

TEST REPORT

Applicant: Punkt Tronics AG
Address: Via Losanna 4,6900 Lugano, Switzerland
Equipment Type: MC 02
Model Name: MC 02
Brand Name: Punkt.
FCC ID: Z3PMC02
Test Standard: 47 CFR Part 2
(Others refer to chapter 3.1)
Sample Arrival Date: Dec. 21, 2023
Test Date: Dec. 21, 2023 - Jan. 17, 2024
Date of Issue: Jan. 25, 2024

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Jiamin Lu**Checked by:** Wu Huihui**Approved by:** Tolan Tu

(Testing Director)

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jan. 23, 2024</u>	<u>Initial Issue</u>
<u>Rev. 02</u>	<u>Jan. 25, 2024</u>	<u>Update the applicant's name, brand, and FCC ID.</u>

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	Test Laboratory	4
1.2	Test Location.....	4
2	PRODUCT INFORMATION	5
2.1	Applicant Information.....	5
2.2	Manufacturer Information	5
2.3	General Description for Equipment under Test (EUT)	5
2.4	Technical Information	6
3	SUMMARY OF TEST RESULTS	7
3.1	Test Standards.....	7
3.2	Test Verdict.....	8
4	GENERAL TEST CONFIGURATIONS	9
4.1	Test Environments	9
4.2	Test Equipment List.....	9
4.3	Test Configuration	11
4.4	Test Setup.....	12
5	TEST ITEMS	14
5.1	Transmitter Radiated Power (EIRP/ERP)	14
5.2	Peak to Average Ratio.....	17
5.3	Occupied Bandwidth	18
5.4	Frequency Stability.....	20
5.5	Spurious Emission at Antenna Terminals	21
5.6	Band Edge	23
5.7	Field Strength of Spurious Radiation	25

ANNEX A TEST RESULTS.....	28
A.1 Transmitter Radiated Power (EIRP/ERP)	28
A.2 Peak to Average Ratio.....	31
A.3 Occupied Bandwidth	32
A.4 Frequency Stability.....	33
A.5 Spurious Emission at Antenna Terminals	34
A.6 Band Edge	35
A.7 Field Strength of Spurious Radiation	36
ANNEX B TEST SETUP PHOTOS	37
ANNEX C EUT EXTERNAL PHOTOS.....	37
ANNEX D EUT INTERNAL PHOTOS.....	37

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input checked="" type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
	<input type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Punkt Tronics AG
Address	Via Losanna 4,6900 Lugano, Switzerland

2.2 Manufacturer Information

Manufacturer	UWIN INNOVATIOIN (HONG KONG) LIMITED
Address	ROOM D 10/F TOWER A BILLION CENTRE 1 WANG KWONG RD KOWLOON BAY KL

2.3 General Description for Equipment under Test (EUT)

EUT Name	MC 02
Model Name Under Test	MC 02
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	N/A
Software Version	MC02.20231230.U0
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Technical Information

All Network and Wireless connectivity for EUT	5G Network SA: NR n48
About the Product	The equipment is Smartphone, intended for used with information technology equipment.
<p>Note 1:</p> <p>The EUT is a Smartphone, supporting dual SIM card slots under the same transceiver. Both SIM card slots support NR. And both SIM card slots share the same transceiver, so only SIM1 is tested in this report.</p>	

The following is the technical information of the EUT tested frequency bands in this report.

Operating Bands		SA: n48		
Modulation Type	NR	CP-OFDM: QPSK / 16QAM / 64QAM / 256QAM		
		DFT-s-OFDM: QPSK / 16QAM / 64QAM / 256QAM		
Antenna Type		FPC Antenna		
Antenna Gain		TDD NR Band n48: 0.81 dBi		
The Max RF Output Power (EIRP/ERP)		TDD NR Band n48: 21.46 dBm		
SCS and Channel Bandwidths		n48_SCS 30kHz: 10 MHz, 15 MHz, 20 MHz, 40 MHz		
Band	Power Class	Tx Frequency Range	Rx Frequency Range	
NR n48	3	3550 MHz ~ 3700 MHz	3550 MHz ~ 3700 MHz	

