

Electromagnetic Compatibility Test Report

Tests Performed on a Dwyer Instruments, Inc

Air Flow Hood Transciever, HVIN: SAH22A

Radiometrics Document RP-8345

Product Detail:

FCC ID: Z7KSAH0616

IC: 9525A-SAH0616

Equipment type: DTS 2.4 GHz

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2016

Innovation, Science, and Economic Development Canada RSS-247, Issue 1: 2015 as required for Category I Equipment

This report concerns: Original Grant for Certification

FCC Part 15.247

Tests Performed For:

Dwyer Instruments, Inc
102 IN Hwy. 212
Michigan City, IN 46360-1956

Test Facility:

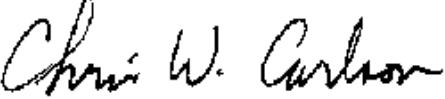
Radiometrics Midwest Corporation
12 Devonwood Avenue
Romeoville, IL 60446-1349
(815) 293-0772

Test Date(s): (Month-Day-Year)

May 13 to June 2, 2016

Document RP-8345 Revisions:

Rev.	Issue Date	Affected Sections	Revised By
0	June 15, 2016		
1	July 5, 2015	2, 4, 10, 11.2, 11.3, 11.6, 11.8 & 11.9	Joseph Strzelecki


Table of Contents

1.0 ADMINISTRATIVE DATA	3
2.0 TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	4
3.0 EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
3.2 Related Submittals	4
4.0 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 EUT Operating Modes	5
4.3 Special Accessories	5
4.4 Equipment Modifications	5
5.0 TEST SPECIFICATIONS	5
6.0 TEST PROCEDURE DOCUMENTS	6
7.0 RADIOMETRICS' TEST FACILITIES	6
8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
9.0 CERTIFICATION	6
10.0 TEST EQUIPMENT TABLE	7
11.0 TEST SECTIONS	7
11.1 AC Conducted Emissions	7
11.2 Occupied Bandwidth	11
11.3 Peak Output Power	18
11.4 Average Output Power	20
11.5 Power Spectral Density	22
11.6 Band-edge Compliance of RF Conducted Emissions	24
11.7 Spurious RF Conducted Emissions at Antenna Port	28
11.8 Spurious Radiated Emissions (Restricted Band)	37
11.8.1 Radiated Emissions Field Strength Sample Calculation	38
11.8.2 Spurious Radiated Emissions Test Results (Restricted Band)	40
11.9 Unintentional Emissions (Receive Mode)	44

Notice: This report must not be reproduced (except in full) without the written approval of
Radiometrics Midwest Corporation.

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

1.0 ADMINISTRATIVE DATA

<i>Equipment Under Test:</i>	
A Dwyer Instruments, Inc, Air Flow Hood HVIN: SAH22A Serial Number: 0004	
This will be referred to as the EUT in this Report HVIN is Hardware Version Identification Number	
<i>Date EUT Received at Radiometrics: (Month-Day-Year)</i>	<i>Test Date(s): (Month-Day-Year)</i>
February 24, 2016	May 13 to June 2, 2016
<i>Test Report Written By:</i>	<i>Test Witnessed By:</i>
Joseph Strzelecki Senior EMC Engineer	Neal Syverson Dwyer Instruments, Inc
<i>Radiometrics' Personnel Responsible for Test:</i>	<i>Test Report Approved By</i>
Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE	Chris W. Carlson Director of Engineering NARTE EMC-000921-NE

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an Air Flow Hood, HVIN: SAH22A, manufactured by Dwyer Instruments, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

Spread Spectrum Transmitter Requirements

Environmental Phenomena	Frequency Range	FCC Section	RSS- Section	Test Result
RF AC Mains Conducted Emissions	0.15 - 30 MHz	15.207	GEN; 7.2.2	Pass
RF Radiated Emissions (Unintentional Radiation Receive mode)	30-25,000 MHz	15.209	GEN; 7.2.5	Pass
6 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	247; 5.2 (1)	Pass
20 dB Bandwidth Test	2400 to 2483 MHz	15.247 a	GEN	Pass
Peak Output Power	2400 to 2483 MHz	15.247 b	247; 5.4	Pass
Band-edge Compliance of RF Conducted Emissions	2400 to 2483 MHz	15.247 d	247; 5.5	Pass
Spurious Radiated Emissions	30 MHz to 25 GHz	15.247 d	247; 5.5	Pass
Power Spectral Density	2400 to 2483 MHz	15.247 e	247; 5.2 (2)	Pass

Note: The RSS-247 specification is not currently covered in Radiometrics' Scope of Accreditation. This is technically very similar to FCC, CFR 47 Part 15, which is on Radiometrics' scope.

2.1 RF Exposure Compliance Requirements

The EUT meets the FCC requirement for RF exposure and it is exempt from RSS-102 SAR and RF exposure evaluations because the power output is less than 200 mW. There are no power level adjustments available to the end user. The detailed calculations for RF Exposure are presented in a separate document. This is not used within 20 cm of personnel.

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is an Air Flow Hood, HVIN: SAH22A, manufactured by Dwyer Instruments, Inc. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is a monopole. The antenna has an MMCX connector type that is not readily available to the general public. The connector is internal to the product. Therefore, it meets the 15.203 Requirements. The antenna gain is 5 dBi.

Since the separation distance between personnel and the antenna is greater than or equal to 20 cm and the average e.i.r.p. of the Product is 92 mW, it is exempt from routine SAR evaluations in accordance to Section 2.5.1 of RSS-102 issue 5, table 1. Table 1 has a limit of 309mW for devices operating at 2450 MHz with a separation distance greater than 50 mm.

3.2 Related Submittals

Dwyer Instruments, Inc is not submitting any other products simultaneously for equipment authorization related to the EUT.

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The EUT was tested as a stand-alone device. Power was supplied at 120 VAC, 60 Hz single-phase to its external power supply.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Tested System Configuration List

Item	Description	Type*	Manufacturer	Model Number	Serial Number
1	Air Flow Hood	E	Dwyer Instruments, Inc	SAH22A	0004
2	USB power Supply	P	Apple	A1385	D292034F1QYDHLHAE

* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

List of System Cables

QTY	Length (m)	Cable Description	Connected to (Item #)	Shielded?
1	1.8	USB Charging Cable	#1 Power input	No

4.2 EUT Operating Modes

Environmental Phenomena	Channels Tested	Mode	Data Mbps	Notes
Bandwidth Test	1, 6, 11	802.11b	1.0	
Bandwidth Test	1, 6, 11	802.11g	6.0	
Bandwidth Test	1, 6, 11	802.11n	6.5	
Peak Output Power	1, 6, 11	802.11b	1.0	
Peak Output Power	1, 6, 11	802.11g	6.0	
Peak Output Power	1, 6, 11	802.11n	6.5	
Band-edge Compliance of RF Conducted Emissions	1, 6, 11	802.11b	1.0	
Band-edge	1, 6, 11	802.11g	6.0	
Band-edge	1, 6, 11	802.11n	6.5	
RF Conducted Emissions	1, 6, 11	802.11b	1.0	
RF Conducted Emissions	1, 6, 11	802.11g	6.0	
RF Conducted Emissions	1, 6, 11	802.11n	6.5	
Radiated Emissions	1, 6, 11	802.11b	1.0	
Radiated Emissions	1, 6, 11	802.11g	6.0	
Radiated Emissions	1, 6, 11	802.11n	6.5	
Power Spectral Density	1, 6, 11	802.11b	1.0	
Power Spectral Density	1, 6, 11	802.11g	6.0	
Power Spectral Density	1, 6, 11	802.11n	6.5	
Conducted Emissions, AC Mains	6	802.11b	1.0	Note 1

Note 1: During preliminary testing, 802.11b mode Channel 6 was found to be worst case for this test.

The transmit mode for all tests was continuous. The continuous mode produces a Duty cycle of at least 98%.

4.3 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.4 Equipment Modifications

The following modifications were made prior to the start of compliance testing:

A ferrite P/N 0431167281 was added to the coaxial cable.

Conducted coating was applied to the housing around the main PCB.

5.0 TEST SPECIFICATIONS

Document	Date	Title
FCC CFR Title 47	2015	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
IC RSS-247 Issue 1	2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
IC RSS-Gen Issue 4	2014	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

6.0 TEST PROCEDURE DOCUMENTS

The tests were performed using the procedures from the following specifications:

Document	Date	Title
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	2013	American National Standard for Testing Unlicensed Wireless Devices
558074 D01 DTS Meas Guidance	2016	Guidance for Performing Compliance Measurements On Digital Transmission Systems (DTS) Operating Under §15.247; v03r04

7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.

Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6 inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with Innovation, Science, and Economic Development Canada as site number IC 8727A-1.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

10.0 TEST EQUIPMENT TABLE

RMC ID	Manufacturer	Description	Model No.	Serial No.	Frequency Range	Cal Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	10/06/15
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	01/05/16
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	01/05/16
AMP-29	HP / Agilent	Amplifier	11975A	2304A00158	2-8 GHz	12 Mo.	01/08/16
ANT-03	Tensor	Biconical Antenna	4104	2231	20-250MHz	24 Mo.	12/07/15
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/25/15
ANT-08	RMC	Log-Periodic Ant.	LP1000	1002	200-1000MHz	24 Mo.	08/26/14
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/01/14
ANT-36	Ailtech (Eaton)	Horn Antenna	96001	2013	1.0-18GHz	24 Mo.	10/20/14
ANT-44	Imp Machine	Super Log Antenna	SL-20M2G	1002	20-2000MHz	24 Mo.	01/19/16
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	24 Mo.	12/15/15
ANT-53	EMCO	Loop Antenna	6507	1453	1 kHz-30 MHz	24 Mo	12/17/15
LSN-01	Electrometrics	50 uH LISN	FCC/VDE 50/2	1001	0.01-30MHz	24 Mo.	06/23/15
MXR-02	HP / Agilent	Harmonic Mixer	11970K	2332A00489	18-26.5GHz	12 Mo.	01/08/16
REC-08	HP / Agilent	Spectrum Analyzer	8566B	2648A13481 2209A01436	30Hz-22GHz	24 Mo.	12/21/15
REC-20	HP / Agilent	Spectrum Analyzer	85460A/84562A	33330A00135 3410A00178	30Hz-6GHz	24 Mo.	06/26/15
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	12 Mo.	12/22/15
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	24 Mo.	08/03/15
THM-03	Fluke	Temp/Humid Meter	971	95850465	N/A	12 Mo.	01/11/16

Note: All calibrated equipment is subject to periodic checks.

Software Company	Test Software Name	Version	Applicable Tests
Radiometrics	EN550XX0	06.09.15	RF Conducted Emissions (FCC Part 15 & EN 55011/22) REC-10
Radiometrics	REREC11D	12.04.15	RF Radiated Emissions (FCC Part 15 & EN 55011/22)
Agilent	PSA/ESA-E/L/EMC	2.4.0.42	Bandwidth and screen shots

11.0 TEST SECTIONS

11.1 AC Conducted Emissions

The tests and limits are in accordance with FCC section 15.207 and RSS Gen section 7.2.2.

A computer-controlled analyzer was used to perform the conducted emissions measurements. The frequency range was divided into 500 subranges equally spaced on a logarithmic scale. The computer recorded the peak of each subrange. This data was then plotted on a semi-log graph generated by the computer. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

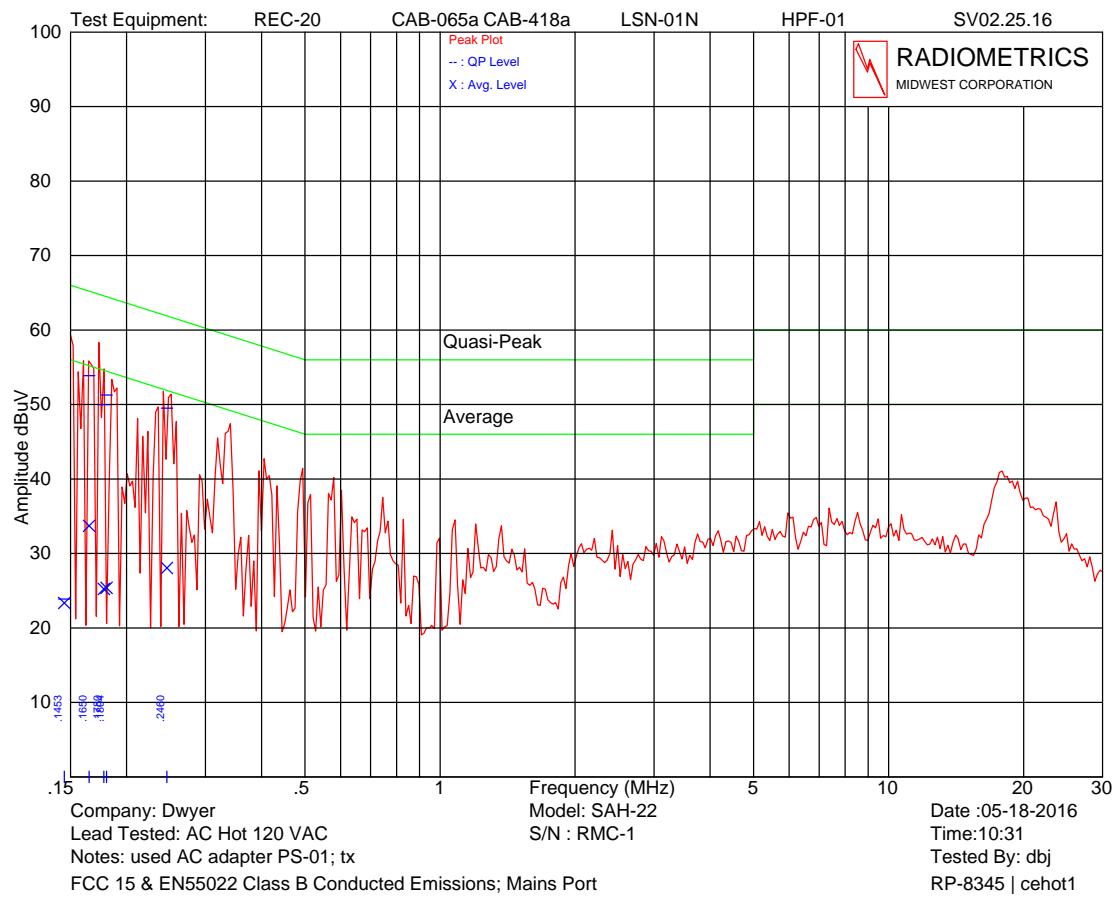
Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range (MHz)	Class B Limits (dBuV)	
	Quasi-Peak	Average
0.150 - 0.50*	66 - 56	56 - 46
0.5 - 5.0	56	46
5.0 - 30	60	50

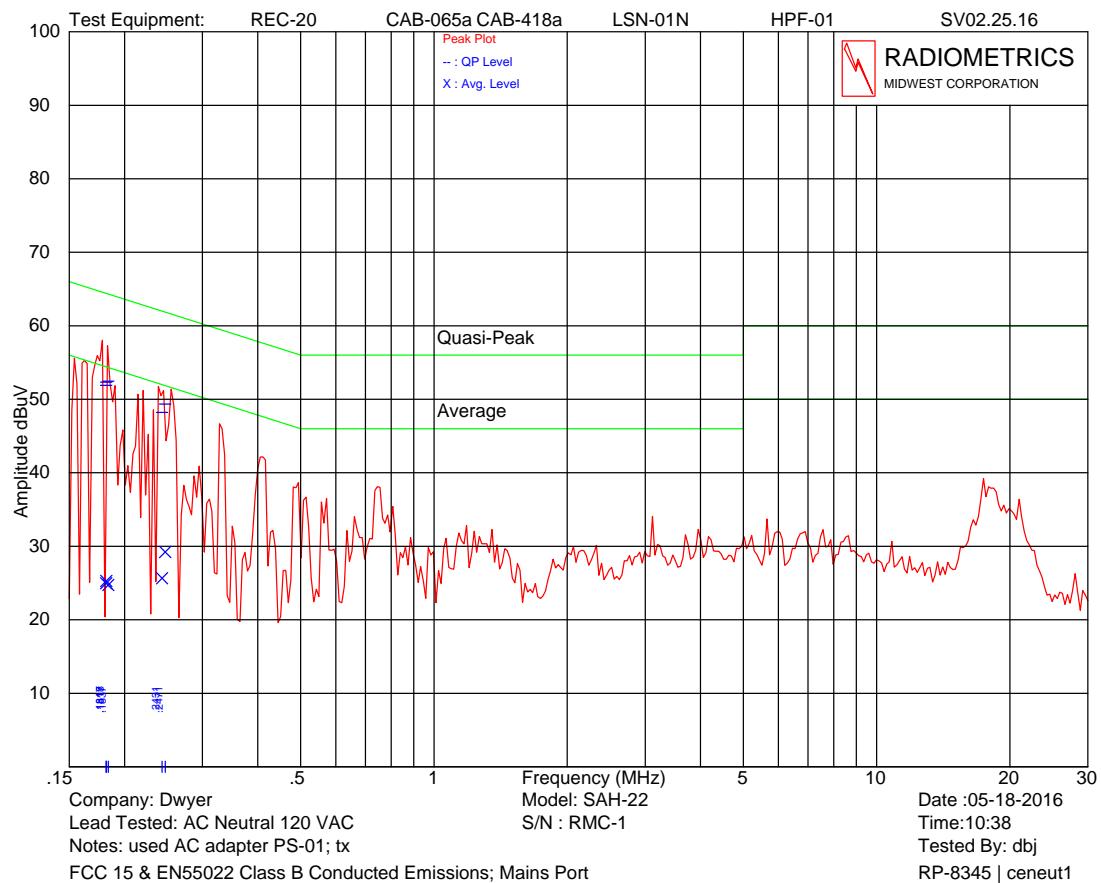
* The limit decreases linearly with the logarithm of the frequency in this range.

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from the external USB charger (with the EUT connected) power cord, after testing all modes of operation.

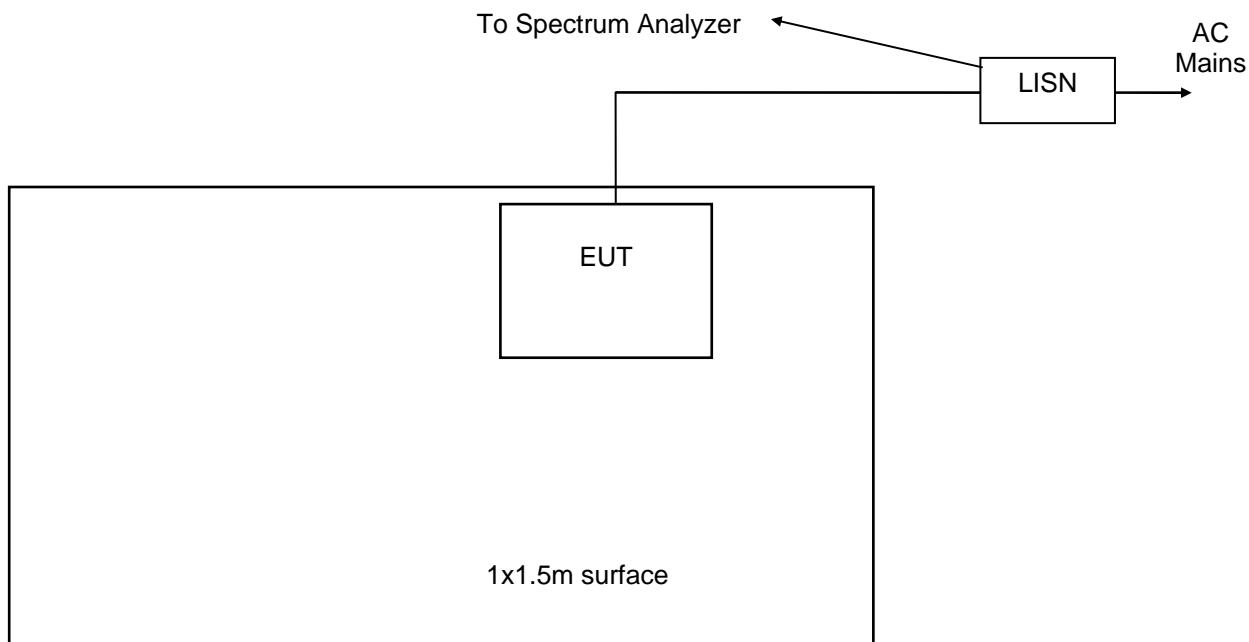

Test Date: May 18, 2016

The Amplitude is the final corrected value with cable and LISN Loss.

QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.


Judgment: Passed by at least 6 dB

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood



Frequency (MHz)	QP Amp. (dBuV)	QP Limit (dBuV)	Average Amp. (dBuV)	Average Limit (dBuV)	Margin Under Limit (dB)
0.145	23.9	66.3	23.4	56.3	32.9
0.165	53.9	65.2	33.7	55.2	11.3
0.178	50.0	64.6	25.2	54.6	14.6
0.180	51.3	64.5	25.4	54.5	13.2
0.246	49.5	61.9	28.1	51.9	12.4

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Frequency (MHz)	QP Amp. (dBuV)	QP Limit (dBuV)	Average Amp. (dBuV)	Average Limit (dBuV)	Margin Under Limit (dB)
0.182	52.3	64.4	25.3	54.4	12.1
0.182	51.9	64.4	25.0	54.4	12.5
0.184	52.5	64.3	24.7	54.3	11.9
0.243	48.2	62.0	25.6	52.0	13.8
0.247	49.3	61.9	29.2	51.9	12.5

Figure 1. Conducted Emissions Test Setup**Notes:**

- LISN's at least 80 cm from EUT chassis
- Vertical conductive plane 40 cm from rear of table top

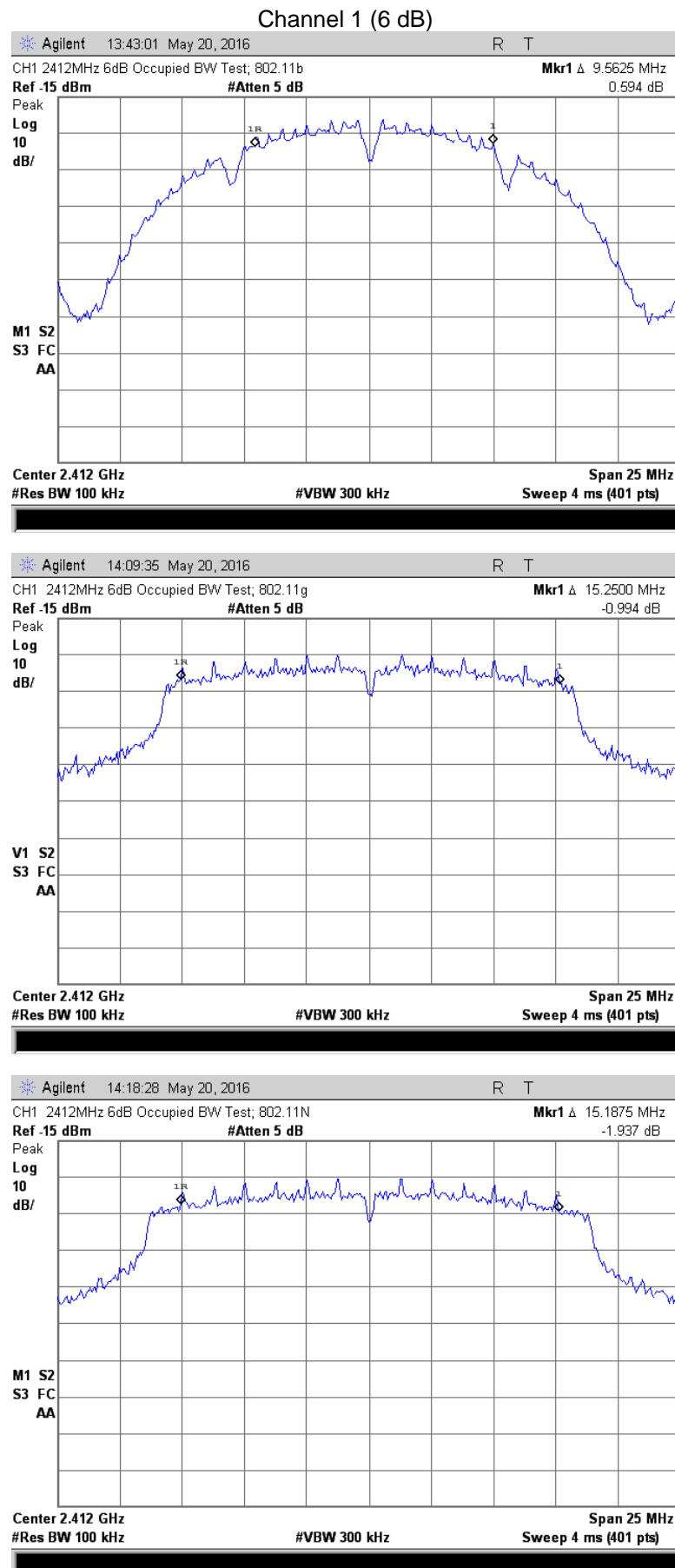
11.2 Occupied Bandwidth

The test procedures were in accordance to FCC DTS Measurement Guideline 558074 D01, Section 8.1.

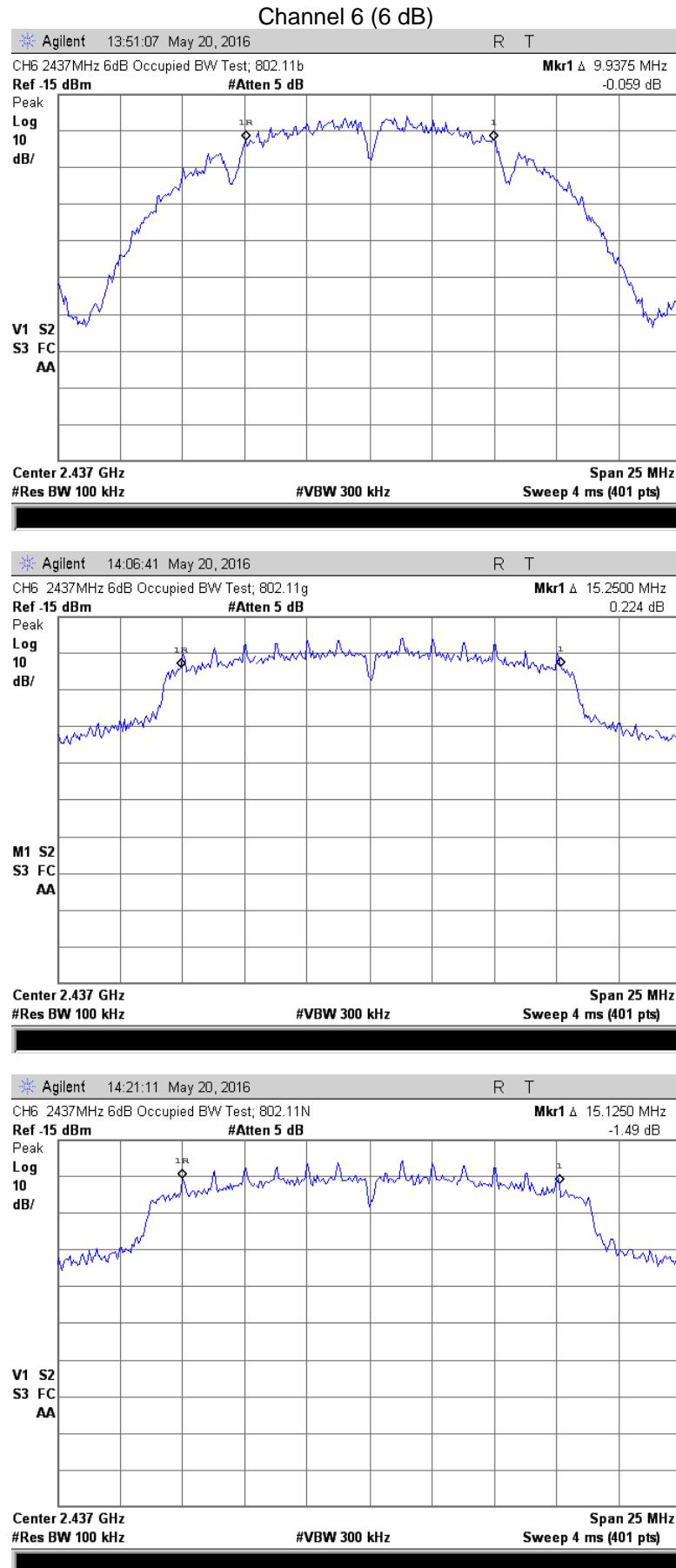
The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The EUT was transmitting at its maximum data rate. The trace was allowed to stabilize.

The marker-to-peak function was set to the peak of the emission. Then the marker-delta function was used to measure 6 or 20 dB down one side of the emission. The marker-delta function was reset and then moved to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the bandwidth of the emission.

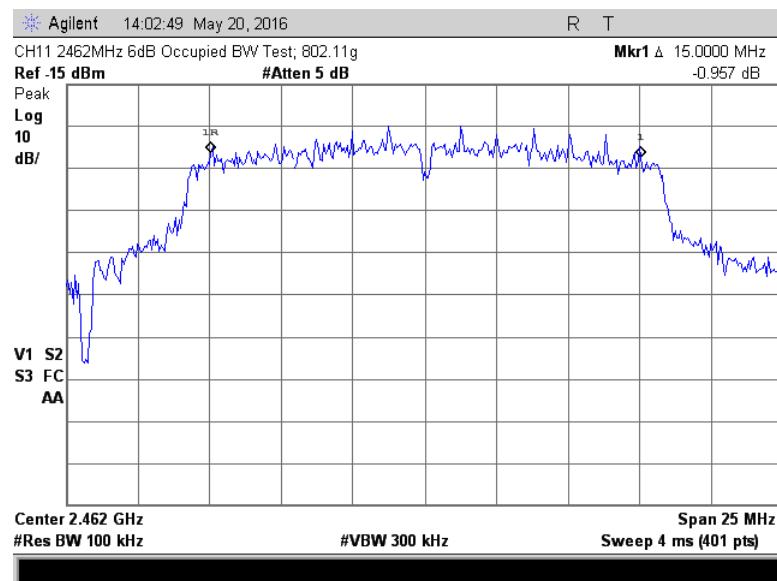
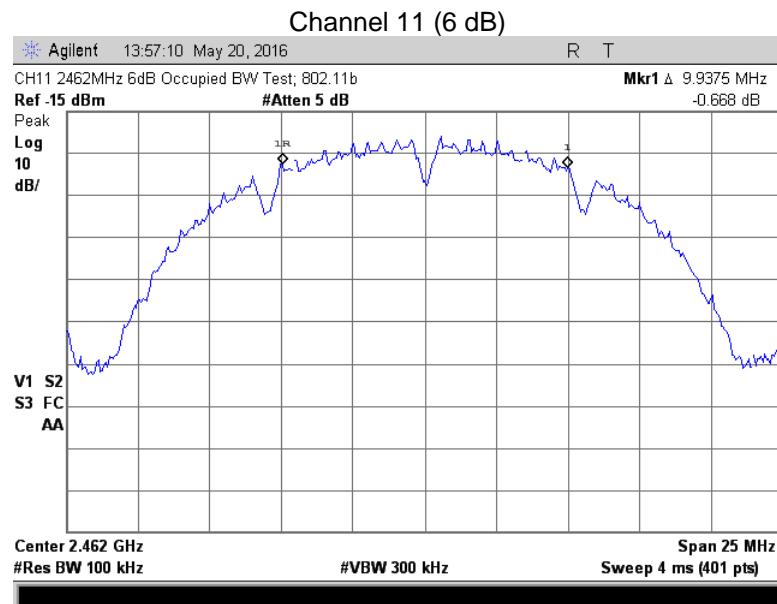
BW Type	Mode	EUT MHz	BW MHz	EUT MHz	BW MHz	EUT MHz	BW MHz
6 dB	b	2412	9.56	2437	9.94	2462	9.94
6 dB	g	2412	15.25	2437	15.25	2462	15.00
6 dB	N	2412	15.19	2437	15.13	2462	15.13
20 dB	b	2412	16.19	2437	16.25	2462	16.25
20 dB	g	2412	19.18	2437	20.19	2462	19.19
20 dB	N	2412	20.19	2437	20.50	2462	20.06

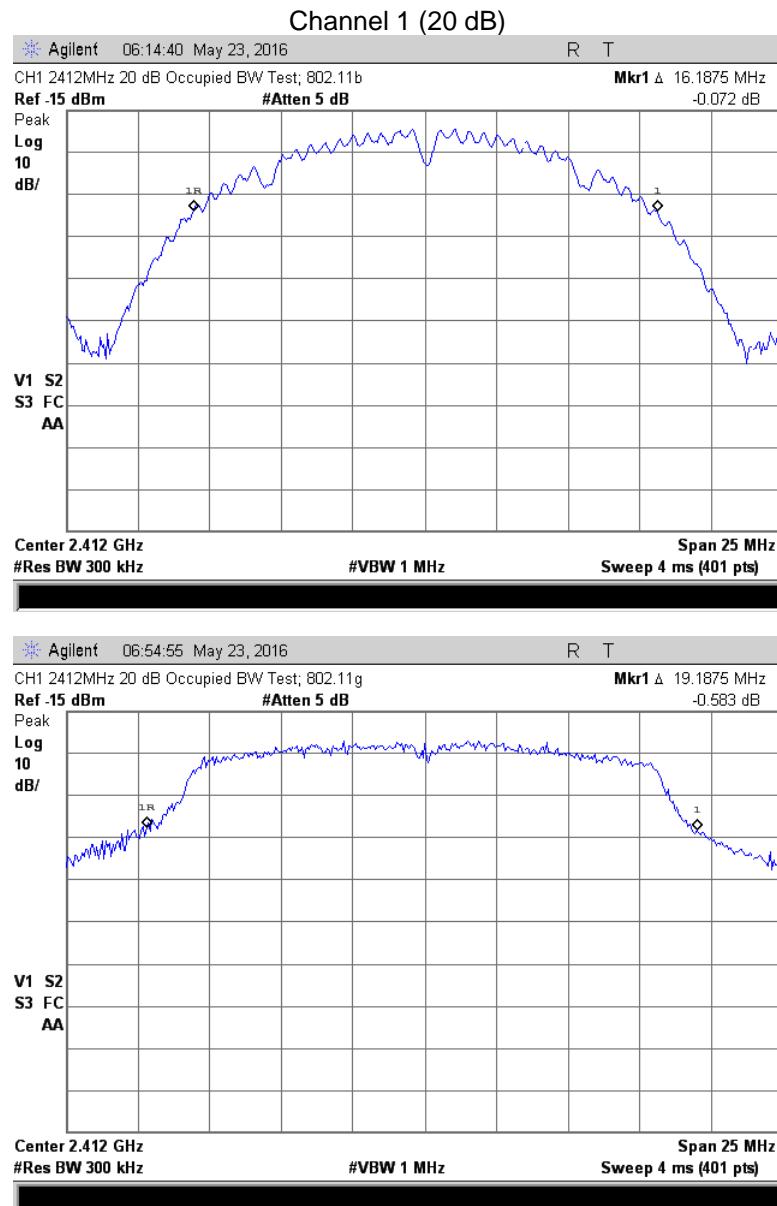

The 6 dB bandwidth is greater than 500 kHz

Judgement: Pass

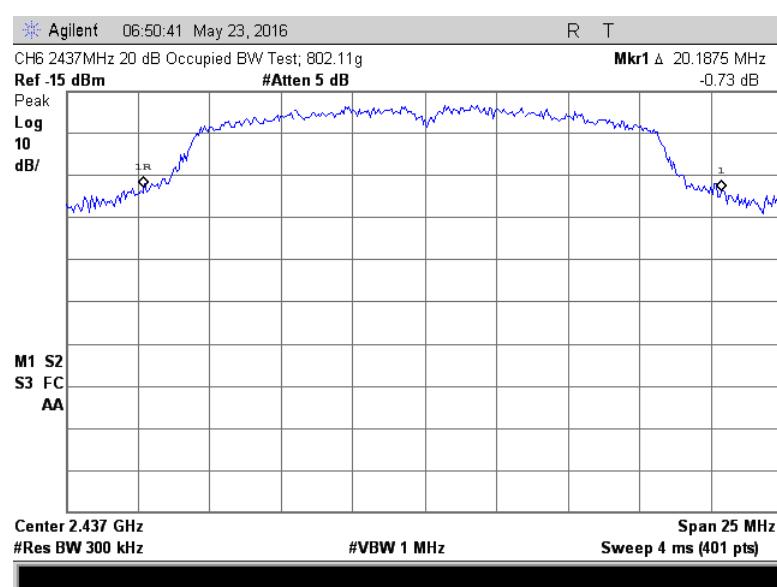
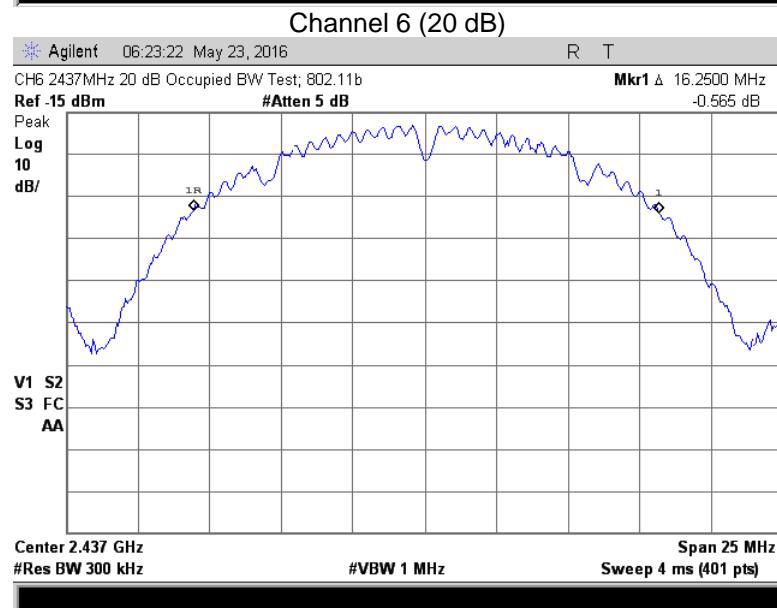
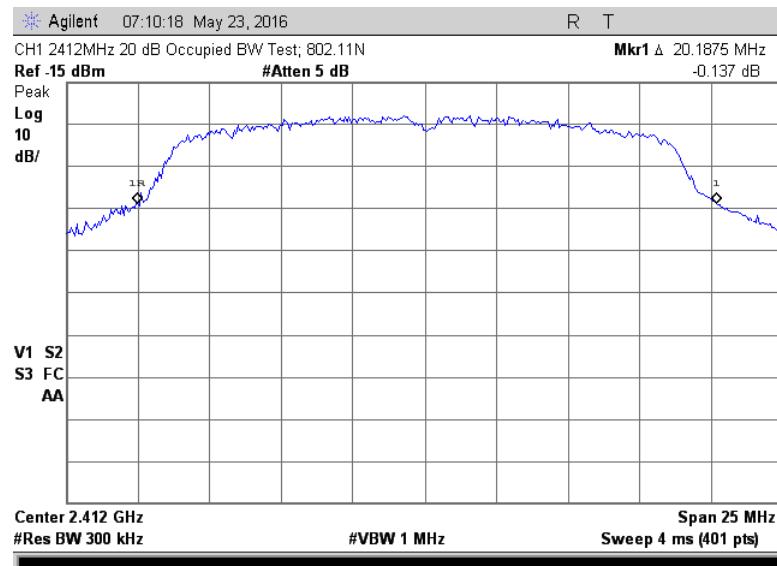

