

FCC PART 15.231

TEST REPORT

For

Sunbeam Products, Inc. d/b/a Jarden Consumer Solutions

2381 NW Executive Center Drive, Boca Raton, FL, USA

FCC ID: Z4D-SBRTT1

Report Type: Original Report	Product Type: Remote Trainer
Test Engineer: <u>Tiger Ye</u> <i>Tiger Ye</i>	
Report Number: <u>RSZ111010002-00</u>	
Report Date: <u>2011-11-24</u> Merry Zhao <i>merry. zhao</i>	
Reviewed By: <u>EMC Engineer</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk “★” (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
SPECIAL ACCESSORIES	5
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SETUP	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §15.203 - ANTENNA REQUIREMENT.....	7
APPLICABLE STANDARD	7
FCC §15.205, §15.209, §15.35(C) & §15.231(B) - RADIATED EMISSIONS.....	8
MEASUREMENT UNCERTAINTY	8
EUT SETUP	8
EMI TEST RECEIVER SETUP.....	9
TEST PROCEDURE	9
APPLICABLE STANDARD	9
CORRECTED AMPLITUDE & MARGIN CALCULATION	9
TEST EQUIPMENT LIST AND DETAILS.....	10
TEST DATA	10
FCC §15.231(C) – 20 DB BANDWIDTH TESTING.....	12
REQUIREMENT	12
TEST EQUIPMENT LIST AND DETAILS.....	12
TEST PROCEDURE	12
TEST DATA	12
FCC §15.231(A) - DEACTIVATION TESTING	14
REQUIREMENT	14
EUT SETUP	14
TEST EQUIPMENT LIST AND DETAILS.....	14
TEST DATA	15
FCC §15.231- DUTY CYCLE	16
LIMIT	16
TEST EQUIPMENT LIST AND DETAILS.....	16
TEST PROCEDURE	16
TEST DATA	16
PRODUCT SIMILARITY DECLARATION LETTER.....	19

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Sunbeam Products, Inc. d/b/a Jarden Consumer Solutions*'s product, model: *SBRTUS1 (FCC ID: Z4D-SBRTT1)* or the "EUT" in this report is a *Remote Trainer*, which was measured approximately: 7.82 cm (L) x 4.26 cm (W) x 2.28 cm (H), rated input voltage: DC 9V Alkaline Battery.

Note: the product, the series model SBRTSS1 is electrically identical with SBRTUS1; we select SBRTUS1 to test, and the difference between them was explained in the declaration letter.

** All measurement and test data in this report was gathered from production sample serial number: 1110010 (Assigned by BACL, Shenzhen). The EUT was received on 2011-10-10.*

Objective

This Type approval report is prepared on behalf of *Sunbeam Products, Inc. d/b/a Jarden Consumer Solutions* in accordance with Part 2, Subpart J, and Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

No Related Submittals.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at <http://ts.nist.gov/Standards/scopes/2007070.htm>

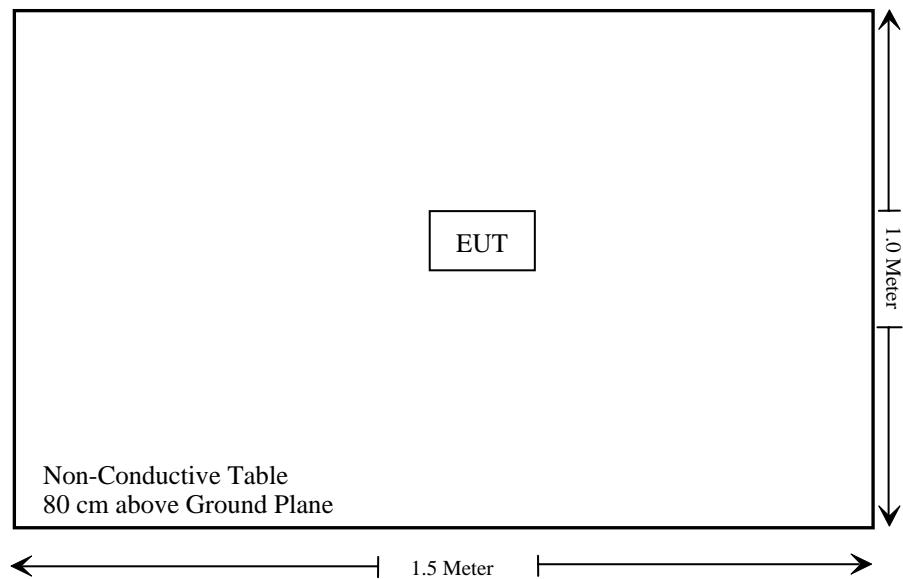
SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).


