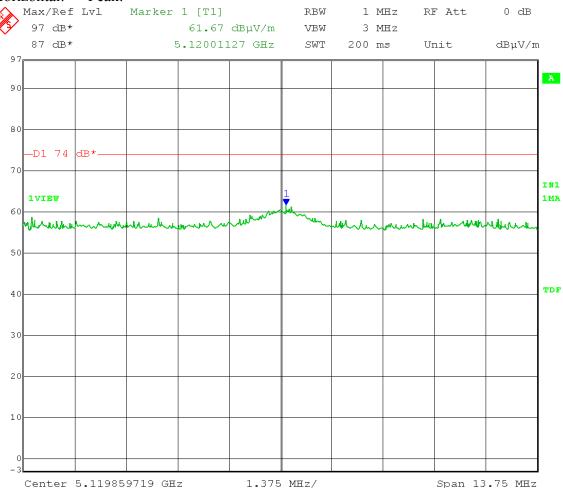
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz


Output power setting: 27.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 14.APR.2014 09:08:11

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 27.0* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 10:21:59

Company: Cambium Networks

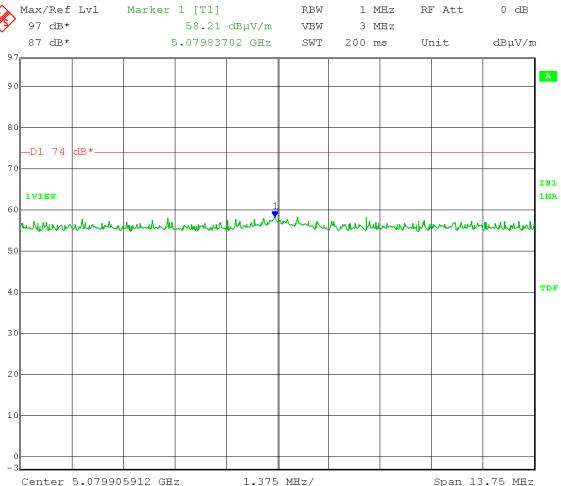
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 27.0* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 10:22:20

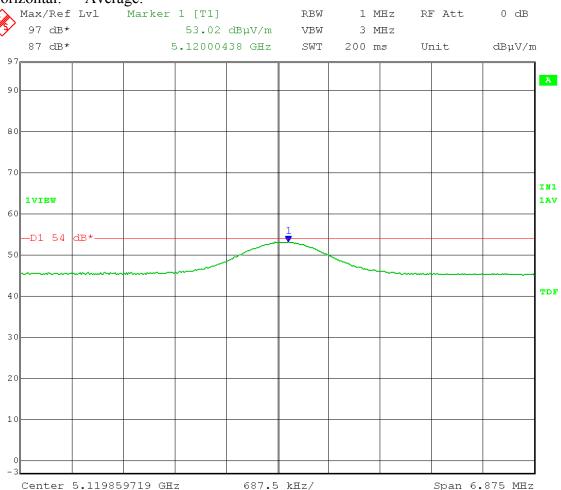
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz


Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Horizontal: Average:

Date: 14.APR.2014 09:14:20

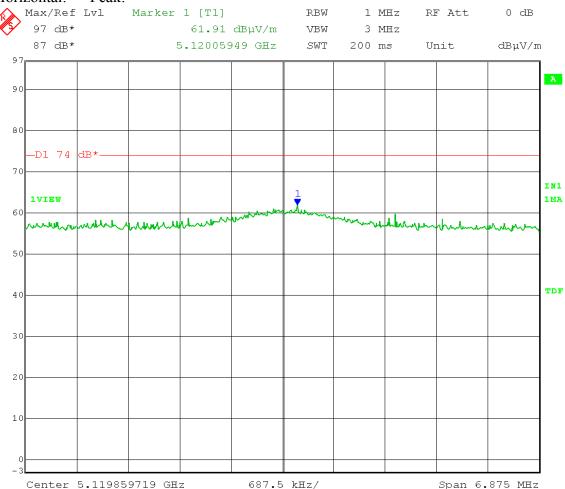
Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz


Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Horizontal: Peak:

Date: 14.APR.2014 09:14:45

Company: Cambium Networks

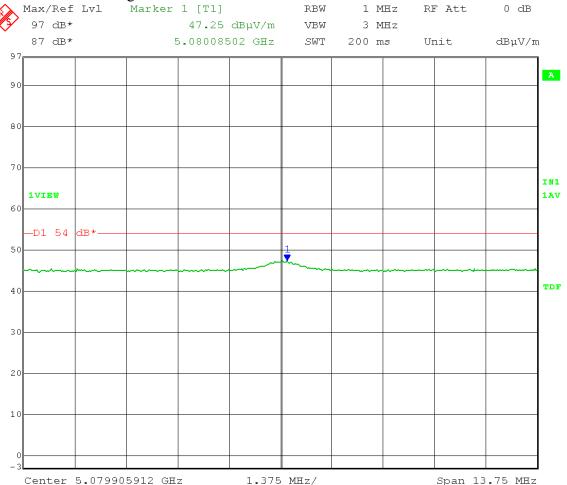
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 54 dBµV/m AVERAGE at 3 meters

Vertical: Average:

Date: 14.APR.2014 10:27:19

Company: Cambium Networks

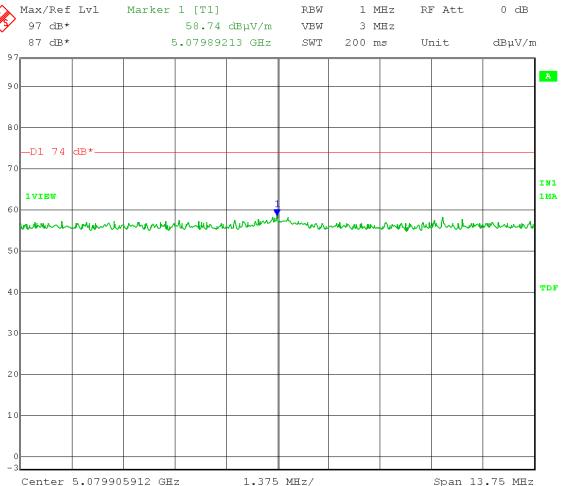
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Vertical: Peak:

Date: 14.APR.2014 10:27:41

Test Date: 04-09-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low, Mid, and High channels

Output power setting: 8.5 on both chains with 5 dB pad on antenna

Channel bandwidth: 20 MHz and 40 MHz

Modulation: OFDM; MCS15

Polarization: Vertical and Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters Note: No emissions found in the 7.25 - 7.75 frequency band

Average: Marker 1 [T1] RBW 1 MHz RF Att 0 dB Ref Lvl 47.89 dBµV/m 3 MHz VBW 87 dB* 7.69589178 GHz SWT 200 ms dBµV/m Unit A IN1 _D1 54 dB*-1AV 40 TDF 30 20

50 MHz/

Stop 7.75 GHz

Date: 9.APR.2014 16:01:43

Start 7.25 GHz

10

-10

Test Date: 04-09-2014

Company: Cambium Networks

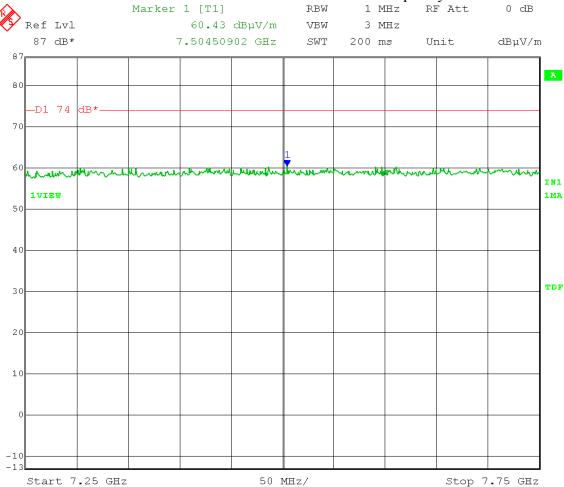
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low, Mid, and High channels

Output power setting: 8.5 on both chains with 5 dB pad on antenna


Channel bandwidth: 20 MHz and 40 MHz

Modulation: OFDM; MCS15

Polarization: Vertical and Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Peak: Note: No emissions found in the 7.25 - 7.75 frequency band

Date: 9.APR.2014 16:02:26

Company: Cambium Networks

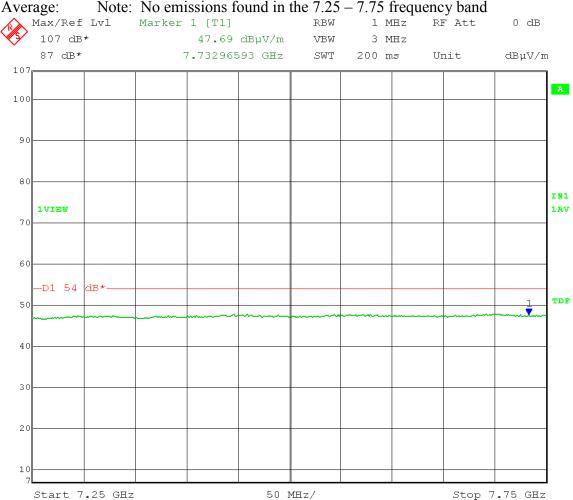
EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low, Mid, and High channels

Output power setting: 27.5* on both chains


*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz and 40 MHz

Modulation: OFDM; MCS15

Polarization: Vertical and Horizontal

Restricted Band Limit: $54 \text{ dB}\mu\text{V/m}$ AVERAGE at 3 meters Note: No emissions found in the 7.25 - 7.75 frequency band

Date: 14.APR.2014 14:02:05

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in the restricted bands - Radiated