Note1: The EUT information provided by the applicant, except for The Max RF Conducted Power. For more detailed band specifications and features description, please refer to the manufacturer's specifications or user's manual.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 96	CITIZENS BROADBAND RADIO SERVICE
3	ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
4	KDB 971168 D01 v03	Measurement Guidance for Certification of Licensed Digital Transmitters

3.2 Test Verdict

No.	Test Description	FCC Part No.	Test Result	Test Verdict
1	Conducted RF Output Power	2.1046	Reporting only (ANNEX A.1)	Pass
2	Effective (Isotropic) Radiated Power	2.1046 96.41(b)	ANNEX A.1	Pass
3	Peak to Average Radio	2.1046	ANNEX A.2	Pass
4	Occupied Bandwidth	2.1049	ANNEX A.3	Pass
5	Frequency Stability	2.1055	ANNEX A.4	Pass
6	Spurious Emission at Antenna Terminals	2.1051 96.41(e)	ANNEX A.5	Pass
7	Band Edge	2.1051 96.41(e)	ANNEX A.6	Pass
8	Field Strength of Spurious Radiation	2.1053 96.41(e)	ANNEX A.7	Pass

4 GENERAL TEST CONFIGURATIONS

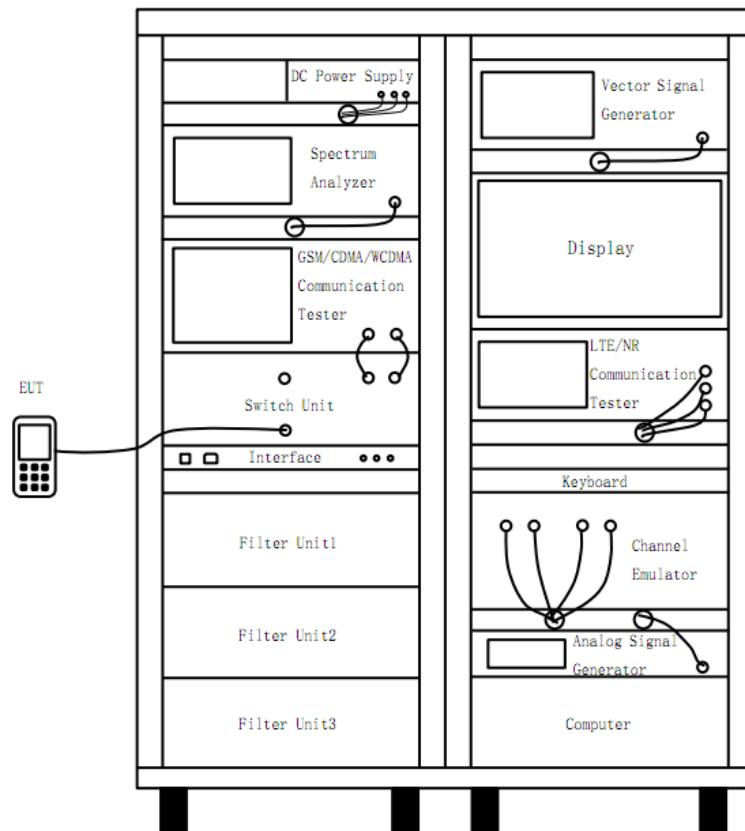
4.1 Test Environments

During the measurement, the environmental conditions were within the listed ranges:

Relative Humidity		20% to 75%
Atmospheric Pressure		98 kPa to 102 kPa
Test Voltage of the EUT	NV (Normal Voltage)	3.850 V
	LV (Low Voltage)	3.465 V
	HV (High Voltage)	4.235 V
Test Temperature of the EUT	NT (Normal Temperature)	15 °C to 35 °C
	LT (Low Temperature)	-30 °C
	HT (High Temperature)	+50 °C

