Identive Group, Inc.

ADDENDUM TO TEST REPORT 91345-11

TouchSecure Reader, 8800
TouchSecure Reader / Programmer, 8805

Tested To The Following Standards:

FCC Part 15 Subpart C Section 15.207 & 15.225 & RSS-210 Issue 8

Report No.: 91345-11A

Date of issue: September 18, 2012

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 65 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
FCC 15.207 AC Conducted Emissions	7
FCC 15.225(a) RF Power Output	39
FCC 2.1049: -20dBc Occupied Bandwidth & Emission Mask	42
FCC 15.225(d) Field Strength of Spurious Emissions	45
FCC 15.255(d) Frequency Stability	59
RSS-210	62
99 % Bandwidth	62
Supplemental Information	64
Measurement Uncertainty	64
Fmissions Test Details	6/

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Identive Group, Inc.Dianne Dudley1900-B Carnegie AvenueCKC Laboratories, Inc.Santa Ana, CA 927055046 Sierra Pines DriveMariposa, CA 95338

Representative: Jason Hart Project Number: 93564

DATE OF EQUIPMENT RECEIPT: September 15, 2011

DATE(S) OF TESTING: September 15, 2011 to January 4, 2012

Revision History

Original: Testing of the TouchSecure Reader, 8800 and the TouchSecure Reader / Programmer, 8805 to FCC Part 15 Subpart C Sections 15.207 & 15.225 and RSS 210 Issue 8.

Addendum A: To change the company name and address from idOnDemand, 6800 Koll Center Parkway Pleasanton, CA 94566 to Identive Group, Inc. 1900-B Carnegie Avenue Santa Ana, CA 92705.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve of Below

Page 3 of 65 Report No.: 91345-11A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Site Registration & Accreditation Information

Location	CB#	JAPAN	CANADA	FCC
Fremont	US0082	R-2160, C-2332, T-228 & G-522	3082B-1	958979

Page 4 of 65 Report No.: 91345-11A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.225 & RSS-210 Issue 8

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.225(a)	Pass
-20dBc Occupied Bandwidth &	FCC Part 15 Subpart C Section 2.1049	Dace
Emissions Mask		Pass
Field Strength of Spurious Emissions	FCC Part 15 Subpart C Section 15.225(d)	Pass
Frequency Stability	FCC Part 15 Subpart C Section 15.225(e)	Pass
99% Bandwidth	RSS-210	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 65 Report No.: 91345-11A

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

TouchSecure Reader

Manuf: idOnDemand

Model: 8800 Serial: None **TouchSecure Reader / Programmer**

Manuf: idOnDemand

Model: 8805 Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

DC Power Supply

Manuf: Protek Model: 3006B

Serial: AN:03088, SN:AG4070

DMM

Manuf: Fluke

Serial: DMM914TW141024

Model: DMM914

Power Adapter

Manuf: Dell

Model: FA90PM111 Serial: None

Wiegand Control Box

Manuf: HID Model: 83000BKE Serial: None

Laptop

Manuf: Dell

Model: Latitude E6320

Serial: None

> Page 6 of 65 Report No.: 91345-11A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

FCC 15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions
Equipment: TouchSecure Reader Sequence#: 27
Manufacturer: idOnDemand Tested By: A Brar
Model: 8800 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
110	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
T5	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

1 · 1	-):			
Function	Manufacturer	Model #	S/N	
TouchSecure Reader*	idOnDemand	8800	None	

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Page 7 of 65 Report No.: 91345-11A

Test Conditions / Notes:

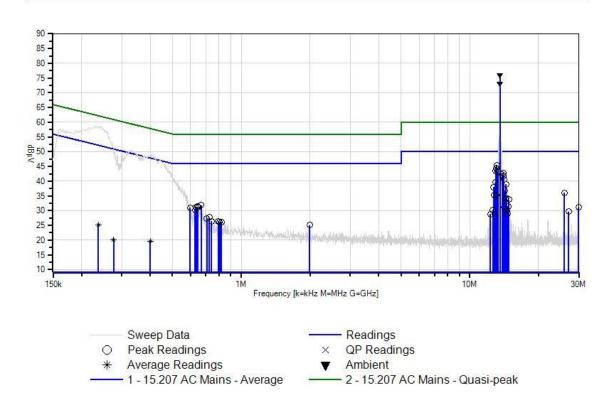
Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 18°C, Atmospheric Pressure: 1022mbar & Relative Humidity: 35%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

The EUT initially was over the spec limit at the fundamental frequency. Once the antenna output was terminated with a 50Ω load, the fundamental was well below the spec limit. Therefore, the EUT is considered compliant.

	urement Data:	Re	eading lis	ted by ma	argin.			Test Lea	ad: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	- 1	6	T5								
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	13.560M	65.2	+9.8	+0.1	+0.1	+0.2	+0.0	75.9	50.0	+25.9	Black
	Ambient		+0.5						Fundamen	ıtal. QP.	
2	13.562M	65.2	+9.8	+0.1	+0.1	+0.2	+0.0	75.9	50.0	+25.9	Black
	Ambient		+0.5						Fundamen	tal. Peak.	
3		62.5	+9.8	+0.1	+0.1	+0.2	+0.0	73.2	50.0	+23.2	Black
	Ambient		+0.5						Fundamen	ıtal.	
4	13.139M	34.6	+9.8	+0.1	+0.1	+0.2	+0.0	45.3	Average. 50.0	-4.7	Black
4	13.139101	34.0	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	43.3	30.0	-4.7	Біаск
5	13.058M	33.8	+9.8	+0.1	+0.1	+0.2	+0.0	44.5	50.0	-5.5	Black
			+0.5								
6	13.004M	32.8	+9.8	+0.1	+0.1	+0.2	+0.0	43.5	50.0	-6.5	Black
			+0.5								
7	13.274M	32.6	+9.8	+0.1	+0.1	+0.2	+0.0	43.3	50.0	-6.7	Black
			+0.5								
8	13.986M	32.0	+9.8	+0.1	+0.1	+0.2	+0.0	42.7	50.0	-7.3	Black
			+0.5								
9	13.851M	31.5	+9.8	+0.1	+0.1	+0.2	+0.0	42.2	50.0	-7.8	Black
- 10			+0.5								
10	14.067M	31.1	+9.8	+0.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Black
1.1	14 10134	20.0	+0.5	. 0.1	. 0. 1	.0.0	.0.0	10.6	50.0	0.4	D1 1
11	14.121M	29.9	+9.8	+0.1	+0.1	+0.2	+0.0	40.6	50.0	-9.4	Black
12	12.923M	28.8	+0.5	+0.1	+0.1	+0.2	+0.0	39.6	50.0	-10.4	Black
12	12.923WI	20.0	+0.5	+0.1	+0.1	+0.2	+0.0	39.0	30.0	-10.4	Diack
13	14.409M	28.3	+9.8	+0.1	+0.1	+0.2	+0.0	39.0	50.0	-11.0	Black
13	14.40711	20.5	+0.5	10.1	10.1	10.2	10.0	37.0	30.0	-11.0	Diack
14	12.716M	27.2	+9.9	+0.1	+0.1	+0.2	+0.0	38.0	50.0	-12.0	Black
	121, 101,1	_,,_	+0.5			. 0.2	. 0.0	20.0	20.0	12.0	214011
15	14.193M	26.1	+9.8	+0.1	+0.1	+0.2	+0.0	36.8	50.0	-13.2	Black
			+0.5								
16	25.957M	24.7	+9.9	+0.3	+0.1	+0.3	+0.0	36.0	50.0	-14.0	Black
			+0.7								
17	668.498k	21.2	+9.9	+0.2	+0.0	+0.0	+0.0	31.8	46.0	-14.2	Black
			+0.5								
18	642.318k	20.8	+9.9	+0.2	+0.0	+0.0	+0.0	31.4	46.0	-14.6	Black
			+0.5								
19	12.788M	24.4	+9.9	+0.1	+0.1	+0.2	+0.0	35.2	50.0	-14.8	Black
			+0.5								


20	13.094M	24.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	35.2	50.0	-14.8	Black
21	632.138k	20.5	+9.9	+0.2	+0.0	+0.0	+0.0	31.1	46.0	-14.9	Black
22	645.954k	20.5	+0.5	+0.2	+0.0	+0.0	+0.0	31.1	46.0	-14.9	Black
23	597.232k	20.4	+0.5	+0.2	+0.0	+0.0	+0.0	31.0	46.0	-15.0	Black
24	627.047k	19.7	+0.5	+0.2	+0.0	+0.0	+0.0	30.3	46.0	-15.7	Black
25	14.490M	23.5	+0.5	+0.1	+0.1	+0.2	+0.0	34.2	50.0	-15.8	Black
26	14.328M	23.4	+0.5	+0.1	+0.1	+0.2	+0.0	34.1	50.0	-15.9	Black
27	14.833M	23.1	+0.5	+0.1	+0.1	+0.2	+0.0	33.8	50.0	-16.2	Black
28	725.947k	17.1	+0.5	+0.2	+0.0	+0.0	+0.0	27.7	46.0	-18.3	Black
29	14.752M	20.8	+0.5 +9.8 +0.5	+0.1	+0.1	+0.2	+0.0	31.5	50.0	-18.5	Black
30	707.040k	16.8	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	27.4	46.0	-18.6	Black
31	14.139M	20.4	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	31.1	50.0	-18.9	Black
32	29.952M	19.6	+0.5 +10.0 +0.8	+0.3	+0.1	+0.3	+0.0	31.1	50.0	-18.9	Black
33	739.764k	15.8	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	26.4	46.0	-19.6	Black
34	792.123k	15.9	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	26.4	46.0	-19.6	Black
35	12.634M	19.6	+9.9 +0.4	+0.1	+0.1	+0.2	+0.0	30.3	50.0	-19.7	Black
36	803.031k	15.7	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	26.2	46.0	-19.8	Black
37	819.030k	15.7	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	26.2	46.0	-19.8	Black
38	14.535M	19.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	30.0	50.0	-20.0	Black
39	27.122M	18.5	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	29.7	50.0	-20.3	Black
40	1.996M	14.7	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	25.1	46.0	-20.9	Black
41	14.697M	18.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	29.0	50.0	-21.0	Black
42	12.292M	18.1	+9.9 +0.4	+0.1	+0.1	+0.2	+0.0	28.8	50.0	-21.2	Black
43	12.842M	17.9	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	28.7	50.0	-21.3	Black
44	237.074k Ave	13.9	+9.9 +1.3	+0.1	+0.0	+0.0	+0.0	25.2	52.2	-27.0	Black
٨	237.074k	47.5	+9.9 +1.3	+0.1	+0.0	+0.0	+0.0	58.8	52.2	+6.6	Black

Page 9 of 65 Report No.: 91345-11A

46 400.126k	9.0	+9.8	+0.1	+0.0	+0.0	+0.0	19.7	47.9	-28.2	Black
Ave		+0.8								
^ 400.126k	38.4	+9.8	+0.1	+0.0	+0.0	+0.0	49.1	47.9	+1.2	Black
		+0.8								
48 276.583k	9.1	+9.8	+0.1	+0.0	+0.0	+0.0	20.1	50.9	-30.8	Black
Ave		+1.1								
^ 276.583k	38.4	+9.8	+0.1	+0.0	+0.0	+0.0	49.4	50.9	-1.5	Black
		+1.1								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 09:18:43 idOnDemand WO#: 91345 Model: 8800 SN: None 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 27 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 09:23:08
Equipment: TouchSecure Reader Sequence#: 28
Manufacturer: idOnDemand Tested By: A Brar
Model: 8800 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
T5	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader*	idOnDemand	8800	None

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

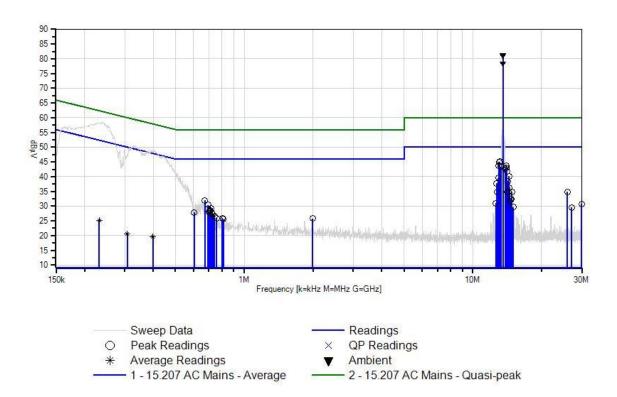
Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 18°C, Atmospheric Pressure: 1022mbar & Relative Humidity: 35%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

The EUT initially was over the spec limit at the fundamental frequency. Once the antenna output was terminated with a 50Ω load, the fundamental was well below the spec limit. Therefore, the EUT is considered compliant.

Measui	rement Data:	Re	ading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	70.6	+9.8	+0.1	+0.1	+0.2	+0.0	81.3	50.0	+31.3	White
	Ambient		+0.5						Fundamen	tal. Peak.	
2	13.560M	70.5	+9.8	+0.1	+0.1	+0.2	+0.0	81.2	50.0	+31.2	White
	Ambient		+0.5						Fundamen	ıtal. QP.	
3	13.560M	67.8	+9.8	+0.1	+0.1	+0.2	+0.0	78.5	50.0	+28.5	White
	Ambient		+0.5						Fundamen	ıtal.	
									Average.		