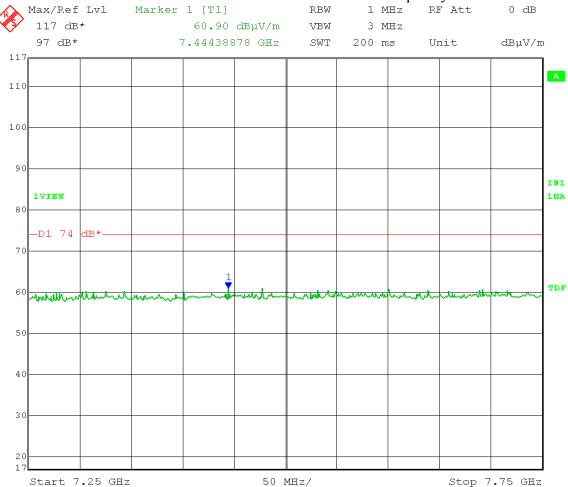
(FCC 15.407(b)(7)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low, Mid, and High channels

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz and 40 MHz

Modulation: OFDM; MCS15

Polarization: Vertical and Horizontal

Restricted Band Limit: 74 dBµV/m PEAK at 3 meters

Peak: Note: No emissions found in the 7.25 - 7.75 frequency band

Date: 14.APR.2014 14:01:28

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

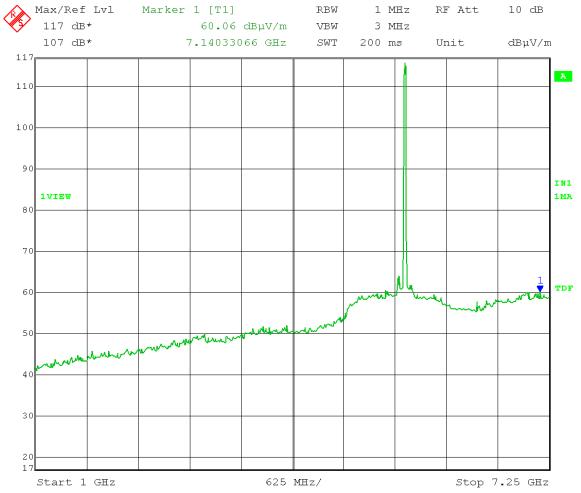
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 2.0 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 60.06 dB\mu V/m - 95.2 = -35.14 dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 11:27:25

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

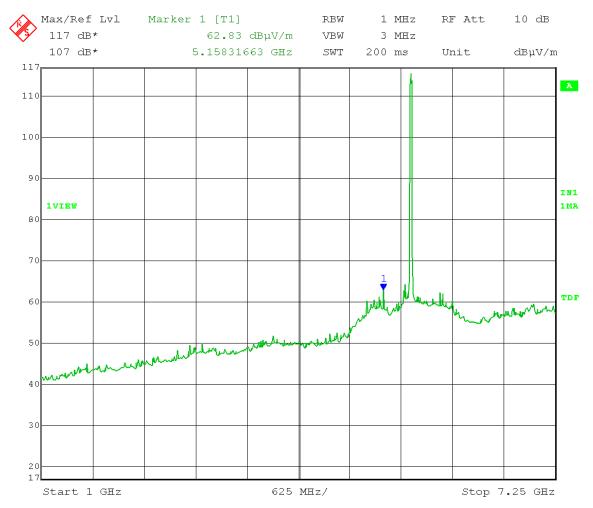
(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 2.0 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 62.83 dB\mu V/m - 95.2 = -32.37 dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

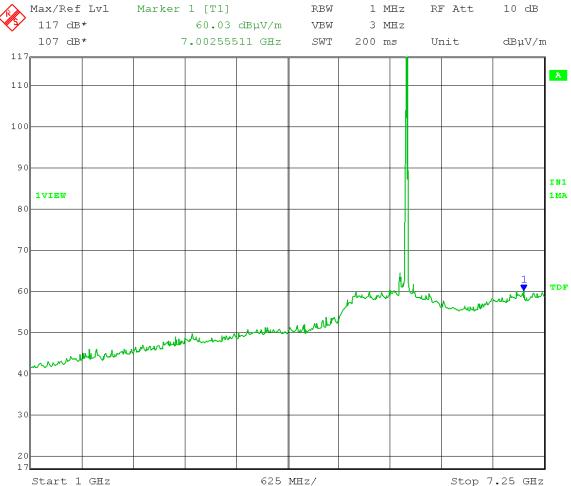
Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 60.03 \text{ dB}\mu\text{V/m} - 95.2 = -35.17 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 11:38:15

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

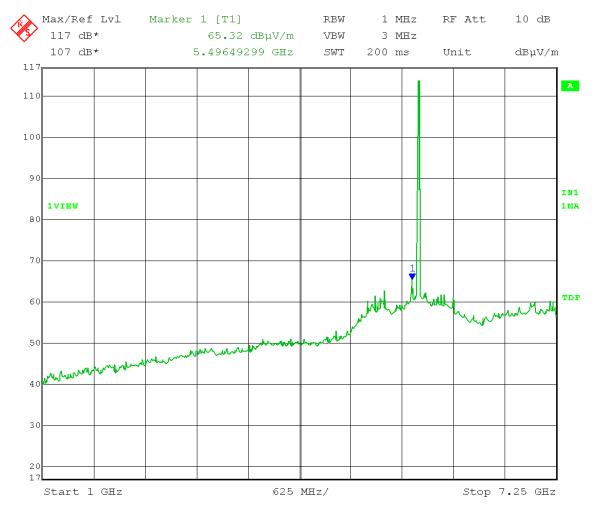
(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 65.32 dB\mu V/m - 95.2 = -29.88 dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Date: 3.APR.2014 12:16:44

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

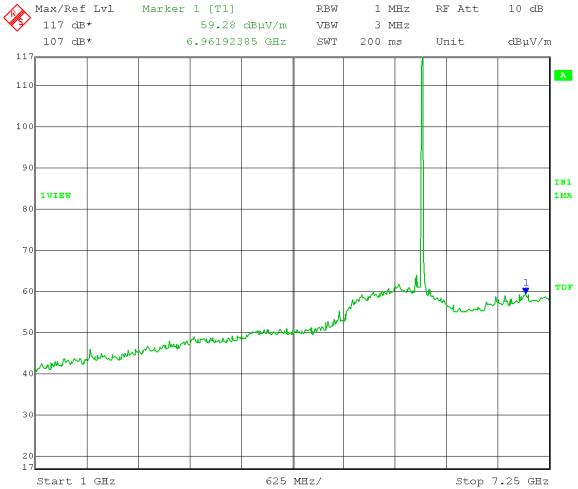
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 3.5 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 59.28 \text{ dB}\mu\text{V/m} - 95.2 = -35.92 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 11:47:01

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 3.5 on both chains

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 64.52 \text{ dB}\mu\text{V/m} - 95.2 = -30.68 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

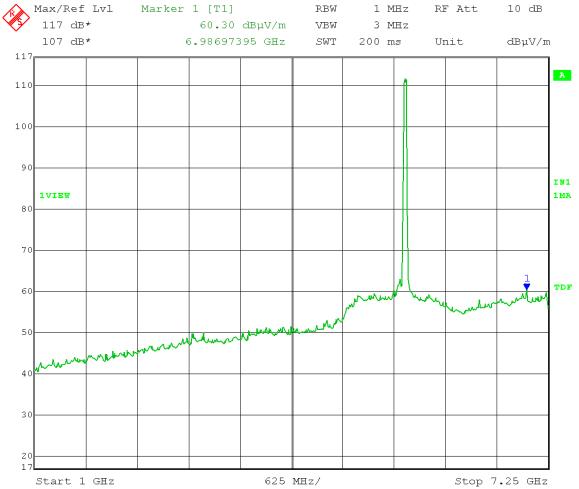
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 2.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 60.30 \text{ dB}\mu\text{V/m} - 95.2 = -34.90 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 12:01:12

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

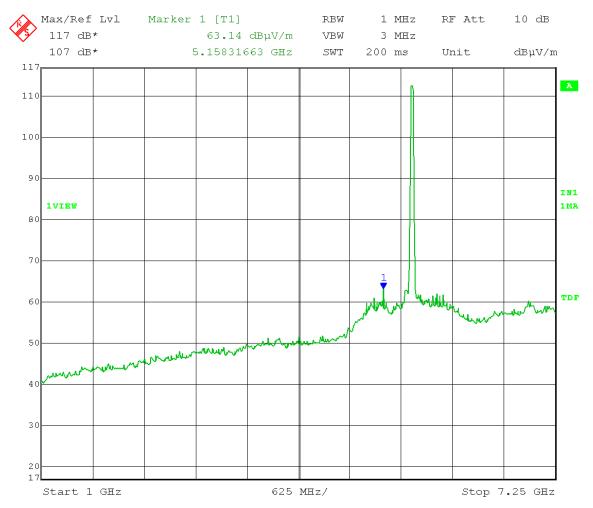
(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 2.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 63.14 dB\mu V/m - 95.2 = -32.06 dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Date: 3.APR.2014 12:14:29

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

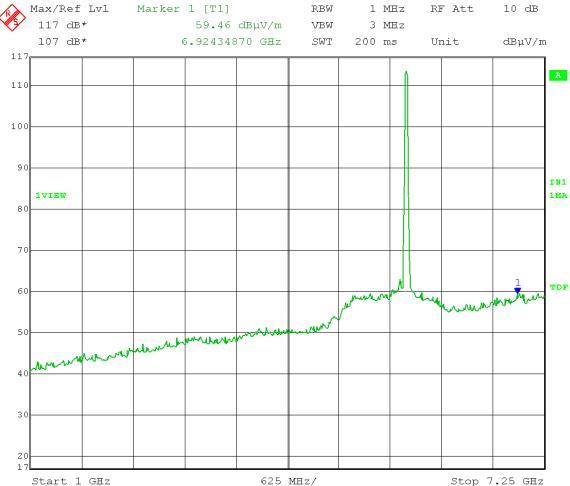
Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 59.46 \text{ dB}\mu\text{V/m} - 95.2 = -35.74 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 11:50:00