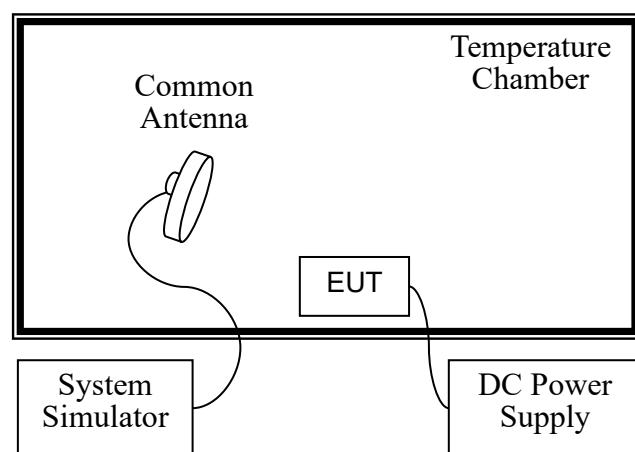
4.2 Test Equipment List

Description	Manufacturer	Model	Serial No.	Version	Cal. Date	Cal. Due
2/3/4/5G RF Test System						
BL410 Test Software	BALUN	BL410R	N/A	2.1.1.496	N/A	N/A
Temperature Chamber	AHK	SP20	1412	N/A	2023.09.11	2024.09.10
5G Wireless Test Platform	Starpoint	SP9500-CTS	19220	C1.0.8.32	2023.11.10	2024.11.09
Spectrum Analyzer	keysight	N9020A	MY50531628	A.16.09	2023.05.12	2024.05.11
Spectrum Analyzer	R&S	FSV40	101544	2.30.SP4	2023.12.27	2024.12.26
DC Power Supply	ITECH	IT6863A	800014020757810006	N/A	2023.08.16	2024.08.15
Radiated Test System						
Radiated Test System Test Software	BALUN	BL410-E	N/A	V19.918	N/A	N/A
Spectrum Analyzer	R&S	FSV40	101544	2.30.SP4	2023.12.27	2024.12.26
Test Antenna-Bi-Log(30 MHz-3 GHz)	Schwarzbeck	VULB 9163	9163-624	N/A	2021.08.20	2024.08.19
Test Antenna-Horn(1-18 GHz)	Schwarzbeck	BBHA 9120D	01917	N/A	2022.06.09	2025.06.08