Special Accessories

The special accessories were provided by Bay Area Compliance Laboratories Corp. (Shenzhen).


Equipment Modifications

No modifications were made to the EUT tested.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

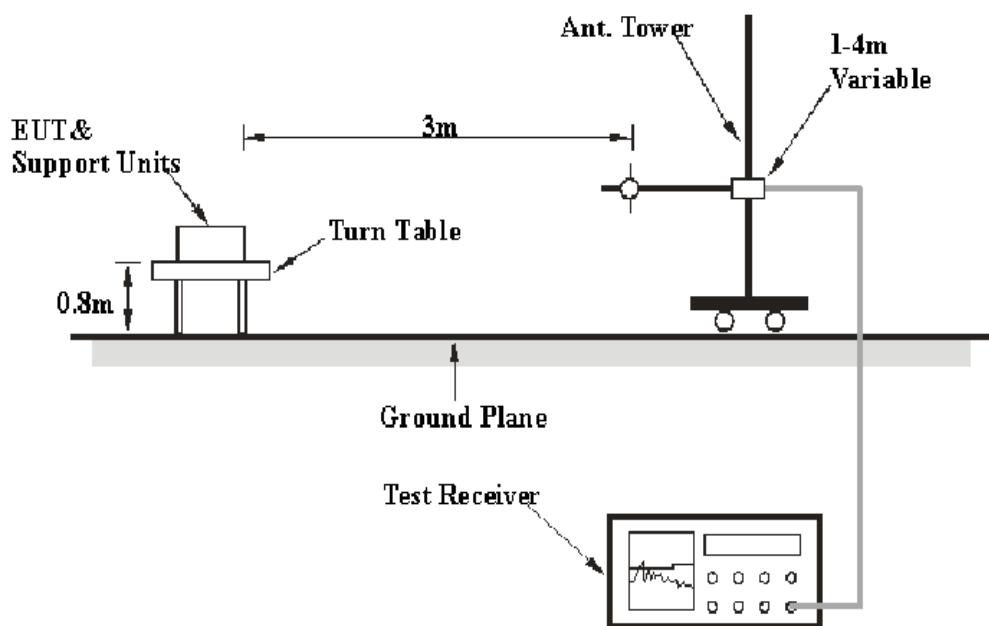
FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Applicable*
§15.205, §15.209, §15.35 (c), §15.231 (b)	Radiated Emissions	Compliance
§15.231(c)	20 dB Emission Bandwidth	Compliance
§15.231 (a)(1)	Deactivation Testing	Compliance
§15.231	Duty Cycle	Compliance

Not Applicable*: The EUT is powered by battery only.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.


Result: Compliant.

The EUT has an internal spring antenna; it is permanently attached to the PCB. Please refer to the EUT Internal photos.

FCC §15.205, §15.209, §15.35(c) & §15.231(b) - RADIATED EMISSIONS**Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emission measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4 - 2009. The specification used was the FCC §15.209 and §15.231.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 5 GHz	1 MHz	3 MHz	PK
1000 MHz – 5 GHz	1 MHz	10 Hz	Ave

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

Applicable Standard

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750**	125 to 375**
174-260	3750	375
260-470	3750 to 12500**	375 to 1250**
Above 470	12500	1250

*Linear interpolations.