4	13.139M	34.4	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	45.1	50.0	-4.9	White
5	13.058M	34.3	+9.8	+0.1	+0.1	+0.2	+0.0	45.0	50.0	-5.0	White
6	13.986M	33.1	+0.5	+0.1	+0.1	+0.2	+0.0	43.8	50.0	-6.2	White
7	13.004M	33.0	+0.5	+0.1	+0.1	+0.2	+0.0	43.7	50.0	-6.3	White
			+0.5								
8	13.274M	32.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	43.4	50.0	-6.6	White
9	14.058M	32.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	43.0	50.0	-7.0	White
10	13.851M	32.0	+9.8	+0.1	+0.1	+0.2	+0.0	42.7	50.0	-7.3	White
11	14.121M	31.0	+0.5	+0.1	+0.1	+0.2	+0.0	41.7	50.0	-8.3	White
			+0.5								
12	14.409M	29.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	40.2	50.0	-9.8	White
13	12.923M	28.7	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	39.5	50.0	-10.5	White
14	14.193M	27.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	38.5	50.0	-11.5	White
15	12.706M	27.0	+9.9	+0.1	+0.1	+0.2	+0.0	37.8	50.0	-12.2	White
16	14 400M	25.6	+0.5	ı O 1	ı O 1	+0.2	+0.0	36.3	50.0	12.7	White
16	14.490M		+9.8 +0.5	+0.1	+0.1	+0.2	+0.0		50.0	-13.7	White
17	673.587k	21.4	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	32.0	46.0	-14.0	White
18	25.957M	23.6	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	34.9	50.0	-15.1	White
19	14.139M	24.1	+9.8	+0.1	+0.1	+0.2	+0.0	34.8	50.0	-15.2	White
			+0.5								
20	14.328M	24.1	+9.8	+0.1	+0.1	+0.2	+0.0	34.8	50.0	-15.2	White
21	14.02214	24.1	+0.5	. 0. 1	. 0. 1	.0.2	.0.0	24.0	50.0	15.0	XX71. *4 .
21	14.833M	24.1	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	34.8	50.0	-15.2	White
22	12.788M	23.9	+9.9	+0.1	+0.1	+0.2	+0.0	34.7	50.0	-15.3	White
			+0.5								
23	693.222k	19.8	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	30.4	46.0	-15.6	White
24	715.038k	18.7	+9.9	+0.2	+0.0	+0.0	+0.0	29.3	46.0	-16.7	White
25	712.856k	17.9	+0.5	+0.2	+0.0	+0.0	+0.0	28.5	46.0	-17.5	White
23	/ 12.0JUK	17.9	+9.9	⊤∪. ∠	±0.0	⊤∪. U	+0.0	20.3	+0.0	-17.3	vv IIILE
26	14.752M	21.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	32.5	50.0	-17.5	White
27	14.697M	21.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	32.3	50.0	-17.7	White
28	706.312k	17.6	+9.9	+0.2	+0.0	+0.0	+0.0	28.2	46.0	-17.8	White
			+0.5	10.2			10.0				***************************************
29	702.676k	17.5	+9.9	+0.2	+0.0	+0.0	+0.0	28.1	46.0	-17.9	White
			+0.5								

30	604.503k	17.3	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	27.9	46.0	-18.1	White
31	721.583k	17.3	+9.9	+0.2	+0.0	+0.0	+0.0	27.9	46.0	-18.1	White
	5 40 (5 41	15.0	+0.5	0.0	0.0		0.0	27.6	4.5.0	10.1	****
32	718.674k	17.0	+9.9	+0.2	+0.0	+0.0	+0.0	27.6	46.0	-18.4	White
		• • • •	+0.5								
33	14.544M	20.9	+9.8	+0.1	+0.1	+0.2	+0.0	31.6	50.0	-18.4	White
			+0.5						4.1.0		
34	728.128k	16.7	+9.9	+0.2	+0.0	+0.0	+0.0	27.3	46.0	-18.7	White
2.7	10 (0.1) (20.2	+0.5	0.4	0.1	0.0		21.0	7 0.0	10.0	****
35	12.634M	20.2	+9.9	+0.1	+0.1	+0.2	+0.0	31.0	50.0	-19.0	White
			+0.5								
36	29.952M	19.3	+10.0	+0.3	+0.1	+0.3	+0.0	30.8	50.0	-19.2	White
			+0.8								
37	739.763k	16.1	+9.9	+0.2	+0.0	+0.0	+0.0	26.7	46.0	-19.3	White
			+0.5								
38	802.303k	15.4	+9.8	+0.2	+0.0	+0.0	+0.0	25.9	46.0	-20.1	White
			+0.5								
39	755.762k	15.3	+9.8	+0.2	+0.0	+0.0	+0.0	25.8	46.0	-20.2	White
			+0.5								
40	1.996M	15.4	+9.8	+0.1	+0.0	+0.1	+0.0	25.8	46.0	-20.2	White
			+0.4								
41	15.040M	18.9	+9.8	+0.2	+0.1	+0.2	+0.0	29.7	50.0	-20.3	White
			+0.5								
42	809.575k	15.1	+9.8	+0.2	+0.0	+0.0	+0.0	25.6	46.0	-20.4	White
			+0.5								
43	27.122M	18.3	+9.9	+0.2	+0.1	+0.3	+0.0	29.6	50.0	-20.4	White
			+0.8								
44	232.182k	13.8	+9.9	+0.1	+0.0	+0.0	+0.0	25.2	52.4	-27.2	White
	Ave		+1.4								
^	232.182k	47.3	+9.9	+0.1	+0.0	+0.0	+0.0	58.7	52.4	+6.3	White
			+1.4								
46	398.465k	8.9	+9.8	+0.1	+0.0	+0.0	+0.0	19.5	47.9	-28.4	White
	Ave		+0.7								
^	398.465k	38.3	+9.8	+0.1	+0.0	+0.0	+0.0	48.9	47.9	+1.0	White
			+0.7								
48	308.269k	9.7	+9.8	+0.1	+0.0	+0.0	+0.0	20.5	50.0	-29.5	White
	Ave		+0.9								
^	308.269k	38.1	+9.8	+0.1	+0.0	+0.0	+0.0	48.9	50.0	-1.1	White
	2 2 2 . = 0 / 11	20.1	+0.9		. 3.0				- 3.0		1100

CKC Laboratories, Inc. Date: 1/4/2012 Time: 09:23:08 idOnDemand WO#: 91345 Model: 8800 SN: None 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 28 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 08:37:46
Equipment: TouchSecure Reader Sequence#: 31
Manufacturer: idOnDemand Tested By: A Brar
Model: 8800 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
T5	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader*	idOnDemand	8800	None

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 19.8°C, Atmospheric Pressure: 1028mbar & Relative Humidity: 40%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The 13.56MHz RF output is terminated into 50 Ω . The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	612.503k	21.8	+9.9	+0.2	+0.0	+0.0	+0.0	32.4	46.0	-13.6	Black
			+0.5								
2	635.046k	21.7	+9.9	+0.2	+0.0	+0.0	+0.0	32.3	46.0	-13.7	Black
			+0.5								
3	616.139k	21.5	+9.9	+0.2	+0.0	+0.0	+0.0	32.1	46.0	-13.9	Black
			+0.5								
4	657.590k	21.0	+9.9	+0.2	+0.0	+0.0	+0.0	31.6	46.0	-14.4	Black
			+0.5								

5	645.227k	20.9	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.5	46.0	-14.5	Black
6	661.226k	20.6	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.2	46.0	-14.8	Black
7	665.589k	20.3	+9.9	+0.2	+0.0	+0.0	+0.0	30.9	46.0	-15.1	Black
8	639.410k	19.5	+0.5 +9.9 +0.5	+0.2	+0.0	+0.0	+0.0	30.1	46.0	-15.9	Black
9	696.132k	17.2	+9.9	+0.2	+0.0	+0.0	+0.0	27.8	46.0	-18.2	Black
10	708.494k	17.2	+0.5	+0.2	+0.0	+0.0	+0.0	27.8	46.0	-18.2	Black
11	2.540M	16.1	+0.5 +9.8 +0.4	+0.2	+0.0	+0.1	+0.0	26.6	46.0	-19.4	Black
12	1.022M	14.6	+9.8 +0.4	+0.2	+0.0	+0.0	+0.0	25.0	46.0	-21.0	Black
13	2.289M	14.5	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	24.9	46.0	-21.1	Black
14	2.459M	14.3	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.8	46.0	-21.2	Black
15	2.629M	14.2	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.7	46.0	-21.3	Black
16	1.264M	14.1	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.6	46.0	-21.4	Black
17	26.231M	17.0	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.3	50.0	-21.7	Black
18	2.799M	13.6	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.1	46.0	-21.9	Black
19	2.119M	13.4	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.8	46.0	-22.2	Black
20	2.714M	13.3	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.8	46.0	-22.2	Black
21	22.193M	16.4	+9.9 +1.0	+0.2	+0.1	+0.2	+0.0	27.8	50.0	-22.2	Black
22	1.524M	13.3	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.7	46.0	-22.3	Black
23	28.246M	16.2	+9.9 +0.8	+0.2	+0.1	+0.3	+0.0	27.5	50.0	-22.5	Black
24	24.217M	15.7	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	26.9	50.0	-23.1	Black
25	4.305M	12.0	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	22.4	46.0	-23.6	Black
26	4.934M	11.8	+9.9 +0.5	+0.1	+0.0	+0.1	+0.0	22.4	46.0	-23.6	Black
27	4.603M	11.6	+9.9 +0.4	+0.1	+0.0	+0.1	+0.0	22.1	46.0	-23.9	Black
28	4.666M	11.3	+9.9 +0.4	+0.1	+0.0	+0.1	+0.0	21.8	46.0	-24.2	Black
29	4.832M	11.3	+9.9 +0.4	+0.1	+0.0	+0.1	+0.0	21.8	46.0	-24.2	Black
30	20.175M	13.9	+9.8 +0.9	+0.1	+0.1	+0.2	+0.0	25.0	50.0	-25.0	Black
			/								

31	18.157M	13.3	+9.9 +0.7	+0.1	+0.1	+0.2	+0.0	24.3	50.0	-25.7	Black
32	16.148M	12.8	+9.8	+0.2	+0.1	+0.2	+0.0	23.6	50.0	-26.4	Black
			+0.5								
33	25.875M	12.2	+9.9	+0.3	+0.1	+0.3	+0.0	23.5	50.0	-26.5	Black
			+0.7								
34	29.226M	12.0	+10.0	+0.3	+0.1	+0.3	+0.0	23.5	50.0	-26.5	Black
			+0.8								
35	10.094M	12.7	+9.8	+0.2	+0.1	+0.2	+0.0	23.4	50.0	-26.6	Black
			+0.4								
36	14.121M	12.2	+9.8	+0.1	+0.1	+0.2	+0.0	22.9	50.0	-27.1	Black
			+0.5								
37	14.031M	12.0	+9.8	+0.1	+0.1	+0.2	+0.0	22.7	50.0	-27.3	Black
			+0.5								
38	25.375M	11.3	+9.9	+0.3	+0.1	+0.3	+0.0	22.6	50.0	-27.4	Black
			+0.7								
39	28.061M	11.2	+9.9	+0.2	+0.1	+0.3	+0.0	22.5	50.0	-27.5	Black
			+0.8								
40	17.743M	11.4	+9.9	+0.1	+0.1	+0.2	+0.0	22.4	50.0	-27.6	Black
			+0.7								
41	28.314M	11.1	+9.9	+0.2	+0.1	+0.3	+0.0	22.4	50.0	-27.6	Black
			+0.8								
42	24.114M	11.0	+9.9	+0.2	+0.1	+0.3	+0.0	22.2	50.0	-27.8	Black
			+0.7								
43	29.397M	10.7	+10.0	+0.3	+0.1	+0.3	+0.0	22.2	50.0	-27.8	Black
			+0.8								
44	24.998M	10.8	+9.9	+0.3	+0.1	+0.3	+0.0	22.1	50.0	-27.9	Black
			+0.7								
45	25.772M	10.8	+9.9	+0.3	+0.1	+0.3	+0.0	22.1	50.0	-27.9	Black
			+0.7								
46	26.560M	10.8	+9.9	+0.3	+0.1	+0.3	+0.0	22.1	50.0	-27.9	Black
		-0.0	+0.7	. 3.2					- 3.0	=	
47	333.626k	10.2	+9.8	+0.1	+0.0	+0.0	+0.0	20.9	49.4	-28.5	Black
	Ave	- V. -	+0.8		. 3.0	. 3.0				_0.0	
^	333.626k	40.6	+9.8	+0.1	+0.0	+0.0	+0.0	51.3	49.4	+1.9	Black
	333.320K	.0.0	+0.8	10.1	1 0.0	1 3.0	10.0	51.5	12.1	1 1.0	Diack
49	222.936k	12.2	+9.9	+0.1	+0.0	+0.0	+0.0	23.7	52.7	-29.0	Black
	Ave	12.2	+1.5	10.1	1 0.0	1 3.0	10.0	23.1	52.7	27.0	Diack
^	222.936k	45.0	+9.9	+0.1	+0.0	+0.0	+0.0	56.5	52.7	+3.8	Black
	222.750K	15.0	+1.5	10.1	1 0.0	1 3.0	10.0	20.5	52.7	13.0	Diack
51	165.969k	10.2	+9.9	+0.5	+0.0	+0.0	+0.0	22.8	55.2	-32.4	Black
	Ave	10.2	+2.2	10.5	10.0	10.0	10.0	22.0	55.2	52.7	Diack
^	165.969k	41.4	+9.9	+0.5	+0.0	+0.0	+0.0	54.0	55.2	-1.2	Black
	105.707K	71. 7	+2.2	10.5	10.0	10.0	10.0	27.0	JJ.4	1.2	Diack
L			1 4.4								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 08:37:46 idOnDemand WO#: 91345 Model: 8800 SN: None 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 31 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 08:43:48
Equipment: TouchSecure Reader / Programmer Sequence #: 32
Manufacturer: idOnDemand Tested By: A Brar
Model: 8805 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
Т3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
T5	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 19.8° C, Atmospheric Pressure: 1028mbar & Relative Humidity: 40%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The 13.56MHz RF output is terminated into 50 Ω . The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	177.633k	39.0	+9.9	+0.4	+0.0	+0.0	+0.0	51.3	54.6	-3.3	White
			+2.0								
2	163.089k	38.6	+9.9	+0.5	+0.0	+0.0	+0.0	51.2	55.3	-4.1	White
			+2.2								
3	167.452k	38.0	+9.9	+0.5	+0.0	+0.0	+0.0	50.5	55.1	-4.6	White
			+2.1								
4	624.137k	21.4	+9.9	+0.2	+0.0	+0.0	+0.0	32.0	46.0	-14.0	White
			+0.5								