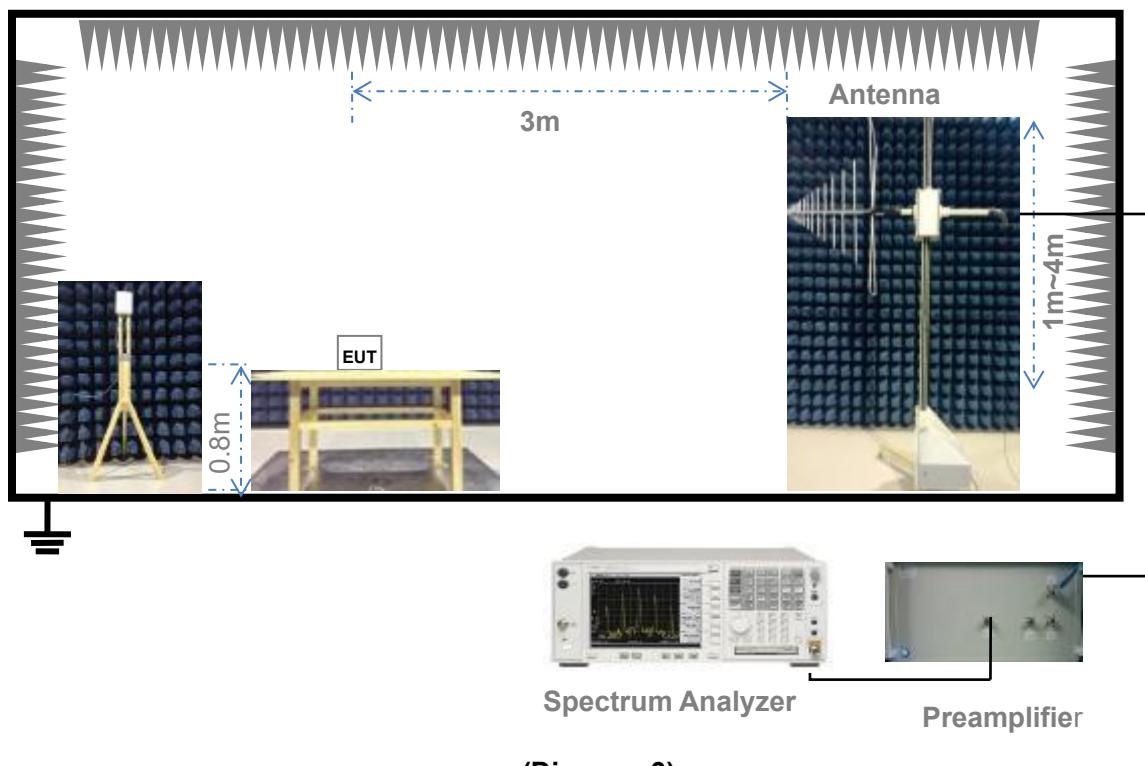

Test Antenna-Horn(18-40 GHz)	A-INFO	LB-180400KF	J211060273	N/A	2021.07.02	2024.07.01
Anechoic Chamber	YIHENG	9m*6m*6m	144	N/A	2022.02.09	2024.09.03
EMI Receiver	Keysight	N9038A	MY53220118	A.14.16	2023.09.05	2024.09.04

4.3 Test Configuration

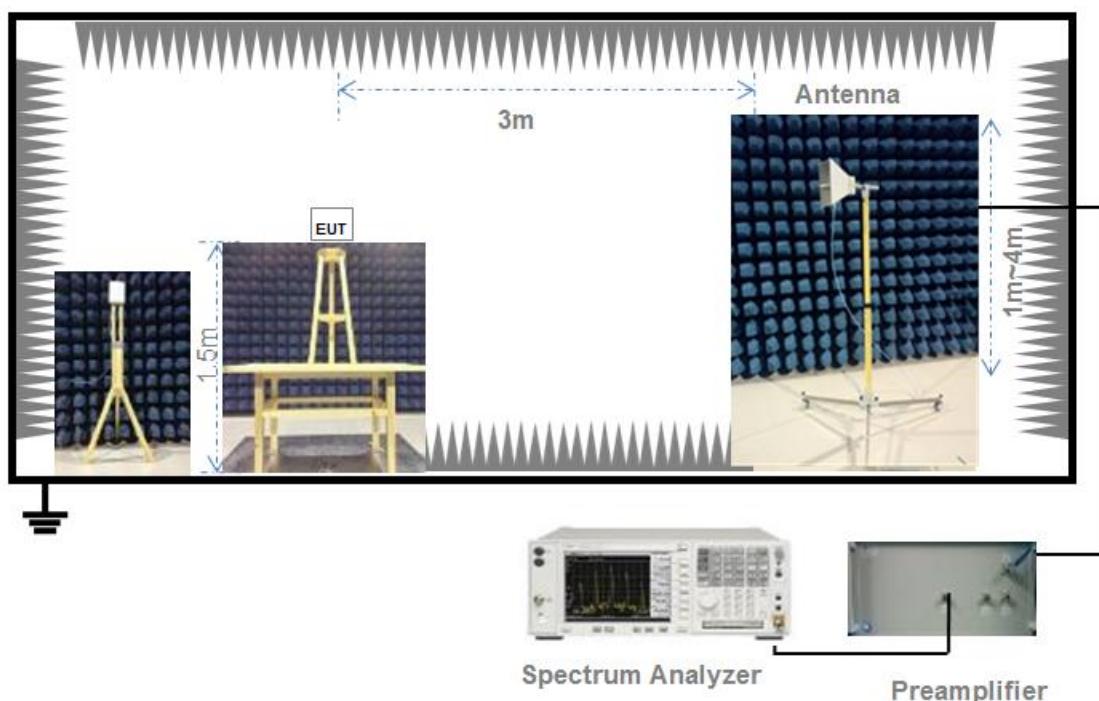
Test Mode	Channel Bandwidth (MHz)	UL Channel	UL Channel No.	UL Frequency (MHz)
NR Band n48	10	Low Range	637000	3555
		Middle Range	641666	3624.99
		High Range	646332	3694.98
	15	Low Range	637168	3557.52
		Middle Range	641666	3624.99
		High Range	646166	3692.49
	20	Low Range	637334	3560.01
		Middle Range	641666	3624.99
		High Range	646000	3690
	40	Low Range	638000	3570
		Middle Range	641666	3624.99
		High Range	645332	3679.98