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Loss} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 5.8 dB means the emission is 5.8 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447E	1937A01046	2011-08-02	2012-08-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-11	2011-11-10
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2011-07-05	2012-07-04
Rohde & Schwarz	Signal Analyzer	FSIQ 26	609358	2011-07-08	2012-07-07
Mini-Circuits	Amplifier	ZVA-213+	T-E27H	2011-03-08	2012-03-07
Sunol Sciences	Horn Antenna	DRH-118	A052604	2011-05-05	2012-05-04

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.9 kPa

The testing was performed by Tiger Ye on 2011-10-09.

Test mode: Transmitting

Indicated		Detector (PK/Ave.)	Table Angle Degree	Test Antenna			Cable loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dB μ V/m)	FCC Part 15.231(b)/209/205		
Frequency (MHz)	S.A. Reading (dB μ V)			Height (m)	Polar (H / V)	Factor (dB/m)				Limit (dB μ V/m)	Margin (dB)	Remarks
30 MHz – 1000 MHz												
433.94	103.70	PK	269	1.0	H	14.50	1.73	25.96	93.97	100.80	6.83	Fundamental
433.94	99.29	PK	253	1.2	V	14.50	1.73	25.96	89.56	100.80	11.24	Fundamental
867.88	59.88	PK	157	1.9	H	19.90	3.86	25.64	58.00	80.80	22.80	Harmonic
867.88	49.31	PK	212	1.1	V	19.90	3.86	25.64	47.43	80.80	33.37	Harmonic
Above 1GHz												
1301.82	38.76	PK	58	1.0	H	26.50	2.09	26.49	40.86	74.00	33.14	Harmonic
1301.82	37.29	PK	38	1.0	V	26.00	2.09	26.49	38.89	74.00	35.11	Harmonic
1735.76	48.75	PK	198	1.0	H	28.85	2.44	26.83	53.21	80.80	27.59	Harmonic
1735.76	42.54	PK	355	1.0	V	28.82	2.44	26.83	46.97	80.80	33.83	Harmonic
2169.70	44.44	PK	167	1.2	H	29.70	2.85	26.83	50.16	80.80	30.64	Harmonic
2169.70	37.75	PK	202	1.2	V	29.80	2.85	26.83	43.57	80.80	37.23	Harmonic

Note: *Calculate Average value based on Duty Cycle correction factor:

Ave. =PK+20log (Duty Cycle)

Field Strength (Average)

Frequency (MHz)	Peak Measurement @ 3m (dB μ V/m)	Antenna Polar (H/V)	Duty Cycle Correction (dB)	Average Amp. (dB μ V/m)	FCC 15.231(b)/209/205		Comment
					Limit (dB μ V/m)	Margin (dB)	
30 MHz – 1000 MHz							
433.94	93.97	H	-14.61	79.36	80.80	1.44	Fundamental
433.94	89.56	V	-14.61	74.95	80.80	5.85	Fundamental
867.88	58.00	H	-14.61	43.39	60.80	17.41	Harmonic
867.88	47.43	V	-14.61	32.82	60.80	27.98	Harmonic
Above 1 GHz							
1301.82	40.86	H	-14.61	26.25	54.00	27.75	Harmonic
1301.82	38.89	V	-14.61	24.28	54.00	29.72	Harmonic
1735.76	53.21	H	-14.61	38.6	60.80	22.20	Harmonic
1735.76	46.97	V	-14.61	32.36	60.80	28.44	Harmonic
2169.70	50.16	H	-14.61	35.55	60.80	25.25	Harmonic
2169.70	43.57	V	-14.61	28.96	60.80	31.84	Harmonic

Note: *Calculate Average value based on Duty Cycle correction factor:

$$\text{Duty cycle} = \text{Ton}/\text{Tp} = (\text{Ton1N1} + \text{Ton2N2} + \text{Ton3N3})/\text{Tp} = (0.46 * 15 + 0.84 * 12 + 1.61 * 1)/100 \\ = 0.1859$$

$$\text{Duty Cycle Factor} = 20 \lg (\text{Duty cycle}) = 20 \lg 0.1859 = -14.61$$

$$\text{Average} = \text{Peak} + \text{Duty Cycle Factor}$$

FCC §15.231(c) – 20 dB BANDWIDTH TESTING

Requirement

Per FCC §15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-11	2011-11-10
HP	Amplifier	HP8447E	1937A01046	2011-08-02	2012-08-02
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2011-07-05	2012-07-04