5	651.044k	21.1	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.7	46.0	-14.3	White
6	657.589k	21.0	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.6	46.0	-14.4	White
7	668.497k	20.9	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.5	46.0	-14.5	White
8	693.222k	18.8	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	29.4	46.0	-16.6	White
9	681.587k	18.2	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	28.8	46.0	-17.2	White
10	712.856k	17.5	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	28.1	46.0	-17.9	White
11	835.754k	16.6	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	27.1	46.0	-18.9	White
12	732.491k	16.4	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	27.0	46.0	-19.0	White
13	737.581k	16.4	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	27.0	46.0	-19.0	White
14	754.307k	16.4	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	26.9	46.0	-19.1	White
15	2.544M	16.4	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	26.9	46.0	-19.1	White
16	812.484k	15.4	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	25.9	46.0	-20.1	White
17	881.458k	15.1	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	25.5	46.0	-20.5	White
18	2.629M	14.9	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	25.4	46.0	-20.6	White
19	2.455M	14.4	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.9	46.0	-21.1	White
20	22.202M	17.3	+9.9 +1.0	+0.2	+0.1	+0.2	+0.0	28.7	50.0	-21.3	White
21	1.230M	14.1	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.6	46.0	-21.4	White
22	996.281k	14.0	+9.8 +0.4	+0.2	+0.0	+0.0	+0.0	24.4	46.0	-21.6	White
23	2.204M	13.7	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	24.1	46.0	-21.9	White
24	1.677M	13.7	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	24.1	46.0	-21.9	White
25	1.243M	13.4	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.9	46.0	-22.1	White
26	1.485M	13.5	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.9	46.0	-22.1	White
27	2.710M	13.4	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.9	46.0	-22.1	White
28	26.231M	16.3	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	27.6	50.0	-22.4	White
29	2.680M	12.8	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.3	46.0	-22.7	White
30	24.217M	15.6	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	26.8	50.0	-23.2	White
-											

32 28.253M 13.5 +9.9 +0.2 +0.1 +0.3 +0.0 24.8 50.0 -25.2 White +0.8 3 14.121M 13.1 +9.8 +0.1 +0.1 +0.2 +0.0 23.8 50.0 -26.2 White +0.5 34 27.006M 12.3 +9.9 +0.2 +0.1 +0.3 +0.0 23.5 50.0 -26.5 White +0.5 35 16.139M 12.5 +9.8 +0.2 +0.1 +0.2 +0.0 23.4 50.0 -26.6 White +0.6 36 15.878M 12.5 +9.8 +0.2 +0.1 +0.2 +0.0 23.3 50.0 -26.7 White +0.5 37 6.589M 12.7 +9.8 +0.1 +0.1 +0.1 +0.2 +0.0 23.2 50.0 -26.8 White +0.5 38 12.589M 12.3 +9.9 +0.1 +0.1 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.4 38 12.589M 12.3 +9.9 +0.1 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.5 39 15.373M 12.3 +9.8 +0.2 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.5 40 28.568M 11.8 +9.9 +0.2 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.8 41 22.770M 11.5 +9.9 +0.2 +0.1 +0.3 +0.0 23.1 50.0 -26.9 White +0.8 42 26.129M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 43 26.978M 11.6 +9.9 +0.2 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.9 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +0.8 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White +0.8 48 334.425k 20.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 48 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 49 22.6841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 40 26.0357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White +1.4 40 26.0357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White +1.1 40 40 40 40 40 40 40 40 40 40 40 40 40 4	31	20.175M	15.5	+9.8 +0.9	+0.1	+0.1	+0.2	+0.0	26.6	50.0	-23.4	White
33 14.121M	32	28.253M	13.5	+9.9	+0.2	+0.1	+0.3	+0.0	24.8	50.0	-25.2	White
34 27.006M 12.3 +9.9 +0.2 +0.1 +0.3 +0.0 23.5 50.0 -26.5 White +0.7 35 16.139M 12.5 +9.8 +0.2 +0.1 +0.2 +0.0 23.4 50.0 -26.6 White +0.6 36 15.878M 12.5 +9.8 +0.2 +0.1 +0.2 +0.0 23.3 50.0 -26.6 White +0.6 37 6.589M 12.7 +9.8 +0.1 +0.1 +0.1 +0.1 +0.0 23.2 50.0 -26.8 White +0.4 38 12.589M 12.3 +9.9 +0.1 +0.1 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.5 39 15.373M 12.3 +9.9 +0.1 +0.1 +0.2 +0.0 23.1 50.0 -26.9 White +0.5 40 28.568M 11.8 +9.9 +0.2 +0.1 +0.3 +0.0 23.1 50.0 -26.9 White +0.8 41 22.770M 11.5 +9.9 +0.2 +0.1 +0.3 +0.0 23.1 50.0 -26.9 White +0.8 42 26.129M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.1 +0.1 +0.2 +0.0 23.0 50.0 -27.0 White +0.8 42 26.129M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 43 26.978M 11.6 +9.9 +0.2 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.3 +0.0 22.9 50.0 -27.1 White +0.9 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +0.9 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 48 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 49 22.6841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 40 22.6841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 40 22.60.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -3.1 White +1.1 40 22.60.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -3.1 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White +1.1 42 26.0357k 8.8 +0.1 +0.0 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	33	14.121M	13.1	+9.8	+0.1	+0.1	+0.2	+0.0	23.8	50.0	-26.2	White
35 16.139M 12.5 +9.8 +0.2 +0.1 +0.2 +0.0 23.4 50.0 -26.6 White +0.6 +0.6 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.4 +0.5	34	27.006M	12.3	+9.9	+0.2	+0.1	+0.3	+0.0	23.5	50.0	-26.5	White
+0.5	35	16.139M	12.5	+9.8	+0.2	+0.1	+0.2	+0.0	23.4	50.0	-26.6	White
+0.4	36	15.878M	12.5		+0.2	+0.1	+0.2	+0.0	23.3	50.0	-26.7	White
+0.5 39	37		12.7		+0.1	+0.1	+0.1	+0.0	23.2	50.0	-26.8	White
+0.5 40 28.568M 11.8 +9.9 +0.2 +0.1 +0.3 +0.0 23.1 50.0 -26.9 White +0.8 41 22.770M 11.5 +9.9 +0.2 +0.1 +0.2 +0.0 23.0 50.0 -27.0 White +1.1 42 26.129M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 43 26.978M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.2 +0.0 22.9 50.0 -27.1 White +0.9 +0.9 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +1.1 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White +0.8 A 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 A 226.841k 42.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 A 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 A 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -2.4 White				+0.5								
## ## ## ## ## ## ## ## ## ## ## ## ##	39	15.373M	12.3		+0.2	+0.1	+0.2	+0.0	23.1	50.0		
42 26.129M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White 43 26.978M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.2 +0.0 22.9 50.0 -27.1 White 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White Ave +0.8 Ave +0.8 +0.1 +0.0 +0.0 +0.0 55.	40	28.568M	11.8		+0.2	+0.1	+0.3	+0.0	23.1	50.0	-26.9	White
+0.7 43 26.978M 11.7 +9.9 +0.3 +0.1 +0.3 +0.0 23.0 50.0 -27.0 White +0.7 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.2 +0.0 22.9 50.0 -27.1 White +0.9 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +1.1 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White +0.8 ^ 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 -29.0 White +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 ^ 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	41	22.770M	11.5		+0.2	+0.1	+0.2	+0.0	23.0	50.0		White
+0.7 44 21.625M 11.6 +9.9 +0.2 +0.1 +0.2 +0.0 22.9 50.0 -27.1 White +0.9 45 22.625M 11.2 +9.9 +0.2 +0.1 +0.2 +0.0 22.7 50.0 -27.3 White +1.1 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White Ave +0.8 ^ 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 23.6 52.6 -29.0 White Ave +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	42	26.129M	11.7		+0.3	+0.1	+0.3	+0.0	23.0	50.0	-27.0	White
+0.9 45	43	26.978M	11.7		+0.3	+0.1	+0.3	+0.0	23.0	50.0	-27.0	White
+1.1 46 23.347M 11.3 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.9 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White Ave +0.8 ^ 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 23.6 52.6 -29.0 White Ave +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	44	21.625M	11.6		+0.2		+0.2	+0.0	22.9	50.0	-27.1	White
+0.9 47 23.628M 11.4 +9.9 +0.2 +0.1 +0.3 +0.0 22.7 50.0 -27.3 White +0.8 48 334.425k 10.2 +9.8 +0.1 +0.0 +0.0 +0.0 20.9 49.3 -28.4 White +0.8 ^ 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White +0.8 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 23.6 52.6 -29.0 White Ave +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	45	22.625M	11.2		+0.2	+0.1		+0.0	22.7	50.0		White
+0.8 48 334.425k	46	23.347M			+0.2					50.0		
Ave +0.8 ^ 334.425k 40.7 +9.8 +0.1 +0.0 +0.0 +0.0 51.4 49.3 +2.1 White 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 23.6 52.6 -29.0 White Ave +1.4 52 260.357k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 49.0 51.4 -2.4 White	47			+0.8								
+0.8 50 226.841k 12.2 +9.9 +0.1 +0.0 +0.0 +0.0 23.6 52.6 -29.0 White Ave +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White +1.4 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White		Ave					+0.0			49.3		White
Ave +1.4 ^ 226.841k 44.5 +9.9 +0.1 +0.0 +0.0 +0.0 55.9 52.6 +3.3 White 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	۸	334.425k	40.7		+0.1	+0.0	+0.0	+0.0		49.3	+2.1	White
+1.4 52 260.357k 8.7 +9.8 +0.1 +0.0 +0.0 +0.0 19.7 51.4 -31.7 White Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White		Ave		+1.4								White
Ave +1.1 ^ 260.357k 38.0 +9.8 +0.1 +0.0 +0.0 +0.0 49.0 51.4 -2.4 White	٨	226.841k	44.5		+0.1	+0.0	+0.0	+0.0	55.9	52.6	+3.3	White
	_		8.7		+0.1	+0.0	+0.0	+0.0	19.7	51.4	-31.7	White
	٨	260.357k	38.0		+0.1	+0.0	+0.0	+0.0	49.0	51.4	-2.4	White

CKC Laboratories, Inc. Date: 1/4/2012 Time: 08:43:48 idOnDemand WO#: 91345 Model: 8805 SN: None 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 32 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 09:01:00
Equipment: TouchSecure Reader / Programmer Sequence#: 30
Manufacturer: idOnDemand Tested By: A Brar
Model: 8805 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
T5	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

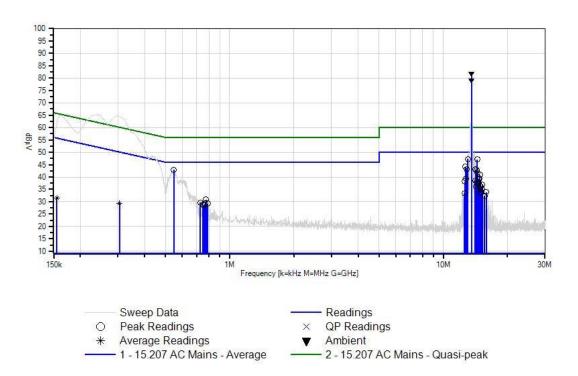
Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 18° C, Atmospheric Pressure: 1022mbar & Relative Humidity: 35%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

The EUT initially was over the spec limit at the fundamental frequency. Once the antenna output was terminated with a 50Ω load, the fundamental was well below the spec limit. Therefore, the EUT is considered compliant.

