

EMISSIONS TEST REPORT

Report Number: 100514149BOX-002d
Project Number: G100514149

Report Issue Date: 12/22/2011

Product Designation: Cot Transmitter and Receiver in POWER-LOAD System

Standards: CFR47 FCC Part 15:2011 Subpart C Section 15.225,
Industry Canada RSS-210 Issue 8 December 2010, Annex 2 (A2.6)
Industry Canada RSS-Gen Issue 3 December 2010


Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719

Client:
Stryker Medical
3800 E. Centre Avenue
Portage, MI 49002

Report prepared by

Kouma Sinn / Senior Project Engineer

Report reviewed by

Michael F. Murphy / EMC Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	--
4	Description of Equipment Under Test	--
5	System Setup and Method	--
6	Fundamental Radiated Emissions FCC Part 15:2011 Subpart C 15.225(a), (b), (c), (d) IC RSS-210 Issue 8 December 2010 A2.6 (a), (b), (c), (d)	Pass
7	Transmitter Spurious Emissions Below 30MHz FCC Part 15:2011 Subpart C 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
8	Transmitter Spurious Emissions Above 30MHz FCC Part 15:2011 Subpart C 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d)	Pass
--	Receiver Spurious Emissions Below 30MHz FCC Part 15:2011 Subpart B 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	N/A*
9	Receiver Spurious Emissions Above 30MHz FCC Part 15:2011 Subpart B 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0	Pass
10	20dB Bandwidth FCC Part 15:2011 Subpart C 15.215 IC RSS-Gen Issue 3 December 2010 Section 4.6	Pass
11	Frequency Stability FCC Part 15:2011 Subpart C 15.225(e), IC RSS-Gen Issue 3 December 2010 Section 4.7 IC RSS-210 December 2010 A2.6	Pass
12	Appendix – Technical Description Similarity for Model: 6506 and 6516	--
13	Revision History	--

* - no limits below 30 MHz

3 Client Information

This EUT was tested at the request of:

Company: Stryker Medical
3800 E. Centre Avenue
Portage, MI 49002

Contact: Mr. Peter Schultz

Telephone: (269) 488-6415

Fax: (269) 329-2260

Email: peter.schultz@stryker.com

4 Description of Equipment Under Test

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Cot (Transmitter)	Stryker Medical	6506	45305031
Cot (Receiver)	Stryker Medical	6506	45305229
Cot (Un-modulated)	Stryker Medical	6506	45305067

Notes: Base on the similarity between the model 6506 and 6516 as described in the Appendix, only model 6506 was tested for compliance. Both models 6506 and 6516 need to be certified.

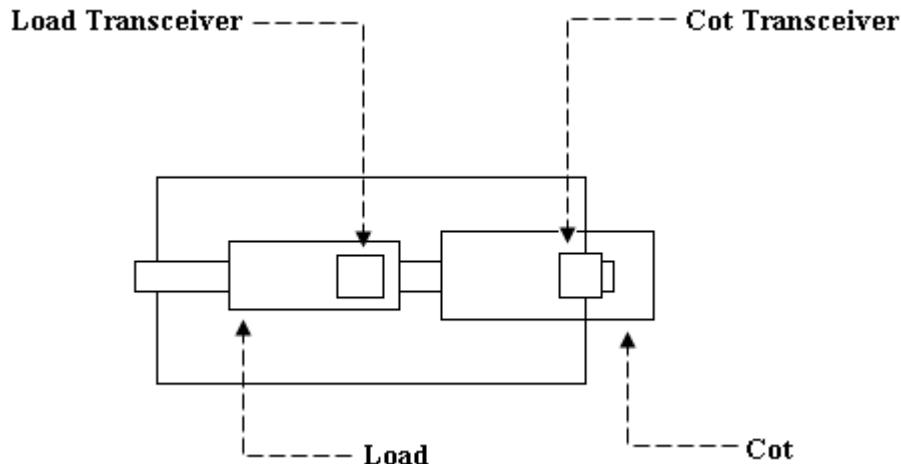
Receive Date:	10/03/2011
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)	
The Power-LOAD ambulance cot fastener is a new product designed to reduce EMT workload by eliminating the need to lift a cot into the back of the ambulance. The EUT consists of the Power-Pro XT(cot), Model 6506. The cot is a gurney which contains a 13.56 MHz transceiver for communication to the Load portion of the Power-Load System. The antenna is integral.	

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
24VDC (Internal Battery)	78A	DC	DC

Operating modes of the EUT:	
No.	Descriptions of EUT Exercising
1	During testing, the 13.56 MHz transmitter was operating as near to continuously as possible, except in receive mode where the transmitter was idle and waiting for messages. A modulated carrier was used, except for frequency stability testing where an un-modulated carrier generated by a standalone comm. board was used.

5 System Setup and Method


Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
	None				

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
None			

5.1 Method:

Configuration as required by ANSI C63.4-2003

5.2 EUT Block Diagram:

6 Fundamental Frequency Radiated Emissions

6.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart C 15.225(a), (b), (c), (d), IC RSS-210 Issue 8 December 2010 A2.6 (a), (b), (c), (d), ANSI C63.4-2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