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

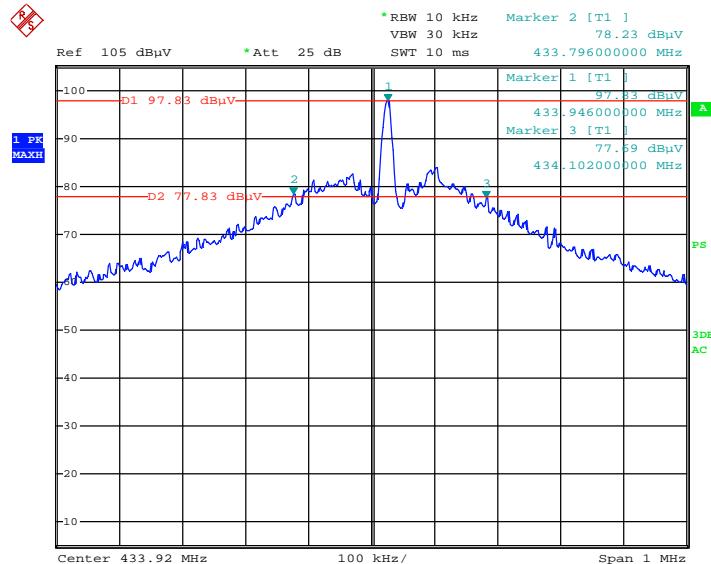
With the EUT's antenna attached, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.9 kPa

The testing was performed by Tiger Ye on 2011-10-07.

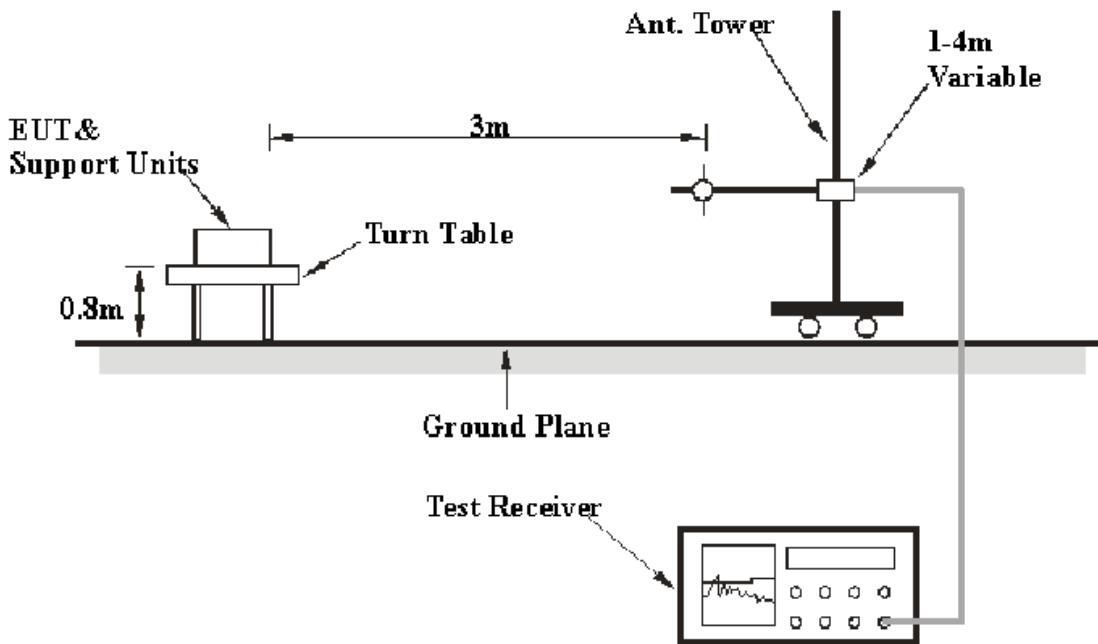

Test Mode: Transmitting

Please refer to following table and plot.