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

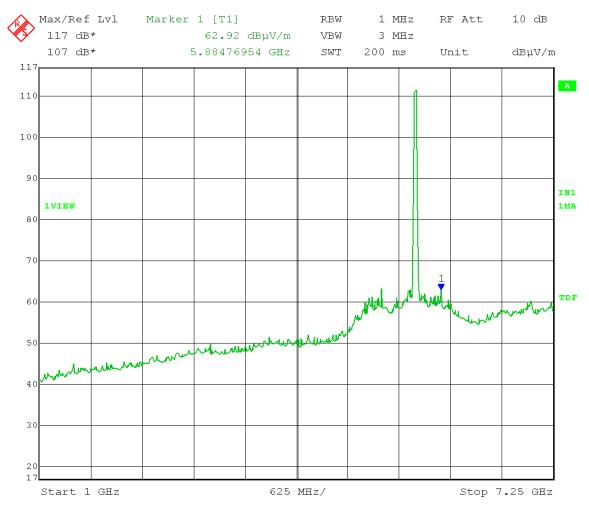
(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 62.92 \text{ dB}\mu\text{V/m} - 95.2 = -32.28 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Date: 3.APR.2014 12:10:32

Test Date: 04-03-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

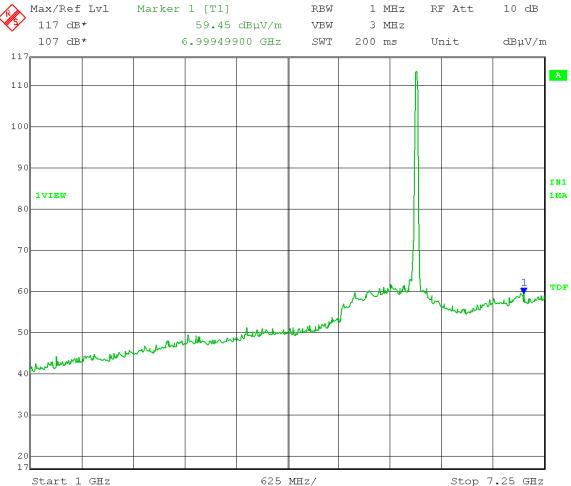
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15

Polarization: Vertical


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 59.46 \text{ dB}\mu\text{V/m} - 95.2 = -35.74 \text{ dBm/MHz}$

Frequency Range: 1 - 7.25 GHz

Date: 3.APR.2014 12:04:59

Test Date: 04-02-2014

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 23 dBi Panel antenna

Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 3.0 on both chains

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

 $EIRP = 62.85 dB\mu V/m - 95.2 = -32.35 dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Date: 3.APR.2014 12:08:16

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

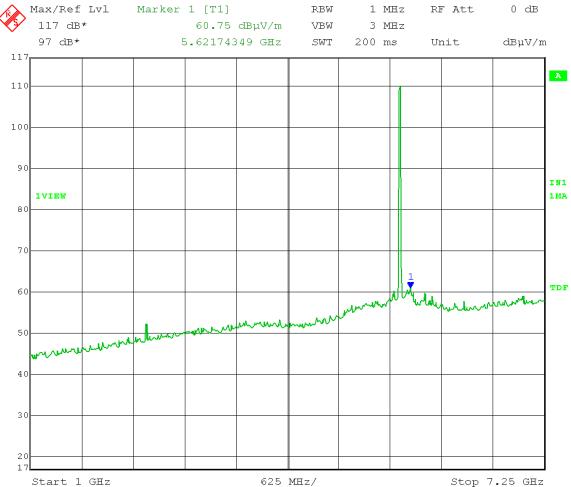
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 60.75 dB μ V/m – 95.2 = -34.45 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:41:18

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

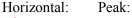
(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

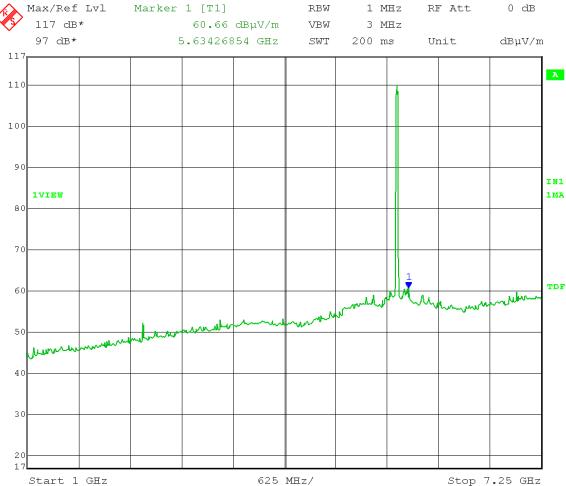
Operator: Craig B

Comment: Low Channel: Frequency – 5495 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal


Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2

 $EIRP = 60.66 \ dB\mu V/m - 95.2 = -34.54 \ dBm/MHz$

Frequency Range: 1 - 7.25 GHz

Date: 14.APR.2014 14:19:02

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

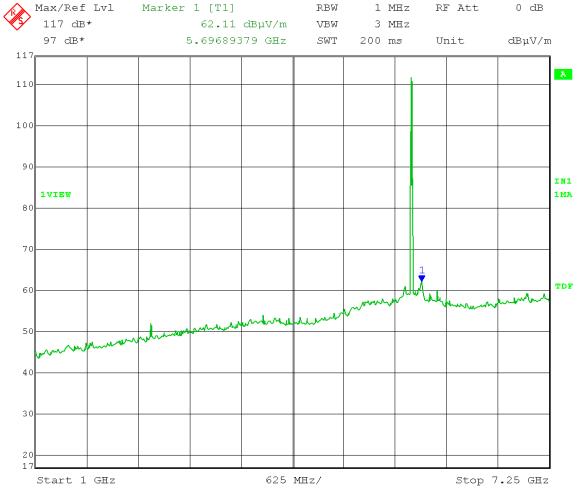
Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 62.11 dB μ V/m – 95.2 = -33.09 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:43:35

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

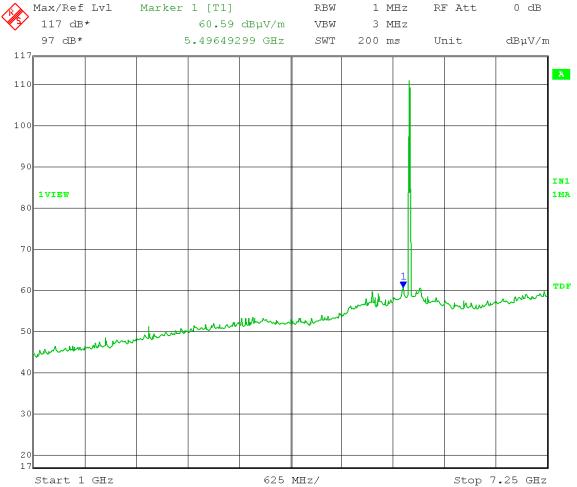
(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 60.59 dB μ V/m – 95.2 = -34.61 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

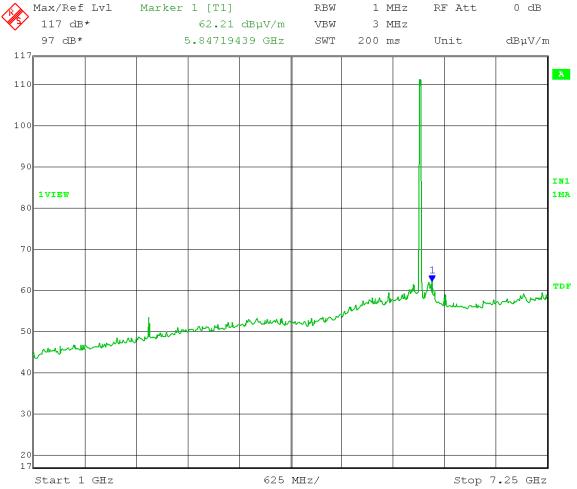
Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 20 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 62.21 dB μ V/m – 95.2 = -32.99 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:38:59

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

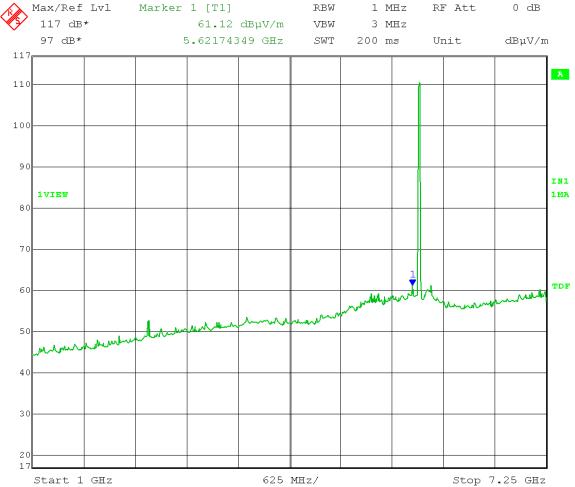
(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: High Channel: Frequency – 5705 MHz

Output power setting: 27.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 20 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.12 dB μ V/m – 95.2 = -34.08 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

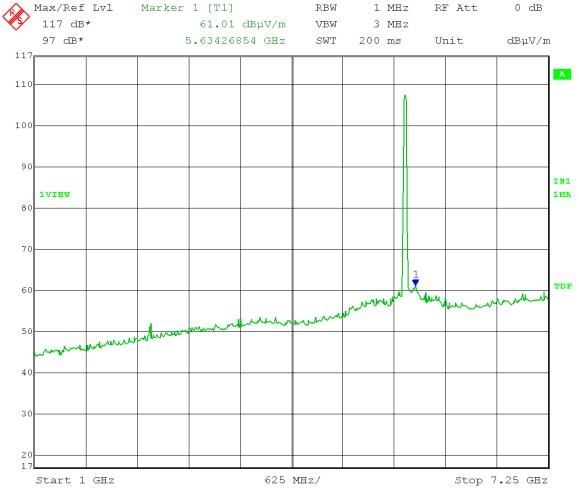
Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.01 dB μ V/m – 95.2 = -34.19 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:28:54

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

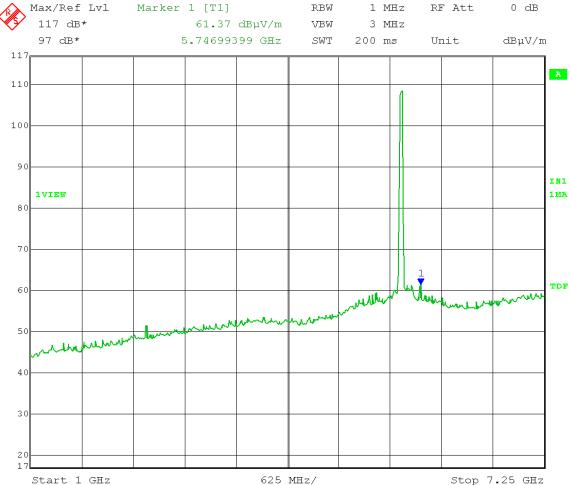
(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Low Channel: Frequency – 5510 MHz