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5						_		
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	13.560M	71.1	+9.8	+0.1	+0.1	+0.2	+0.0	81.8	50.0	+31.8	Black
A	Ambient		+0.5						Fundamen	ıtal.	
									Average.		
2	13.560M	71.1	+9.8	+0.1	+0.1	+0.2	+0.0	81.8	50.0	+31.8	Black
A	Ambient		+0.5						Fundamen	ıtal. Peak.	
3	13.560M	68.4	+9.8	+0.1	+0.1	+0.2	+0.0	79.1	50.0	+29.1	Black
A	Ambient		+0.5						Fundamen	ıtal. QP.	



4	13.031M	36.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	47.3	50.0	-2.7	Black
5	14.409M	36.4	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	47.1	50.0	-2.9	Black
6	548.508k	32.2	+9.9 +0.6	+0.2	+0.0	+0.0	+0.0	42.9	46.0	-3.1	Black
7	12.716M	33.3	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	44.1	50.0	-5.9	Black
8	12.923M	32.4	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	43.2	50.0	-6.8	Black
9	14.193M	32.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	43.0	50.0	-7.0	Black
10	14.328M	32.1	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	42.8	50.0	-7.2	Black
11	14.490M	31.1	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Black
12	14.833M	30.2	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	40.9	50.0	-9.1	Black
13	14.752M	28.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	39.3	50.0	-10.7	Black
14	12.788M	28.4	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	39.2	50.0	-10.8	Black
15	14.697M	28.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	39.2	50.0	-10.8	Black
16	14.139M	27.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	38.5	50.0	-11.5	Black
17	12.634M	27.5	+9.9 +0.4	+0.1	+0.1	+0.2	+0.0	38.2	50.0	-11.8	Black
18	14.301M	27.4	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	38.1	50.0	-11.9	Black
19	14.625M	26.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	37.5	50.0	-12.5	Black
20	14.544M	26.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	37.4	50.0	-12.6	Black
21	15.256M	26.2	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	37.0	50.0	-13.0	Black
22	14.274M	25.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	36.0	50.0	-14.0	Black
23	15.040M	25.2	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	36.0	50.0	-14.0	Black
24	14.905M	24.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	35.4	50.0	-14.6	Black
25	15.175M	24.2	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	35.0	50.0	-15.0	Black
26	775.396k	20.4	+9.8 +0.5	+0.2	+0.0	+0.0	+0.0	30.9	46.0	-15.1	Black
27	15.121M	23.0	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	33.8	50.0	-16.2	Black
28	15.887M	23.0	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	33.8	50.0	-16.2	Black
29	730.309k	19.1	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	29.7	46.0	-16.3	Black

30	12.580M	22.8	+9.9	+0.1	+0.1	+0.2	+0.0	33.5	50.0	-16.5	Black
			+0.4								
31	14.959M	22.8	+9.8	+0.1	+0.1	+0.2	+0.0	33.5	50.0	-16.5	Black
			+0.5								
32	767.397k	18.7	+9.8	+0.2	+0.0	+0.0	+0.0	29.2	46.0	-16.8	Black
			+0.5								
33	788.486k	18.7	+9.8	+0.2	+0.0	+0.0	+0.0	29.2	46.0	-16.8	Black
			+0.5								
34	749.944k	18.3	+9.8	+0.2	+0.0	+0.0	+0.0	28.8	46.0	-17.2	Black
			+0.5								
35	757.216k	18.0	+9.8	+0.2	+0.0	+0.0	+0.0	28.5	46.0	-17.5	Black
			+0.5								
36	15.598M	21.6	+9.8	+0.2	+0.1	+0.2	+0.0	32.4	50.0	-17.6	Black
			+0.5								
37	305.244k	18.5	+9.8	+0.1	+0.0	+0.0	+0.0	29.3	50.1	-20.8	Black
	Ave		+0.9								
^	305.244k	53.8	+9.8	+0.1	+0.0	+0.0	+0.0	64.6	50.1	+14.5	Black
			+0.9								
39	155.399k	18.7	+9.9	+0.7	+0.0	+0.0	+0.0	31.6	55.7	-24.1	Black
	Ave		+2.3								
^	155.399k	52.5	+9.9	+0.7	+0.0	+0.0	+0.0	65.4	55.7	+9.7	Black
			+2.3								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 09:01:00 idOnDemand WO#: 91345 Model: 8805 SN: None 15:207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 30 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 09:09:33
Equipment: TouchSecure Reader / Programmer Sequence #: 29
Manufacturer: idOnDemand Tested By: A Brar
Model: 8805 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
T5	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

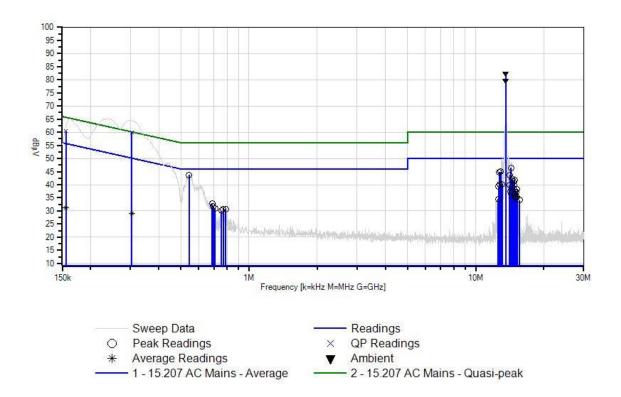
Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 18° C, Atmospheric Pressure: 1022mbar & Relative Humidity: 35%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

The EUT initially was over the spec limit at the fundamental frequency. Once the antenna output was terminated with a 50Ω load, the fundamental was well below the spec limit. Therefore, the EUT is considered compliant.

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_	_	T5						_		
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	13.560M	71.8	+9.8	+0.1	+0.1	+0.2	+0.0	82.5	50.0	+32.5	White
1	Ambient		+0.5						Fundamen	ıtal. QP.	
2	13.560M	71.8	+9.8	+0.1	+0.1	+0.2	+0.0	82.5	50.0	+32.5	White
1	Ambient		+0.5						Fundamen	ıtal. Peak.	
3	13.560M	69.0	+9.8	+0.1	+0.1	+0.2	+0.0	79.7	50.0	+29.7	White
1	Ambient		+0.5						Fundamen	ıtal.	
									Average.		


4	303.771k QP	49.2	+9.8 +0.9	+0.1	+0.0	+0.0	+0.0	60.0	60.1	-0.1	White
5	544.873k	33.2	+9.8 +0.6	+0.1	+0.0	+0.0	+0.0	43.7	46.0	-2.3	White
6	14.328M	35.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	46.4	50.0	-3.6	White
7	12.923M	34.2	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	45.0	50.0	-5.0	White
8	12.716M	34.0	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	44.8	50.0	-5.2	White
9	156.053k QP	47.6	+9.9 +2.3	+0.6	+0.0	+0.0	+0.0	60.4	65.7	-5.3	White
10	14.193M	33.1	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	43.8	50.0	-6.2	White
11	14.490M	31.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	42.2	50.0	-7.8	White
12	14.833M	31.2	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	41.9	50.0	-8.1	White
13	14.697M	30.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	41.3	50.0	-8.7	White
14	13.094M	29.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	40.2	50.0	-9.8	White
15	12.788M	29.3	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	40.1	50.0	-9.9	White
16	14.752M	29.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	40.0	50.0	-10.0	White
17	14.139M	29.1	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	39.8	50.0	-10.2	White
18	12.634M	28.5	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	39.3	50.0	-10.7	White
19	14.616M	27.9	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	38.6	50.0	-11.4	White
20	15.256M	27.5	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	38.3	50.0	-11.7	White
21	14.274M	26.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	37.4	50.0	-12.6	White
22	14.544M	26.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	37.3	50.0	-12.7	White
23	15.049M	26.5	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	37.3	50.0	-12.7	White
24	688.860k	22.3	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	32.9	46.0	-13.1	White
25	14.364M	25.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	36.5	50.0	-13.5	White
26	14.914M	25.8	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	36.5	50.0	-13.5	White
27	695.404k	21.1	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	31.7	46.0	-14.3	White
28	15.121M	24.7	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	35.5	50.0	-14.5	White
29	15.175M	24.6	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	35.4	50.0	-14.6	White
-											

30	14.968M	24.4	+9.8	+0.2	+0.1	+0.2	+0.0	35.2	50.0	-14.8	White
			+0.5								
31	707.767k	20.4	+9.9	+0.2	+0.0	+0.0	+0.0	31.0	46.0	-15.0	White
			+0.5								
32	789.941k	20.3	+9.8	+0.2	+0.0	+0.0	+0.0	30.8	46.0	-15.2	White
			+0.5								
33	14.941M	24.0	+9.8	+0.1	+0.1	+0.2	+0.0	34.7	50.0	-15.3	White
			+0.5								
34	771.034k	20.1	+9.8	+0.2	+0.0	+0.0	+0.0	30.6	46.0	-15.4	White
			+0.5								
35	12.580M	23.7	+9.9	+0.1	+0.1	+0.2	+0.0	34.5	50.0	-15.5	White
			+0.5								
36	15.598M	23.3	+9.8	+0.2	+0.1	+0.2	+0.0	34.1	50.0	-15.9	White
			+0.5								
37	755.035k	19.5	+9.8	+0.2	+0.0	+0.0	+0.0	30.0	46.0	-16.0	White
			+0.5								
38	303.771k	18.3	+9.8	+0.1	+0.0	+0.0	+0.0	29.1	50.1	-21.0	White
1	Ave		+0.9								
٨	303.771k	53.8	+9.8	+0.1	+0.0	+0.0	+0.0	64.6	50.1	+14.5	White
			+0.9								
40	156.053k	18.3	+9.9	+0.6	+0.0	+0.0	+0.0	31.1	55.7	-24.6	White
	Ave		+2.3								
٨	156.053k	52.5	+9.9	+0.6	+0.0	+0.0	+0.0	65.3	55.7	+9.6	White
			+2.3								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 09:09:33 idOnDemand WO#: 91345 Model: 8805 SN: None 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 29 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #:91345Date:1/4/2012Test Type:Conducted EmissionsTime:08:56:19Equipment:TouchSecure Reader / ProgrammerSequence #:34Manufacturer:idOnDemandTested By:A BrarModel:8805120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
T5	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

Test Conditions / Notes:

Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 19.8° C, Atmospheric Pressure: 1028mbar & Relative Humidity: 40%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The 13.56MHz RF output is terminated into 50 Ω The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

Measur	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	633.591k	20.7	+9.9	+0.2	+0.0	+0.0	+0.0	31.3	46.0	-14.7	Black
			+0.5								
2	649.590k	20.4	+9.9	+0.2	+0.0	+0.0	+0.0	31.0	46.0	-15.0	Black
			+0.5								
3	629.955k	20.2	+9.9	+0.2	+0.0	+0.0	+0.0	30.8	46.0	-15.2	Black
			+0.5								
4	626.319k	20.1	+9.9	+0.2	+0.0	+0.0	+0.0	30.7	46.0	-15.3	Black
			+0.5								