Channel Frequency (MHz)	20 dB Bandwidth (kHz)	Limit (kHz)	Result
433.94	306	1084.9	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 433.94 MHz = 1.0849 MHz
 20 dB Bandwidth = 434.102MHz - 433.796MHz=0.306MHz < 1.0849 MHz

20 dB Emission Bandwidth


Date: 7.NOV.2011 16:13:22

FCC §15.231(a) - DEACTIVATION TESTING

Requirement

Per FCC §15.231(a) (1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

EUT Setup

The deactivation test was performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4 - 2009. The specification used was the FCC 15.231(a) limits.

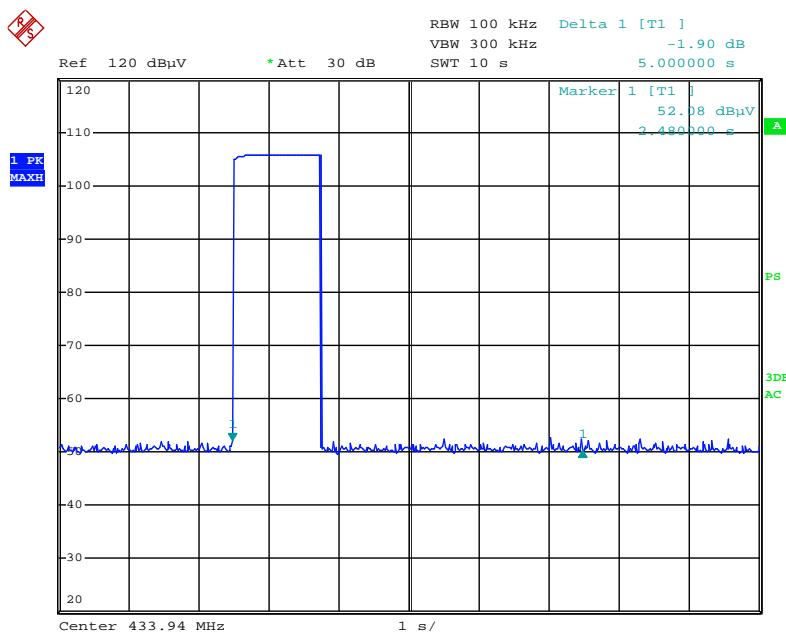
The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-11	2011-11-10
HP	Amplifier	HP8447E	1937A01046	2011-08-02	2012-08-01
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2011-07-05	2012-07-04

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Data


Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.9 kPa

The testing was performed by Tiger Ye on 2011-10-14.

Test Mode: Transmitting

Test Result: Compliance, please refer to following plot.

Date: 14.OCT.2011 20:20:57

FCC §15.231- DUTY CYCLE

Limit

Nil (No dedicated limit specified in the Rules).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-11	2011-11-10

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer=operating frequency.
4. Set the spectrum analyzer as RBW=100kHz, VBW=300 kHz, Span=0 Hz.
5. Repeat above procedures until all frequency measured was complete.