Output power setting: 26.0* on both chains

*Software call table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.37 dB μ V/m – 95.2 = -33.83 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Date: 14.APR.2014 14:43:28

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

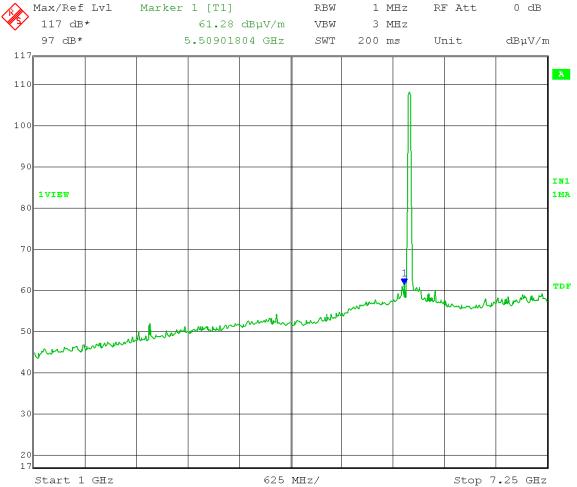
Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 27.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.28 dB μ V/m – 95.2 = -33.92 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:30:59

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

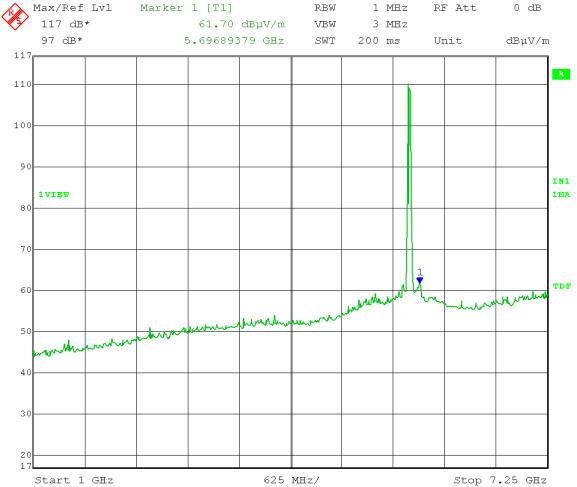
(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

Operator: Craig B

Comment: Mid Channel: Frequency – 5575 MHz

Output power setting: 27.0* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna


Channel bandwidth: 40 MHz Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.70 dB μ V/m – 95.2 = -33.50 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

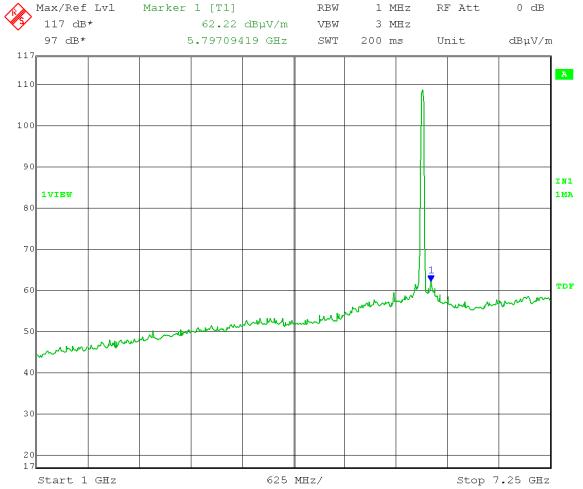
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz Modulation: OFDM; MCS15


Polarization: Vertical

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 62.22 dB μ V/m – 95.2 = -32.98 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Vertical: Peak:

Date: 14.APR.2014 15:26:52

Company: Cambium Networks

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4
Test: Unwanted Emissions in non-restricted bands - Radiated

(FCC 15.407(b)(3)) - With 30 dBi Dish antenna

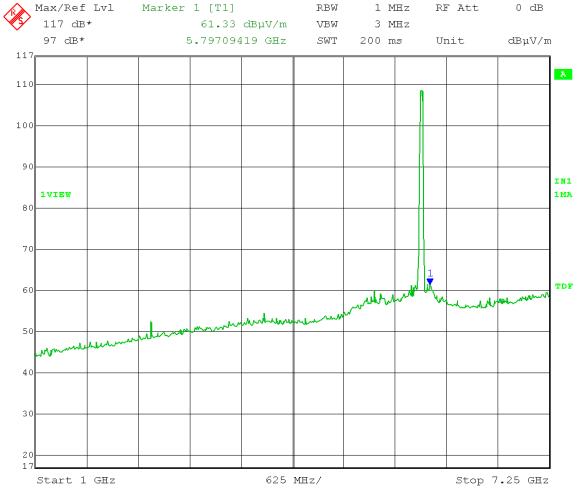
Operator: Craig B

Comment: High Channel: Frequency – 5695 MHz

Output power setting: 26.5* on both chains

*Software cal table was modified so that power setting 24.0 = 0.0 with 3 dB attenuator on radio and 3 dB attenuator on antenna

Channel bandwidth: 40 MHz


Modulation: OFDM; MCS15 Polarization: Horizontal

Limit: -27 dBm/MHz Peak EIRP

Test distance 3 meters: EIRP[dBm] = E[dB μ V/m] – 95.2 EIRP = 61.33 dB μ V/m – 95.2 = -33.87 dBm/MHz

Frequency Range: 1 - 7.25 GHz

Horizontal: Peak:

Electric Field Strength

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Manufacturer: Cambium Networks Operating Condition: 70 deg C 27% R.H.

Test Site: DLS O.F. G1 Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 8.5; with 23 dBi Panel antenna and 5 dB pad on EUT Port 1

Date: 04-07-2014

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

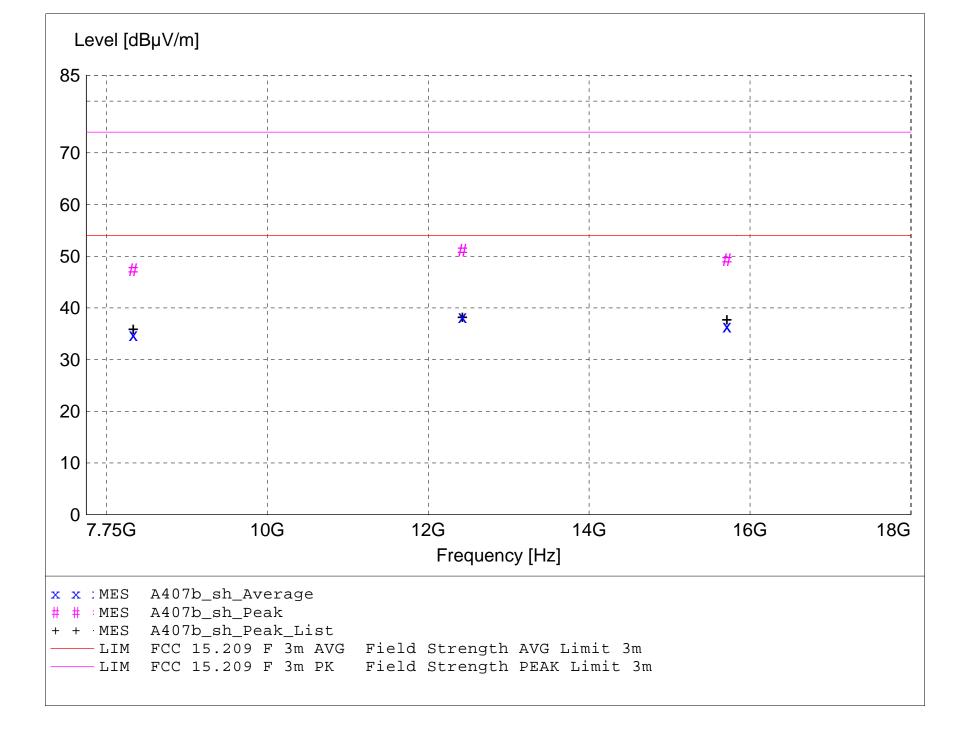
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A407b_sh_Final"

-, -,										
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBμV/m	dB	dBµV/m	$\text{dB}\mu\text{V/m}$	dB	m m	deg	Deceesor	
12425.500000	34.96	39.70	-36.4	38.3	54.0	15.7	1.30	0	AVERAGE	noise floor
15713.200000	35.98	38.08	-37.6	36.5	54.0	17.5	1.30	0	AVERAGE	noise floor
8332.600000	33.28	36.93	-35.4	34.8	54.0	19.2	1.30	0	AVERAGE	noise floor
12425.500000	47.79	39.70	-36.4	51.1	74.0	22.9	1.30	0	MAX PEAK	noise floor
15713.200000	48.82	38.08	-37.6	49.3	74.0	24.7	1.30	0	MAX PEAK	noise floor
8332.600000	45.82	36.93	-35.4	47.4	74.0	26.6	1.30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.4 GHz OFDM ESN: 000456C560B4

Manufacturer: Cambium Networks Operating Condition: 70 deg C 27% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 8.5; with 23 dBi Panel antenna and 5 dB pad on EUT Port 1