Tested by: Richard Tichgelaar

Test Date: May 20 and May 23, 2016

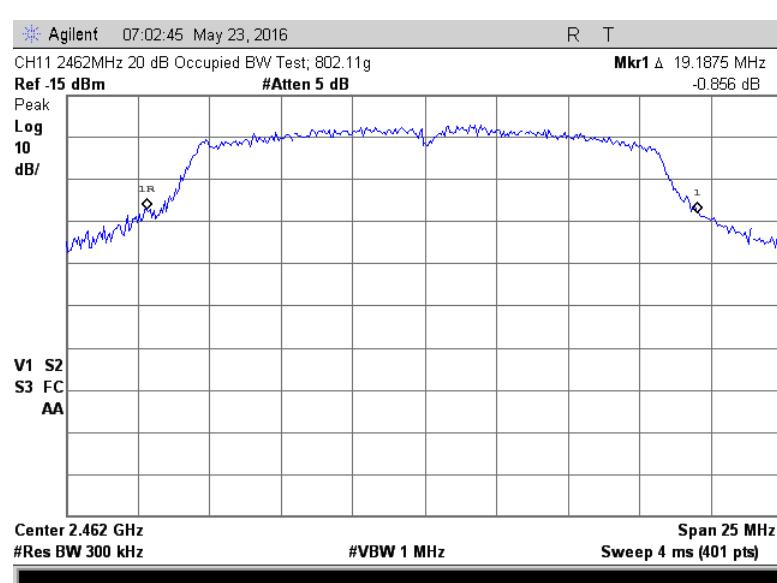
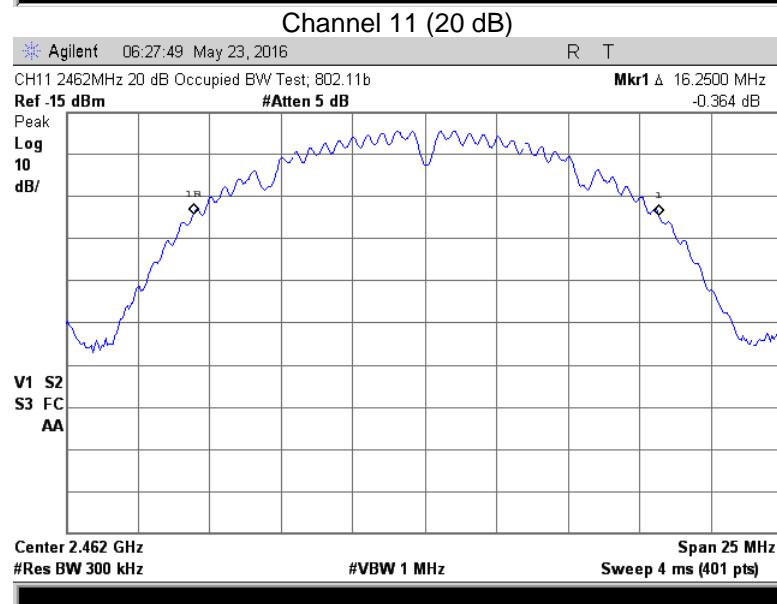
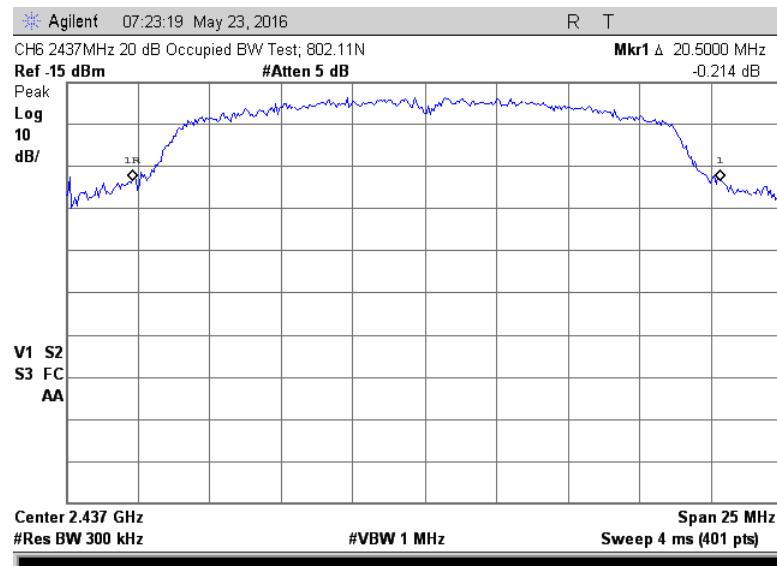


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

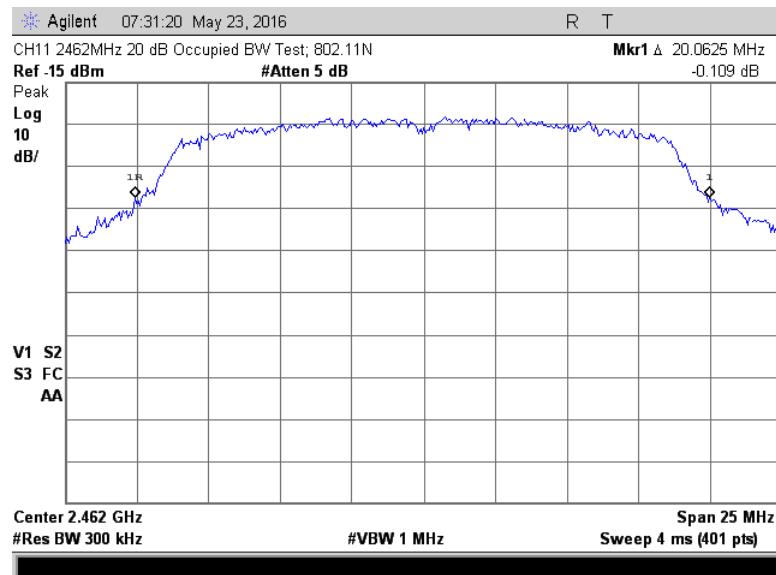


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

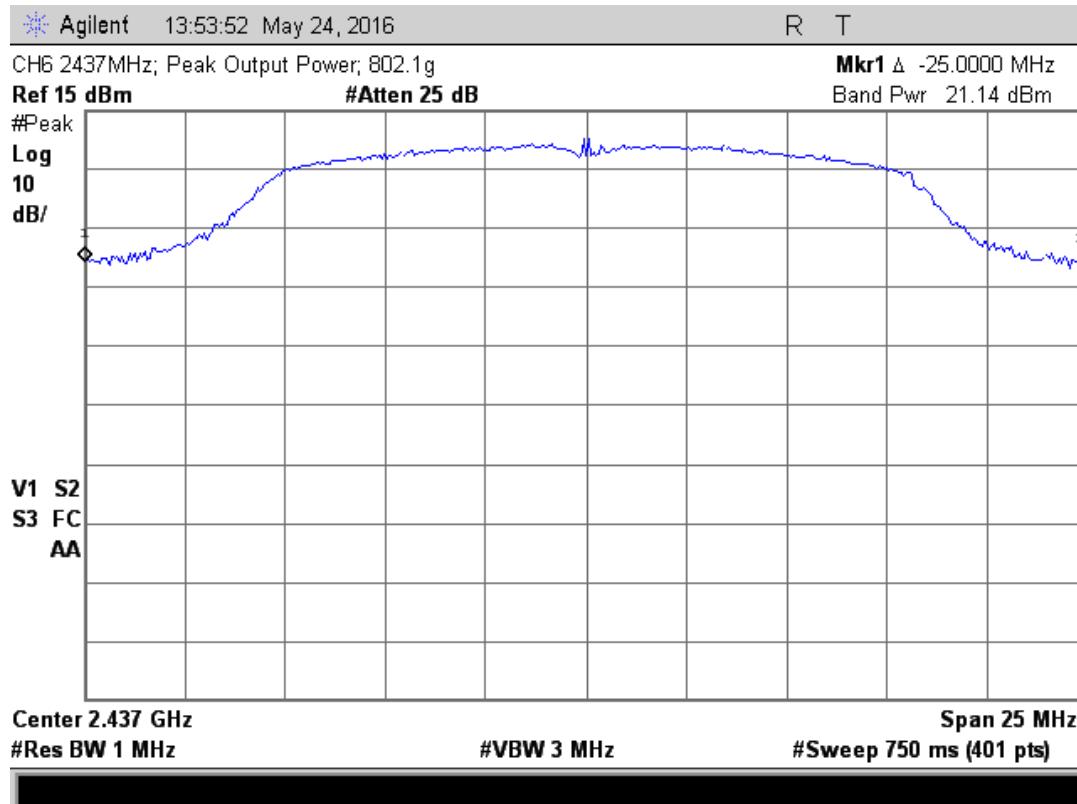
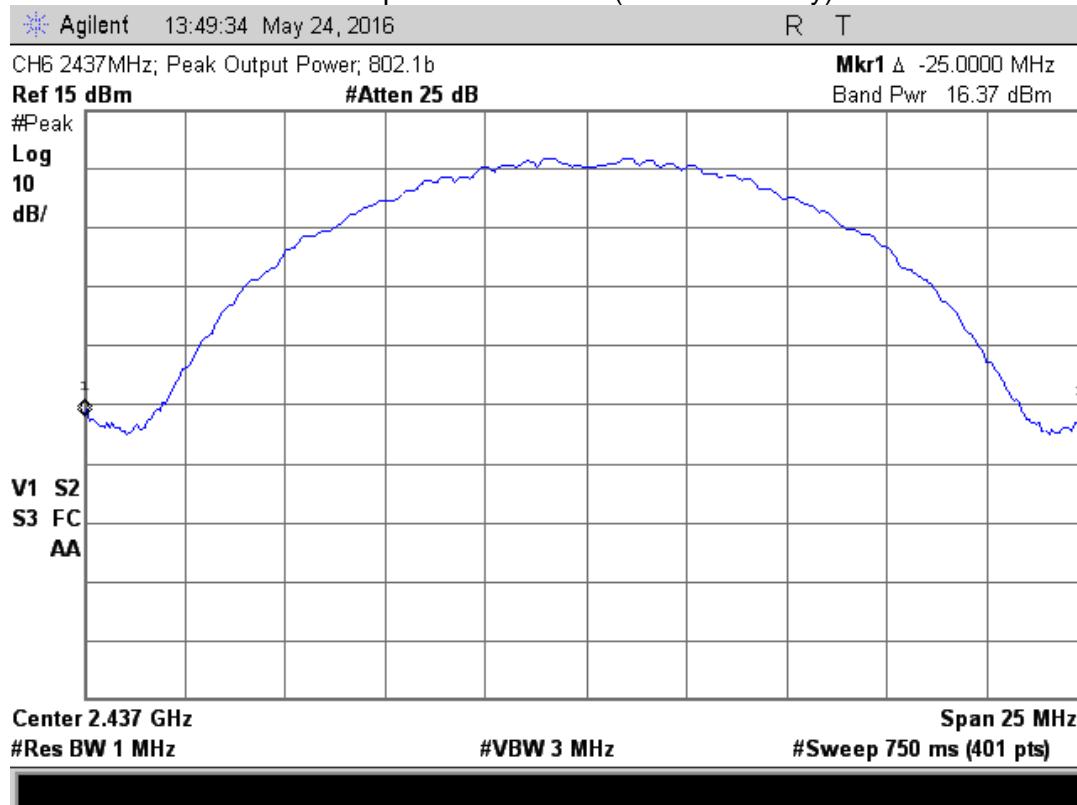
11.3 Peak Output Power

The power output test method from ANSI C63.10-2013 section 11.9.1.2 was used for this test. The spectrum analyzer was set to peak channel power with a span of 20 MHz. The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable.

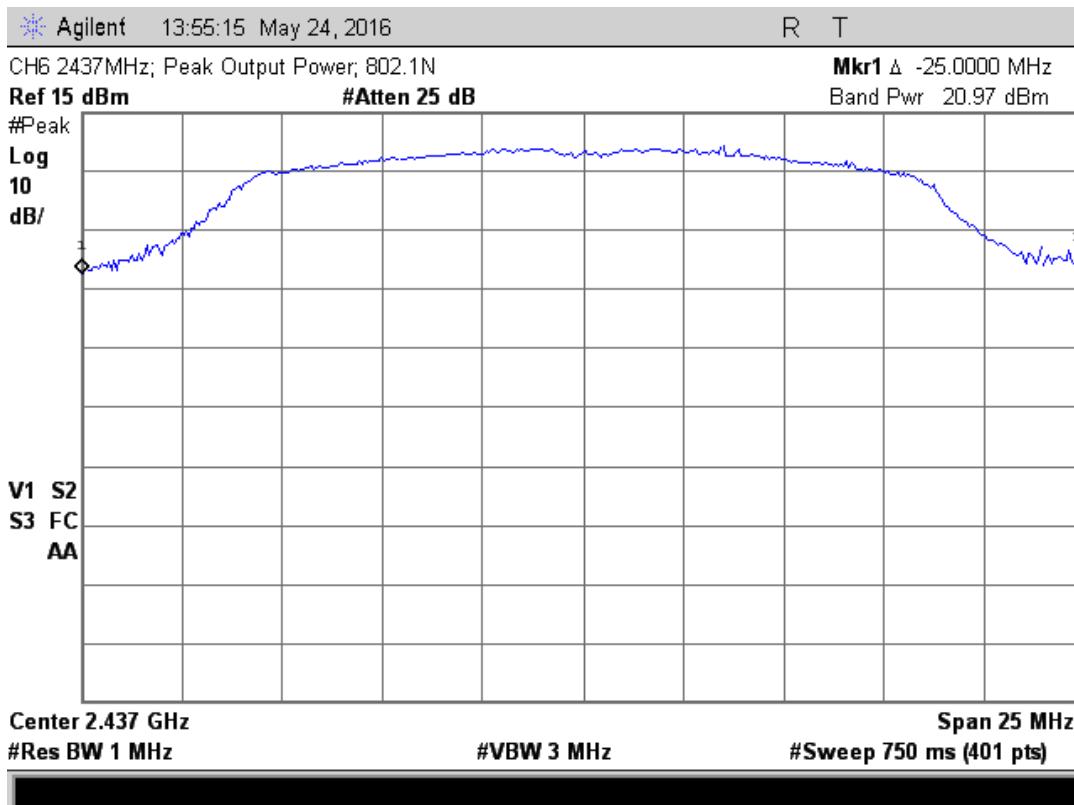
Span = 25 MHz; RBW = 1 MHz; VBW = 3 MHz

Tested by: Joseph Strzelecki/Richard Tichgelaar

Test Date: May 24, 2016



Since the gain of the antenna is always less than 6 dB, the limit is not reduced. The antenna gain is 5 dBi.

Chan	Mode	EUT MHz	Peak Channel Power dBm	Cable Loss dB	Peak Power dBm	Limit dBm	Margin dB
1	802.11b	2412	15.9	0.7	16.6	30.0	13.4
1	802.11g	2412	18.2	0.7	18.9	30.0	11.1
1	802.11N	2412	17.7	0.7	18.4	30.0	11.6
6	802.11b	2437	16.4	0.7	17.1	30.0	12.9
6	802.11g	2437	21.0	0.7	21.7	30.0	8.3
6	802.11N	2437	21.0	0.7	21.7	30.0	8.3
11	802.11b	2462	17.0	0.7	17.7	30.0	12.3
11	802.11g	2462	19.0	0.7	19.7	30.0	10.3
11	802.11N	2462	18.2	0.7	18.9	30.0	11.1


Judgment: Passed by 8.3 dB

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Peak Output Power Plots (Channel 6 Only)

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

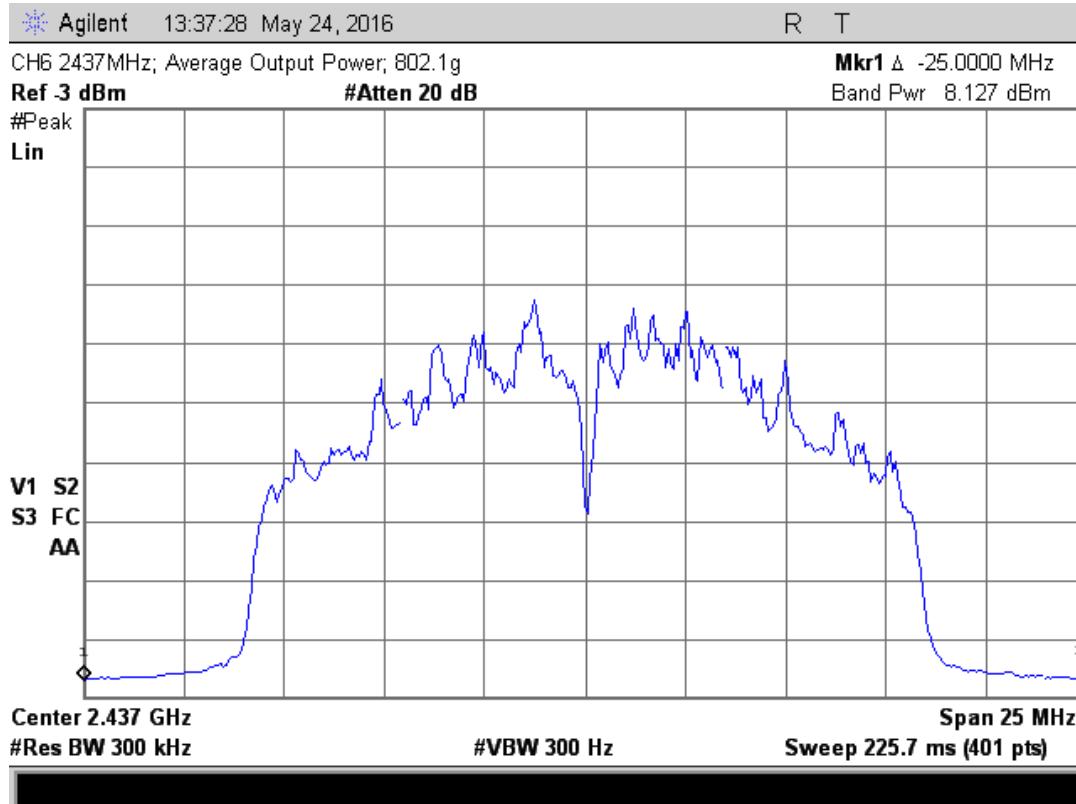
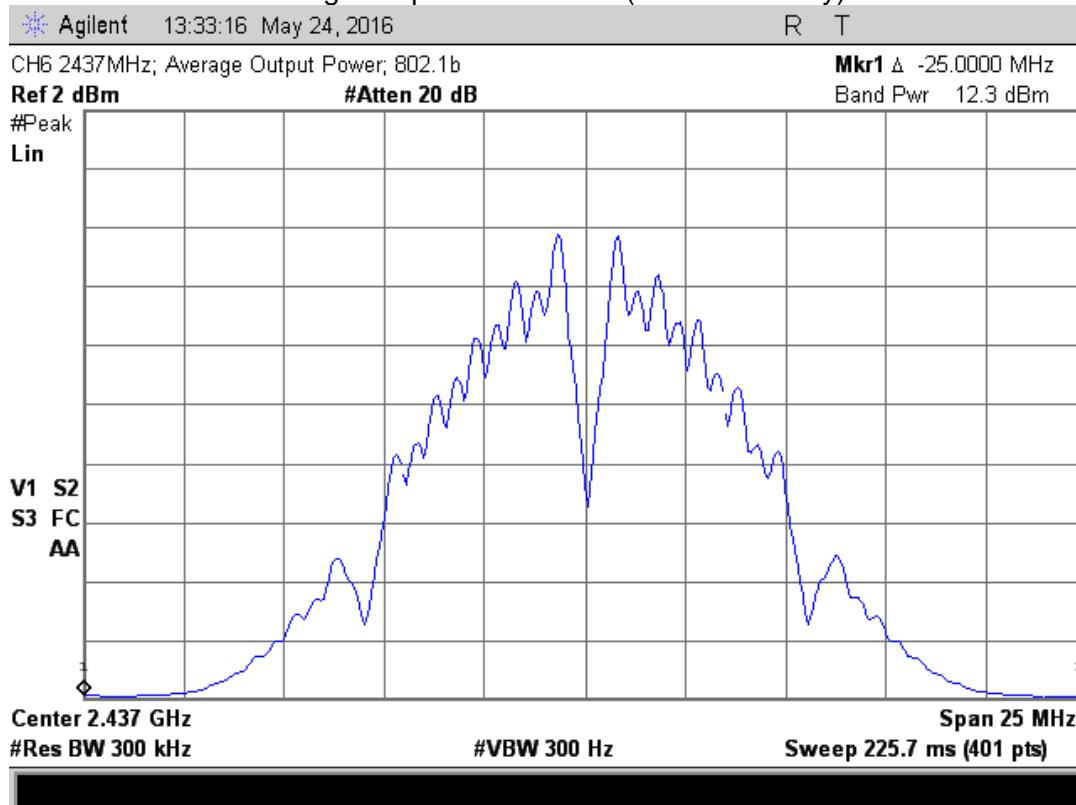
11.4 Average Output Power

The average power output test method from using 558074 D01, Section 9.2.2.7 was used for this test. The spectrum analyzer was set to channel power with a span of 20 MHz. The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable.