Test Data

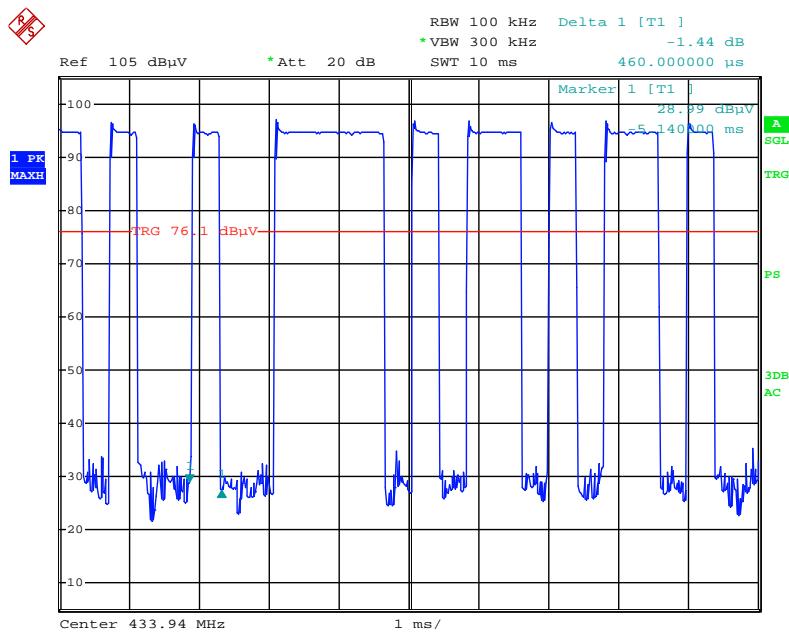
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.9 kPa

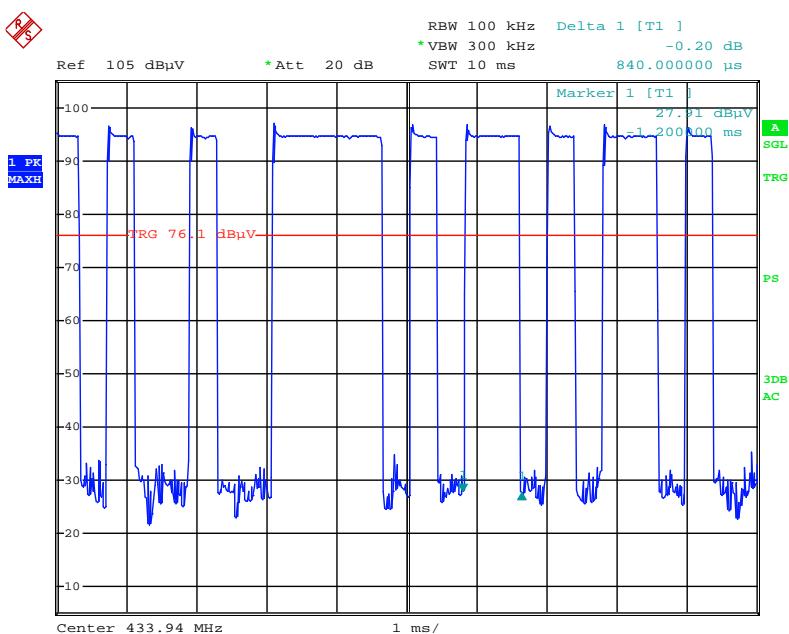
The testing was performed by Tiger Ye on 2011-11-01.

Test Mode: Transmitting

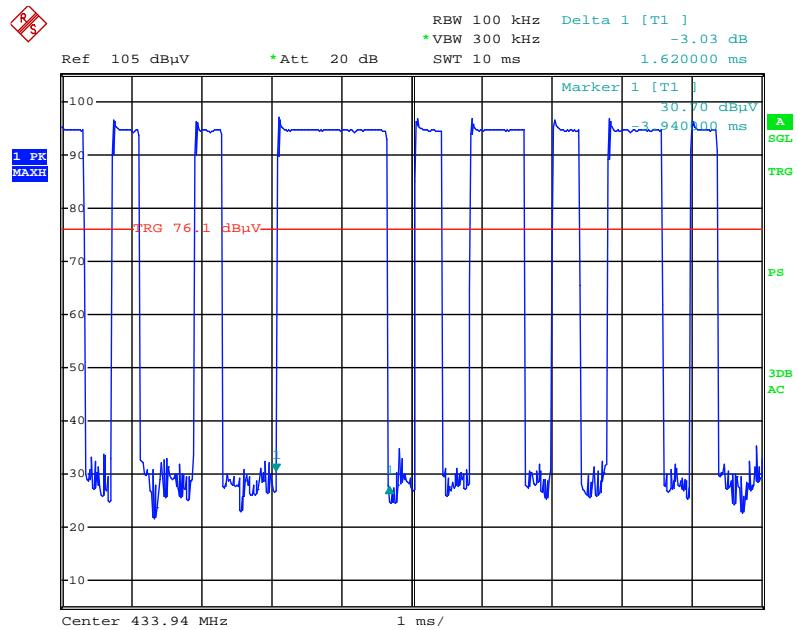
Test Result:


Compliance, please refer to following plots.