Date: 04-07-2014

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

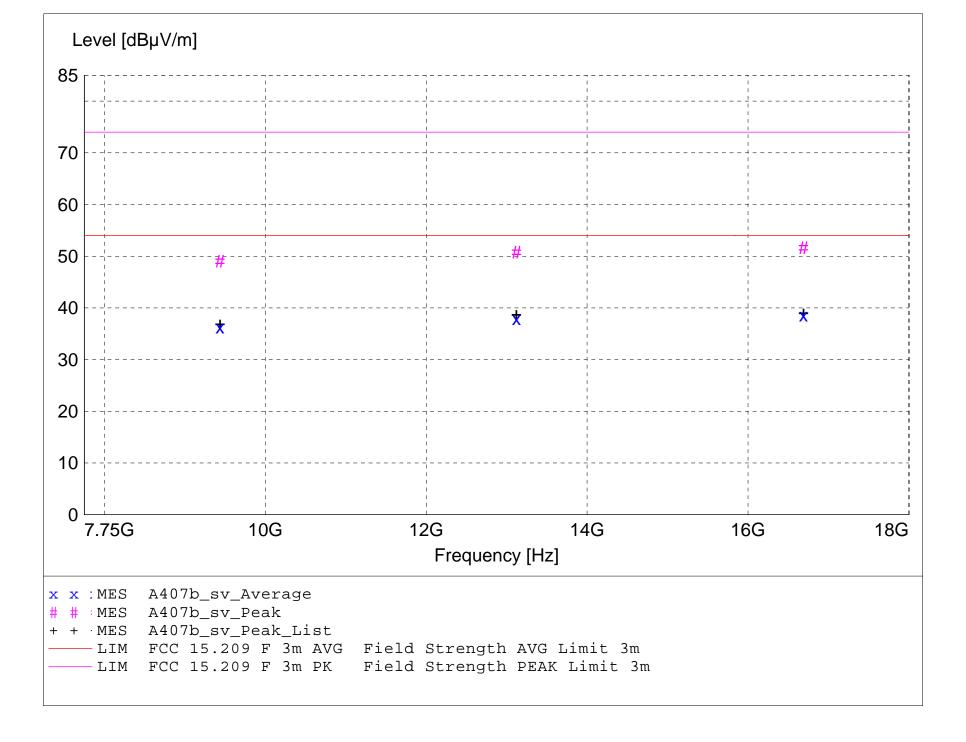
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

Background Scan Peak Detector (Optional)

Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A407b_sv_Final"

-, -,										
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
16689.400000	37.30	39.06	-37.8	38.6	54.0	15.4	1.12	0	AVERAGE	noise floor
13122.100000	35.32	39.55	-36.9	37.9	54.0	16.1	1.12	0	AVERAGE	noise floor
9436.300000	34.91	37.74	-36.3	36.3	54.0	17.7	1.12	0	AVERAGE	noise floor
16689.400000	50.32	39.06	-37.8	51.6	74.0	22.4	1.12	0	MAX PEAK	noise floor
13122.100000	48.18	39.55	-36.9	50.8	74.0	23.2	1.12	0	MAX PEAK	noise floor
9436.300000	47.66	37.74	-36.3	49.1	74.0	24.9	1.12	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.2 & 5.4 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels (both bands)

Comment: Both ports Tx setting 8.5; with 23 dBi Panel antenna and 5 dB pad on EUT Port 1

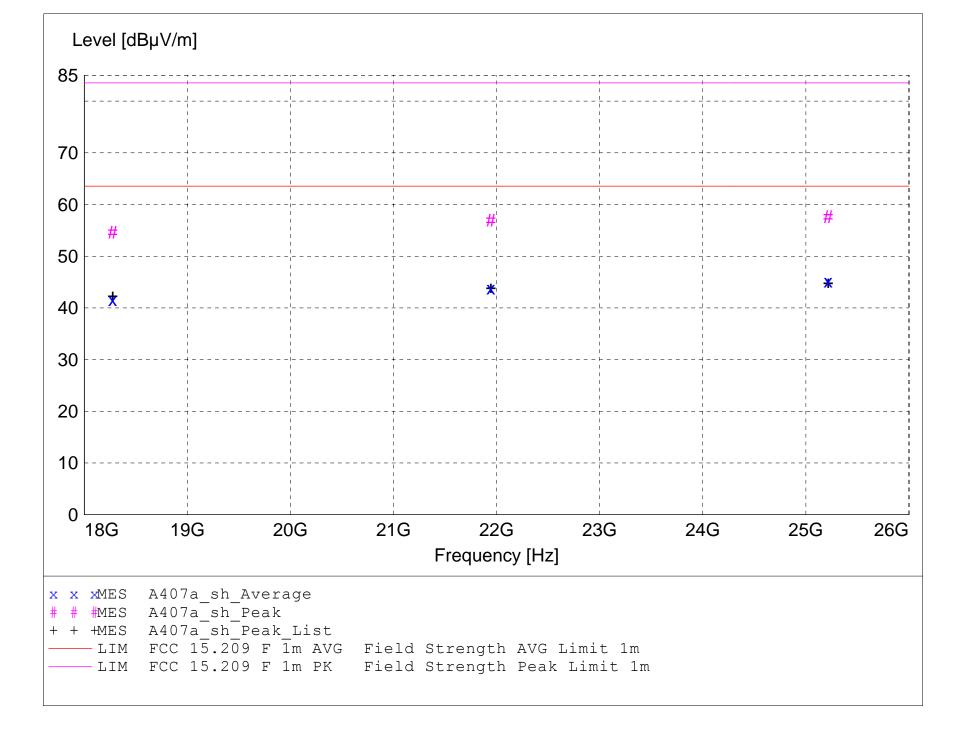
Date: 04-07-2014

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$


Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A407a_sh_Final"

4/7/2014 2:02E	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
25216.800000	34.86	46.86	-36.6	45.1	63.5	18.4	1.30	0	AVERAGE	noise floor
21944.000000	37.78	46.40	-40.4	43.8	63.5	19.8	1.30	0	AVERAGE	noise floor
18274.800000	35.50	44.70	-38.6	41.6	63.5	22.0	1.30	0	AVERAGE	noise floor
25216.800000	47.33	46.86	-36.6	57.6	83.5	25.9	1.30	0	MAX PEAK	noise floor
21944.000000	50.95	46.40	-40.4	57.0	83.5	26.6	1.30	0	MAX PEAK	noise floor
18274.800000	48.55	44.70	-38.6	54.6	83.5	28.9	1.30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.2 & 5.4 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels (both bands)

Comment: Both ports Tx setting 8.5; with 23 dBi Panel antenna and 5 dB pad on EUT Port 1

Date: 04-07-2014

TEXT: "Vert 1 meters"

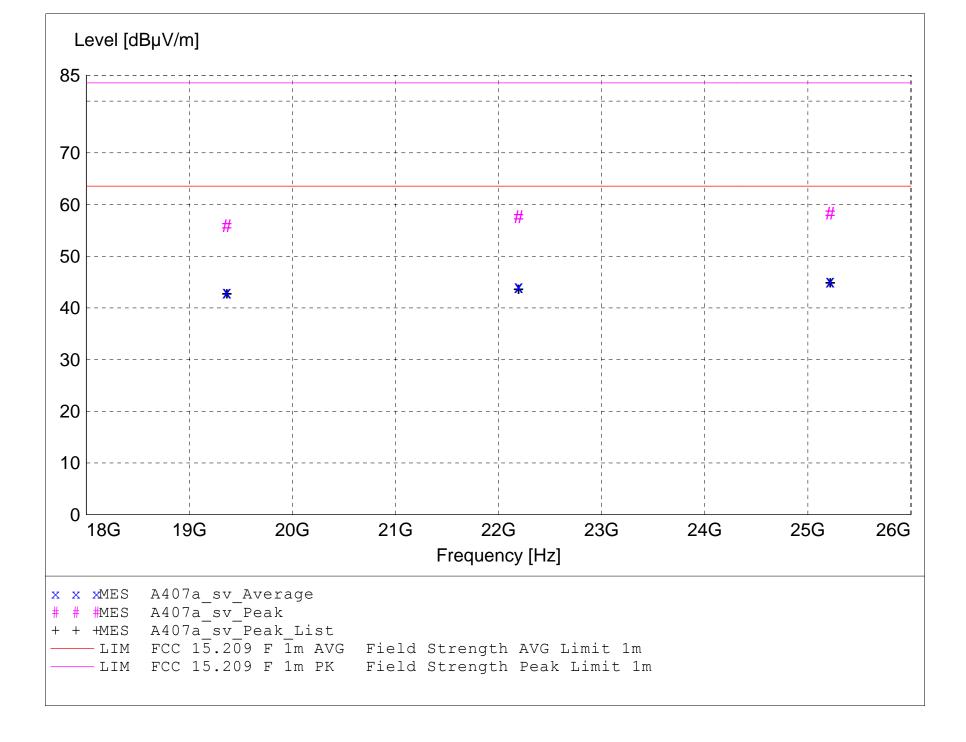
Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level(dBµV/m) = Level(dBµV) + System Loss(dB) + Antenna Factor(dBµV/m)

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

${\tt MEASUREMENT\ RESULT:\ "A407a_sv_Final"}$

4/7/2014 1:57E	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBµV/m	dB	m	deg		
25216.500000	34.94	46.86	-36.6	45.2	63.5	18.3	1.25	0	AVERAGE	noise floor
22194.000000	38.35	46.40	-40.6	44.1	63.5	19.4	1.25	0	AVERAGE	noise floor
19363.000000	37.11	45.76	-39.8	43.1	63.5	20.5	1.25	0	AVERAGE	noise floor
25216.500000	48.02	46.86	-36.6	58.3	83.5	25.3	1.25	0	MAX PEAK	noise floor
22194.000000	51.89	46.40	-40.6	57.6	83.5	25.9	1.25	0	MAX PEAK	noise floor
19363.000000	49.92	45.76	-39.8	55.9	83.5	27.7	1.25	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.2 & 5.4 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels (both bands)
Comment: Both ports Tx setting 8.5; ith 23 dBi Panel antenna and 5 dB pad on EUT Port 1