5	669.951k	19.8	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	30.4	46.0	-15.6	Black
6	672.133k	18.8	+9.9	+0.2	+0.0	+0.0	+0.0	29.4	46.0	-16.6	Black
	677.0511	10.7	+0.5	0.2	0.0	0.0	0.0	20.2	46.0	167	D1 1
7	677.951k	18.7	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	29.3	46.0	-16.7	Black
8	735.400k	18.7	+9.9	+0.2	+0.0	+0.0	+0.0	29.3	46.0	-16.7	Black
	733.400K	10.7	+0.5	10.2	10.0	10.0	10.0	27.3	40.0	-10.7	Diack
9	699.767k	18.2	+9.9	+0.2	+0.0	+0.0	+0.0	28.8	46.0	-17.2	Black
			+0.5								
10	712.129k	18.1	+9.9	+0.2	+0.0	+0.0	+0.0	28.7	46.0	-17.3	Black
			+0.5								
11	709.948k	18.0	+9.9	+0.2	+0.0	+0.0	+0.0	28.6	46.0	-17.4	Black
			+0.5								
12	745.581k	16.9	+9.9	+0.2	+0.0	+0.0	+0.0	27.5	46.0	-18.5	Black
			+0.5								
13	23.998M	19.4	+9.9	+0.2	+0.1	+0.3	+0.0	30.6	50.0	-19.4	Black
1.4	12.0043.6	17.0	+0.7	0.1	0.1	0.0	0.0	20.6	50.0	21.4	D1 1
14	12.004M	17.9	+9.9 +0.4	+0.1	+0.1	+0.2	+0.0	28.6	50.0	-21.4	Black
15	906.974k	14.1	+9.8	+0.1	+0.0	+0.1	+0.0	24.5	46.0	-21.5	Black
13	300.374K	14.1	+0.4	+0.1	+0.0	+0.1	+0.0	24.3	40.0	-21.3	Diack
16	26.622M	17.2	+9.9	+0.3	+0.1	+0.3	+0.0	28.5	50.0	-21.5	Black
10	20.022111	17.2	+0.7	10.5	10.1	10.5	10.0	20.3	50.0	21.3	Diuck
17	1.226M	13.9	+9.8	+0.2	+0.0	+0.1	+0.0	24.4	46.0	-21.6	Black
			+0.4								
18	2.166M	13.9	+9.8	+0.1	+0.0	+0.1	+0.0	24.3	46.0	-21.7	Black
			+0.4								
19	1.158M	13.7	+9.8	+0.2	+0.0	+0.1	+0.0	24.2	46.0	-21.8	Black
			+0.4								
20	26.129M	16.9	+9.9	+0.3	+0.1	+0.3	+0.0	28.2	50.0	-21.8	Black
			+0.7								
21	975.018k	13.7	+9.8	+0.2	+0.0	+0.0	+0.0	24.1	46.0	-21.9	Black
			+0.4								
22	1.549M	13.6	+9.8	+0.1	+0.0	+0.1	+0.0	24.0	46.0	-22.0	Black
			+0.4								
23	2.544M	13.5	+9.8	+0.2	+0.0	+0.1	+0.0	24.0	46.0	-22.0	Black
2.4	26.2753.4	167	+0.4	.0.2	.0.1	.0.2	.0.0	20.0	<i>5</i> 0.0	22.0	D11
24	26.375M	16.7	+9.9	+0.3	+0.1	+0.3	+0.0	28.0	50.0	-22.0	Black
25	1.426M	13.5	+0.7	+0.1	+0.0	+0.1	+0.0	23.9	46.0	-22.1	Black
23	1.420IVI	13.3	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.9	40.0	<i>-∠∠.</i> 1	DIACK
26	26.875M	16.6	+9.9	+0.3	+0.1	+0.3	+0.0	27.9	50.0	-22.1	Black
20	20.073IVI	10.0	+9.9 +0.7	-0.3	FU.1	FU.3	10.0	21.7	50.0	-44.1	DIACK
27	1.596M	13.2	+9.8	+0.1	+0.0	+0.1	+0.0	23.6	46.0	-22.4	Black
2,	1.570111	13.2	+0.4	. 0.1	, 0.0	. 0.1	. 0.0	23.0	10.0	₽₽.⊤	Diuck
28	14.878M	16.9	+9.8	+0.1	+0.1	+0.2	+0.0	27.6	50.0	-22.4	Black
	, 01.1	- 0.7	+0.5			·				==	
29	25.875M	16.3	+9.9	+0.3	+0.1	+0.3	+0.0	27.6	50.0	-22.4	Black
			+0.7	-					-		
30	24.621M	16.3	+9.9	+0.2	+0.1	+0.3	+0.0	27.5	50.0	-22.5	Black
			+0.7								

31	1.336M	12.9	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.4	46.0	-22.6	Black
32	14.625M	16.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.4	50.0	-22.6	Black
33	1.541M	12.9	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.3	46.0	-22.7	Black
34	1.383M	12.8	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.3	46.0	-22.7	Black
35	27.122M	16.1	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	27.3	50.0	-22.7	Black
36	25.375M	16.0	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	27.3	50.0	-22.7	Black
37	1.889M	12.8	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.2	46.0	-22.8	Black
38	14.130M	16.5	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.2	50.0	-22.8	Black
39	1.702M	12.7	+9.8 +0.4	+0.1	+0.0	+0.1	+0.0	23.1	46.0	-22.9	Black
40	2.595M	12.6	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.1	46.0	-22.9	Black
41	1.413M 3.803M	12.5	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.0	46.0	-23.0	Black
42	15.625M	16.2	+9.8 +0.4 +9.8	+0.1	+0.1	+0.1	+0.0	27.0	50.0	-23.0	Black
43	13.023WI 14.373M	16.2	+9.8 +0.5 +9.8	+0.2	+0.1	+0.2	+0.0	26.9	50.0	-23.1	Black
45	2.965M	12.4	+0.5	+0.1	+0.1	+0.2	+0.0	22.9	46.0	-23.1	Black
46	23.628M	15.6	+0.4	+0.2	+0.1	+0.3	+0.0	26.9	50.0	-23.1	Black
47	27.376M	15.7	+0.8	+0.2	+0.1	+0.3	+0.0	26.9	50.0	-23.1	Black
48	25.121M	15.6	+0.7	+0.3	+0.1	+0.3	+0.0	26.9	50.0	-23.1	Black
49	404.101k	9.1	+0.7	+0.1	+0.0	+0.0	+0.0	19.7	47.8	-28.1	Black
	Ave 404.101k	38.6	+0.7	+0.1	+0.0	+0.0	+0.0	49.2	47.8	+1.4	Black
51	246.285k	12.5	+0.7 +9.8	+0.1	+0.0	+0.0	+0.0	23.6	51.9	-28.3	Black
^	Ave 246.285k	44.8	+1.2	+0.1	+0.0	+0.0	+0.0	55.9	51.9	+4.0	Black
			+1.2								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 08:56:19 idOnDemand WO#: 91345 Model: 8805 SN: None 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 34 Ext ATTN: 0 dB

Customer: idOnDemand

Specification: 15.207 AC Mains - Average

Work Order #: 91345 Date: 1/4/2012
Test Type: Conducted Emissions Time: 08:52:32
Equipment: TouchSecure Reader / Programmer Sequence #: 33
Manufacturer: idOnDemand Tested By: A Brar
Model: 8805 120V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
T1	ANP01211	Attenuator	23-10-34	4/15/2011	4/15/2013
T2	ANP05258	High Pass Filter	HE9615-150K-	12/2/2010	12/2/2012
			50-720B		
T3	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T4	ANP05440	Cable		3/7/2011	3/7/2013
	AN00493	50uH LISN-L1 (L)	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			
T5	AN00493	50uH LISN-L(2) N	3816/NM	3/10/2011	3/10/2013
		Loss W/O European			
		Adapter			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AN:03088, SN:AG4070

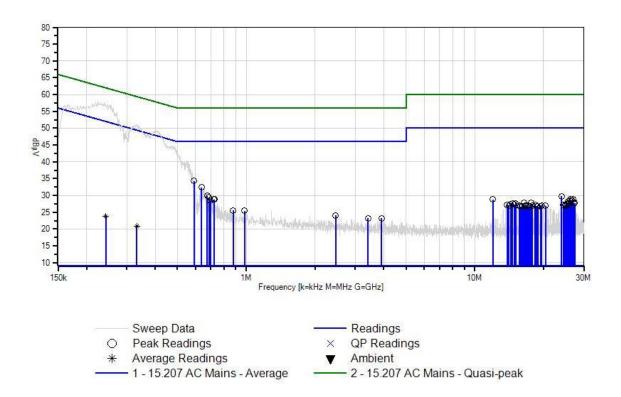
Test Conditions / Notes:

Conducted Emissions. 0.15-30MHz. Highest generated frequency in the device is 48MHz.

Temperature: 19.8° C, Atmospheric Pressure: 1028mbar & Relative Humidity: 40%

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated. The 13.56MHz RF output is terminated into 50 Ω . The EUT is powered by the DC Power Supply. Conducted emissions are being performed on AC input of the DC Power supply.

Measur	Test Lead: Reading listed by margin. Test Lead:					d: White					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	589.959k	23.6	+9.9	+0.2	+0.0	+0.0	+0.0	34.3	46.0	-11.7	White
			+0.6								
2	636.500k	21.8	+9.9	+0.2	+0.0	+0.0	+0.0	32.4	46.0	-13.6	White
			+0.5								
3	674.315k	19.3	+9.9	+0.2	+0.0	+0.0	+0.0	29.9	46.0	-16.1	White
			+0.5								
4	685.950k	18.8	+9.9	+0.2	+0.0	+0.0	+0.0	29.4	46.0	-16.6	White
			+0.5								


5	723.037k	18.2	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	28.8	46.0	-17.2	White
6	725.946k	18.2	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	28.8	46.0	-17.2	White
7	696.131k	17.9	+9.9 +0.5	+0.2	+0.0	+0.0	+0.0	28.5	46.0	-17.5	White
8	23.998M	18.6	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	29.8	50.0	-20.2	White
9	875.751k	15.1	+9.8	+0.1	+0.0	+0.1	+0.0	25.5	46.0	-20.5	White
10	983.523k	15.0	+0.4 +9.8 +0.4	+0.2	+0.0	+0.0	+0.0	25.4	46.0	-20.6	White
11	26.129M	17.6	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.9	50.0	-21.1	White
12	12.004M	18.0	+9.9 +0.5	+0.1	+0.1	+0.2	+0.0	28.8	50.0	-21.2	White
13	26.875M	17.5	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.8	50.0	-21.2	White
14	26.622M	17.4	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.7	50.0	-21.3	White
15	25.628M	17.0	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.3	50.0	-21.7	White
16	26.375M	17.0	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	28.3	50.0	-21.7	White
17	2.459M	13.6	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	24.1	46.0	-21.9	White
18	16.373M	16.9	+9.8 +0.6	+0.2	+0.1	+0.2	+0.0	27.8	50.0	-22.2	White
19	17.625M	16.8	+9.9 +0.7	+0.1	+0.1	+0.2	+0.0	27.8	50.0	-22.2	White
20	27.376M	16.5	+9.9 +0.8	+0.2	+0.1	+0.3	+0.0	27.8	50.0	-22.2	White
21	27.122M	16.4	+9.9 +0.8	+0.2	+0.1	+0.3	+0.0	27.7	50.0	-22.3	White
22	14.625M	16.9	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.6	50.0	-22.4	White
23	15.121M	16.8	+9.8 +0.5	+0.2	+0.1	+0.2	+0.0	27.6	50.0	-22.4	White
24	25.375M	16.3	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	27.6	50.0	-22.4	White
25	25.875M	16.2	+9.9 +0.7	+0.3	+0.1	+0.3	+0.0	27.5	50.0	-22.5	White
26	14.373M	16.7	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.4	50.0	-22.6	White
27	14.878M	16.6	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.3	50.0	-22.7	White
28	3.412M	12.7	+9.8 +0.4	+0.2	+0.0	+0.1	+0.0	23.2	46.0	-22.8	White
29	3.905M	12.7	+9.8 +0.4	+0.1	+0.1	+0.1	+0.0	23.2	46.0	-22.8	White
30	18.373M	16.0	+9.9 +0.8	+0.1	+0.1	+0.2	+0.0	27.1	50.0	-22.9	White
L											

31	13.878M	16.4	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.1	50.0	-22.9	White
32	24.875M	15.9	+9.9 +0.7	+0.2	+0.1	+0.3	+0.0	27.1	50.0	-22.9	White
33	24.374M	15.9	+9.9	+0.2	+0.1	+0.3	+0.0	27.1	50.0	-22.9	White
			+0.7								
34	16.625M	16.1	+9.8 +0.6	+0.2	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
25	15 COEM	16.0		.0.2	ı O 1	.0.2	+0.0	27.0	50.0	22.0	XX/1-:4-
35	15.625M	16.2	+9.8	+0.2	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
26	14.121M	16.3	+0.5	+0.1	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
36	14.121101	10.3	+9.8 +0.5	+0.1	+0.1	+0.2	+0.0	27.0	30.0	-23.0	willte
37	16.878M	16.1	+9.8	+0.2	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
37	10.076141	10.1	+9.8 +0.6	+0.2	+0.1	+0.2	+0.0	27.0	30.0	-23.0	willte
38	25.128M	15.7	+9.9	+0.3	+0.1	+0.3	+0.0	27.0	50.0	-23.0	White
36	23.126W	13.7	+0.7	+0.5	⊤0.1	+0.5	+0.0	27.0	30.0	-23.0	W IIIC
39	19.625M	15.9	+9.8	+0.1	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
	17.025111	13.7	+0.9	10.1	10.1	10.2	10.0	27.0	30.0	-23.0	Willia
40	17.130M	16.1	+9.9	+0.1	+0.1	+0.2	+0.0	27.0	50.0	-23.0	White
10	17.1301	10.1	+0.6	10.1	10.1	10.2	10.0	27.0	30.0	-23.0	Willia
41	17.878M	15.9	+9.9	+0.1	+0.1	+0.2	+0.0	26.9	50.0	-23.1	White
71	17.070141	13.7	+0.7	10.1	10.1	10.2	10.0	20.7	30.0	-23.1	vv inte
42	20.373M	15.8	+9.8	+0.1	+0.1	+0.2	+0.0	26.9	50.0	-23.1	White
	20.373111	15.0	+0.9	10.1	10.1	10.2	10.0	20.9	20.0	23.1	*** 11110
43	16.130M	15.9	+9.8	+0.2	+0.1	+0.2	+0.0	26.8	50.0	-23.2	White
	10.1201.1	10.17	+0.6	. 0.2	. 0.1		. 0.0	20.0	20.0		***************************************
44	18.625M	15.7	+9.9	+0.1	+0.1	+0.2	+0.0	26.8	50.0	-23.2	White
	10.020111	1017	+0.8	. 0.1	. 0.1		. 0.0	20.0	20.0	20.2	* * * * * * * * * * * * * * * * * * * *
45	17.373M	15.8	+9.9	+0.1	+0.1	+0.2	+0.0	26.7	50.0	-23.3	White
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+0.6								
46	15.878M	15.9	+9.8	+0.2	+0.1	+0.2	+0.0	26.7	50.0	-23.3	White
			+0.5								
47	19.373M	15.6	+9.8	+0.1	+0.1	+0.2	+0.0	26.7	50.0	-23.3	White
			+0.9								
48	18.878M	15.6	+9.9	+0.1	+0.1	+0.2	+0.0	26.7	50.0	-23.3	White
			+0.8								
49	242.626k	12.5	+9.9	+0.1	+0.0	+0.0	+0.0	23.8	52.0	-28.2	White
] .	Ave		+1.3								
^	242.626k	46.3	+9.9	+0.1	+0.0	+0.0	+0.0	57.6	52.0	+5.6	White
			+1.3								
51	331.273k	10.1	+9.8	+0.1	+0.0	+0.0	+0.0	20.8	49.4	-28.6	White
	Ave		+0.8								
^	331.273k	40.4	+9.8	+0.1	+0.0	+0.0	+0.0	51.1	49.4	+1.7	White
			+0.8								