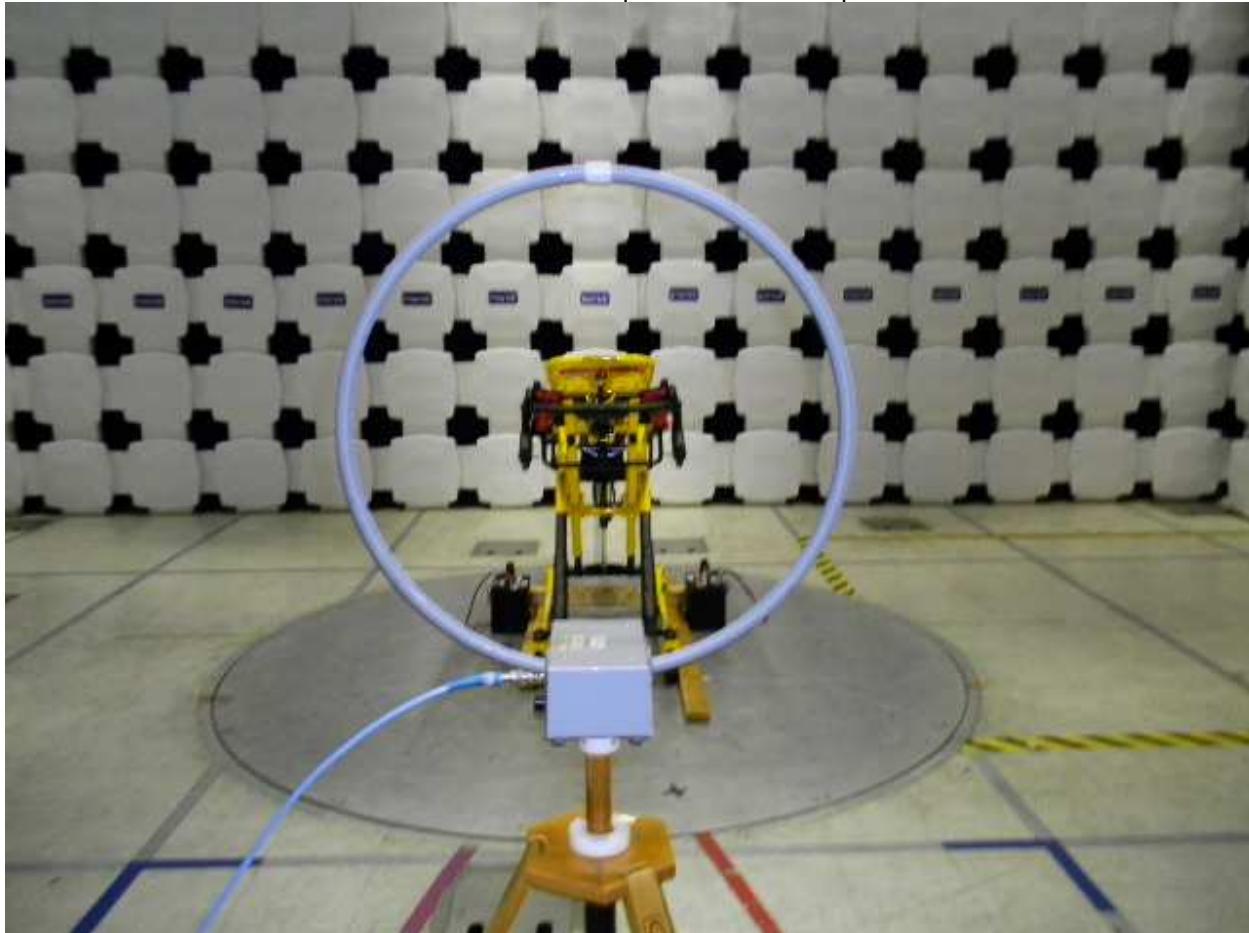
6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
145019'	Active Loop Antenna (10 khz to 30 mhz)	EMCO	6502/1	9902-3267	12/18/2010	12/18/2011
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/10

6.3 Results:


The sample tested was found compliant.

The field strength of any emissions shall not exceed the limits as follows:

Frequency Bands (MHz)	Field Strength Limits µV/m	Field Strength Limits dBµV/m	Test Distance (meters)
13.553–13.567	15,848	84.00	30
13.410–13.553	334	50.50	30
13.567–13.710	334	50.50	30
13.110–13.410	106	40.51	30
13.710–14.010	106	40.51	30
Outside of 13.110–14.010		§15.209	

6.4 Setup Photographs:

Fundamental and Offset Frequencies Test Setup Photo # 1

Fundamental and Offset Frequencies Test Setup Photo # 2

6.5 Data:**Fundamental and Offset Frequencies Radiated Emissions**

Company: Stryker Medical
 Model #: 6506
 Serial #: 45305031
 Engineers: Kouma Sinn
 Project #: G100514149 Date(s): 10/11/11
 Standard: FCC Part 15.225 and IC RSS-210
 Receiver: 145-128 Limit Distance (m): 30
 PreAmp: NONE. Test Distance (m): 3
 PreAmp Used? (Y or N): N Voltage/Frequency: internal battery Frequency Range: See notes in table below
 Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
Fundamental and offset frequencies measured at 3 meters.											
MaxH PK	V	13.560	48.91	10.66	0.49	0.00	40.00	20.06	84.00	-63.94	9/30kHz
MaxH PK	V	13.553	40.90	10.66	0.49	0.00	40.00	12.05	50.47	-38.42	9/30kHz
MaxH PK	V	13.567	40.33	10.66	0.49	0.00	40.00	11.48	50.47	-38.99	9/30kHz
MaxH PK	V	13.410	11.09	10.66	0.49	0.00	40.00	-17.76	40.51	-58.27	9/30kHz
MaxH PK	V	13.710	11.54	10.65	0.49	0.00	40.00	-17.32	40.51	-57.83	9/30kHz
MaxH PK	V	13.110	7.13	10.68	0.48	0.00	40.00	-21.71	40.51	-62.22	9/30kHz
MaxH PK	V	14.010	7.00	10.64	0.50	0.00	40.00	-21.86	40.51	-62.37	9/30kHz

Test Personnel(s): Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225 and IC RSS-210
 Input Voltage: 24 VDC Internal Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Ambient Signals

Test Date(s): 10/11/2011
 Test Levels: See test results
 Ambient Temperature: 20 °C
 Relative Humidity: 40 %
 Atmospheric Pressure: 1015 mbars

Deviations, Additions, or Exclusions: None

7 Transmitter Spurious Emissions Below 30 MHz

7.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart C 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d), ANSI C63.4-2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
145019'	Active Loop Antenna (10 khz to 30 mhz)	EMCO	6502/1	9902-3267	12/18/2010	12/18/2011
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012

Software Utilized:

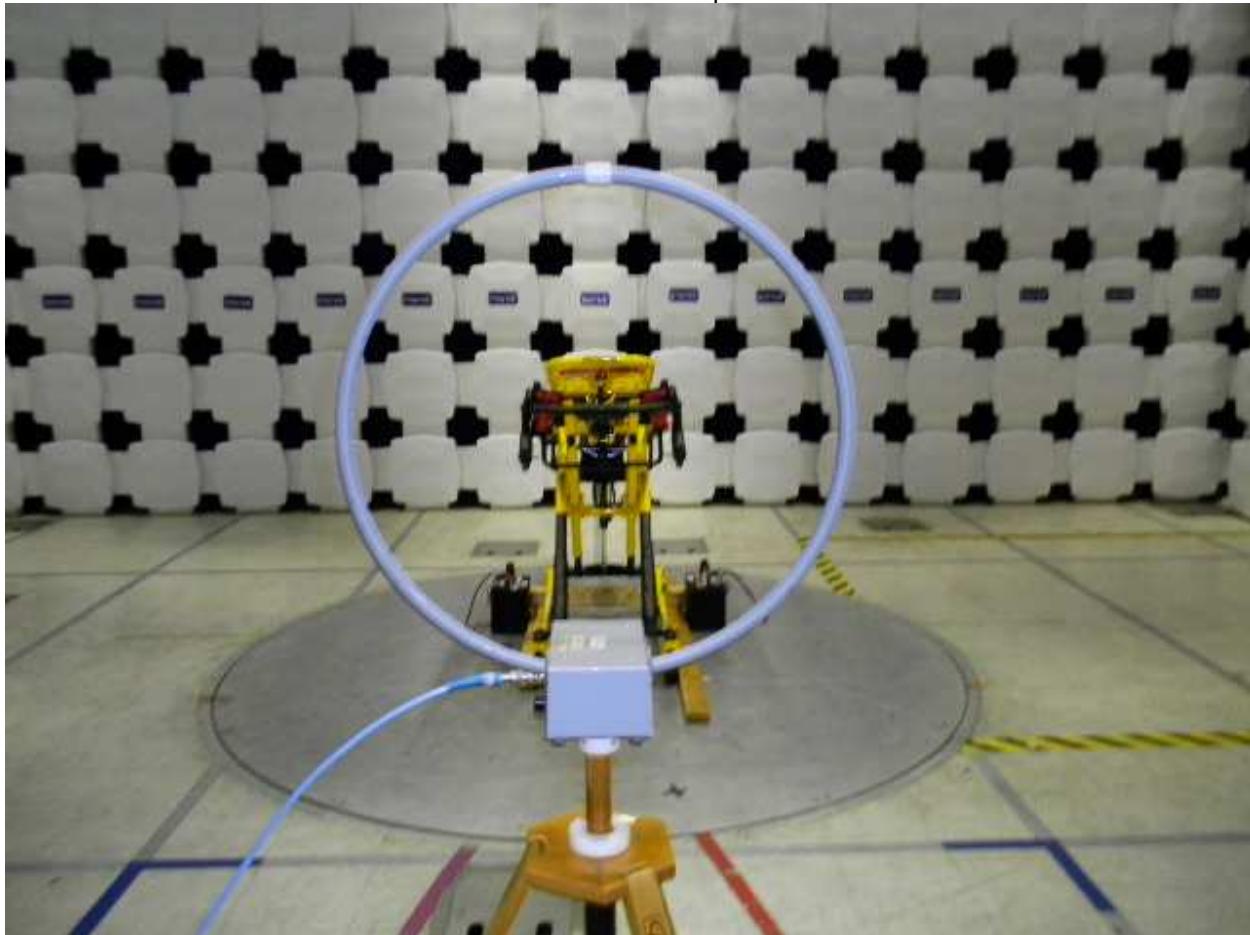
Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/10

7.3 Results:

The sample tested was found compliant.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209


Frequency (MHz)	Field Strength		Test Distance (meters)
	μ V/m	dB μ V/m	
0.009–0.490	2400/F(kHz)	$20 * \log(2400/F(kHz))$	300
0.490–1.705	24000/F(kHz)	$20 * \log(24000/F(kHz))$	30
1.705–30.0	30.00	29.54	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.


IC RSS-210 A2.6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m.

7.4 Setup Photographs:

9 kHz - 30 MHz Test Setup Photo # 1

9 kHz - 30 MHz Test Setup Photo # 2

7.5 Data:**Transmitter Spurious Radiated Emissions From 9kHz-30MHz**

Company: Stryker Medical
 Model #: 6506
 Serial #: 45305031
 Engineers: Kouma Sinn
 Project #: G100514149 Date(s): 10/11/11
 Standard: FCC Part 15.225 and IC RSS-210
 Receiver: 145-128 Limit Distance (m): 30
 PreAmp: NONE. Test Distance (m): 3
 PreAmp Used? (Y or N): N Voltage/Frequency: Internal battery Frequency Range: 9kHz-30MHz
 Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
 Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	Reading dB(uV)	Antenna Factor dB(1/m)	Cable Loss dB	Pre-amp Factor dB	Distance Factor dB	Net dB(uV/m)	Limit dB(uV/m)	Margin dB	Bandwidth
Transmit mode @ 3 meters											
MaxH PK	V	0.396	51.24	11.50	0.20	0.00	80.00	-17.06	15.65	-32.71	9/30kHz
MaxH PK	V	0.791	40.10	11.30	0.25	0.00	40.00	11.65	29.64	-17.99	9/30kHz
MaxH PK	V	1.188	35.52	11.38	0.29	0.00	40.00	7.19	29.64	-22.45	9/30kHz
MaxH PK	V	2.243	27.91	11.23	0.31	0.00	40.00	-0.55	29.54	-30.09	9/30kHz
MaxH PK	V	27.120	30.65	9.36	0.67	0.00	40.00	0.68	29.54	-28.86	9/30kHz

Test Personnel(s): Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225 and IC RSS-210
 Input Voltage: 24 VDC Internal Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Ambient Signals

Test Date(s): 10/11/2011
 Test Levels: See test results
 Ambient Temperature: 20 °C
 Relative Humidity: 40 %
 Atmospheric Pressure: 1015 mbars

Deviations, Additions, or Exclusions: None

8 Transmitter Spurious Above 30 MHz

8.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart C 15.209, 15.225(d), IC RSS-210 Issue 8 December 2010 A2.6(d), ANSI C63.4-2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
~DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
~145128	EMI Receiver 40 GHz (20 Hz - 40 Gzh)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
~145106	Bilog Antenna (30MHz - 5GHz)	Sundt Sciences	JB5	A111003	08/15/2011	08/15/2012
~145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
~PRE7	PREAMPLIFIER	Hewlett Packard	8447D	2944A08718	07/01/2011	07/01/2012

Software Utilized:

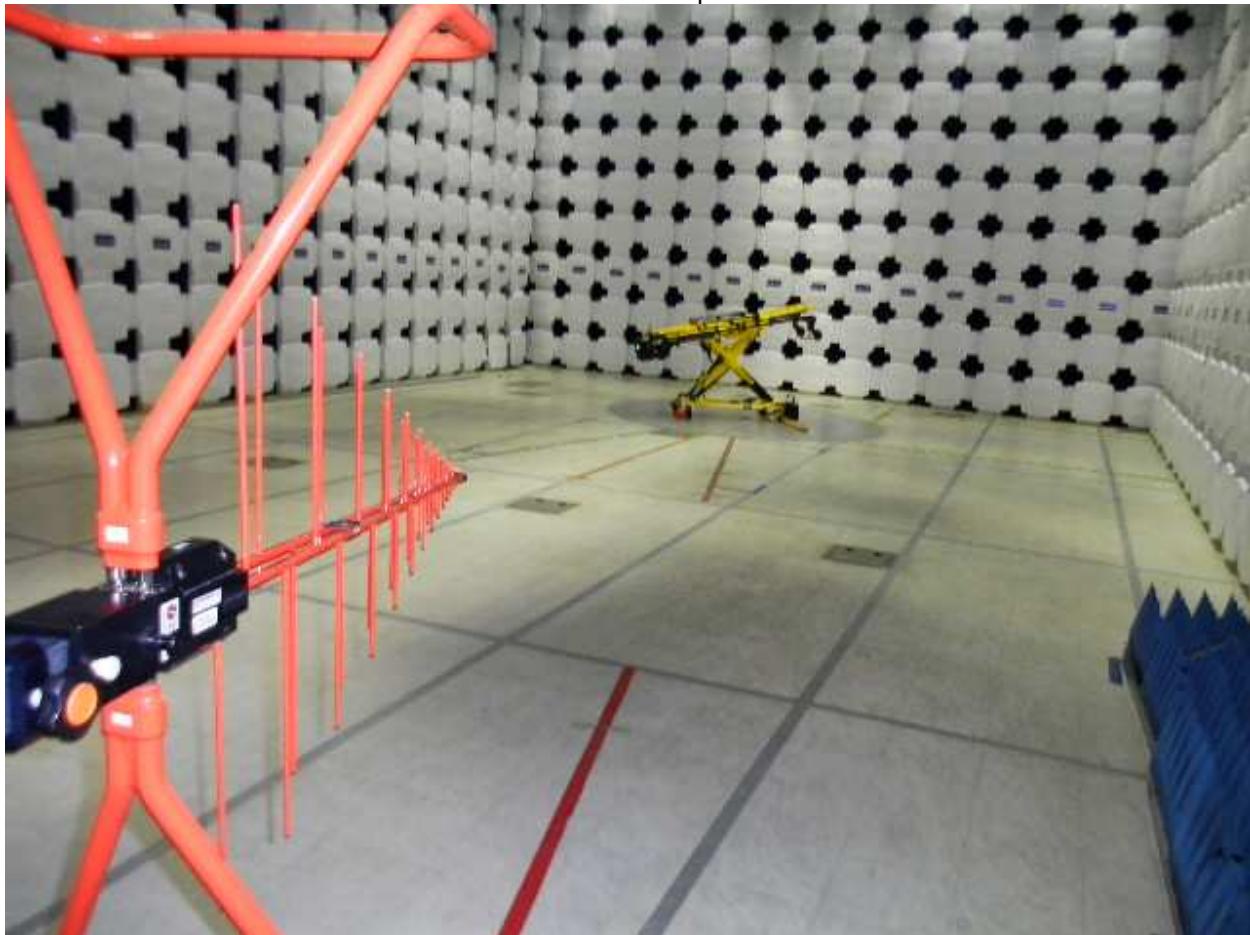
Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

8.3 Results:

The sample was tested found compliant.

The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209


Frequency (MHz)	Field Strength		Test Distance (meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

IC RSS-210 A2 6(d): emissions outside the band 13.110-14.010 MHz must not exceed 30 microvolts/m (29.5 dB μ V/m) at 30 m (49.5 dB μ V/m at 3m)

Since the IC RSS-210 limits are less stringent than the FCC 15.209 limits under 960 MHz, the FCC limits were used.

8.4 Setup Photographs:

30-1000MHz Test Setup Photo # 1

30-1000MHz Test Setup Photo # 2

8.5 Plots/Data:

Test Information

Test Details

Project:

Test Notes:

Temperature:

Humidity:

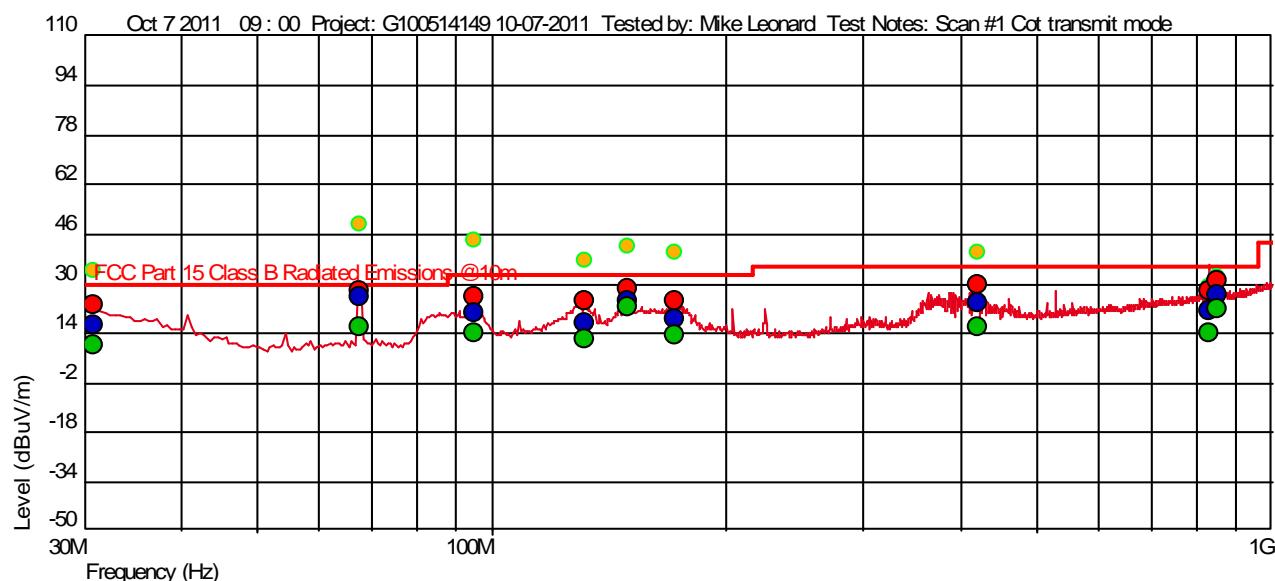
Tested by:

Test Started:

User Input

G100514149 10-07-2011

Scan #1 Cot transmit mode


20 C

38 %, 1020Mba

Mike Leonard

Oct 7 2011 09 : 00

Transmitter Radiated Emissions @ 10m, Vertical Polarity

"PORTRAIT"