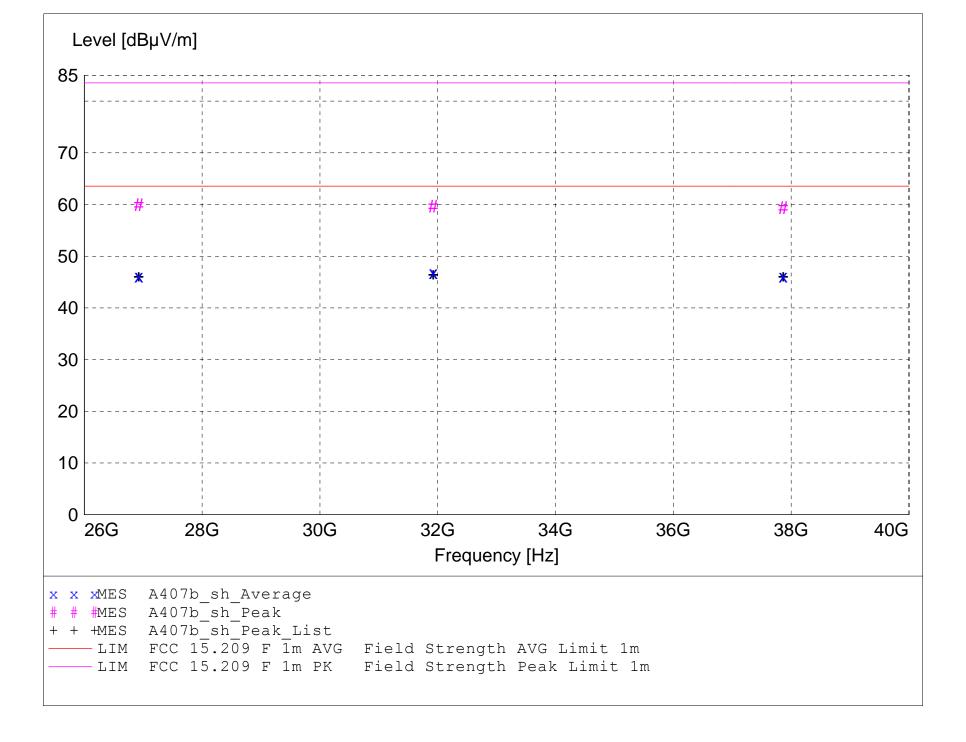
Date: 04-07-2014

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)


Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A407b_sh_final"

4/7/2014 2:49	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBμV/m	dBµV/m	dB	m	deg		
31923.600000	49.32	47.82	-50.3	46.8	63.5	16.7	1.30	0	AVERAGE	noise floor
26924.600000	50.11	46.38	-50.3	46.2	63.5	17.4	1.30	0	AVERAGE	noise floor
37864.800000	46.75	45.41	-46.0	46.1	63.5	17.4	1.30	0	AVERAGE	noise floor
26924.600000	63.91	46.38	-50.3	60.0	83.5	23.6	1.30	0	MAX PEAK	noise floor
31923.600000	62.18	47.82	-50.3	59.7	83.5	23.9	1.30	0	MAX PEAK	noise floor
37864.800000	59.97	45.41	-46.0	59.3	83.5	24.2	1.30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.2 & 5.4 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels (both bands)
Comment: Both ports Tx setting 8.5; ith 23 dBi Panel antenna and 5 dB pad on EUT Port 1

Date: 04-07-2014

TEXT: "Vert 1 meters"

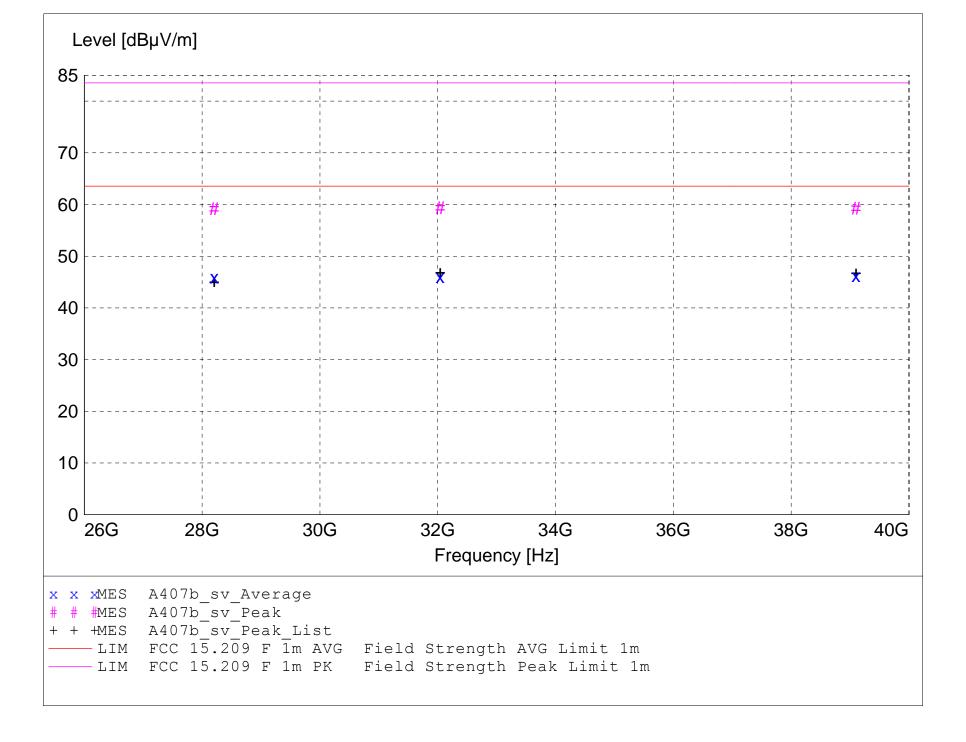
Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)


15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

${\tt MEASUREMENT\ RESULT:\ "A407b_sv_Final"}$

4/7/2014 2:35P	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
39101.800000	47.52	45.74	-47.1	46.2	63.5	17.3	1.30	0	AVERAGE	noise floor
32042.600000	48.62	47.94	-50.5	46.1	63.5	17.5	1.30	0	AVERAGE	noise floor
28205.600000	49.72	46.57	-50.3	45.9	63.5	17.6	1.30	0	AVERAGE	noise floor
32042.600000	61.92	47.94	-50.5	59.4	83.5	24.2	1.30	0	MAX PEAK	noise floor
39101.800000	60.63	45.74	-47.1	59.3	83.5	24.2	1.30	0	MAX PEAK	noise floor
28205.600000	62.97	46.57	-50.3	59.2	83.5	24.3	1.30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM ESN: 000456C560B4

Manufacturer: Cambium Networks Operating Condition: 70 deg C 27% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/6 dB atten)

Date: 04-15-2014

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

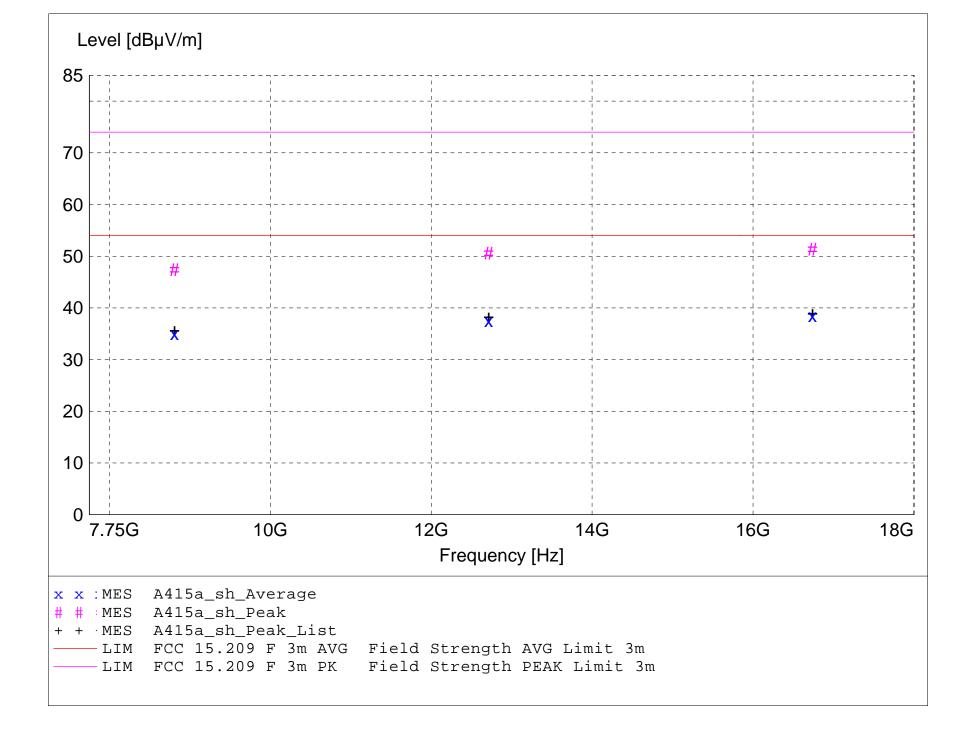
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

Background Scan Peak Detector (Optional)

Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A415a_sh_Final"

4/15/2014 10:	41AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
16739.800000	37.00	39.25	-37.8	38.5	54.0	15.5	1.33	0	AVERAGE	noise floor
12713.500000	33.89	39.77	-36.2	37.5	54.0	16.5	1.33	0	AVERAGE	noise floor
8808.400000	33.74	37.59	-36.3	35.0	54.0	19.0	1.33	0	AVERAGE	noise floor
16739.800000	49.90	39.25	-37.8	51.4	74.0	22.6	1.33	0	MAX PEAK	noise floor
12713.500000	46.98	39.77	-36.2	50.6	74.0	23.4	1.33	0	MAX PEAK	noise floor
8808.400000	46.06	37.59	-36.3	47.3	74.0	26.7	1.33	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM ESN: 000456C560B4

Manufacturer: Cambium Networks Operating Condition: 70 deg C 27% R.H.