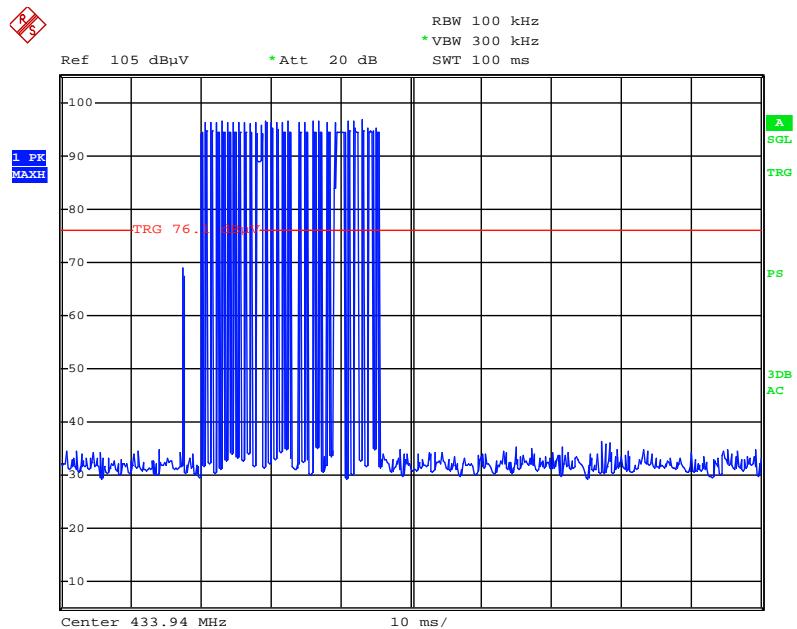
$$\begin{aligned} T_{on} &= T_{on1}N_1 + T_{on2}N_2 + T_{on3}N_3 \\ &= 0.46\text{ms} * 15 + 0.84\text{ms} * 12 + 1.61\text{ms} * 1 = 6.90\text{ms} + 10.08\text{ms} + 1.61\text{ms} = 18.59\text{ms} \end{aligned}$$


$$T_p = 100.00\text{ms}$$

$$\text{Duty Cycle} = T_{on}/T_p = 18.59/100.00 = 0.1859$$


$$\text{Duty Cycle Factor} = 20 * \lg(\text{Duty Cycle}) = -14.61$$

Duty Cycle 1 (Ton 1)


Date: 1.NOV.2011 21:10:11

Duty Cycle 2 (Ton 2)

Date: 1.NOV.2011 21:11:04

Duty Cycle 3 (Ton 3)

Date: 1.NOV.2011 21:10:36

Duty Cycle 4 (Tp)

Date: 1.NOV.2011 21:00:26

PRODUCT SIMILARITY DECLARATION LETTER

Sunbeam Products, Inc. d/b/a Jarden Consumer Solutions
2381 NW Executive Center Drive
Boca Raton, FL 33431
Tel: (561) 912-4100 Fax: (561) 912-4228

Declaration

To Whom It May Concern:

We, Sunbeam Products, Inc. d/b/a Jarden Consumer Solutions, hereby declare that the transmitter used on our Model Number: SBRTSS1 (Product Name: Remote Trainer), is electrically identical with the transmitter used on Model Number: SBRTUS1 that was certified by BACL. SBRTSS1 and SBRTUS1 are named differently due to features difference on the receiver side.

A handwritten signature in blue ink that reads "Anson Wong".

Anson Wong
Senior Project Manager
November 11, 2011

***** END OF REPORT *****