Measured Peak Value

Measured Quasi Peak Value

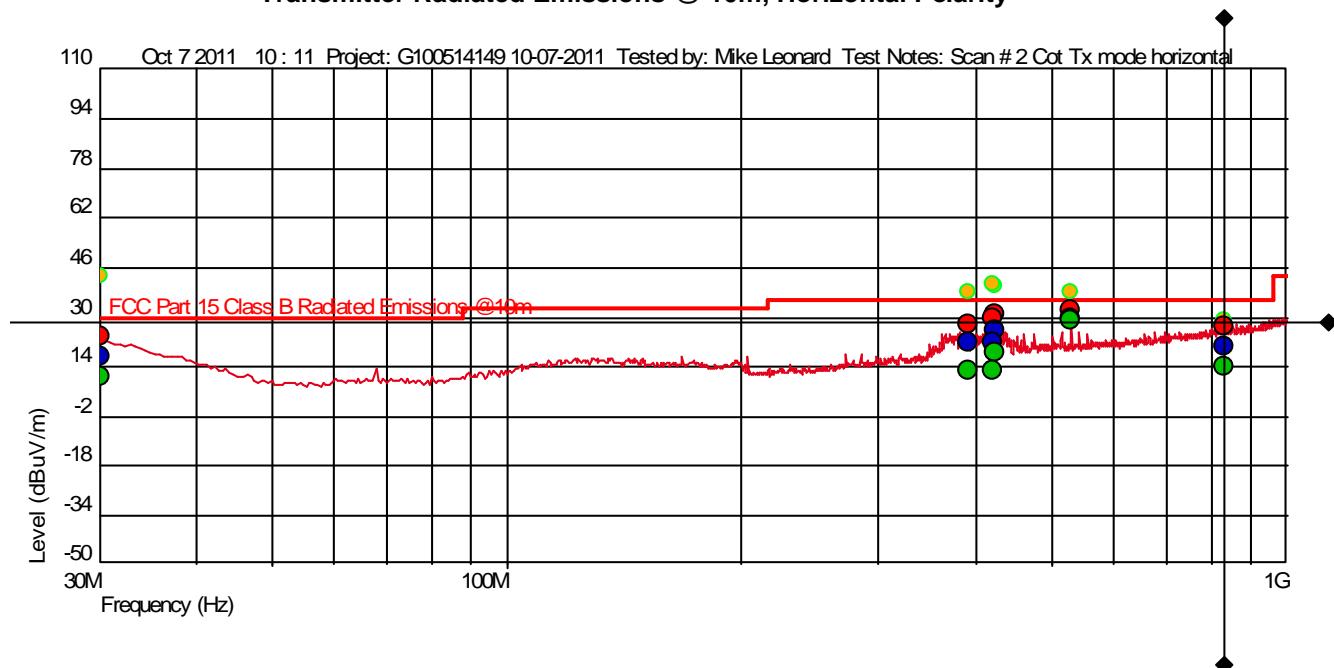
Measured Average Value

Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses


PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Vert ()	Angle (deg)	Mast Height (m)	RBW (Hz)
30.917M	16.36	20.067	-25.528	29.54	-13.18		36	3.45	120k
67.814M	25.95	7.981	-25.915	29.54	-3.59		176	2.13	120k
94.933M	20.31	9.087	-25.553	33.04	-12.73		173	1.44	120k
131.624M	17.57	13.938	-25.100	33.04	-15.47		162	2.02	120k
149.156M	24.75	12.684	-24.899	33.04	-8.29		131	1.55	120k
171.578M	18.87	11.942	-24.666	33.04	-14.17		97	1.47	120k
419.792M	23.72	16.392	-23.991	35.54	-11.82		199	1.19	120k
831.678M	20.96	22.066	-23.038	35.54	-14.58		92	2.61	120k
854.267M	26.29	22.000	-22.945	35.54	-9.25		161	3.14	120k

Transmitter Radiated Emissions @ 10m, Horizontal Polarity

"PORTRAIT"

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- Level (dBuV/m) = AF + CL + PA + Raw
 - AF = Antenna Factor
 - CL = Cable Losses
 - PA = Pre-Amplifier
 - Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Hor (-)	Angle (deg)	Mast Height (m)	RBW (Hz)
30.179M	17.38	21.057	-25.498	29.54	-12.16	--	49	1.77	120k
391.378M	21.79	15.255	-23.831	35.54	-13.75	--	104	2.28	120k
420.176M	21.60	16.300	-23.994	35.54	-13.94	--	146	2.64	120k
423.406M	25.54	16.300	-24.014	35.54	-10.00	--	140	2.20	120k
528.833M	29.83	18.077	-24.136	35.54	-5.71	--	128	1.35	120k
832.979M	20.70	21.800	-23.033	35.54	-14.84	--	130	1.64	120k

Test Personnel(s): Mike Leonard *ML* Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225 and IC RSS-210
 Input Voltage: 24 VDC Internal Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Ambient Signals

Test Date(s): 10/07/2011
 Test Levels: See test results
 Ambient Temperature: 20 °C
 Relative Humidity: 38 %
 Atmospheric Pressure: 1020 mbars

Deviations, Additions, or Exclusions: None

9 Receiver Spurious Emissions Above 30 MHz

9.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart B 15.109, IC RSS-Gen Issue 3 December 2010: Section 6.0, ANSI C63.4-2003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB/m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V/m}$$

To convert from dB μ V to μ V or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V} / 20)} = 39.8 \mu\text{V/m}$$