Test Site: DLS O.F. Gl Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/ 6 dB atten)

Date: 04-15-2014

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

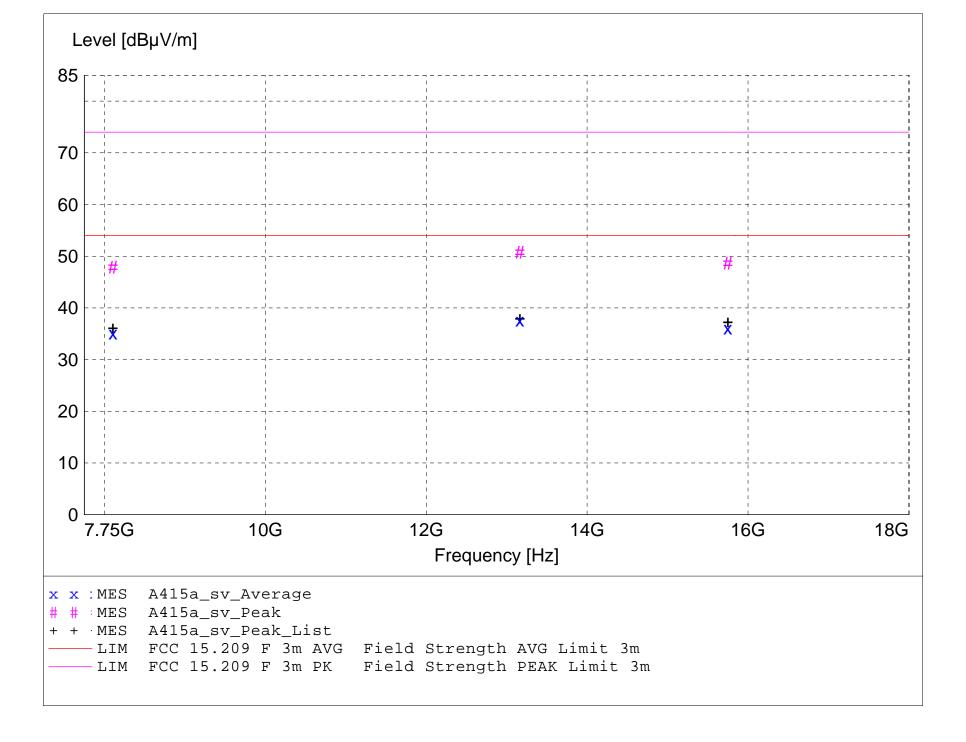
Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

 $Margin(dB) = Limit(dB\mu V/m) - Total Level(dB\mu V/m)$

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)


Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A415a_sv_Final"

4/15/2014 11:	16AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
13163.200000	34.75	39.78	-36.9	37.6	54.0	16.4	1.30	0	AVERAGE	noise floor
15748.600000	35.68	37.97	-37.6	36.1	54.0	17.9	1.30	0	AVERAGE	noise floor
8104.900000	33.28	36.67	-34.8	35.1	54.0	18.9	1.30	0	AVERAGE	noise floor
13163.200000	47.88	39.78	-36.9	50.8	74.0	23.2	1.30	0	MAX PEAK	noise floor
15748.600000	48.27	37.97	-37.6	48.7	74.0	25.3	1.30	0	MAX PEAK	noise floor
8104 900000	46 06	36 67	-34 8	47 9	74 0	26 1	1 30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 31% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

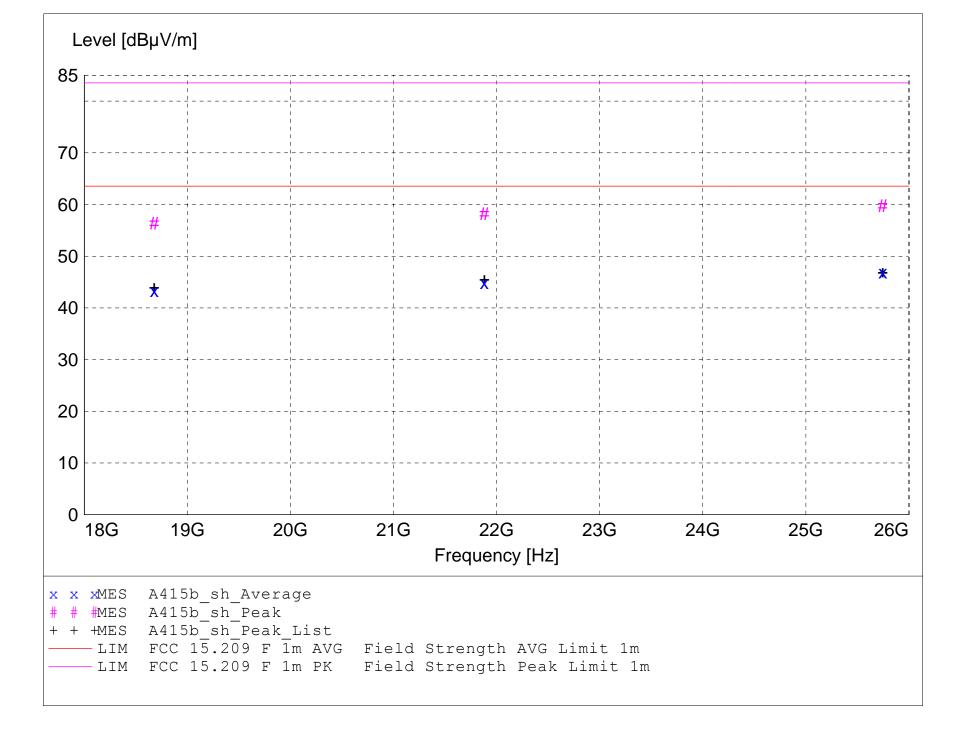
Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/ 6 dB atten)

Date: 04-15-2014

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization


Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A415b_sh_final"

4/15/2014 1:55	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level		-	Ant.	Anale	Detector	
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
25746.300000	36.02	46.65	-35.7	46.9	63.5	16.6	1.30	0	AVERAGE	noise floor
21880.800000	38.73	46.44	-40.3	44.8	63.5	18.7	1.30	0	AVERAGE	noise floor
18678.000000	37.04	45.01	-38.8	43.3	63.5	20.2	1.30	0	AVERAGE	noise floor
25746.300000	48.81	46.65	-35.7	59.7	83.5	23.8	1.30	0	MAX PEAK	noise floor
21880.800000	52.11	46.44	-40.3	58.2	83.5	25.3	1.30	0	MAX PEAK	noise floor
18678.000000	50.14	45.01	-38.8	56.4	83.5	27.1	1.30	0	MAX PEAK	noise floor

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 31% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/ 6 dB atten)

Date: 04-15-2014

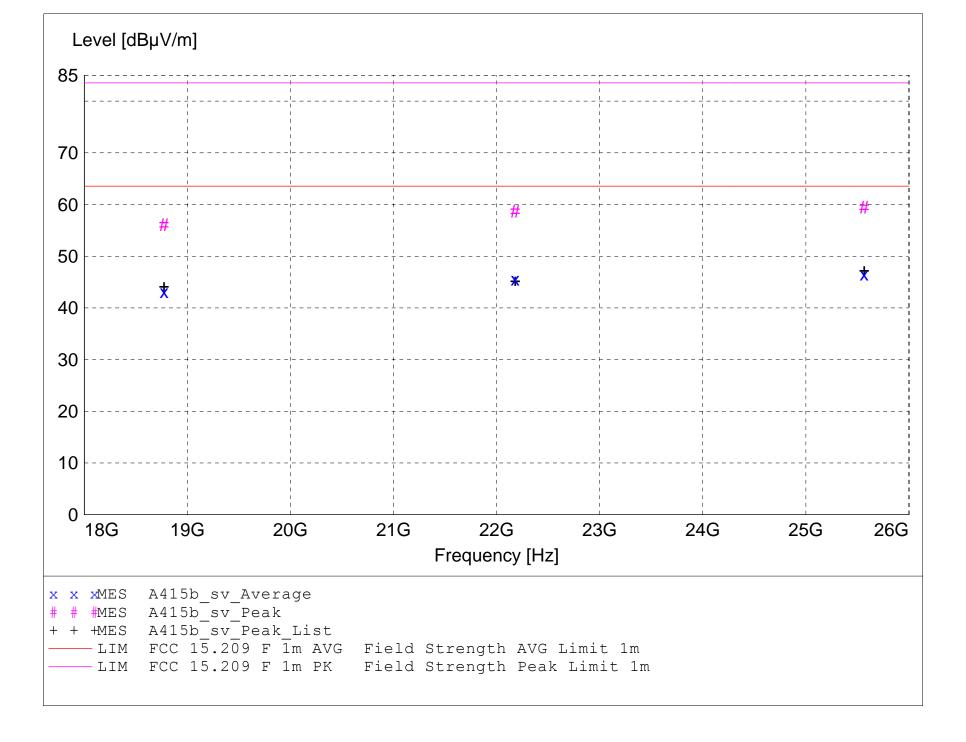
TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level(dBµV/m) = Level(dBµV) + System Loss(dB) + Antenna Factor(dBµV/m)

24.6 = 35.51 + (-22.1) + 11.20


Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A415b_sv_Final"

PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
35.72	46.77	-36.0	46.5	63.5	17.0	1.30	0	AVERAGE	noise floor
39.78	46.39	-40.6	45.6	63.5	18.0	1.30	0	AVERAGE	noise floor
37.23	45.12	-39.2	43.2	63.5	20.4	1.30	0	AVERAGE	noise floor
48.67	46.77	-36.0	59.5	83.5	24.1	1.30	0	MAX PEAK	noise floor
52.90	46.39	-40.6	58.7	83.5	24.9	1.30	0	MAX PEAK	noise floor
50.14	45.12	-39.2	56.1	83.5	27.5	1.30	0	MAX PEAK	noise floor
	Level dBμV 35.72 39.78 37.23 48.67 52.90	Level Antenna Factor dBμV dBμV/m 35.72 46.77 39.78 46.39 37.23 45.12 48.67 46.77 52.90 46.39	LevelAntenna Factor dBμVSystem Loss dBμV/m35.7246.77-36.039.7846.39-40.637.2345.12-39.248.6746.77-36.052.9046.39-40.6	Level dBμVAntenna Factor dBμV/mSystem Loss dB μV/mTotal Level dBμV/m35.72 39.78 46.39 -40.6 45.62 37.23 45.12 48.67 52.9046.77 -36.0 -40.645.6 45.6 -39.2 43.2 58.7	Level dBμVAntenna Factor dBμV/mSystem Loss dB dB dB dB dBTotal Level dBμV/mLimit dB dBμV/m35.72 39.78 46.39 7.23 45.12 45.63 45.62 45.65 46.77 52.90-36.0 46.39 -40.646.5 45.6 45.6 45.6 45.6 63.5 43.2 63.5	Level 	Level dBμVAntenna Factor dBμV/mSystem Loss dB μV/mTotal Level dBμV/mLimit dBμV/mMargin dB μV/mHeight Ant. dBμV/m35.72 39.78 46.39 7.23 45.12 46.77 -36.0 46.60 -39.2 43.2 43.2 43.2 43.2 43.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 <b< td=""><td>Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 35.72 46.77 -36.0 46.5 63.5 17.0 1.30 0 39.78 46.39 -40.6 45.6 63.5 18.0 1.30 0 37.23 45.12 -39.2 43.2 63.5 20.4 1.30 0 48.67 46.77 -36.0 59.5 83.5 24.1 1.30 0 52.90 46.39 -40.6 58.7 83.5 24.9 1.30 0</td><td>Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT Angle deg Final Detector degree degree</td></b<>	Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 35.72 46.77 -36.0 46.5 63.5 17.0 1.30 0 39.78 46.39 -40.6 45.6 63.5 18.0 1.30 0 37.23 45.12 -39.2 43.2 63.5 20.4 1.30 0 48.67 46.77 -36.0 59.5 83.5 24.1 1.30 0 52.90 46.39 -40.6 58.7 83.5 24.9 1.30 0	Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT Angle deg Final Detector degree