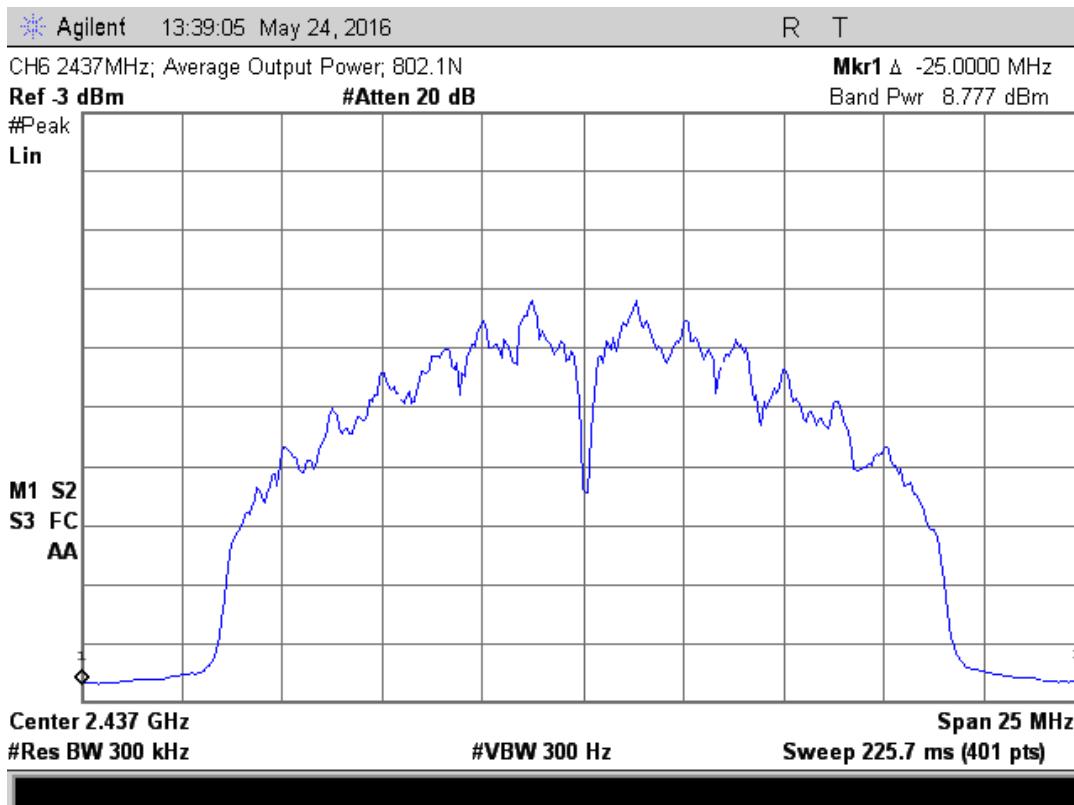
Span = 25 MHz; RBW = 300 kHz; VBW = 300 Hz

Tested by: Richard Tichgelaar

Test Date: March 9, 2016



Chan	Mode	EUT MHz	Average Channel Power dBm	Cable Loss dB	Linear vs power factor dB	Ave power dBm	Power mW	Limit dBm
1	802.11b	2412	12.0	0.71	1.0	13.7	23.4	30.0
1	802.11g	2412	6.4	0.71	1.0	8.1	6.5	30.0
1	802.11N	2412	6.0	0.71	1.0	7.7	5.9	30.0
6	802.11b	2437	12.3	0.71	1.0	14.0	25.1	30.0
6	802.11g	2437	8.1	0.71	1.0	9.8	9.5	30.0
6	802.11N	2437	8.77	0.71	1.0	10.5	11.2	30.0
11	802.11b	2462	12.9	0.71	1.0	14.6	28.8	30.0
11	802.11g	2462	5.8	0.71	1.0	7.5	5.6	30.0
11	802.11N	2462	5.9	0.71	1.0	7.6	5.8	30.0

Judgment: Pass


This is used for RF exposure calculations

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Average Output Power Plots (Channel 6 Only)

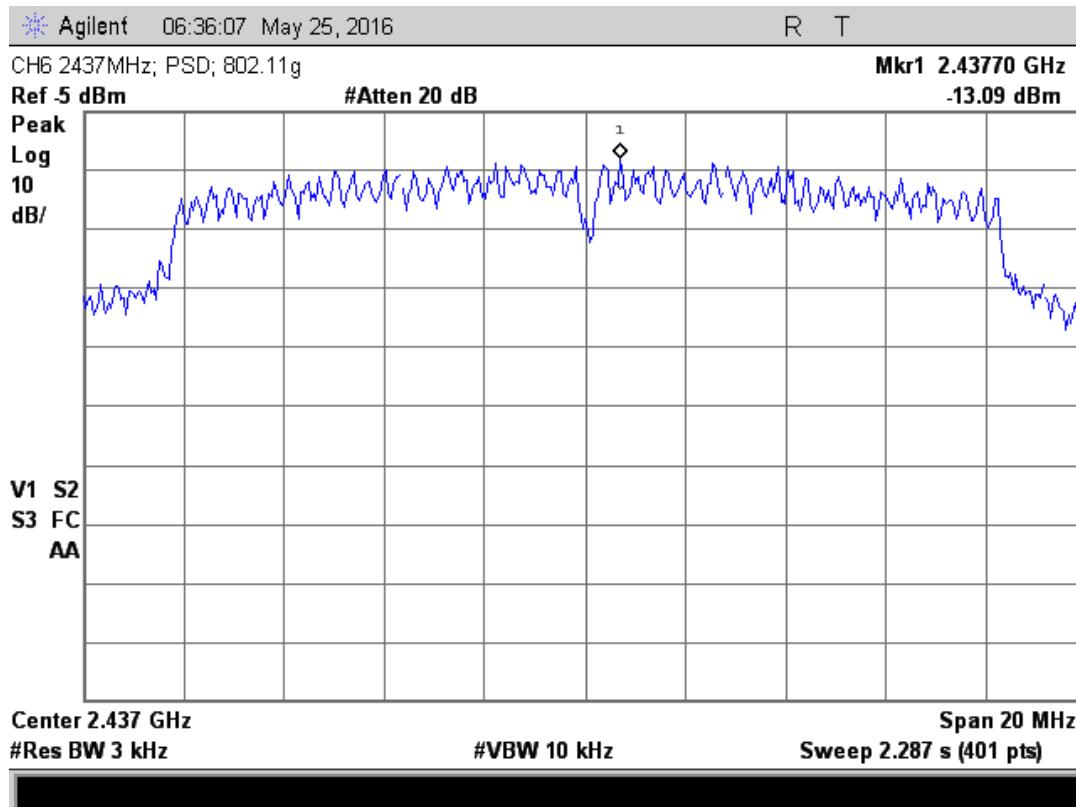
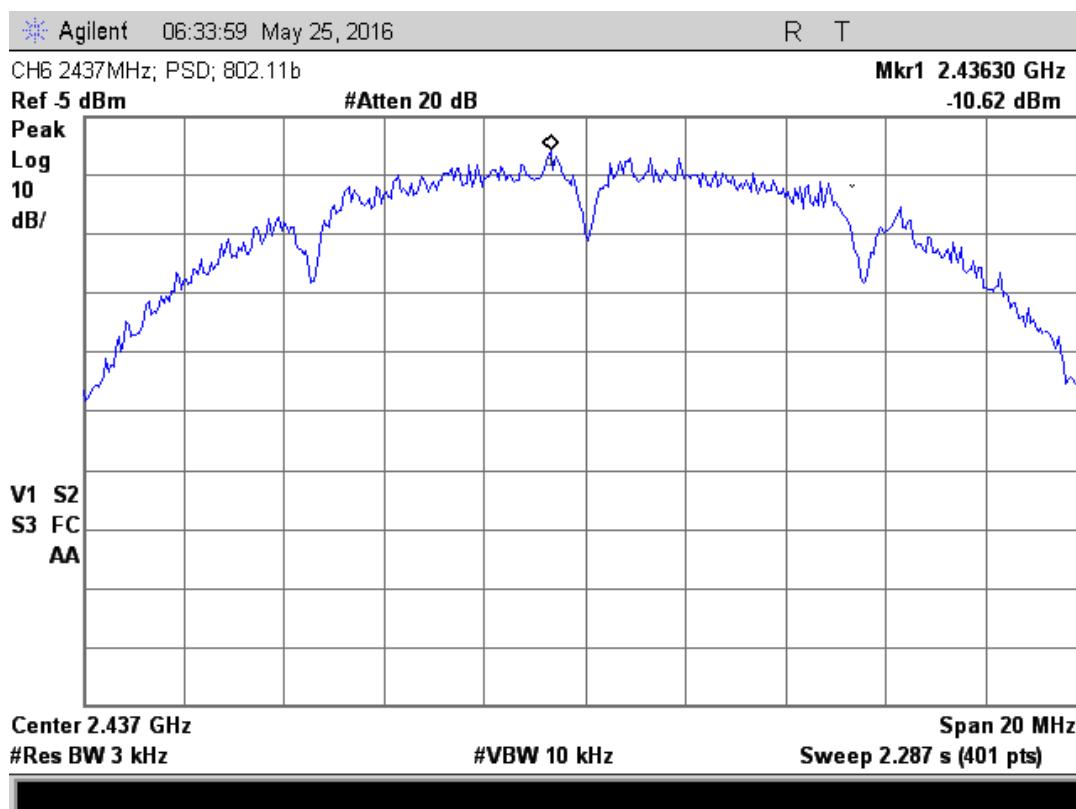
Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

11.5 Power Spectral Density

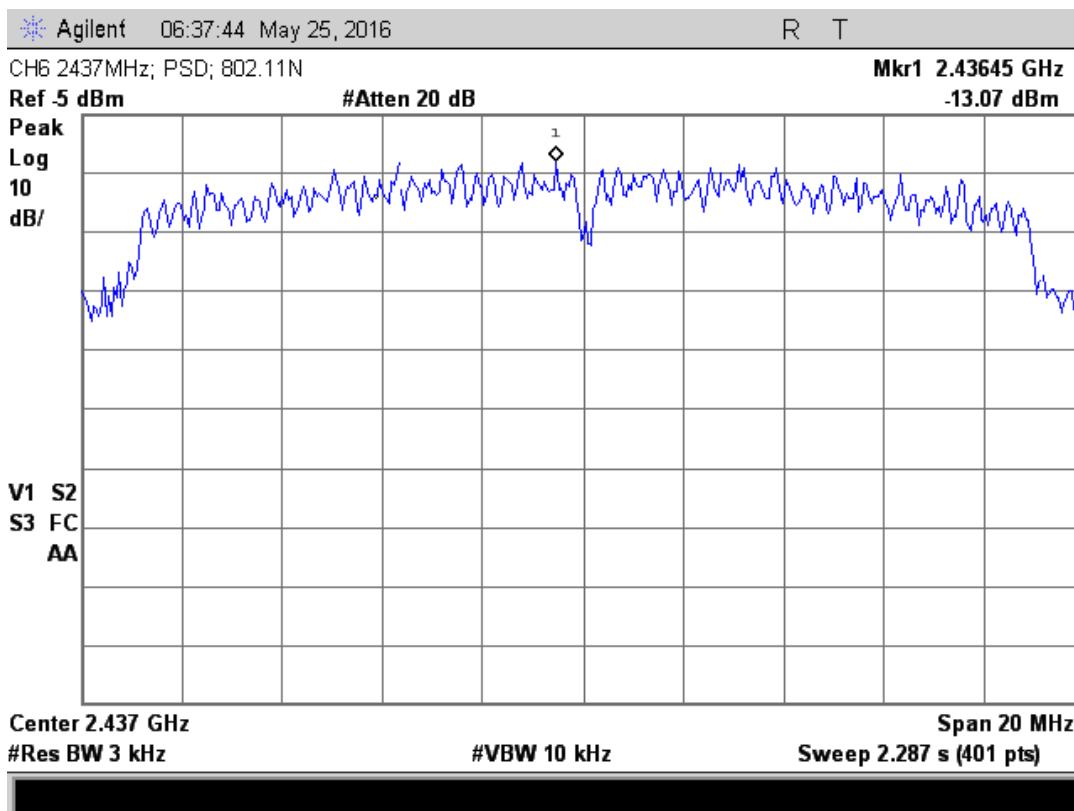
The PSD test method from ANSI C63.10 section 11.10.2 and FCC DTS Measurement Guideline 558074 D01, Section 10.2. The spectrum analyzer was set to the following settings:

Tested by: Richard Tichgelaar

Test Date: March 8, 2016



Span = 1.5x DTS Bandwidth; RBW = 3 kHz; VBW = 10 kHz

Chan	Mode	EUT MHz	Analyzer reading dBm	Cable Loss dB	Peak 3 kHz PSD	Limit dBm	Margin dB
1	802.11b	2412	-12.0	0.71	-11.3	8.0	19.3
1	802.11g	2412	-15.7	0.71	-15.0	8.0	23.0
1	802.11N	2412	-16.2	0.71	-15.5	8.0	23.5
6	802.11b	2437	-10.6	0.71	-9.9	8.0	17.9
6	802.11g	2437	-13.0	0.71	-12.3	8.0	20.3
6	802.11N	2437	-13.1	0.71	-12.4	8.0	20.4
11	802.11b	2462	-10.5	0.71	-9.8	8.0	17.8
11	802.11g	2462	-14.9	0.71	-14.2	8.0	22.2
11	802.11N	2462	-14.6	0.71	-13.9	8.0	21.9


Judgment: Passed by 17.8 dB

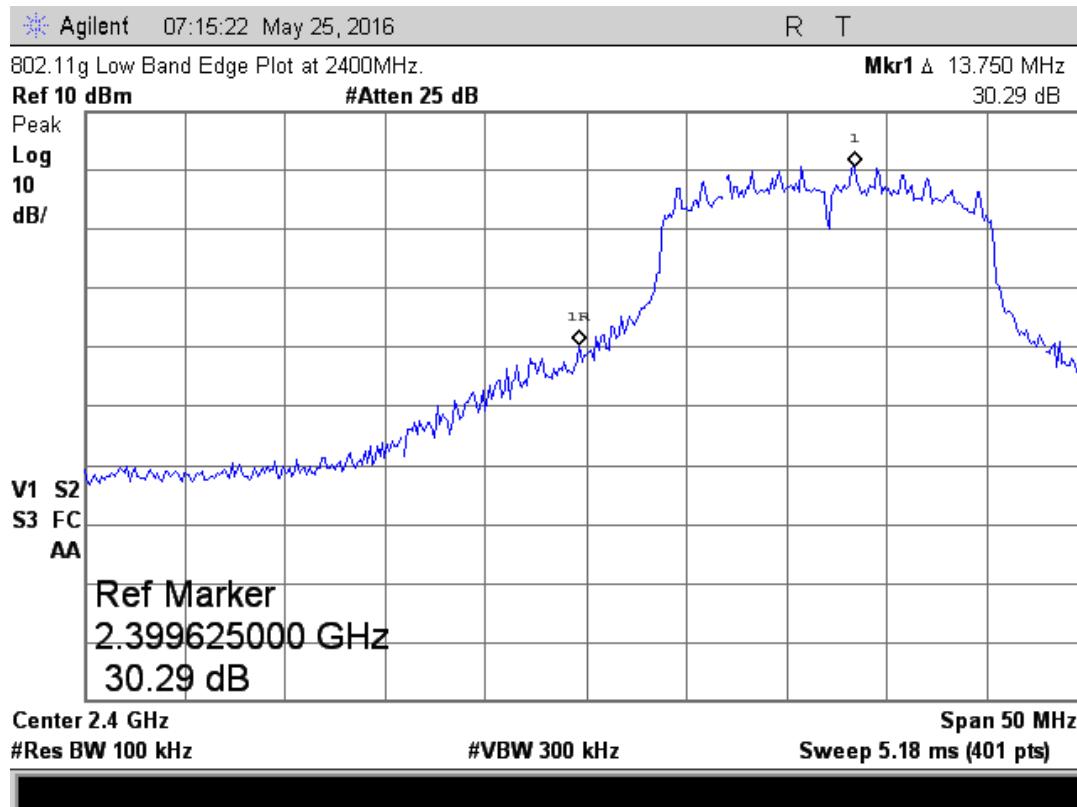
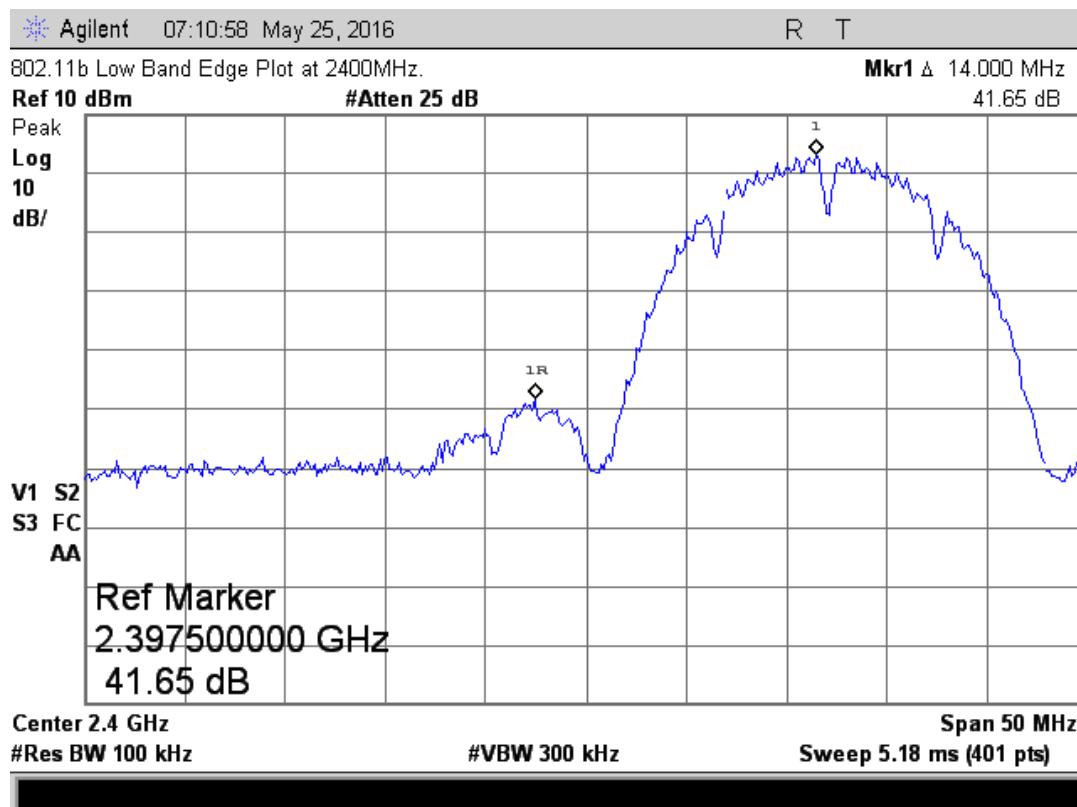
Power Spectral Density Plots (Channel 6 Only)

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

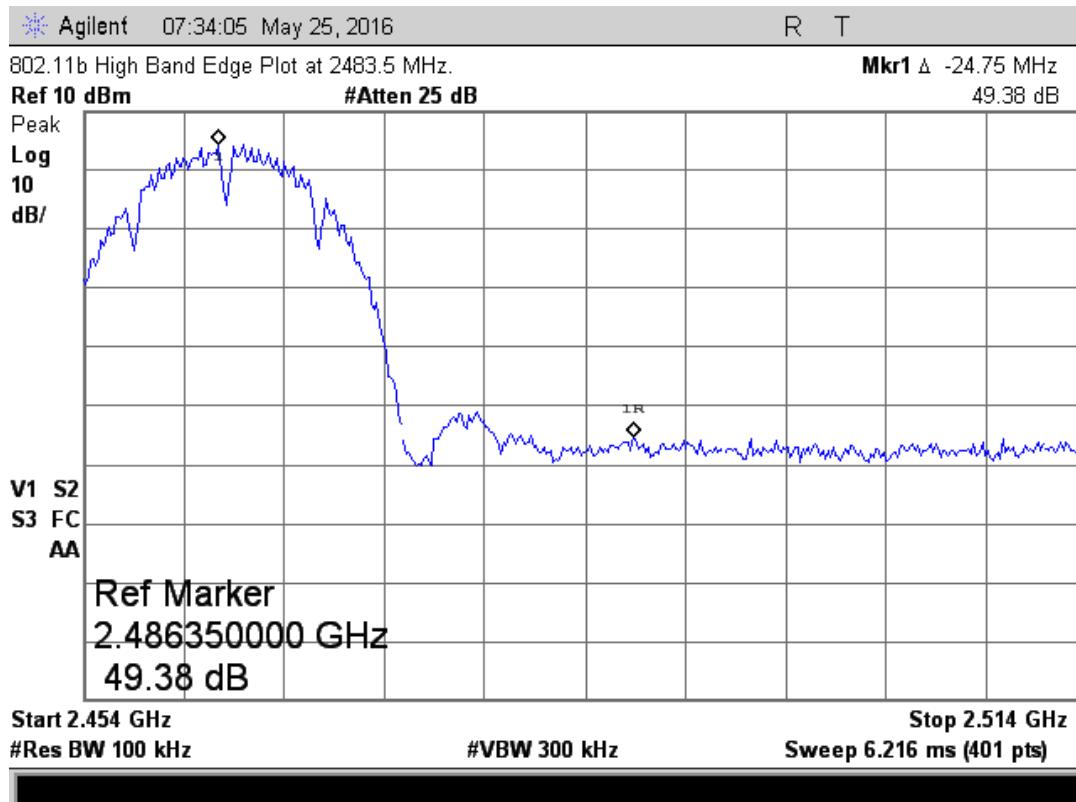
Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

11.6 Band-edge Compliance of RF Conducted Emissions

The Band Edge is in accordance to ANSI C63.10 sections 11.13.2. The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation at the band-edge, with the EUT set to the lowest frequency. The trace was allowed to stabilize.