9.2 Test Equipment Used:

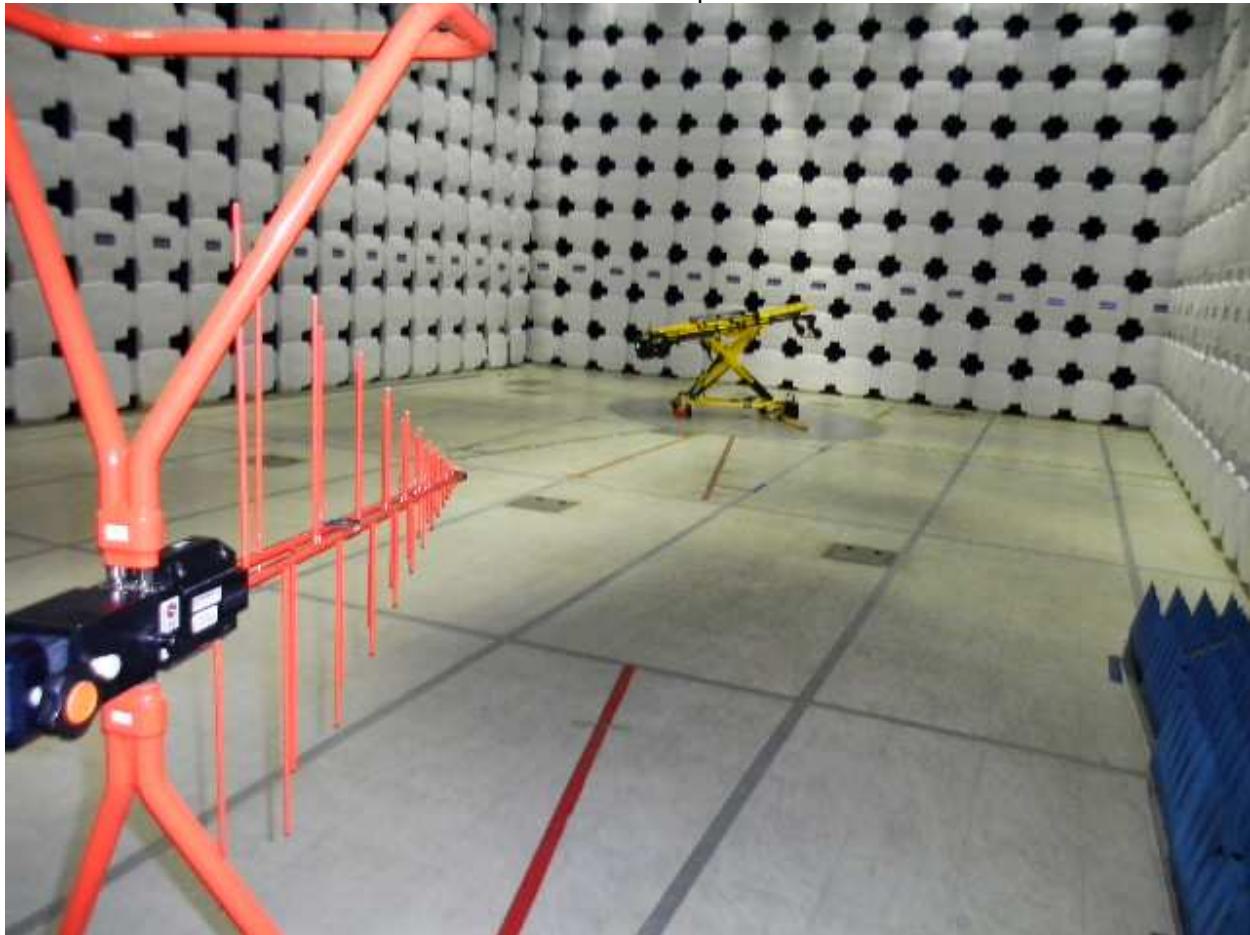
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
~DAV003	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
~145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
~145106	Bilog Antenna (30MHz - 5GHz)	Sundt Sciences	JB5	A111003	08/15/2011	08/15/2012
~145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
~PRE7	PREAMPLIFIER	Hewlett Packard	8447D	2944A08718	07/01/2011	07/01/2012

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

9.3 Results:

The sample tested was found compliant.


The field strength of any emissions shall not exceed the limits as follows:

FCC Part 15.209 & RSS-Gen:

Frequency (MHz)	Field Strength		Test Distance (meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

9.4 Setup Photographs:

30-1000MHz Test Setup Photo # 1

30-1000MHz Test Setup Photo # 2

9.5 Plots/Data:

Test Information

Test Details

Test Notes:

Temperature:

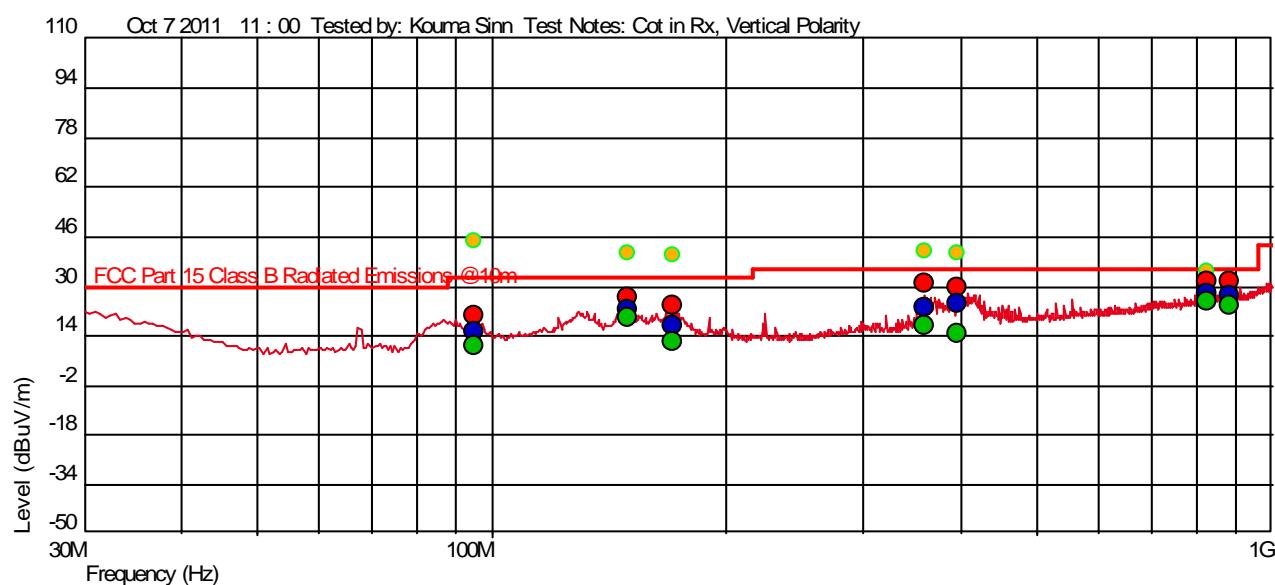
Humidity:

Tested by:

Test Started:

User Input

Cot in Rx, Vertical Polarity


20C

38%, 1020mbar

Kouma Sinn

Oct 7 2011 11 : 00

Receiver Radiated Emissions @ 10m, Vertical Polarity

"PORTRAIT"