CKC Laboratories, Inc. Date: 1/4/2012 Time: 08:52:32 idOnDemand WO#: 91345 Model: 8805 SN: None 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 33 Ext ATTN: 0 dB

TOUCHSECURE READER 8800

TOUCHSECURE READER / PROGRAMMER 8805

FCC 15.225(a) RF Power Output

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 91345 Date: 12/15/2011
Test Type: Maximized Emissions Time: 12:53:25
Equipment: TouchSecure Reader Sequence#: 24
Manufacturer: idOnDemand Tested By: A Brar

Model: 8800 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T2	ANP05440	Cable		3/7/2011	3/7/2013
T3	AN00432	Loop Antenna	6502	3/31/2011	3/31/2013
	AN02660	Spectrum Analyzer	E4446A	11/3/2011	11/3/2013
	ANdBuA	Unit Conversion		4/12/2010	4/12/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
TouchSecure Reader /	idOnDemand	8805	None	
Programmer				
TouchSecure Reader*	idOnDemand	8800	None	

Support Devices:

Function	Manufacturer	Model #	S/N
Wiegand Control Box	HID	83000BKE	None
DC Power Supply	Protek	3006B	AG4070
DMM	Fluke	DMM914	DMM914TW141024

Test Conditions / Notes:

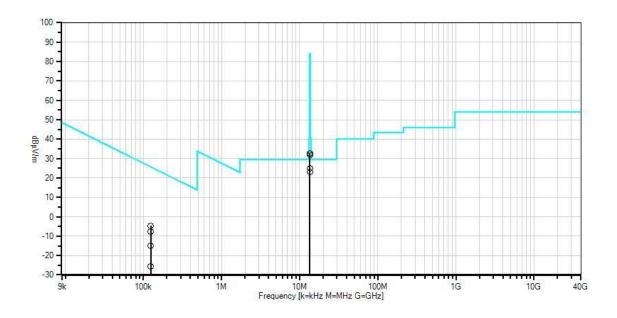
Fundamental Radiated Emissions. 125k & 13.56MHz. RBW 3kHz, VBW 9.1kHz, Det Peak. Highest generated frequency in the device is 48MHz.

Temperature: 18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.

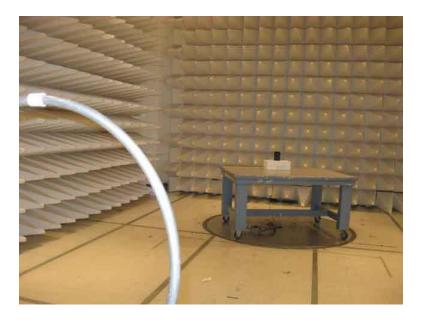
FCC 15.225e is covered by this data sheet by varying the voltage to 85% and 115% of the nominal voltage and ensuring the carrier is not affected by this variation, this was done using a variable power source and a DMM listed under the supporting devices.


Page 39 of 65 Report No.: 91345-11A

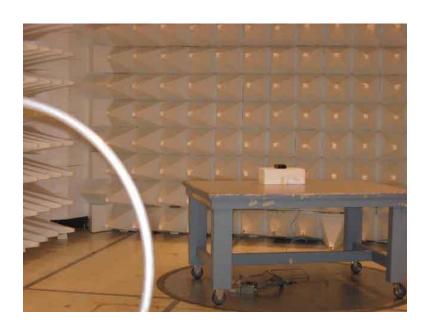
Ext Attn: 0 dB

Measur	ement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	124.970k	64.4	+0.0	+0.0	+11.0		-80.0	-4.6	25.7	-30.3	Paral
									8800		109
2	125.005k	61.4	+0.0	+0.0	+11.0		-80.0	-7.6	25.7	-33.3	Perpe
							-5		8800		109
3	125.000k	54.1	+0.0	+0.0	+11.0		-80.0	-14.9	25.7	-40.6	Paral
							172		8805		109
4	124.810k	43.3	+0.0	+0.0	+11.1		-80.0	-25.6	25.7	-51.3	Perpe
							-5		8805		109
5	13.560M	61.6	+0.1	+0.2	+10.8		-40.0	32.7	84.0	-51.3	Perpe
									8800		109
6	13.560M	60.8	+0.1	+0.2	+10.8		-40.0	31.9	84.0	-52.1	Paral
							-5		8800		109
7	13.560M	53.8	+0.1	+0.2	+10.8		-40.0	24.9	84.0	-59.1	Paral
									8805		109
8	13.560M	52.1	+0.1	+0.2	+10.8	•	-40.0	23.2	84.0	-60.8	Perpe
									8805		109

CKC Laboratories, Inc. Date: 12/15/2011 Time: 12:53:25 idOnDemand WO#: 91345 Model: 8800 SN: None 15:225 Carrier and Spurious Emissions (13:110-14:010 MHz Transmitter) Test Distance: 3 Meters Sequence#: 24 Ext ATTN: 0 dB



O Peak Readings


* Average Readings

1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

TOUCHSECURE READER 8800

TOUCHSECURE READER / PROGRAMMER 8805

FCC 2.1049: -20dBc Occupied Bandwidth & Emission Mask

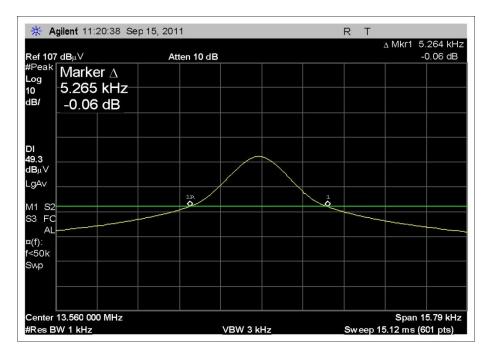
Test Conditions / Setup

Spurious Radiated Emissions. .09-30MHz. Highest generated frequency in the device is 48MHz.

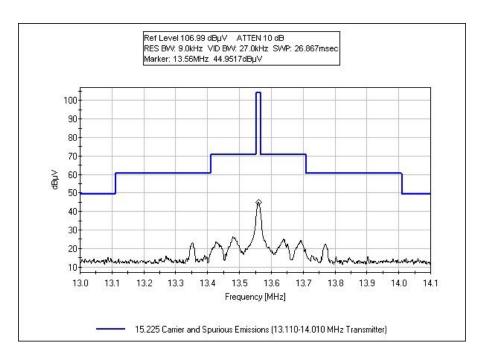
Temperature:18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

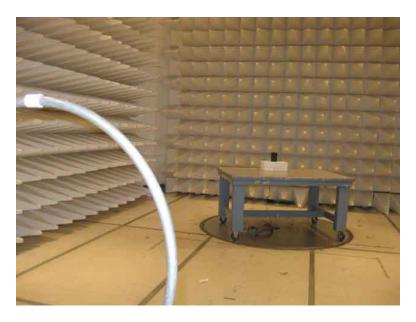
The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.


Engineer Name: A. Brar

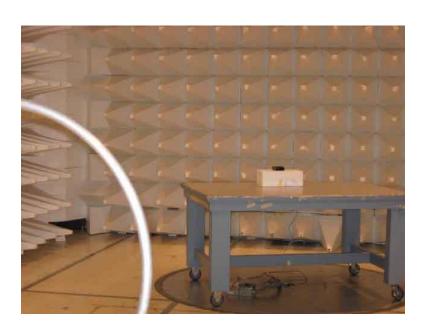
	Test Equipment							
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due			
AN02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013			
ANP05300	Cable	RG214/U	Pasternack	3/7/2011	3/7/2013			
ANP05440	Cable		Pasternack	3/7/2011	3/7/2013			
AN00432	Loop Antenna	6502	EMCO	3/31/2011	3/31/2013			


Page 42 of 65 Report No.: 91345-11A

Test Plots



13.56MHz -20dB Occupied Bandwidth



13.56MHz Emissions Mask

TOUCHSECURE READER 8800

TOUCHSECURE READER / PROGRAMMER 8805

FCC 15.225(d) Field Strength of Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 91345 Date: 12/9/2011
Test Type: Maximized Emissions Time: 14:34:24
Equipment: TouchSecure Reader Sequence#: 23
Manufacturer: idOnDemand Tested By: A Brar

Model: 8800 S/N: None

Test Equipment:

1	<u>r</u>				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T2	ANP05440	Cable		3/7/2011	3/7/2013
Т3	AN00432	Loop Antenna	6502	3/31/2011	3/31/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader*	idOnDemand	8800	None

Support Devices:

Function	Manufacturer	Model #	S/N
Wiegand Control Box	HID	83000BKE	None
DC Power Supply	Protek	3006B	AG4070

Test Conditions / Notes:

Spurious Radiated Emissions. .09-30MHz. Highest generated frequency in the device is 48MHz.

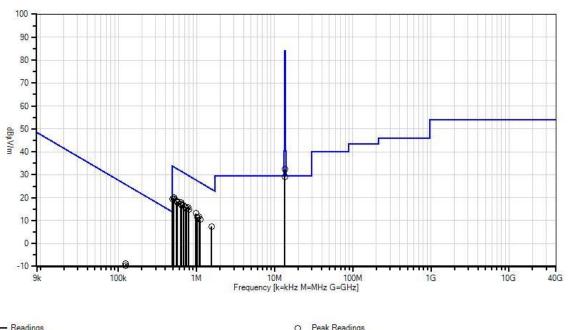
Temperature:18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.

2.1057(a)(1) is covered by this data sheet.

Ext Attn: 0 dB

Measui	rement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distance	e: 5 Meters		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	511.691k	40.0	+0.0	+0.0	+11.1		-31.1	20.0	33.4	-13.4	Perpe
							-5				110
2	628.771k	37.7	+0.0	+0.0	+11.4		-31.1	18.0	31.6	-13.6	Perpe
							-5				110
3	513.782k	39.5	+0.0	+0.0	+11.1		-31.1	19.5	33.4	-13.9	Paral
							-5				110
4	783.483k	35.3	+0.0	+0.0	+11.4		-31.1	15.6	29.7	-14.1	Paral
							-5				110
5	559.778k	38.4	+0.0	+0.0	+11.2		-31.1	18.5	32.6	-14.1	Paral
							-5				110


Page 45 of 65 Report No.: 91345-11A

6	570.231k	38.2	+0.0	+0.0	+11.2	-31.1 -5	18.3	32.5	-14.2	Paral 110
7	490.784k	39.5	+0.0	+0.0	+11.1	-31.1	19.5	33.8	-14.3	Perpe
,	., 0., 0.11	0,10	. 0.0	. 0.0		-5	17.0	22.0	1	110
8	676.857k	36.3	+0.0	+0.0	+11.5	-31.1	16.7	31.0	-14.3	Paral
	0,000,11	20.2	. 0.0	. 0.0		-5	10.,	01.0	1	110
9	632.952k	37.0	+0.0	+0.0	+11.4	-31.1	17.3	31.6	-14.3	Paral
						-5				110
10	722.852k	35.6	+0.0	+0.0	+11.5	-31.1	16.0	30.4	-14.4	Paral
						-5				110
11	622.499k	37.0	+0.0	+0.0	+11.3	-31.1	17.2	31.7	-14.5	Paral
						-5				110
12	645.496k	36.5	+0.0	+0.0	+11.4	-31.1	16.8	31.4	-14.6	Paral
						-5				110
13	566.050k	37.7	+0.0	+0.0	+11.2	-31.1	17.8	32.5	-14.7	Paral
						-5				110
14	977.918k	32.7	+0.0	+0.0	+11.5	-31.1	13.1	27.8	-14.7	Perpe
						-5				110
15	791.846k	34.5	+0.0	+0.0	+11.4	-31.1	14.8	29.6	-14.8	Perpe
						-5				110
16	745.850k	34.8	+0.0	+0.0	+11.5	-31.1	15.2	30.1	-14.9	Perpe
						-5				110
17	1.082M	31.4	+0.0	+0.0	+11.5	-31.1	11.8	26.9	-15.1	Perpe
						-5				110
18	1.022M	31.0	+0.0	+0.0	+11.5	-31.1	11.4	27.4	-16.0	Perpe
						-5				110
19	1.559M	27.1	+0.0	+0.1	+11.4	-31.1	7.5	23.7	-16.2	Perpe
						-5				110
20	1.116M	29.9	+0.0	+0.0	+11.5	-31.1	10.3	26.6	-16.3	Perpe
						-5				110
21	124.999k	51.2	+0.0	+0.0	+11.0	-71.1	-8.9	25.7	-34.6	Paral
						365				110
22	124.999k	50.4	+0.0	+0.0	+11.0	-71.1	-9.7	25.7	-35.4	Perpe
						-5				110
23	13.560M	52.3	+0.1	+0.2	+10.8	-31.1	32.3	84.0	-51.7	Perpe
						365				110
24	13.560M	49.0	+0.1	+0.2	+10.8	-31.1	29.0	84.0	-55.0	Paral
						-5				110