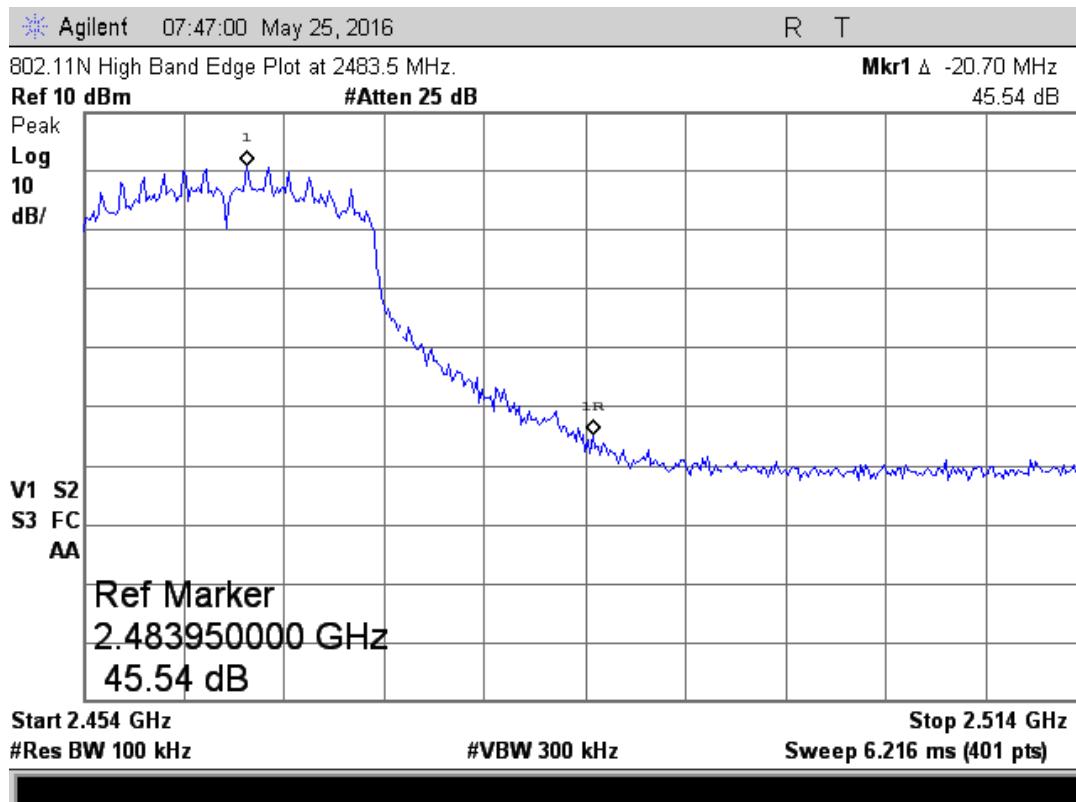
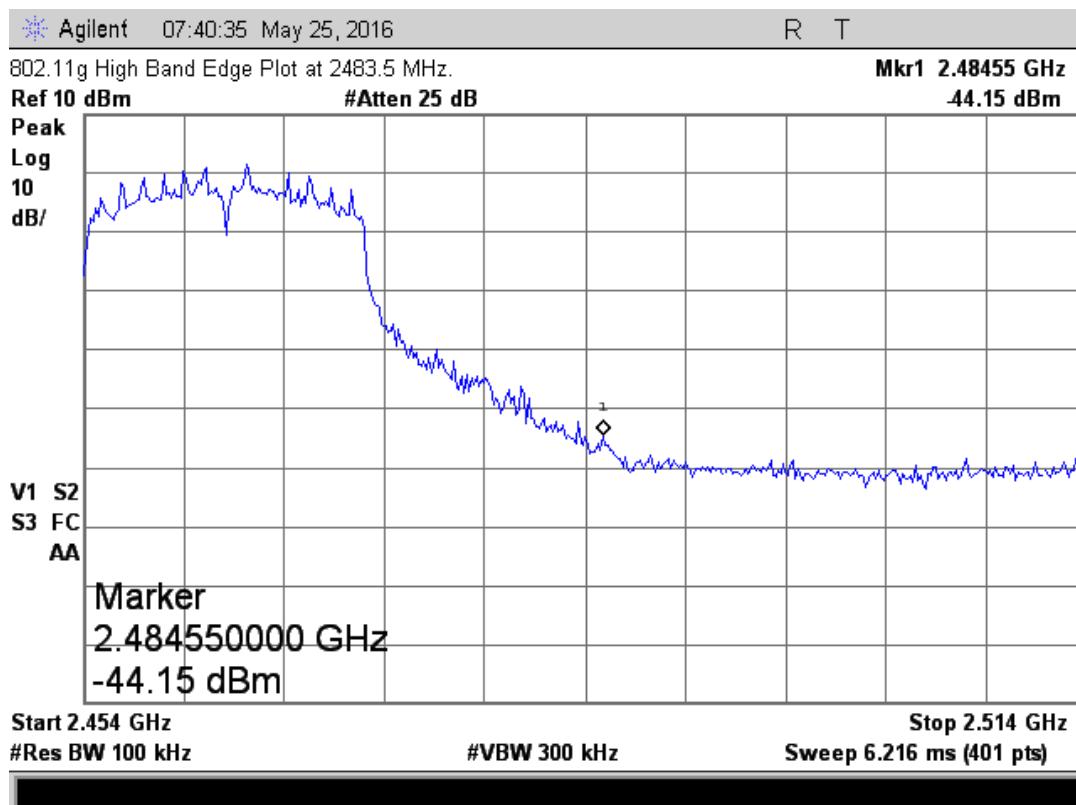


Tested by: Richard Tichgelaar

Test Date: May 25, 2016

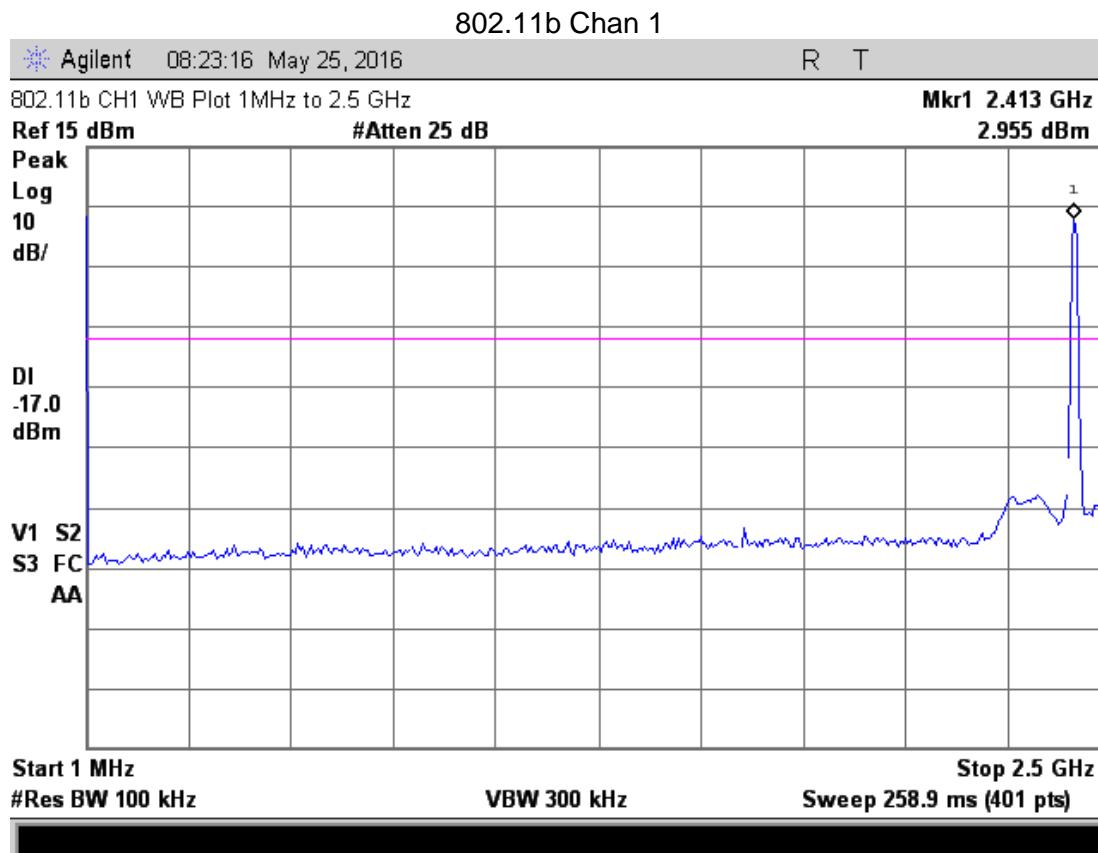


Channel	Band Edge Delta Readings in dB				Limit
	Freq (MHz)	802.11b	802.11g	802.11N	
2412 Lower Band edge	2400	41.6	30.3	31.9	20
2462 Upper Band edge	2483.5	49.4	44.1	45.5	20

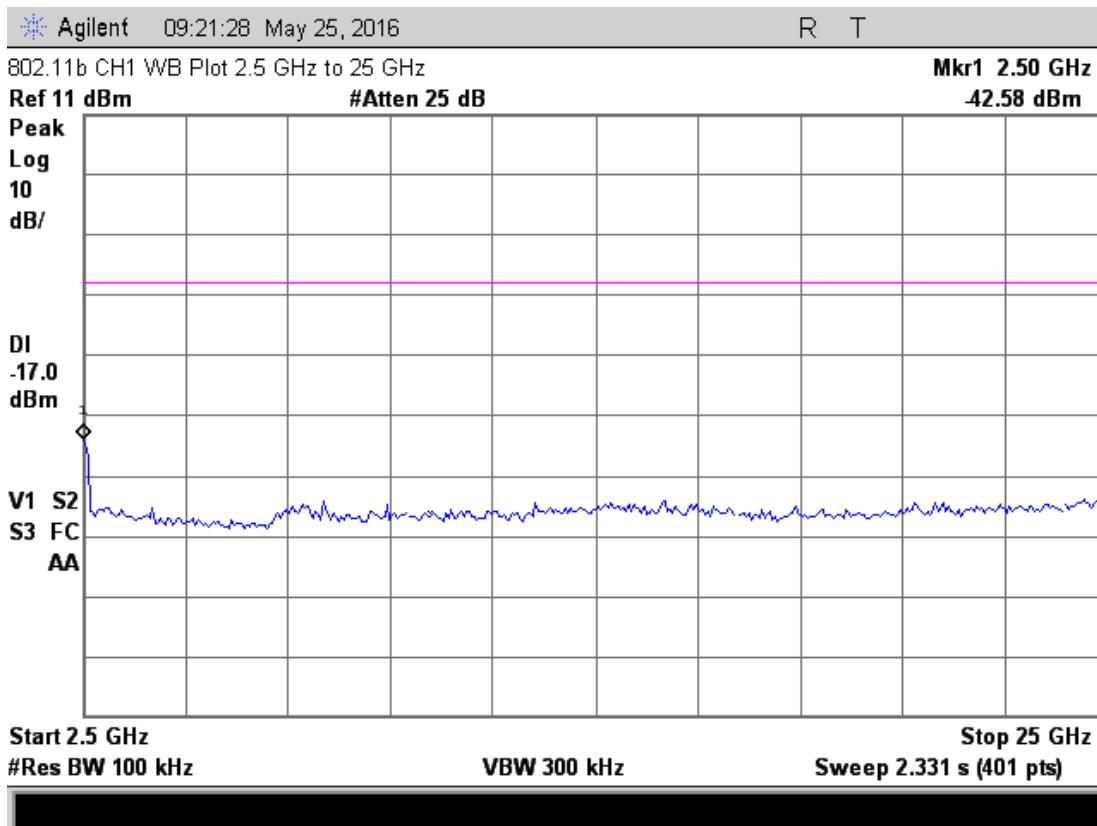
Judgment: Passed by 8.8 dB



Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

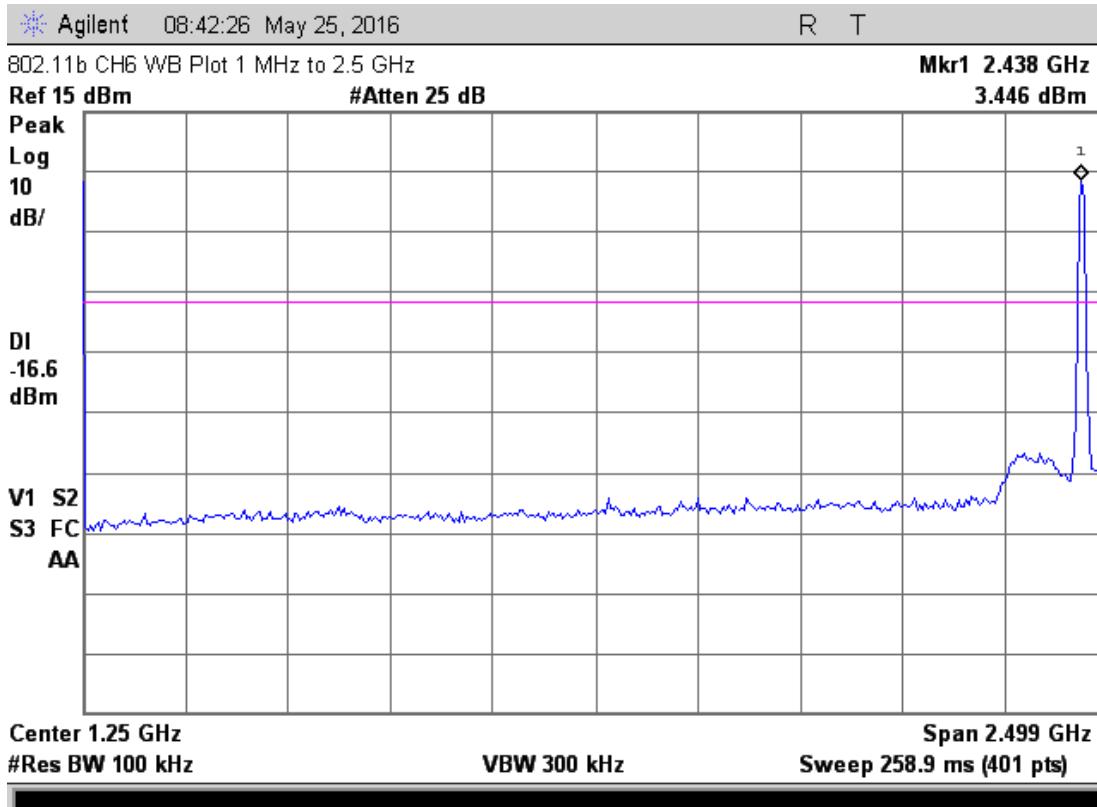
Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

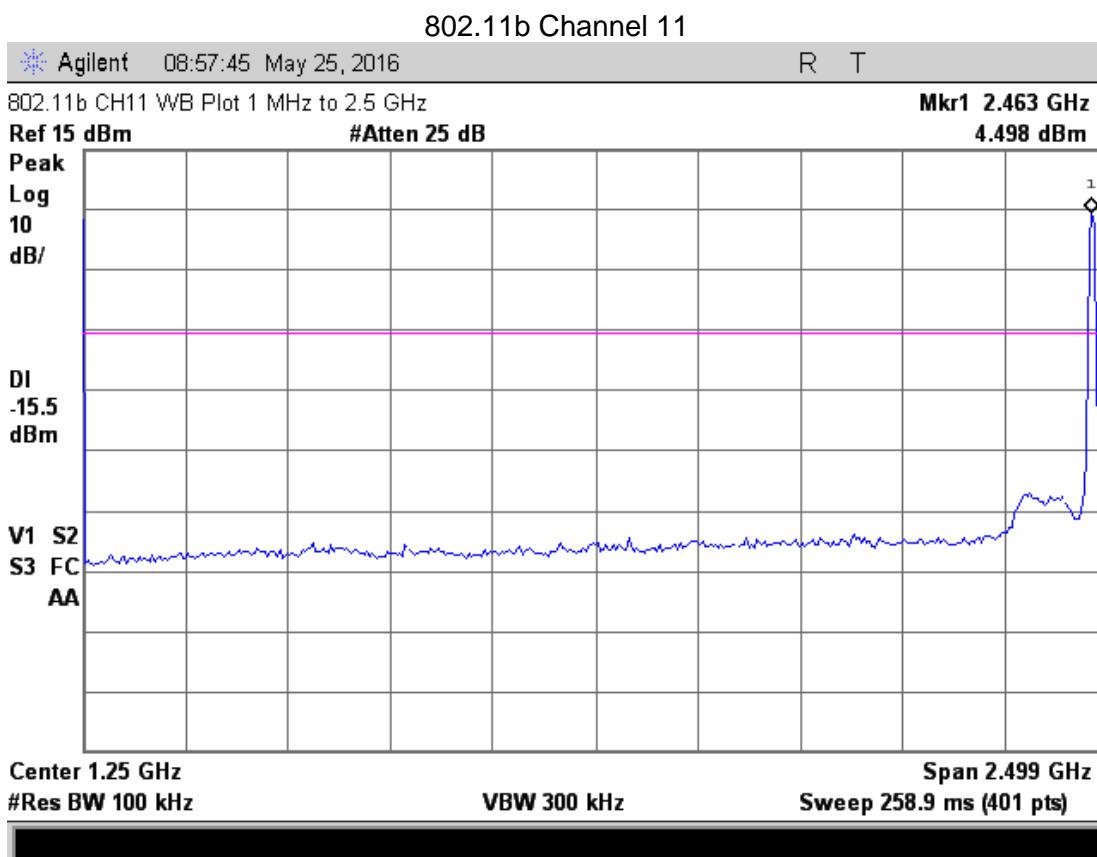
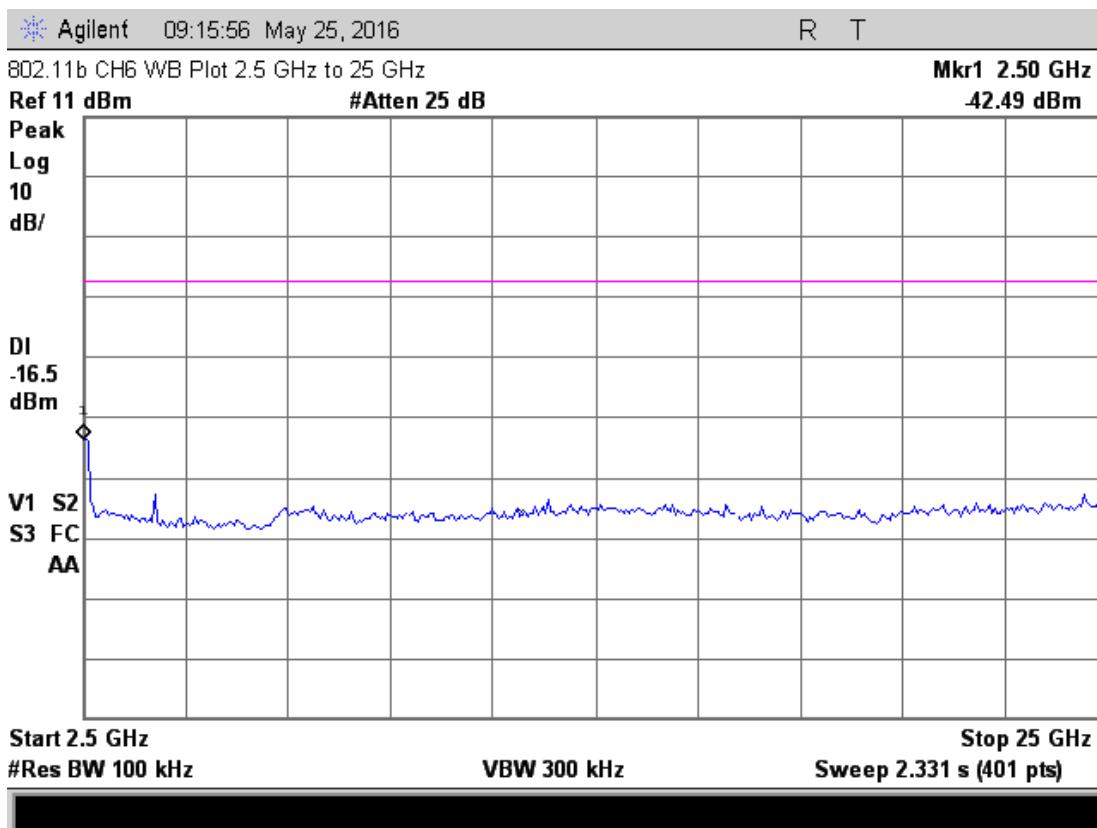