Measured Peak Value

Measured Quasi Peak Value

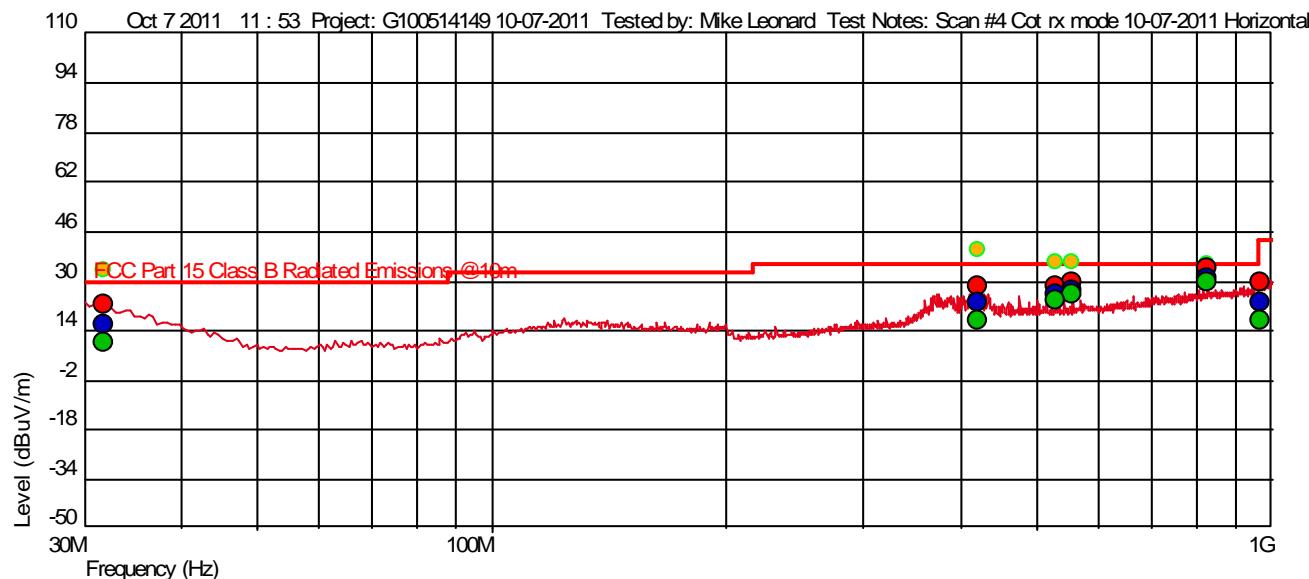
Measured Average Value

Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses


PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Vert ()	Angle (deg)	Mast Height (m)	RBW (Hz)
94.932M	15.68	9.086	-25.553	33.04	-17.36		174	3.94	120k
149.129M	22.27	12.687	-24.899	33.04	-10.77		142	1.77	120k
170.533M	17.42	11.953	-24.676	33.04	-15.62		249	1.19	120k
359.675M	23.29	14.894	-23.717	35.54	-12.25		194	1.19	120k
396.409M	24.44	15.656	-23.848	35.54	-11.10		186	1.19	120k
827.188M	27.87	21.988	-23.055	35.54	-7.67		147	3.22	120k
881.382M	27.29	22.300	-22.792	35.54	-8.25		18	1.17	120k

Receiver Radiated Emissions @ 10m, Horizontal Polarity

"PORTRAIT"

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- Level (dBuV/m) = AF + CL + PA + Raw
- AF = Antenna Factor
- CL = Cable Losses
- PA = Pre-Amplifier
- Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Hor (-)	Angle (deg)	Mast Height (m)	RBW (Hz)
31.854M	16.05	19.802	-25.566	29.54	-13.49	--	265	3.75	120k
420.359M	22.85	16.300	-23.995	35.54	-12.69	--	150	2.45	120k
528.842M	25.57	18.077	-24.136	35.54	-9.97	--	282	1.19	120k
555.953M	27.01	18.500	-24.125	35.54	-8.53	--	201	1.52	120k
827.135M	31.06	21.685	-23.055	35.54	-4.48	--	298	1.19	120k
964.933M	23.20	22.800	-22.101	43.54	-20.34	--	194	1.59	120k

Test Personnel(s): Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225 and IC RSS-210
 Input Voltage: 24 VDC Internal Battery
 Pretest Verification w/
 Ambient Signals or
 BB Source: Ambient Signals

Test Date(s): 10/07/2011
 Test Levels: See test results
 Ambient Temperature: 20 °C
 Relative Humidity: 38 %
 Atmospheric Pressure: 1020 mbars

Deviations, Additions, or Exclusions: None

10 20 dB Bandwidth

10.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart C 15.225, IC RSS-Gen Issue 3 December 2010 Section 4.6, ANSI C63.4-2003.

TEST SITE: AMAP Lab

The EMC Lab has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

The AMAP Building and Lab includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	08/17/2011	08/17/2012
MET4'	Digital Multimeter	Meterman	15XP	050505984	01/28/2011	01/28/2012
146029'	DC Power Supply (0-30 volts 3 amps)	Electro Industries	DIGI 35A	M12/EM 1127-01	VBU	Verified
148013'	Temp/Humidity Chamber	Envirotronics	SH27C	08015563S11264	10/05/2011	10/05/2012
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	01/13/2011	01/13/2012
CBLBNC61'	Coaxial Cable	Pomona	RG58	CBLBNC61	09/08/2011	09/08/2012

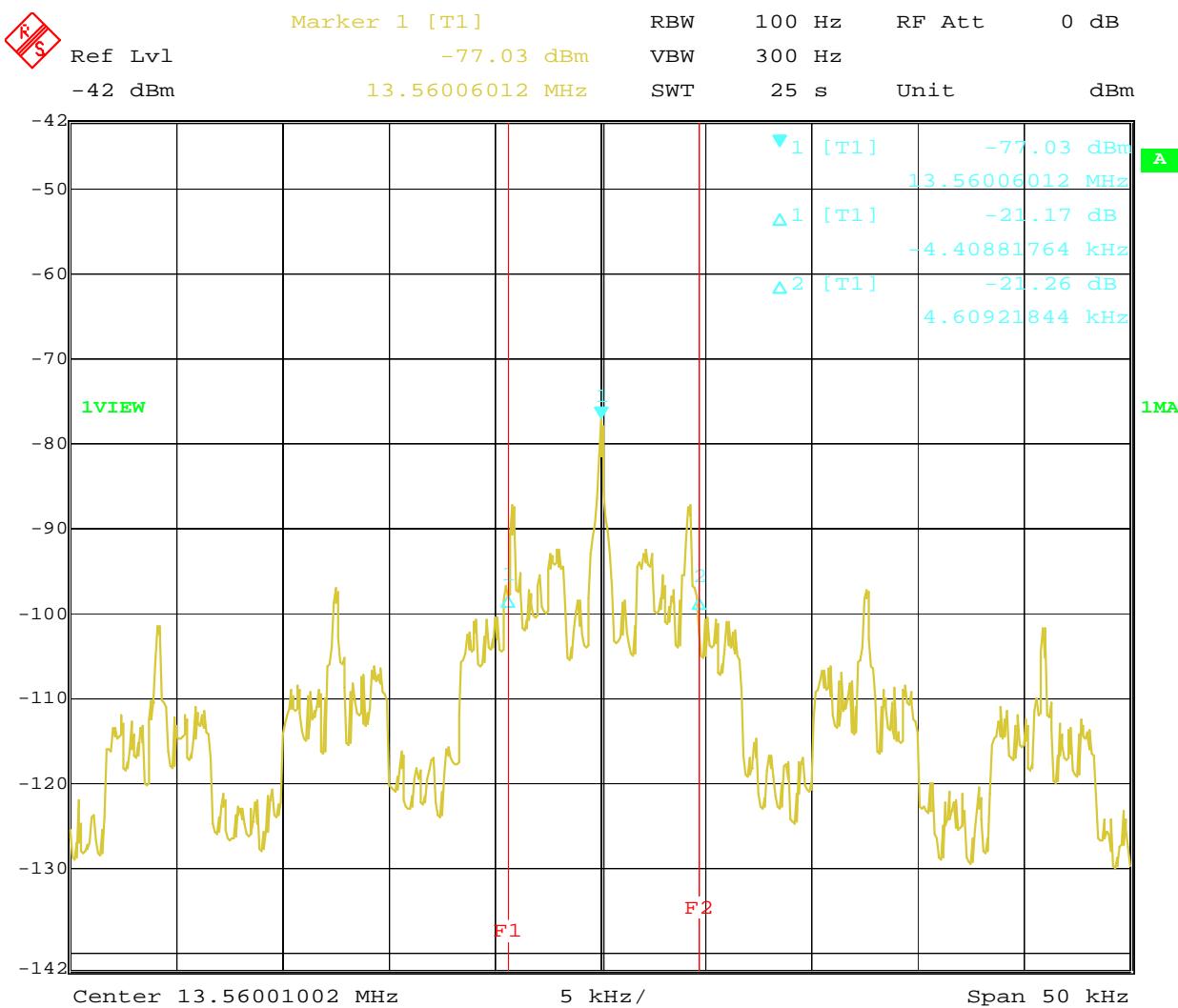
Software Utilized:

Name	Manufacturer	Version
None		

10.3 Results:

The sample tested was found compliant. The 20 dB bandwidth remains within the assigned band.

10.4 Setup Photographs:


Test Setup Photo # 1

Test Setup Photo # 2

10.5 Data:

Date: 11.OCT.2011 14:21:23

Test Personnel(s): Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225, IC RSS-Gen Section 4.6
 Input Voltage: 9 VDC From Support Power Supply
 Pretest Verification w/
 Ambient Signals or
 BB Source: N/A

Test Date(s): 10/11/2011
 Test Levels: See test results
 Ambient Temperature: 21 °C
 Relative Humidity: 48 %
 Atmospheric Pressure: 1014 mbars

Deviations, Additions, or Exclusions: None

11 Frequency Stability

11.1 Method

Tests are performed in accordance with FCC Part 15:2011 Subpart C 15.225(e), IC RSS-Gen Issue 3 December 2010 Section 4.7, IC RSS-210 December 2010 A2.6, ANSI C63.4-2003.

TEST SITE: AMAP lab

The EMC Lab has two Semi-anechoic Chambers and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

The AMAP Building and Lab includes general lab space that can be used for testing where a shielded/enclosed environment is not required.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV001'	Weather Station	Davis Instruments	7400	PE80519A61	08/17/2011	08/17/2012
MET4'	Digital Multimeter	Meterman	15XP	050505984	01/28/2011	01/28/2012
146029'	DC Power Supply (0-30 volts 3 amps)	Electro Industries	DIGI 35A	M12/EM 1127-01	VBU	Verified
148013'	Temp/Humidity Chamber	Envirotronics	SH27C	08015563S11264	10/05/2011	10/05/2012
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	01/13/2011	01/13/2012
CBLBNC61'	Coaxial Cable	Pomona	RG58	CBLBNC61	09/08/2011	09/08/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2011

11.3 Results:

The sample tested was found compliant.

The fundamental frequency shall remain within $\pm 0.01\%$ of the operating frequency over a temperature variation of -30 degrees to +50 degrees. Voltage variations of $\pm 15\%$ were also performed.

11.4 Setup Photographs:

Test Setup Photo # 1

Test Setup Photo # 2

11.5 Data:**Frequency Stability**

Company: Stryker Medical
 Model #: Power-System COT (Comm. Board)
 Serial #: 45305067

Engineer(s): Kouma Sinn
 Project #: G100514149 Date(s): 10/11/11
 Standard: FCC Part 15 Subpart C Section 15.225 & RSS-210 Annex 2 (A2.6)
 Limit: 100 PPM

Test Equipment Used:
 MET4 146-029 ROS001
 148-013 DAV001 CBLBNC61

Nominal f: 13.56 MHz

Voltage: 9 VDC

%	Voltage Volts	Frequency MHz	Deviation kHz	Limit kHz
-15%	7.65	13.560000	-0.0204	1.36
-10%	8.1	13.560020	-0.00036	1.36
-5%	8.55	13.559980	-0.04044	1.36
+0%	9	13.560020	0	1.36
+5%	9.45	13.560000	-0.0204	1.36
+10%	9.9	13.560020	-0.00036	1.36
+15%	10.35	13.560000	-0.0204	1.36

Temp Celsius	Frequency MHz	Deviation kHz	Limit kHz
-30	13.559940	-0.08016	1.36
-20	13.559980	-0.04008	1.36
-10	13.560020	0	1.36
0	13.560020	0	1.36
10	13.560016	-0.00404	1.36
20	13.560020	0	1.36
30	13.559980	-0.04008	1.36
40	13.559980	-0.04008	1.36
50	13.559980	-0.04008	1.36

Test Personnel(s): Kouma Sinn *KPS*
 Supervising Engineer:
 (Where Applicable) N/A
 Product Standard: FCC Part 15.225 and IC RSS-210 A2.6
 Powered from DC power supply
 (see table above)
 Input Voltage:
 Pretest Verification w/
 Ambient Signals or
 BB Source: N/A

Test Date(s): 10/11/2011
 Test Levels: See test results
 Ambient Temperature: 21 °C
 Relative Humidity: 48 %
 Atmospheric Pressure: 1014 mbars

Deviations, Additions, or Exclusions: None

12 Appendix – Technical Description Similarity for Model: 6506 and 6516

Peter Schultz
3800 E. Centre Ave.
Portage, Michigan 49002
t: (269) 389-6415
Peter.Schultz@Stryker.com

Attention: Application Examiner

Re: Power-PRO XT/IT Technical Description

The Stryker model 6506 Power-PRO XT ambulance cot (Figure 1) is intended for pre-hospital transport of pediatric through adult patients. The model 6516 Power-PRO IT (Figure 2) transport cot is designed for incubator transport (Figure 2). The only construction difference between these two models is the litter (top surface). The Power-PRO XT includes a mattress and four-point restraint harness to secure patients while the Power-PRO IT has a flat litter with adaptors to interface with a variety of incubators. Aside from these differences, the core mechanical and electrical design remains the same; all the cable routing, printed circuit boards and software are identical. Therefore, Stryker has deemed that electromagnetic compatibility and immunity evaluation of the base model 6506 is sufficient to qualify both products.

Figure 1. Power-PRO XT

Figure 2. Power-PRO IT

Sincerely,

Peter Schultz
Senior Approvals Engineer
Stryker EMS Equipment

13 Revision History

Revision Level	Date	Report Number	Notes
0	10/14/2011	100514149BOX-002c	Original Issue
1	12/22/2011	100514149BOX-002d	Modified Report # 100514149BOX-002c to include model 6516