CKC Laboratories, Inc. Date: 12/9/2011 Time: 14:34:24 idOnDemand WO#: 91345 Model: 8800 SN: None 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 5 Meters Sequence#: 23 Ext ATTN: 0 dB

O Peak Readings

* Average Readings
1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 91345 Date: 12/9/2011
Test Type: Maximized Emissions Time: 9:08:57 AM

Equipment: **TouchSecure Reader** Sequence#: 14
Manufacturer: idOnDemand Tested By: A Brar

Model: 8800 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05299	Cable	RG214	3/6/2011	3/6/2013
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	AN00852	Biconilog Antenna	CBL 6111C	11/16/2010	11/16/2012
T5	AN00730	Preamp		1/31/2011	1/31/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader*	idOnDemand	8800	None

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Protek	3006B	AG4070
Wiegand Control Box	HID	83000BKE	None

Test Conditions / Notes:

Radiated Emissions. 30-1000MHz. Highest generated frequency in the device is 48MHz.

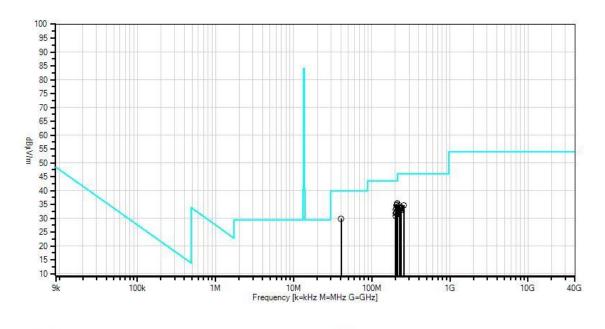
Temperature: 18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by a DC Power Supply located outside the test chamber along with the control box, which is used for termination purposes only.

2.1057(a)(1) is covered by this data sheet.

Ext Attn: 0 dB


Measur	Measurement Data: Reading listed by margin				argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	210.062M	51.6	+0.1	+0.4	+0.8	+9.8	+0.0	35.3	43.5	-8.2	Vert
			-27.4				-5				129
2	210.062M	51.2	+0.1	+0.4	+0.8	+9.8	+0.0	34.9	43.5	-8.6	Horiz
			-27.4				365				130
3	208.020M	51.2	+0.1	+0.4	+0.8	+9.6	+0.0	34.7	43.5	-8.8	Vert
			-27.4				-5				129
4	206.098M	51.2	+0.1	+0.4	+0.8	+9.5	+0.0	34.6	43.5	-8.9	Vert
			-27.4				-5				129
5	212.104M	50.4	+0.1	+0.4	+0.8	+9.9	+0.0	34.2	43.5	-9.3	Horiz
			-27.4				365				130
6	212.104M	50.2	+0.1	+0.4	+0.8	+9.9	+0.0	34.0	43.5	-9.5	Vert
			-27.4				-5				129

7	208.020M	50.0	+0.1	+0.4	+0.8	+9.6	+0.0	33.5	43.5	-10.0	Horiz
			-27.4				365				130
8	40.648M	43.3	+0.0	+0.2	+0.3	+13.5	+0.0	29.8	40.0	-10.2	Vert
			-27.5				-5				129
9	204.056M	49.8	+0.1	+0.4	+0.8	+9.3	+0.0	33.0	43.5	-10.5	Vert
			-27.4				-5				129
10	214.026M	49.1	+0.1	+0.4	+0.8	+10.0	+0.0	33.0	43.5	-10.5	Vert
			-27.4				-5				129
11	214.146M	49.0	+0.1	+0.4	+0.8	+10.0	+0.0	32.9	43.5	-10.6	Horiz
			-27.4				365				130
12	257.630M	48.2	+0.1	+0.4	+0.9	+12.5	+0.0	34.7	46.0	-11.3	Horiz
			-27.4				365				130
13	206.098M	48.7	+0.1	+0.4	+0.8	+9.5	+0.0	32.1	43.5	-11.4	Horiz
			-27.4				365				130
14	202.134M	48.7	+0.1	+0.4	+0.8	+9.2	+0.0	31.7	43.5	-11.8	Vert
			-27.5				-5				129
15	228.080M	49.0	+0.1	+0.4	+0.8	+11.0	+0.0	33.9	46.0	-12.1	Vert
			-27.4				-5				129
16	238.050M	48.2	+0.1	+0.4	+0.9	+11.7	+0.0	33.8	46.0	-12.2	Horiz
			-27.5				365				130
17	236.128M	48.3	+0.1	+0.4	+0.9	+11.5	+0.0	33.7	46.0	-12.3	Horiz
			-27.5				365				130
18	236.008M	47.9	+0.1	+0.4	+0.9	+11.5	+0.0	33.3	46.0	-12.7	Vert
			-27.5				-5				129
19	204.056M	47.6	+0.1	+0.4	+0.8	+9.3	+0.0	30.8	43.5	-12.7	Horiz
			-27.4				365				130
20	234.086M	47.6	+0.1	+0.4	+0.9	+11.4	+0.0	32.9	46.0	-13.1	Horiz
			-27.5				365				130

CKC Laboratories, Inc. Date: 12/9/2011 Time: 9:08:57 AM idOnDemand WO#: 91345 Model: 8800 SN: None 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Sequence#: 14 Ext ATTN: 0 dB

O Peak Readings
Average Readings
1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 91345 Date: 12/9/2011
Test Type: Maximized Emissions Time: 13:29:40
Equipment: TouchSecure Reader / Programmer Sequence#: 22
Manufacturer: idOnDemand Tested By: A Brar

Model: 8805 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T2	ANP05440	Cable		3/7/2011	3/7/2013
Т3	AN00432	Loop Antenna	6502	3/31/2011	3/31/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	Latitude E6320	None
Power Adapter	Dell	FA90PM111	None

Test Conditions / Notes:

Spurious Radiated Emissions. .09-30MHz. Highest generated frequency in the device is 48MHz.

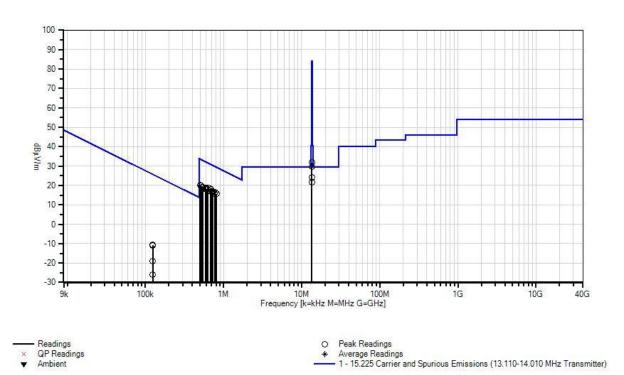
Temperature: 18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.

2.1057(a)(1) is covered by this data sheet.

Ext Attn: 0 dB


Measur	ement Data:	Re	eading list	ted by ma	argin.	Test Distance: 5 Meters					
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	681.038k	37.9	+0.0	+0.0	+11.5		-31.1	18.3	30.9	-12.6	Paral
							-5				110
2	693.583k	37.6	+0.0	+0.0	+11.5		-31.1	18.0	30.8	-12.8	Paral
							-5				110
3	632.952k	38.3	+0.0	+0.0	+11.4		-31.1	18.6	31.6	-13.0	Paral
							-5				110
4	779.301k	36.3	+0.0	+0.0	+11.4		-31.1	16.6	29.7	-13.1	Perpe
							-5				110
5	593.229k	38.6	+0.0	+0.0	+11.3		-31.1	18.8	32.1	-13.3	Perpe
							-5				110
6	503.329k	40.2	+0.0	+0.0	+11.1		-31.1	20.2	33.6	-13.4	Paral
							-5				110
7	520.054k	39.8	+0.0	+0.0	+11.1		-31.1	19.8	33.3	-13.5	Paral
							-5				110
8	716.580k	36.6	+0.0	+0.0	+11.5	•	-31.1	17.0	30.5	-13.5	Perpe
							-5				110

_										
9	626.680k	37.7	+0.0	+0.0	+11.4	-31.1 -5	18.0	31.6	-13.6	Perpe 110
10	812.753k	35.4	+0.0	+0.0	+11.4	-31.1	15.7	29.4	-13.7	Paral 110
1.1	5.42.0.521	20.1	0.0	0.0	11.0	-5	10.0	22.0	10.7	
11	543.052k	39.1	+0.0	+0.0	+11.2	-31.1	19.2	32.9	-13.7	Perpe
						-5				110
12	601.592k	38.1	+0.0	+0.0	+11.3	-31.1	18.3	32.0	-13.7	Perpe
						-5				110
13	687.310k	36.6	+0.0	+0.0	+11.5	-31.1	17.0	30.8	-13.8	Paral
						-5				110
14	733.306k	36.1	+0.0	+0.0	+11.5	-31.1	16.5	30.3	-13.8	Paral
						-5				110
15	620.408k	37.6	+0.0	+0.0	+11.3	-31.1	17.8	31.7	-13.9	Perpe
						-5				110
16	687.310k	36.5	+0.0	+0.0	+11.5	-31.1	16.9	30.8	-13.9	Perpe
						-5				110
17	720.762k	36.0	+0.0	+0.0	+11.5	-31.1	16.4	30.4	-14.0	Paral
1,	720.702R	30.0	10.0	10.0	111.5	-5	10.1	30.1	11.0	110
18	768.848k	35.6	+0.0	+0.0	+11.4	-31.1	15.9	29.9	-14.0	Perpe
10	/00.040K	33.0	+0.0	+0.0	±11. 4	-51.1 -5	13.9	29.9	-14.0	110
19	524.236k	39.0	+0.0	+0.0	+11.2	-31.1	19.1	33.2	-14.1	
19	324.230K	39.0	+0.0	+0.0	+11.2		19.1	33.2	-14.1	Perpe
20	501 1201	27.0	. 0. 0	. 0. 0	. 11.0	-5	10.0	22.2	14.0	110
20	591.138k	37.8	+0.0	+0.0	+11.3	-31.1	18.0	32.2	-14.2	Paral
						-5				110
21	125.000k	49.4	+0.0	+0.0	+11.0	-71.1	-10.7	25.7	-36.4	Perpe
						356				110
22	125.005k	49.2	+0.0	+0.0	+11.0	-71.1	-10.9	25.7	-36.6	Paral
						294		EUT standi	ng up	110
								vertically.		
23	124.988k	41.0	+0.0	+0.0	+11.0	-71.1	-19.1	25.7	-44.8	Paral
										110
24	125.000k	34.1	+0.0	+0.0	+11.0	-71.1	-26.0	25.7	-51.7	Perpe
						-5				110
25	13.560M	51.8	+0.1	+0.2	+10.8	-31.1	31.8	84.0	-52.2	Perpe
						-5				110
26	13.560M	49.8	+0.1	+0.2	+10.8	-31.1	29.8	84.0	-54.2	Paral
	10.000111	.,,,	. 3.1	. 3.2	. 20.0	294		EUT standi		110
						271		vertically.	5 ⁶ F	110
27	13.560M	44.2	+0.1	+0.2	+10.8	-31.1	24.2	84.0	-59.8	Perpe
21	13.500111	77.4	10.1	10.2	110.0	-31.1	∠ +. ∠	04.0	-33.0	110
28	13.560M	41.7	+0.1	+0.2	+10.8	-31.1	21.7	84.0	-62.3	Paral
20	13.300101	41./	+0.1	+0.2	+10.0	-51.1 -5	21./	04.0	-02.3	
						-J				110

CKC Laboratories, Inc. Date: 12/9/2011 Time: 13:29:40 idOnDemand WO#: 91345 Model: 8805 SN: None 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 5 Meters Sequence#: 22 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: idOnDemand

Specification: 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Work Order #: 91345 Date: 12/9/2011
Test Type: Maximized Emissions Time: 11:29:33
Equipment: TouchSecure Reader / Programmer Sequence#: 17
Manufacturer: idOnDemand Tested By: A Brar

Model: 8805 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	2/23/2011	2/23/2013
T1	ANP05299	Cable	RG214	3/6/2011	3/6/2013
T2	ANP05300	Cable	RG214/U	3/7/2011	3/7/2013
T3	ANP05440	Cable		3/7/2011	3/7/2013
T4	AN00852	Biconilog Antenna	CBL 6111C	11/16/2010	11/16/2012
T5	AN00730	Preamp		1/31/2011	1/31/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
TouchSecure Reader /	idOnDemand	8805	None
Programmer*			

Support Devices:

Function	Manufacturer	Model #	S/N	
Laptop	Dell	Latitude E6320	None	
Power Adapter	Dell	FA90PM111	None	

Test Conditions / Notes:

Radiated Emissions. 30-1000MHz. Highest generated frequency in the device is 48MHz.