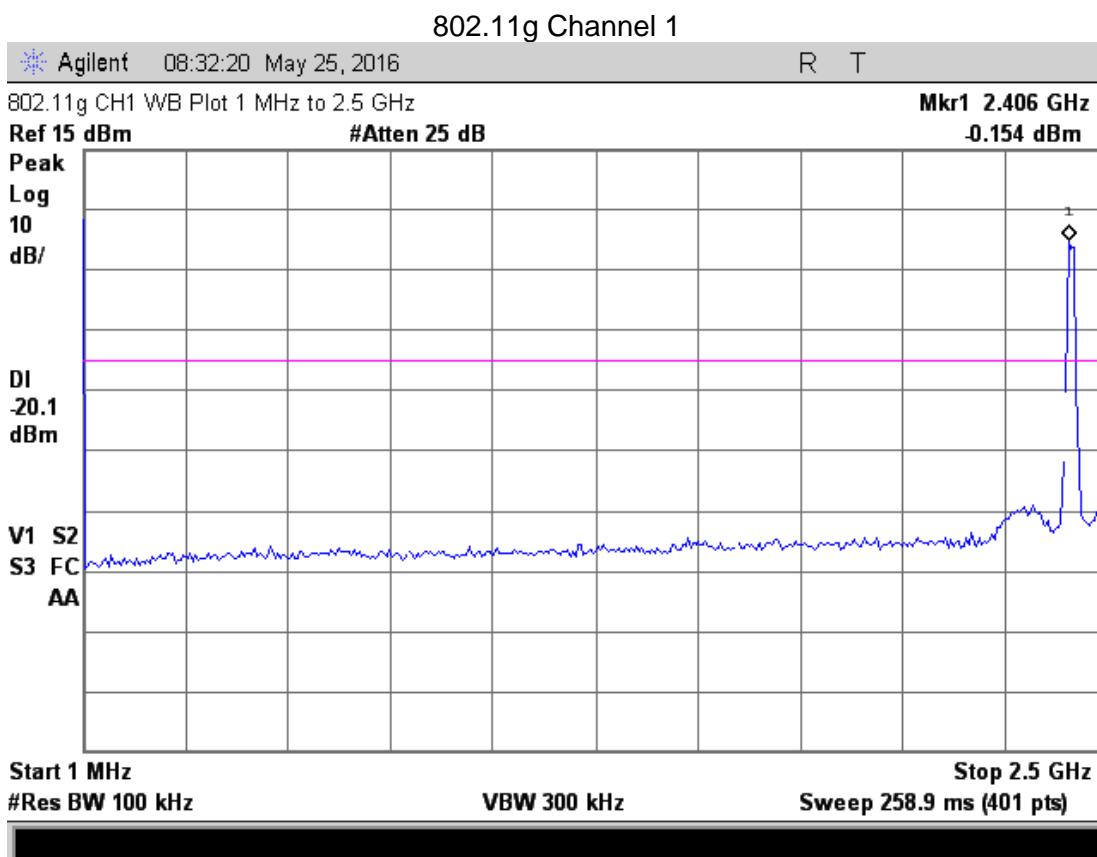
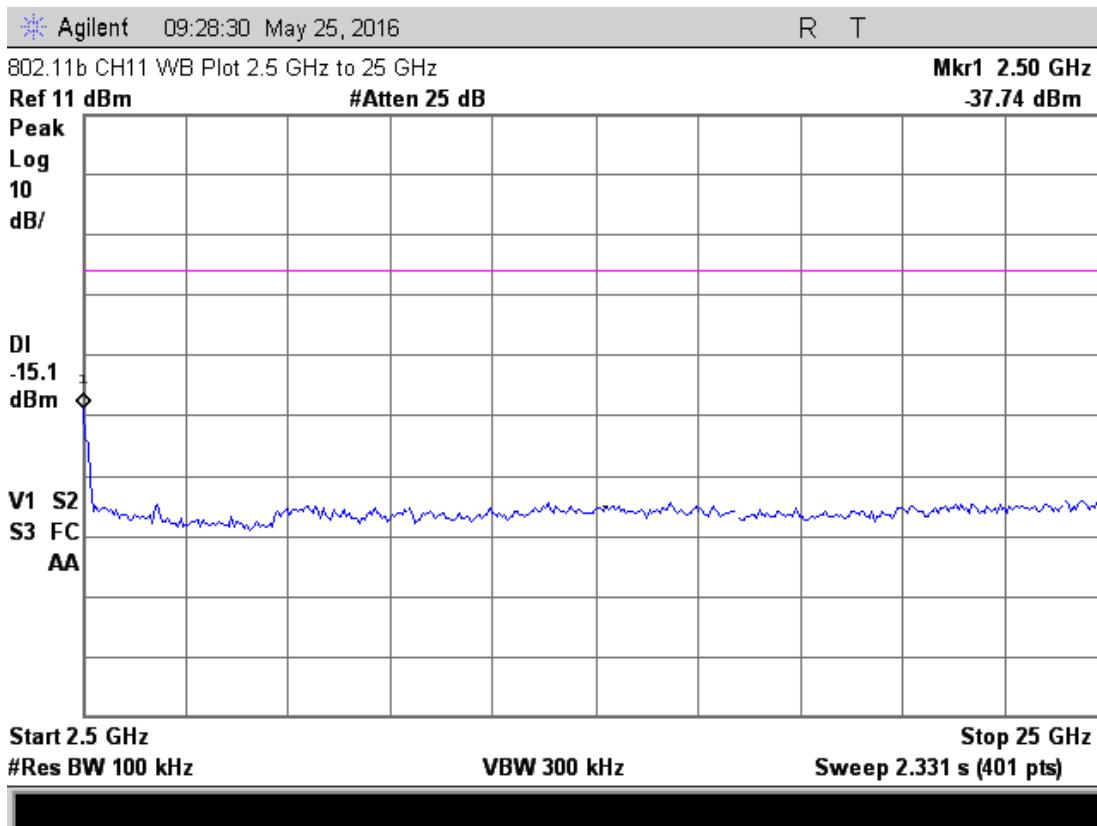
Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

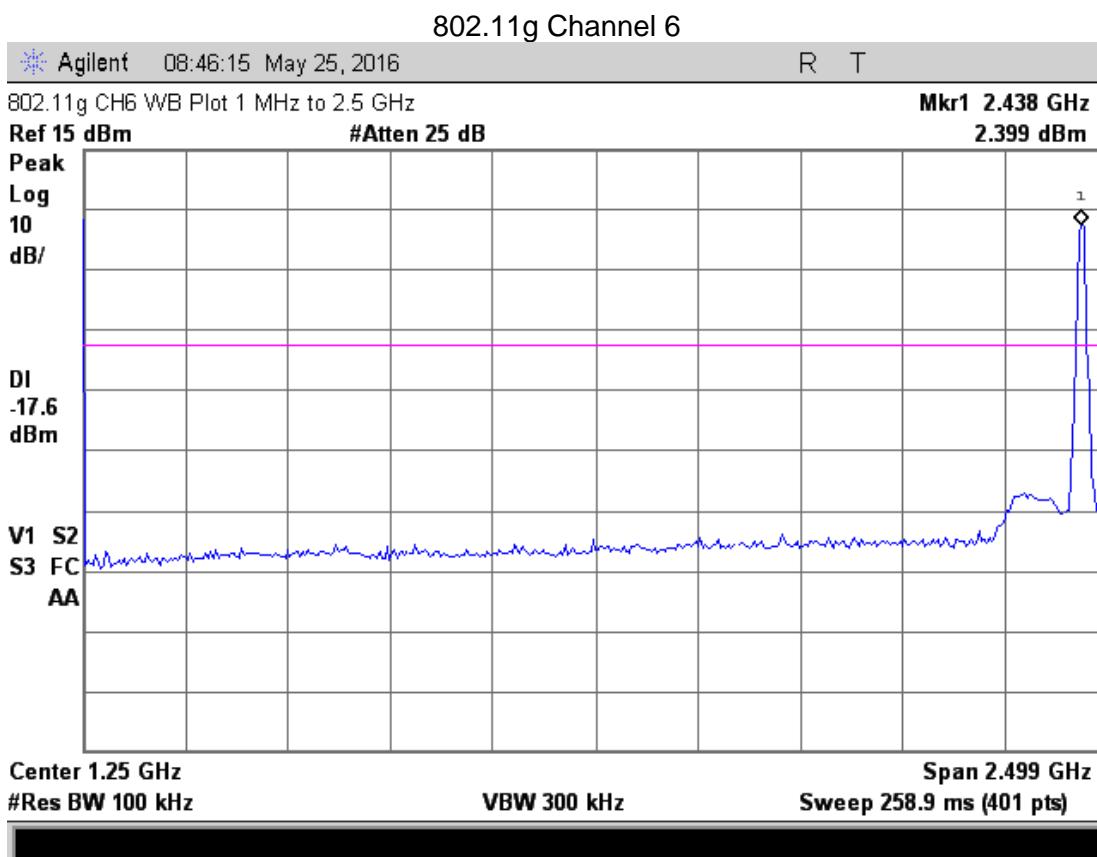
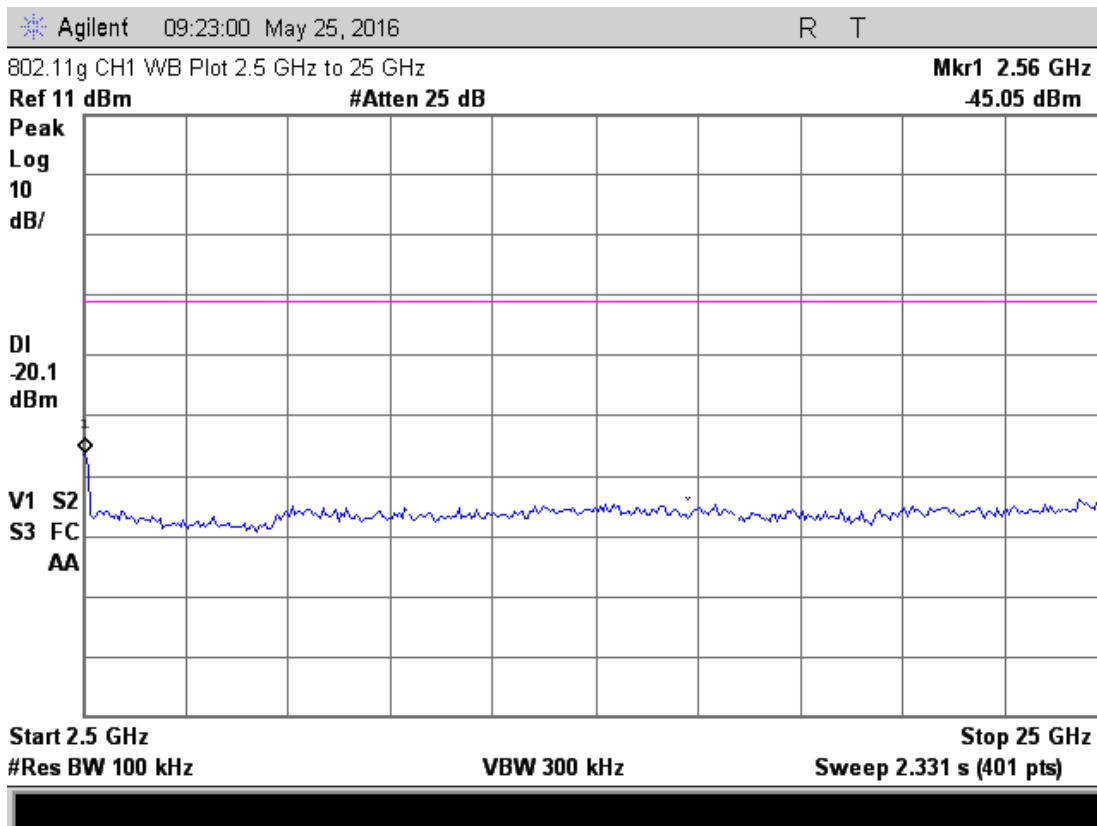


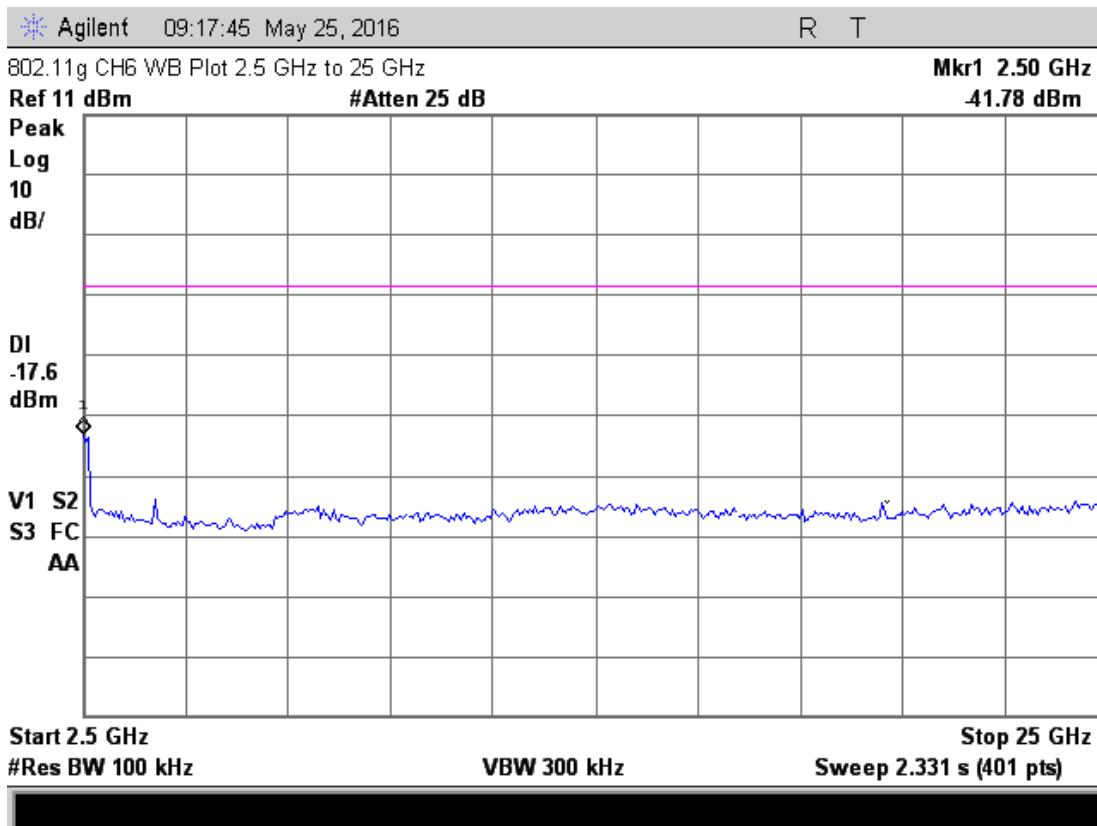
11.7 Spurious RF Conducted Emissions at Antenna Port