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 31% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

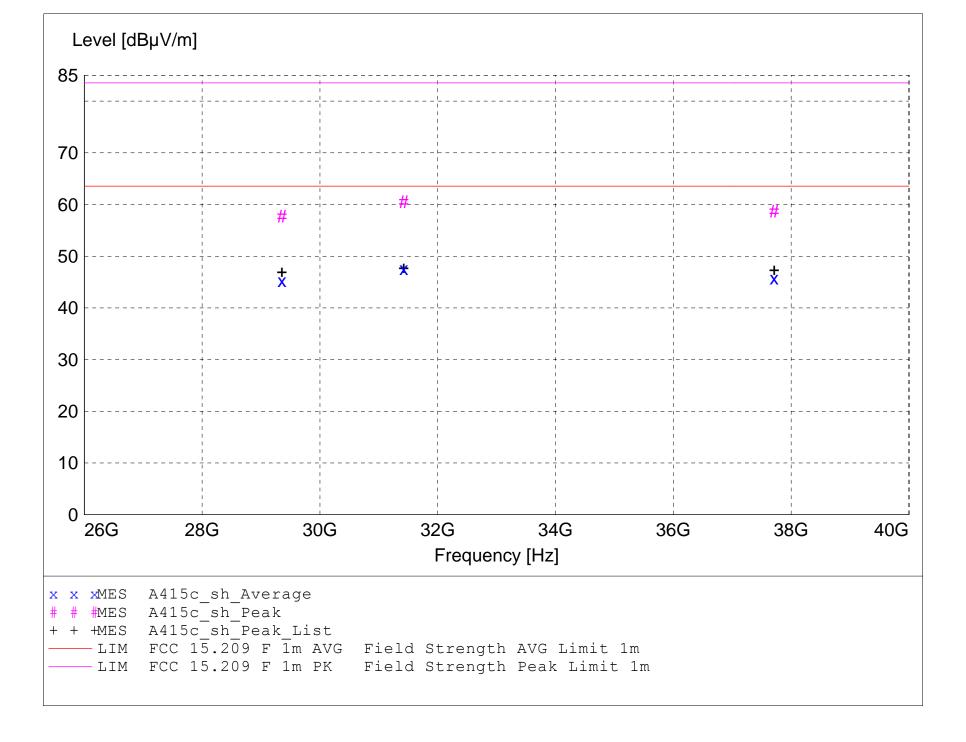
Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/ 6 dB atten)

Date: 04-15-2014

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization


Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

${\it MEASUREMENT~RESULT:~"A415c_sh_Final"}$

PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
50.59	47.44	-50.4	47.6	63.5	15.9	1.30	0	AVERAGE	noise floor
46.39	45.36	-46.0	45.8	63.5	17.8	1.30	0	AVERAGE	noise floor
47.44	46.56	-48.7	45.3	63.5	18.3	1.30	0	AVERAGE	noise floor
63.51	47.44	-50.4	60.5	83.5	23.0	1.30	0	MAX PEAK	noise floor
59.29	45.36	-46.0	58.7	83.5	24.9	1.30	0	MAX PEAK	noise floor
59.92	46.56	-48.7	57.7	83.5	25.8	1.30	0	MAX PEAK	noise floor
	Level dBµV 50.59 46.39 47.44 63.51 59.29	Level Antenna Factor dBμV dBμV/m 50.59 47.44 46.39 45.36 47.44 46.56 63.51 47.44 59.29 45.36	LevelAntenna Factor dBμVSystem Loss dBμV/m50.5947.44-50.446.3945.36-46.047.4446.56-48.763.5147.44-50.459.2945.36-46.0	LevelAntenna Factor dBμVSystem Loss dBμV/mTotal Level dBμV/m50.5947.44 46.39-50.4 45.3647.6 46.0 	Level dBμVAntenna Factor dBμV/mSystem Loss dB dBμV/mTotal Level dBμV/mLimit dBμV/m50.59 46.39 45.36 47.44 46.56 63.51 47.44 46.56 59.2947.44 46.36 47.44 46.36 45.36 46.0 58.747.4 46.5 60.5 58.7	Level Antenna factor dBμV/m System Level dBμV/m Total Limit dBμV/m Margin dBμV/m 50.59 47.44 -50.4 47.6 63.5 15.9 46.39 45.36 -46.0 45.8 63.5 17.8 47.44 46.56 -48.7 45.3 63.5 18.3 63.51 47.44 -50.4 60.5 83.5 23.0 59.29 45.36 -46.0 58.7 83.5 24.9	Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 50.59 47.44 -50.4 47.6 63.5 15.9 1.30 46.39 45.36 -46.0 45.8 63.5 17.8 1.30 47.44 46.56 -48.7 45.3 63.5 18.3 1.30 63.51 47.44 -50.4 60.5 83.5 23.0 1.30 59.29 45.36 -46.0 58.7 83.5 24.9 1.30	Level Antenna factor dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 50.59 47.44 -50.4 47.6 63.5 15.9 1.30 0 46.39 45.36 -46.0 45.8 63.5 17.8 1.30 0 47.44 46.56 -48.7 45.3 63.5 18.3 1.30 0 63.51 47.44 -50.4 60.5 83.5 23.0 1.30 0 59.29 45.36 -46.0 58.7 83.5 24.9 1.30 0	Level Antenna factor dBμV m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT petector degree degr

Electric Field Strength

EUT: ePMP STA 5.4 & 5.2 GHz OFDM, ESN: 000456C560B4

Manufacturer: Cambium Networks
Operating Condition: 70 deg. F; 31% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Radiated spurious emissions; 20 & 40 MHz ch BW; L,M,H channels

Comment: Both ports Tx setting 27.5 (24=0 cal table); with 30 dBi Dish antenna (w/ 6 dB atten)

Date: 04-15-2014

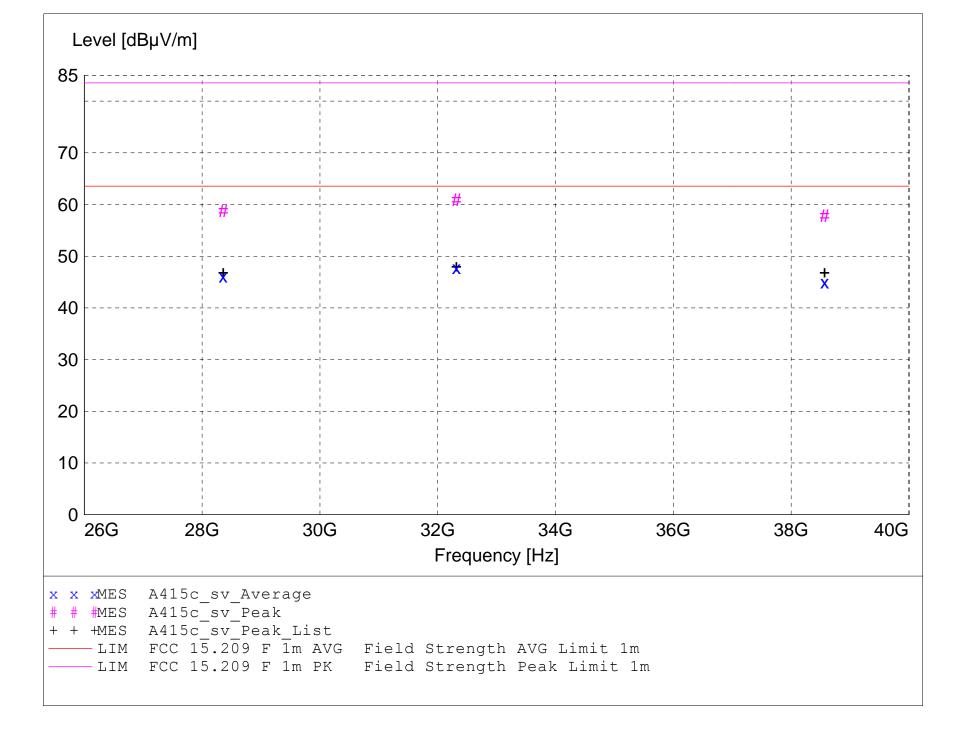
TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20


Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A415c_sv_Final"

4/15/2014 2:29	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
32319.200000	49.29	48.24	-49.8	47.8	63.5	15.8	1.30	0	AVERAGE	noise floor
28359.200000	49.91	46.57	-50.4	46.1	63.5	17.4	1.30	0	AVERAGE	noise floor
38570.000000	45.89	45.47	-46.4	45.0	63.5	18.6	1.30	0	AVERAGE	noise floor
32319.200000	62.45	48.24	-49.8	60.9	83.5	22.6	1.30	0	MAX PEAK	noise floor
28359.200000	62.58	46.57	-50.4	58.8	83.5	24.7	1.30	0	MAX PEAK	noise floor
38570.000000	58.78	45.47	-46.4	57.9	83.5	25.7	1.30	0	MAX PEAK	noise floor

Company: Cambium Networks Models Tested: C058900P122A

Report Number: 19894 DLS Project: 6493

END OF REPORT

Revision #	Date	Comments	By
1.0	4-22-2014	Preliminary Release	JS
1.1	4-22-2014	Notes added pages 11, 15, 28	JS