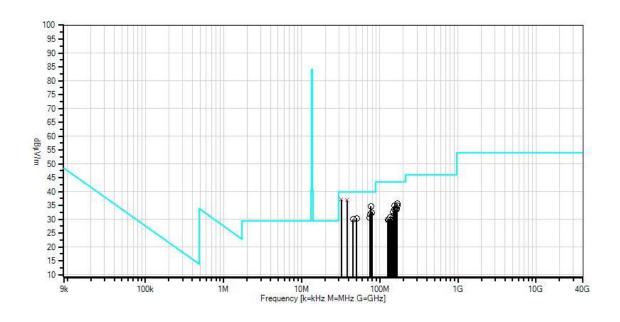
Temperature: 18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.

2.1057(a)(1) is covered by this data sheet.

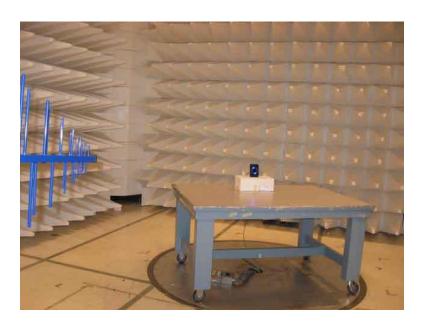
Ext Attn: 0 dB


Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	32.059M	46.3	+0.0	+0.1	+0.3	+18.0	+0.0	37.1	40.0	-2.9	Horiz
	QP		-27.6				-5				101
٨	32.059M	50.6	+0.0	+0.1	+0.3	+18.0	+0.0	41.4	40.0	+1.4	Horiz
			-27.6				-5				101
3	38.227M	48.6	+0.0	+0.2	+0.3	+15.4	+0.0	36.9	40.0	-3.1	Horiz
	QP		-27.6				5				102
٨	38.227M	52.4	+0.0	+0.2	+0.3	+15.4	+0.0	40.7	40.0	+0.7	Horiz
			-27.6				5				102
5	76.784M	54.3	+0.0	+0.2	+0.5	+7.3	+0.0	34.7	40.0	-5.3	Vert
			-27.6				-5				129
6	79.379M	51.6	+0.0	+0.2	+0.5	+7.7	+0.0	32.4	40.0	-7.6	Vert
			-27.6				-5				129

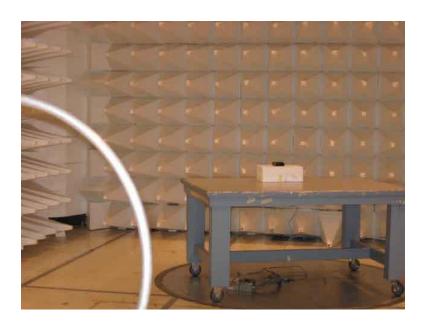
7	167.540M	52.1	+0.1	+0.3	+0.7	+9.9	+0.0	35.6	43.5	-7.9	Horiz
			-27.5				365				130
8	75.519M	51.6	+0.0	+0.2	+0.5	+7.1	+0.0	31.9	40.0	-8.1	Vert
			-27.5				-5				129
9	155.768M	50.4	+0.1	+0.3	+0.7	+10.9	+0.0	35.0	43.5	-8.5	Horiz
			-27.4				365				130
10	167.780M	51.5	+0.1	+0.3	+0.7	+9.9	+0.0	35.0	43.5	-8.5	Vert
			-27.5				-5				129
11	74.787M	50.3	+0.0	+0.2	+0.5	+7.0	+0.0	30.5	40.0	-9.5	Vert
			-27.5				-5				129
12	50.763M	48.5	+0.0	+0.2	+0.4	+8.7	+0.0	30.3	40.0	-9.7	Vert
			-27.5				-5				129
13	163.095M	49.6	+0.1	+0.3	+0.7	+10.4	+0.0	33.6	43.5	-9.9	Horiz
			-27.5				365				130
14	155.768M	49.0	+0.1	+0.3	+0.7	+10.9	+0.0	33.6	43.5	-9.9	Vert
			-27.4				-5				129
15	45.306M	45.8	+0.0	+0.2	+0.4	+11.1	+0.0	30.0	40.0	-10.0	Vert
			-27.5				-5				129
16	160.693M	49.2	+0.1	+0.3	+0.7	+10.6	+0.0	33.5	43.5	-10.0	Horiz
			-27.4				365				130
17	148.681M	47.7	+0.1	+0.3	+0.7	+11.2	+0.0	32.6	43.5	-10.9	Horiz
			-27.4				365				130
18	151.083M	46.4	+0.1	+0.3	+0.7	+11.1	+0.0	31.2	43.5	-12.3	Horiz
			-27.4				365				130
19	136.789M	45.7	+0.1	+0.3	+0.6	+11.6	+0.0	30.8	43.5	-12.7	Horiz
			-27.5				365				130
20	127.300M	44.6	+0.1	+0.3	+0.6	+11.6	+0.0	29.8	43.5	-13.7	Horiz
			-27.4				365				130
21	131.744M	44.7	+0.1	+0.3	+0.6	+11.6	+0.0	29.8	43.5	-13.7	Horiz
			-27.5				365				130
22	143.756M	44.7	+0.1	+0.3	+0.7	+11.4	+0.0	29.7	43.5	-13.8	Horiz
			-27.5				365				130

CKC Laboratories, Inc. Date: 12/9/2011 Time: 11:29:33 idOnDemand WO#: 91345 Model: 8805 SN: None 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Sequence#: 17 Ext ATTN: 0 dB

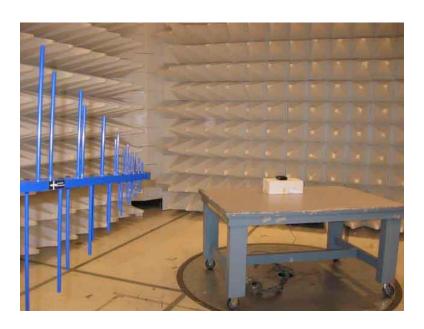



O Peak Readings

* Average Readings
1 - 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)



TOUCHSECURE READER 8800: 0.09 – 30MHz



TOUCHSECURE READER 8800: 30-1000MHz

TOUCHSECURE READER / PROGRAMMER: 0.09 - 30MHz

TOUCHSECURE READER / PROGRAMMER: 30-1000MHz

FCC 15.225(d) Frequency Stability

Test Conditions / Setup

Test Conditions model 8800:

FCC 15.225e. 1kHz RBW / 3kHz VBW. EUT is running at 13.56MHz.

15.225E Frequency Stability Testing. 13.56MHz.

Highest generated frequency in the device is 48MHz.

Nominal Temperature: 18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by a variable dc power source located outside the test chamber.

Test Conditions model 8805:

FCC 15.225e. 1kHz RBW / 3kHz VBW. EUT is running at 13.56MHz.

15.225E Frequency Stability Testing. 13.56MHz.

Highest generated frequency in the device is 48MHz.

Nominal Temperature:18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar

Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by a variable dc power source located outside the test chamber.

Supporting Devices for model 8800 & 8805:

Description	Manufacture	Model	SN	
DC Power Supply	Tektronix	CPS250	CPS-250TW18988	
DC Power Supply	Tenema	72-6610	1002222	

Engineer Name: A. Brar

Test Equipment						
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due	
02660	Spectrum Analyzer	E4446A	Agilent	11/3/11	11/3/13	
02721	Temperature Chamber	SM-8C	Thermatron	6/2/10	6/2/12	
P06024	Near Field Probe	None	CKC	6/16/10	6/16/12	
P02131	DMM	DMM914	Fluke	9/9/11	9/9/13	
P05300	Cable	RG214/U	Pasternack	3/7/11	3/7/13	
P05440	Cable	RG214/U	Pasternack	3/7/11	3/7/13	

Page 59 of 65 Report No.: 91345-11A

Test Data

Test Results: Model 8800

Temperature °C	Voltage (V DC)	Fundamental Frequency	+/-0.01% Range (MHz)	Results
		Reading (MHz)		
-20	10.2	13.560	13.5586 – 13.5613	Pass
-20	13.8	13.560	13.5586 – 13.5613	Pass
-10	10.2	13.560	13.5586 – 13.5613	Pass
-10	13.8	13.560	13.5586 – 13.5613	Pass
0	10.2	13.560	13.5586 – 13.5613	Pass
0	13.8	13.560	13.5586 – 13.5613	Pass
10	10.2	13.560	13.5586 – 13.5613	Pass
10	13.8	13.560	13.5586 – 13.5613	Pass
20	10.2	13.560	13.5586 – 13.5613	Pass
20	13.8	13.560	13.5586 – 13.5613	Pass
30	10.2	13.560	13.5586 - 13.5613	Pass
30	13.8	13.560	13.5586 – 13.5613	Pass
40	10.2	13.560	13.5586 – 13.5613	Pass
40	13.8	13.560	13.5586 – 13.5613	Pass
50	10.2	13.560	13.5586 – 13.5613	Pass
50	13.8	13.560	13.5586 - 13.5613	Pass

Test Results: Model 8805

Temperature °C Voltage (V DC)		Fundamental Frequency	+/-0.01% Range (MHz)	Results
		Reading (MHz)		
-20	4.25	13.560	13.5586 - 13.5613	Pass
-20	5.75	13.560	13.5586 - 13.5613	Pass
-10	4.25	13.560	13.5586 – 13.5613	Pass
-10	5.75	13.560	13.5586 – 13.5613	Pass
0	4.25	13.560	13.5586 – 13.5613	Pass
0	5.75	13.560	13.5586 – 13.5613	Pass
10	4.25	13.560	13.5586 – 13.5613	Pass
10	5.75	13.560	13.5586 – 13.5613	Pass
20	4.25	13.560	13.5586 – 13.5613	Pass
20	5.75	13.560	13.5586 - 13.5613	Pass
30	4.25	13.560	13.5586 - 13.5613	Pass
30	5.75	13.560	13.5586 – 13.5613	Pass
40	4.25	13.560	13.5586 – 13.5613	Pass
40	5.75	13.560	13.5586 – 13.5613	Pass
50	4.25	13.560	13.5586 – 13.5613	Pass
50	5.75	13.560	13.5586 - 13.5613	Pass

Page 60 of 65 Report No.: 91345-11A

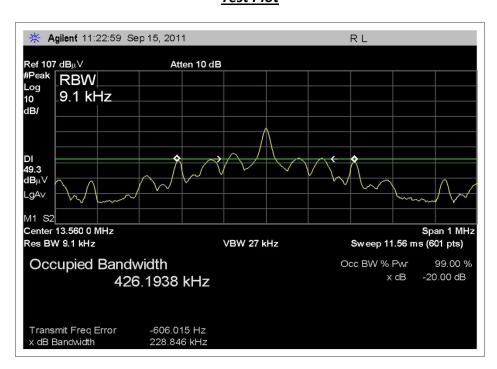
RSS-210

99 % Bandwidth

Test Conditions / Setup

Spurious Radiated Emissions. .09-30MHz. Highest generated frequency in the device is 48MHz.

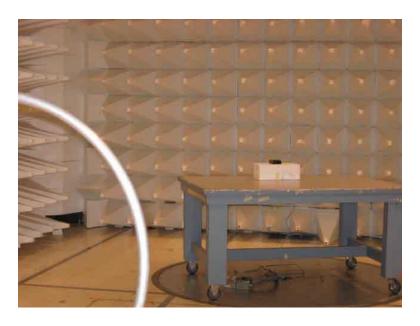
Temperature:18.6° C, Humidity: 32% & Atmospheric Pressure: 1022mbar


Transmit Frequency: 13.56MHz Modulated & 125kHz Modulated.

The EUT is powered by the laptop's USB power. The laptop is located outside the test chamber.

Engineer Name: A. Brar

Test Equipment						
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due	
AN02668	Spectrum Analyzer	E4446A	Agilent	2/23/2011	2/23/2013	
ANP05300	Cable	RG214/U	Pasternack	3/7/2011	3/7/2013	
ANP05440	Cable		Pasternack	3/7/2011	3/7/2013	
AN00432	Loop Antenna	6502	EMCO	3/31/2011	3/31/2013	


Test Plot

TOUCHSECURE READER 8800

TOUCHSECURE READER / PROGRAMMER 8805

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 64 of 65 Report No.: 91345-11A

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST BEGINNING FREQUENCY ENDING FREQUENCY BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 65 of 65 Report No.: 91345-11A