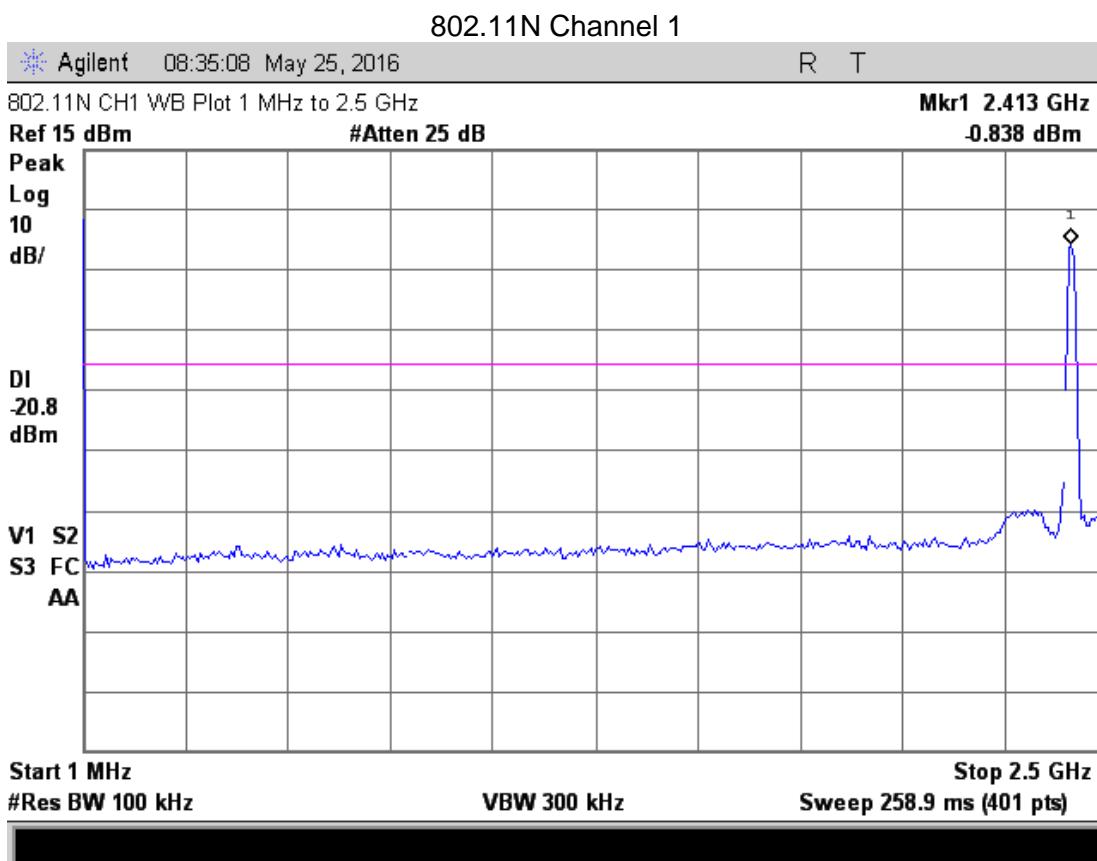
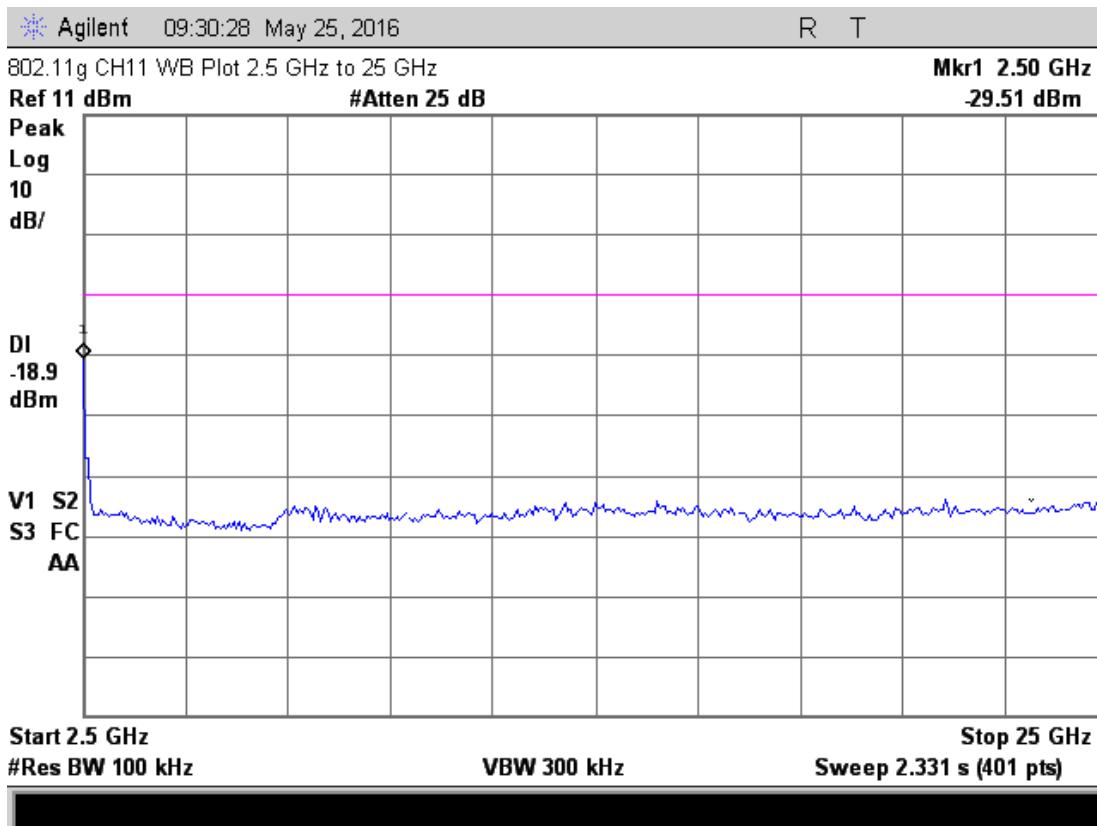

The spectrum analyzer was set to the MAX HOLD mode to record all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. The trace was allowed to stabilize. The first two plots were made while stepping through three frequencies (Low middle and high). Each frequency was on for 30 seconds. The display line in pink is 20 dB below the fundamental measured with a 100 kHz RBW.

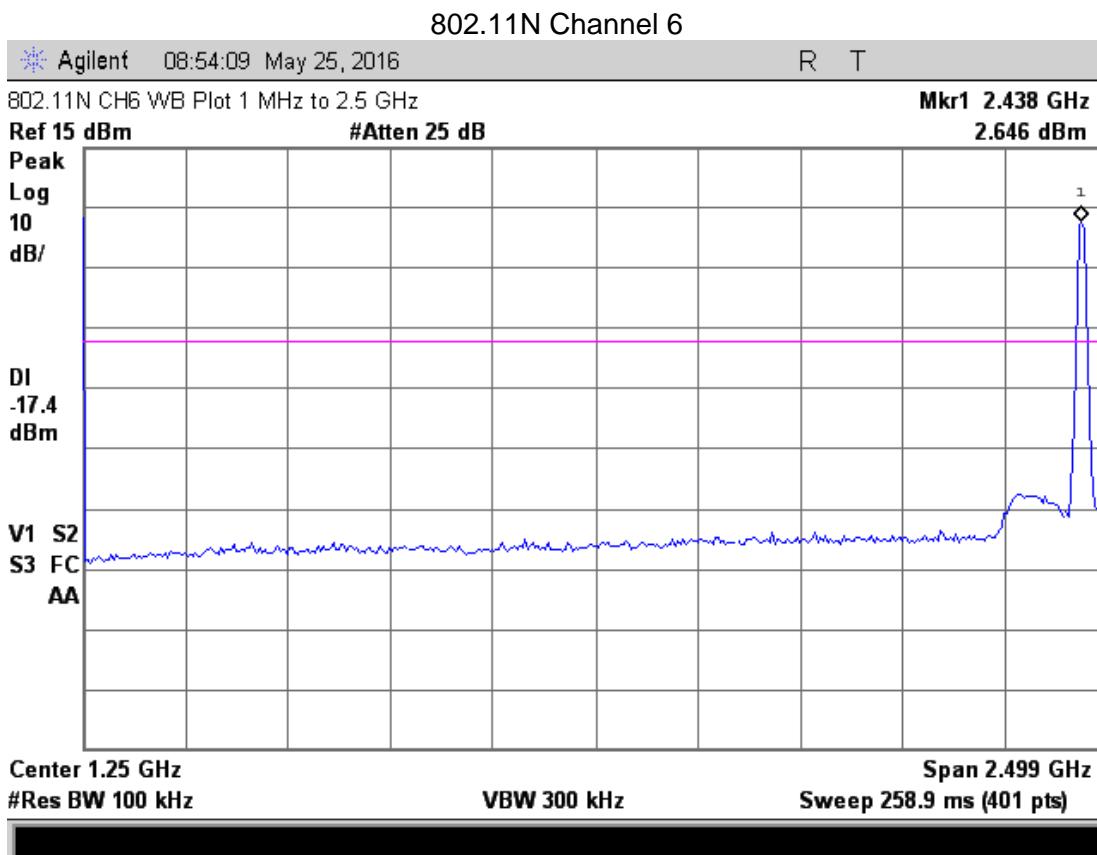
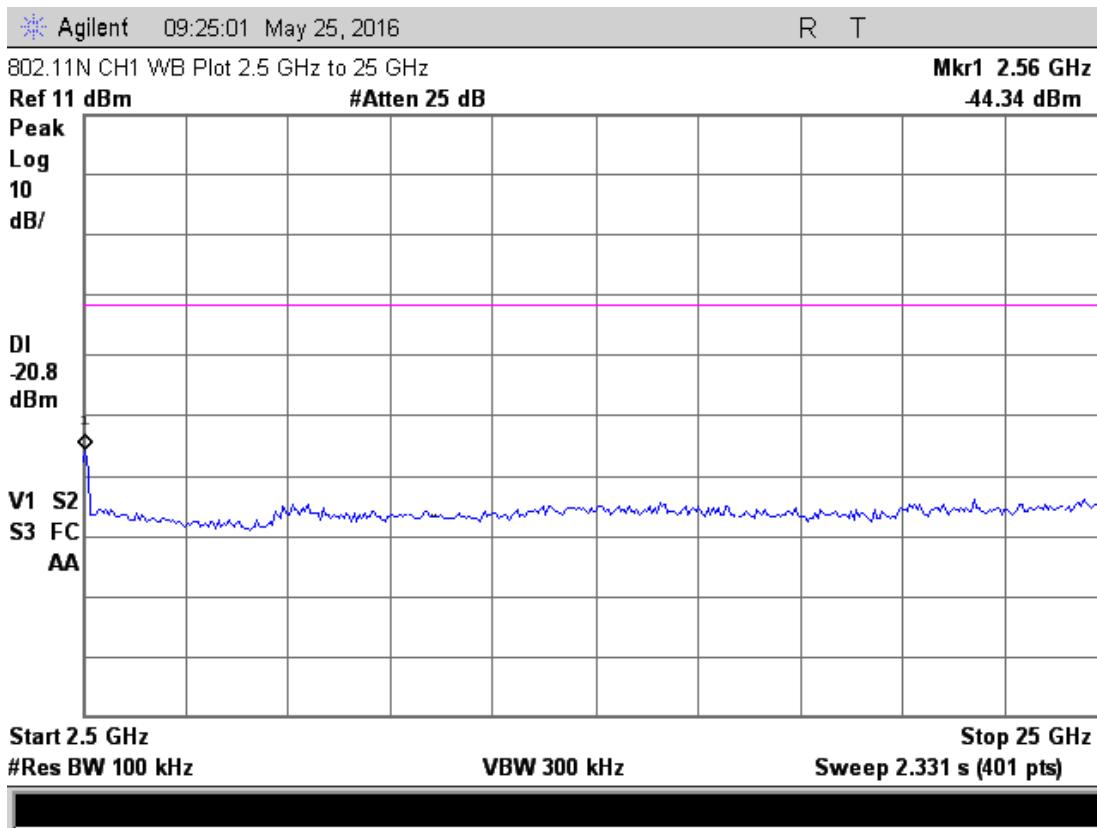


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

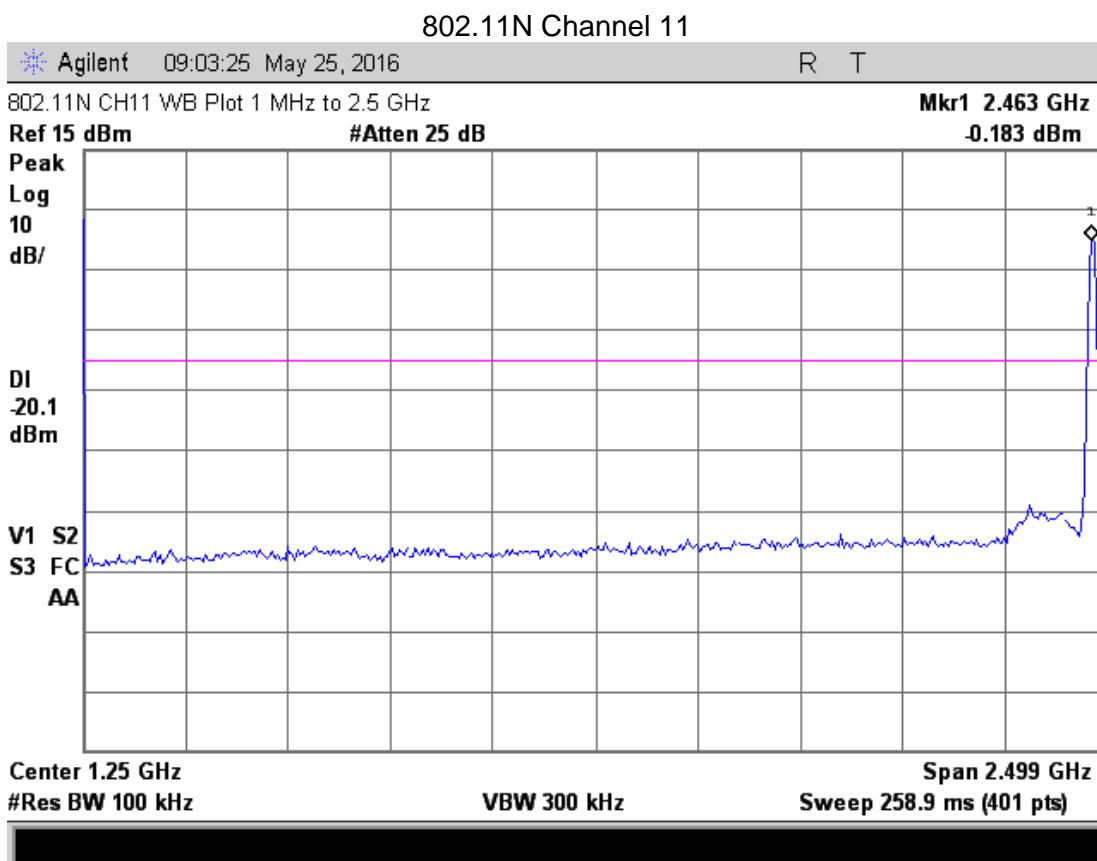
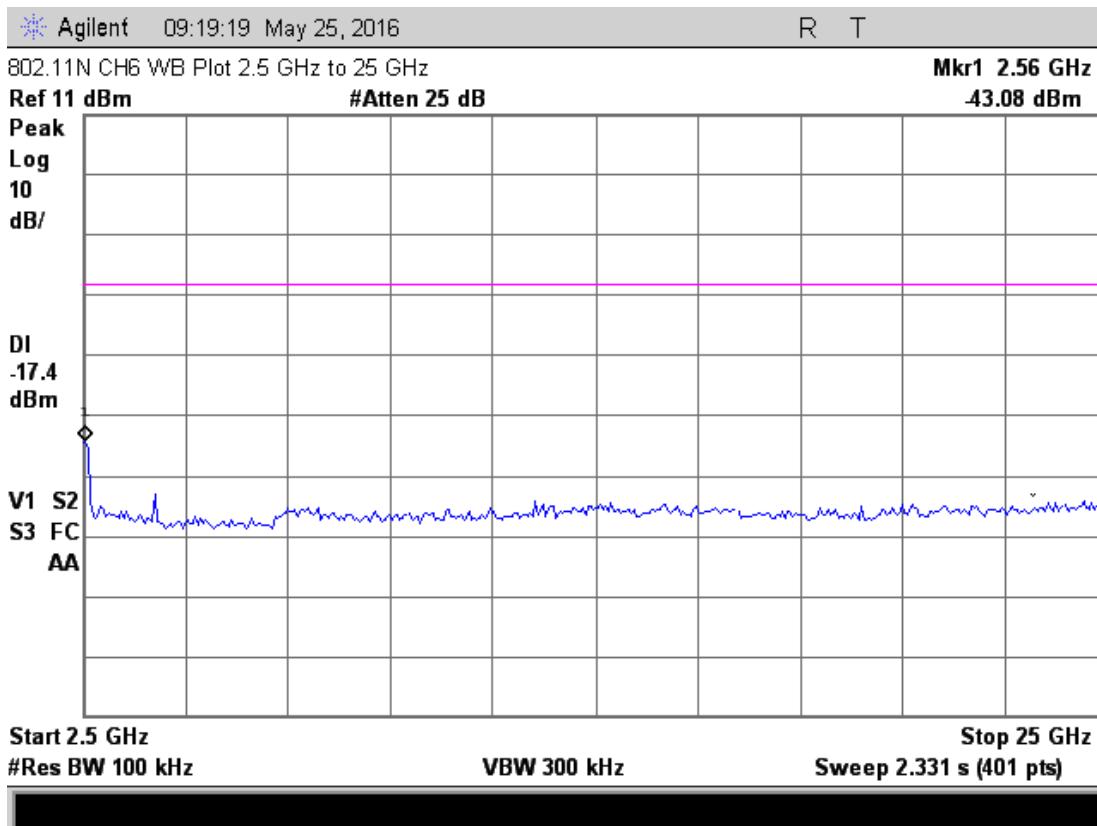


802.11b Channel 6

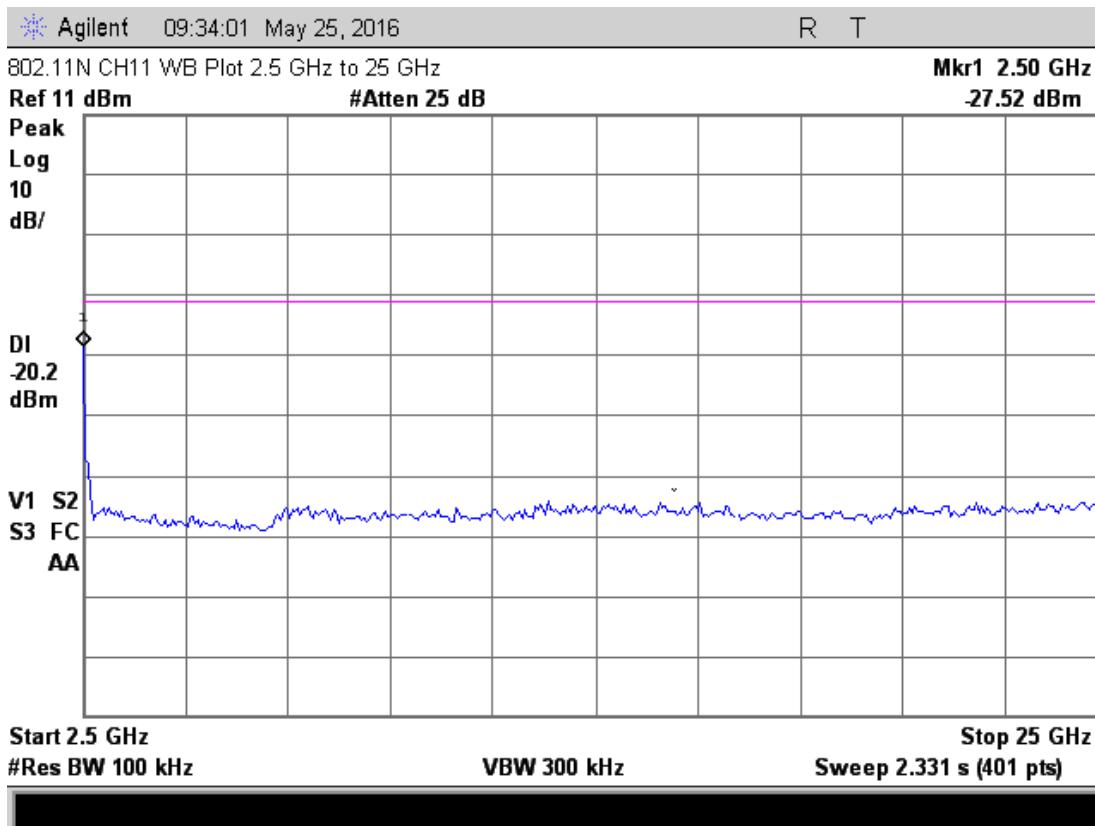


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood



Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood



Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood



Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood



Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood


Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Judgement: Pass by at least 8 dB

11.8 Spurious Radiated Emissions (Restricted Band)

The procedures were in accordance to FCC DTS Measurement Guideline 558074 D01, Section 12.1 and ANSI C63.10.

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists.

For tests from 1 to 25 GHz, an E7405 spectrum analyzer was used. For tests from 1 to 10 GHz, a high pass filter was used to reduce the fundamental emission. High pass filters were not needed above 10 GHz, since the preamplifiers attenuated the fundamental emission. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

The device was rotated through three orthogonal axis as per ANSI C63.10 during the radiated tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

The entire frequency range from 30 to 25,000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

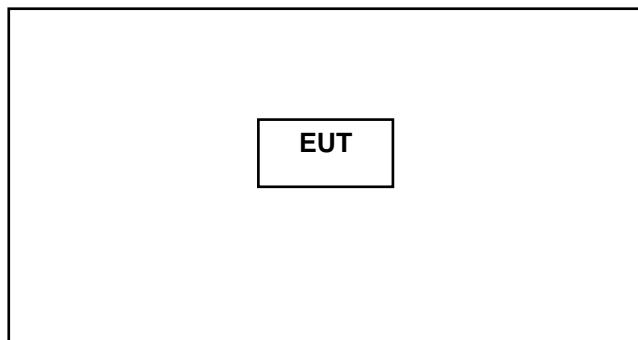
The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

11.8.1 Radiated Emissions Field Strength Sample Calculation

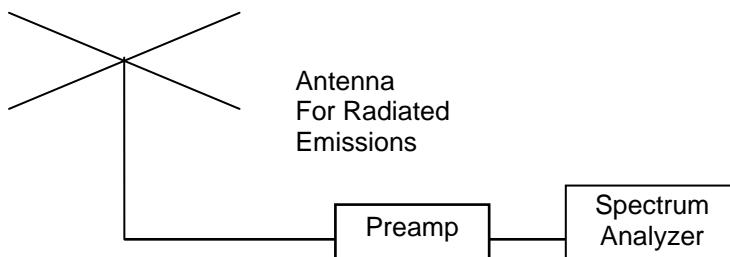
The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength


RA = Receiver Amplitude

AF = Antenna Factor


CF = Cable Attenuation Factor

AG = Amplifier Gain

HPF = High pass Filter Loss

Figure 2. Drawing of Radiated Emissions Setup**Notes:**

- AC outlet with low-pass filter at the base of the turntable
- Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

11.8.2 Spurious Radiated Emissions Test Results (Restricted Band)

The following spectrum analyzer settings were used.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

A Video Bandwidth of 10 Hz was used for Average measurements.

Manufacturer	Dwyer Instruments, Inc	Specification	FCC Part 15 Subpart C & RSS-Gen
Model	SAH22A	Test Date	May 13-16, 2016
Serial Number	RMC1	Test Distance	3 Meters
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; BC = Biconical (ANT-3); LP = Log-Periodic (ANT-6); HN = Horn (ANT-13) P = peak; Q = QP		
Tested by	Dave B Jarvis		
Notes	Tested in three orientations.		

Intentional Radiator emissions (30-1000 MHz Restricted bands)

Freq. MHz	Meter Reading dBuV	Dect.	Ant. Pol.	Ant Factor	Cbl/amp Factors	Dist Fact dB	EUT dBuV/m	Limit dBuV/m	Margin Under Limit dB	Note
163.6	40.7	P	H	15.6	-27.6	0.0	28.7	43.5	14.8	
240.1	48.8	P	H	15.9	-27.4	0.0	37.3	46.0	8.7	
252.5	47.8	P	H	11.3	-27.3	0.0	31.8	46.0	14.2	
256.9	47.2	P	H	11.6	-27.3	0.0	31.5	46.0	14.5	
400.0	35.6	P	H	14.8	-27.2	0.0	23.2	46.0	22.8	
163.6	39.6	P	V	15.6	-27.6	0.0	27.6	43.5	15.9	
170.9	35.0	Q	V	16.3	-27.6	0.0	23.7	43.5	19.8	
243.4	45.1	P	V	16.3	-27.3	0.0	34.1	46.0	11.9	
253.8	41.7	P	V	11.4	-27.3	0.0	25.8	46.0	20.2	
256.9	43.5	P	V	11.6	-27.3	0.0	27.8	46.0	18.2	
116.9	43.3	P	H	12.3	-27.8	0.0	27.8	43.5	15.7	
170.9	43.8	Q	H	16.3	-27.6	0.0	32.5	43.5	11.0	
156.5	45.7	P	H	14.7	-27.6	0.0	32.8	43.5	10.7	
170.8	47.4	P	H	16.3	-27.6	0.0	36.1	43.5	7.4	
170.9	43.7	Q	H	16.3	-27.6	0.0	32.4	43.5	11.1	

Judgement: Pass

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Intentional Radiator emissions (1-25 GHz)

May 17, 2016

Tested by: Dave Jarvis; Joseph Strzelecki

802.11b Mode

hrm #	Tx Freq MHz	Spectrum Analyzer Readings in dBuV				Corr. Fact dB	Emission Freq MHz	Field Strength				Margin Under Limit			
		Vertical Polarization		Horizontal Polarization				EUT		Limit					
		Peak	Ave	Peak	Ave			dBuV/m							
1	2412	72.0	67.3	72.3	67.6	33.3	2412.0	105.6	100.9	125	125	19.4			
BE	2412	25.9	16.7	26.2	16.3	33.3	2390.0	59.5	50.0	74	54	4.0			
2	2412	46.6	41.9	45.3	40.6	7.2	4824.0	53.8	49.1	74	54	4.9			
3	2412	41.5	36.8	41.2	36.5	12.2	7236.0	53.7	49.0	74	54	5.0			
1	2437	70.4	65.7	73.1	68.4	33.2	2437.0	106.3	101.6	125	125	18.7			
2	2437	50.1	44.4	49.8	44.5	7.4	4874.0	57.5	51.9	74	54	2.1			
3	2437	44.6	38.9	41.3	36.6	12.5	7311.0	57.1	51.4	74	54	2.6			
1	2462	71.6	66.9	72.9	68.2	31.7	2462.0	104.6	99.9	125	125	20.4			
BE	2462	22.2	17.5	23.5	18.8	31.7	2483.5	55.2	50.5	74	54	3.5			
2	2462	49.4	44.1	49.2	44.5	7.6	4924.0	57.0	52.1	74	54	1.9			
3	2462	40.2	35.5	40.6	35.9	13.0	7386.0	53.6	48.9	74	54	5.1			
Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13			

The fundamental emissions are shown for information only. Compliance is based on conducted measurements.

Notes on Columns:

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected Peak Vertical readings from spectrum analyzer. (Worst case from three axis rotation)

Column #4. Uncorrected Average reading; (Worst case from three axis rotation)

Column #5. Uncorrected Horizontal readings from the spectrum analyzer

Column #6. Uncorrected Horizontal Average reading; (Worst case from three axis rotation).

Column #7. Corr. Factors = Cable Loss – Preamp Gain + Antenna Factor

Column #8. Frequency of Tested Emission

Column #9. Highest peak field strength at listed frequency.

Column #10. Highest Average field strength at listed frequency.

Column #11. Peak Limit. All limits set to 74 dBuV/m.

Column #12. Average Limit. All limits set to 54 dBuV/m.

Column #13. The margin (last column) is the worst case margin under the peak or average limits for that row.

No other emissions were detected from 1 to 25 GHz, within 10 dB of the limits.

Judgment: Passed by 1.9 dB

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

May 18, 2016

Tested by: Dave Jarvis; Joseph Strzelecki

802.11g Mode

hrm #	Tx Freq MHz	Spectrum Analyzer Readings in dBuV				Corr. Fact dB	Emission Freq MHz	Field Strength				Margin Under Limit			
		Vertical Polarization		Horizontal Polarization				EUT		Limit					
		Peak	Ave	Peak	Ave			dBuV/m							
1	2412	71.6	63.6	71.5	63.5	33.3	2412.0	104.9	96.9	125	125	20.1			
BE	2412	28.4	16.4	27.4	15.4	33.3	2390.0	61.7	49.7	74	54	4.3			
2	2412	43.7	35.7	42.9	34.9	7.2	4824.0	50.9	42.9	74	54	11.1			
3	2412	42.2	34.2	44.4	36.4	12.2	7236.0	56.6	48.6	74	54	5.4			
1	2437	72.4	64.4	74.0	66.0	33.2	2437.0	107.2	99.2	125	125	17.8			
2	2437	46.5	38.5	47.0	39.0	7.4	4874.0	54.4	46.4	74	54	7.6			
3	2437	46.0	38.0	45.9	37.9	12.5	7311.0	58.5	50.5	74	54	3.5			
1	2462	71.6	63.6	75.3	67.3	31.7	2462.0	107.0	99.0	125	125	18.0			
BE	2462	26.6	18.6	30.3	18.9	31.7	2483.5	62.0	50.6	74	54	3.4			
2	2462	45.8	37.8	44.7	36.7	7.7	4924.0	53.5	45.5	74	54	8.5			
3	2462	44.0	36.0	42.3	34.3	13.0	7386.0	57.0	49.0	74	54	5.0			
Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13			

The fundamental emissions are shown for information only. Compliance is based on conducted measurements.

Notes on Columns:

Column #14. hrm = Harmonic; BE = Band Edge emissions

Column #15. Frequency of Transmitter.

Column #16. Uncorrected Peak Vertical readings from spectrum analyzer. (Worst case from three axis rotation)

Column #17. Uncorrected Average reading; (Worst case from three axis rotation)

Column #18. Uncorrected Horizontal readings from the spectrum analyzer

Column #19. Uncorrected Horizontal Average reading; (Worst case from three axis rotation).

Column #20. Corr. Factors = Cable Loss – Preamp Gain + Antenna Factor

Column #21. Frequency of Tested Emission

Column #22. Highest peak field strength at listed frequency.

Column #23. Highest Average field strength at listed frequency.

Column #24. Peak Limit. All limits set to 74 dBuV/m.

Column #25. Average Limit. All limits set to 54 dBuV/m.

Column #26. The margin (last column) is the worst case margin under the peak or average limits for that row.

No other emissions were detected from 1 to 25 GHz, within 10 dB of the limits.

Judgment: Passed by 3.5 dB

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

May 18, 2016

Tested by: Dave Jarvis; Joseph Strzelecki

802.11N Mode

hrm #	Tx Freq MHz	Spectrum Analyzer Readings in dBuV				Corr. Fact dB	Emission Freq MHz	Field Strength				Margin Under Limit			
		Vertical Polarization		Horizontal Polarization				EUT		Limit					
		Peak	Ave	Peak	Ave			dBuV/m							
1	2412	72.1	63.9	72.1	63.9	33.3	2412.0	105.4	97.2	125	125	19.6			
BE	2412	27.3	17.1	27.3	16.2	33.3	2390.0	60.6	50.4	74	54	3.6			
2	2412	44.2	36.0	43.6	35.4	7.2	4824.0	51.4	43.2	74	54	10.8			
3	2412	42.3	34.1	44.6	36.4	12.2	7236.0	56.8	48.6	74	54	5.4			
1	2437	73.6	65.4	74.2	66.0	33.2	2437.0	107.4	99.2	125	125	17.6			
2	2437	47.6	39.4	47.7	39.5	7.4	4874.0	55.1	46.9	74	54	7.1			
3	2437	46.1	37.9	46.0	37.8	12.5	7311.0	58.6	50.4	74	54	3.6			
1	2462	72.1	63.9	76.1	67.9	31.7	2462.0	107.8	99.6	125	125	17.2			
BE	2462	27.2	19.0	31.2	19.0	31.7	2483.5	62.9	50.7	74	54	3.3			
2	2462	45.1	36.9	44.0	35.8	7.7	4924.0	52.8	44.6	74	54	9.4			
3	2462	43.9	35.7	42.0	33.8	13.0	7386.0	56.9	48.7	74	54	5.3			
Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13			

The fundamental emissions are shown for information only. Compliance is based on conducted measurements.

Notes on Columns:

Column #27. hrm = Harmonic; BE = Band Edge emissions

Column #28. Frequency of Transmitter.

Column #29. Uncorrected Peak Vertical readings from spectrum analyzer. (Worst case from three axis rotation)

Column #30. Uncorrected Average reading; (Worst case from three axis rotation)

Column #31. Uncorrected Horizontal readings from the spectrum analyzer

Column #32. Uncorrected Horizontal Average reading; (Worst case from three axis rotation).

Column #33. Corr. Factors = Cable Loss – Preamp Gain + Antenna Factor

Column #34. Frequency of Tested Emission

Column #35. Highest peak field strength at listed frequency.

Column #36. Highest Average field strength at listed frequency.

Column #37. Peak Limit. All limits set to 74 dBuV/m.

Column #38. Average Limit. All limits set to 54 dBuV/m.

Column #39. The margin (last column) is the worst case margin under the peak or average limits for that row.

No other emissions were detected from 1 to 25 GHz, within 10 dB of the limits.

Judgment: Passed by 3.3 dB

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

11.9 Unintentional Emissions (Receive Mode)

Manufacturer	Dwyer Instruments, Inc		Specification	FCC Part 15.209 & RSS-Gen				
Model	SAH22A		Test Date	May 13, 2016				
Serial Number	RMC1		Test Distance	3 Meters				
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; P = peak; Q = QP							
Tested by	Dave B Jarvis							
Configuration	Receive mode							
Notes	Tested in three orientations.							

Freq. MHz	Meter Reading dBuV	Dect.	Ant. Pol.	Ant Factor	Cbl/amp Factors	Dist Fact dB	EUT dBuV/m	Limit dBuV/m	Margin Under Limit dB	Note
61.3	47.0	P	H	8.8	-28.2	0.0	27.6	40.0	12.4	
64.1	40.6	P	H	8.1	-28.1	0.0	20.6	40.0	19.4	
80.6	42.8	P	H	7.1	-28.0	0.0	21.9	40.0	18.1	
90.5	41.0	P	H	10.0	-27.9	0.0	23.1	43.5	20.4	
118.6	39.1	P	H	12.2	-27.8	0.0	23.5	43.5	20.0	
178.2	36.6	Q	H	16.9	-17.6	0.0	35.9	43.5	7.6	
185.4	36.3	Q	H	17.1	-27.5	0.0	25.9	43.5	17.6	
192.7	34.4	Q	H	16.7	-27.5	0.0	23.6	43.5	19.9	
203.8	48.7	P	H	15.7	-27.5	0.0	36.9	43.5	6.6	
207.3	36.8	Q	H	15.4	-27.5	0.0	24.7	43.5	18.8	
210.9	41.8	P	H	15.1	-27.5	0.0	29.4	43.5	14.1	
218.6	48.4	P	H	14.7	-27.5	0.0	35.6	46.0	10.4	
219.8	44.9	P	H	14.6	-27.4	0.0	32.1	46.0	13.9	
252.5	48.5	P	H	11.3	-27.3	0.0	32.5	46.0	13.5	
258.1	41.9	P	H	11.7	-27.3	0.0	26.3	46.0	19.7	
261.3	42.3	P	H	11.9	-27.3	0.0	26.9	46.0	19.1	
276.9	43.2	P	H	13.2	-27.3	0.0	29.1	46.0	16.9	
291.9	42.7	P	H	13.8	-27.3	0.0	29.2	46.0	16.8	
295.0	39.4	P	H	13.9	-27.2	0.0	26.1	46.0	19.9	
301.3	42.3	P	H	14.5	-27.2	0.0	29.6	46.0	16.4	
310.6	33.5	P	H	14.7	-27.2	0.0	21.0	46.0	25.0	
314.4	36.8	P	H	14.2	-27.2	0.0	23.8	46.0	22.2	
347.5	35.8	P	H	13.9	-27.2	0.0	22.5	46.0	23.5	
349.4	39.8	P	H	14.0	-27.2	0.0	26.6	46.0	19.4	
356.3	39.8	P	H	14.2	-27.1	0.0	26.9	46.0	19.1	
393.1	38.8	P	H	15.0	-27.2	0.0	26.6	46.0	19.4	
400.0	38.0	P	H	14.8	-27.2	0.0	25.6	46.0	20.4	
463.8	43.0	P	H	16.5	-26.9	0.0	32.6	46.0	13.4	
480.6	39.9	P	H	17.8	-26.7	0.0	31.0	46.0	15.0	
493.1	44.5	P	H	17.3	-26.9	0.0	34.9	46.0	11.1	
527.5	37.6	P	H	16.8	-26.6	0.0	27.8	46.0	18.2	
565.0	37.2	P	H	18.3	-26.7	0.0	28.8	46.0	17.2	
593.8	37.8	P	H	18.3	-26.3	0.0	29.8	46.0	16.2	
637.5	36.9	P	H	19.2	-26.4	0.0	29.7	46.0	16.3	
698.8	34.8	P	H	20.7	-26.2	0.0	29.3	46.0	16.7	
722.5	33.3	P	H	21.0	-26.0	0.0	28.3	46.0	17.7	
53.1	52.2	P	V	10.9	-28.2	0.0	34.9	40.0	5.1	
57.5	55.2	Q	V	9.9	-28.1	0.0	37.0	40.0	3.0	
66.3	42.7	P	V	7.6	-28.1	0.0	22.2	40.0	17.8	

Testing of the Dwyer Instruments, Inc, HVIN: SAH22A, Air Flow Hood

Freq. MHz	Meter Reading dBuV	Dect.	Ant. Pol.	Ant Factor	Cbl/amp Factors	Dist Fact dB	EUT dBuV/m	Limit dBuV/m	Margin Under Limit dB	Note
70.7	44.0	P	V	6.6	-28.1	0.0	22.5	40.0	17.5	
80.1	39.6	P	V	6.9	-28.0	0.0	18.5	40.0	21.5	
89.4	42.9	P	V	9.7	-27.9	0.0	24.7	43.5	18.8	
132.9	40.1	P	V	11.5	-27.7	0.0	23.9	43.5	19.6	
142.2	43.9	P	V	12.2	-27.7	0.0	28.4	43.5	15.1	
145.5	40.8	P	V	12.7	-27.7	0.0	25.8	43.5	17.7	
146.1	46.8	P	V	12.8	-27.7	0.0	31.9	43.5	11.6	
159.3	41.8	P	V	15.1	-27.6	0.0	29.3	43.5	14.2	
161.4	40.8	P	V	15.4	-27.6	0.0	28.6	43.5	14.9	
180.1	44.5	P	V	17.0	-27.5	0.0	34.0	43.5	9.5	
185.6	39.7	P	V	17.1	-27.5	0.0	29.3	43.5	14.2	
218.1	40.3	P	V	14.7	-27.5	0.0	27.5	46.0	18.5	
243.4	46.2	P	V	16.3	-27.3	0.0	35.2	46.0	10.8	
253.8	43.9	P	V	11.4	-27.3	0.0	28.0	46.0	18.0	
270.6	40.0	P	V	19.0	-27.3	0.0	31.7	46.0	14.3	
285.6	38.7	P	V	13.6	-27.3	0.0	25.0	46.0	21.0	
301.9	39.7	P	V	14.6	-27.2	0.0	27.1	46.0	18.9	
310.6	44.1	P	V	14.7	-27.2	0.0	31.6	46.0	14.4	
339.4	39.9	P	V	13.8	-27.3	0.0	26.4	46.0	19.6	
340.6	36.3	P	V	13.8	-27.3	0.0	22.8	46.0	23.2	
342.5	40.7	P	V	13.9	-27.3	0.0	27.3	46.0	18.7	
346.9	40.4	P	V	13.9	-27.2	0.0	27.1	46.0	18.9	
363.1	37.9	P	V	14.3	-27.0	0.0	25.2	46.0	20.8	
368.8	41.0	P	V	14.2	-27.1	0.0	28.1	46.0	17.9	
374.4	38.0	P	V	14.5	-27.1	0.0	25.4	46.0	20.6	
385.6	37.1	P	V	15.3	-27.2	0.0	25.2	46.0	20.8	
407.5	39.3	P	V	14.9	-27.1	0.0	27.1	46.0	18.9	
437.5	40.6	P	V	15.7	-27.0	0.0	29.3	46.0	16.7	
440.0	42.5	P	V	15.8	-27.1	0.0	31.2	46.0	14.8	
448.1	41.2	P	V	16.1	-27.1	0.0	30.2	46.0	15.8	
485.6	48.6	P	V	17.6	-26.7	0.0	39.5	46.0	6.5	
488.1	48.9	P	V	17.4	-26.8	0.0	39.5	46.0	6.5	
490.6	45.7	P	V	17.3	-26.8	0.0	36.2	46.0	9.8	
531.3	40.6	P	V	16.7	-26.5	0.0	30.8	46.0	15.2	
538.8	39.2	P	V	17.2	-26.4	0.0	30.0	46.0	16.0	
565.0	39.2	P	V	18.3	-26.7	0.0	30.8	46.0	15.2	
592.5	40.7	P	V	18.3	-26.3	0.0	32.7	46.0	13.3	
632.5	35.5	P	V	19.0	-26.5	0.0	28.0	46.0	18.0	
636.3	36.8	P	V	19.1	-26.5	0.0	29.4	46.0	16.6	
946.3	32.3	P	V	23.1	-24.6	0.0	30.8	46.0	15.2	
971.3	32.7	P	V	22.5	-24.4	0.0	30.8	54.0	23.2	

No other emissions were detected from 30 MHz to 12.4 GHz within 10 dB of the limits.

Judgement: Pass by 3 dB