4.4 Test Setup

4.4.1 For Antenna Port Test


(Diagram 1)

4.4.2 For Frequency Stability Test


(Diagram 2)

4.4.3 For Radiated Test (30 MHz ~ 1 GHz)

(Diagram 3)

4.4.4 For Radiated Test (Above 1 GHz)

(Diagram 4)

5 TEST ITEMS

5.1 Transmitter Radiated Power (EIRP/ERP)

5.1.1 Limit

FCC § 2.1046 & 96.41(b)

FCC section 96.41(b), the maximum effective isotropic radiated power (EIRP) and maximum Power Spectral Density (PSD) of any CBSD and End User Device must comply with the limits shown in the table in this paragraph below:

Device	Maximum EIRP (dBm/10 megahertz)	Maximum PSD (dBm/MHz)
End User Device	23	N/A
Category A CBSD	30	20
Category B CBSD ^{note1}	47	37

Note1: Category B CBSDs will only be authorized for use after an ESC is approved and commercially deployed consistent with §§ 96.15 and 96.67.

5.1.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description is used for conducted test, and the section 4.4.3 and 4.4.4 (Diagram 3, 4) test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure

Description of the Conducted Output Power Measurement

The EUT is coupled to the SS with attenuator through power splitter; the RF load attached to EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. A system simulator is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The relevant equation for determining the conducted measured value is:

$$\text{Conducted Output Power Value (dBm)} = \text{Measured Value (dBm)} + \text{Path Loss (dB)}$$

where:

Conducted Output Power Value = final conducted measured value in the conducted power test, in dBm;

Measured Value = measured conducted power received by spectrum analyzer or power meter, in dBm;

Path Loss = signal attenuation in the connecting cable between the transmitter and spectrum analyzer or power meter, including external cable loss, in dB;

During the test, the data of Path Loss (dB) is added in the spectrum analyzer or power meter, so Measured Value (dBm) is the final values which contains the data of Path Loss (dB).

For example:

In the conducted output power test, when measured value for GSM850 is 24.7 dBm, and path loss is 8.5 dB, then final conducted output power value is:

$$\text{Conducted Output Power Value (dBm)} = 24.7 \text{ dBm} + 8.5 \text{ dB} = 33.2 \text{ dBm}$$

Description of the Transmitter Radiated Power Measurement

In many cases, the RF output power limits for licensed digital transmission devices is specified in terms of effective radiated power (ERP) or equivalent isotropic radiated power (EIRP). Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are determined by adding the transmit antenna gain to the conducted RF output power with the primary difference between the two being that when determining the ERP, the transmit antenna gain is referenced to a dipole antenna (i.e., dBd) whereas when determining the EIRP, the transmit antenna gain is referenced to an isotropic antenna (dBi).

Final measurement calculation as below:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

$$\text{ERP/EIRP} = P_{\text{Meas}} + GT - LC$$

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as P_{Meas} , typically dBW or dBm);

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

dBd (ERP)=dBi (EIRP) -2.15 dB

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

For example:

In the EIRP test, when P_{Meas} value for GSM1900 is 30.2 dBm, LC is 0.6 dB, and GT is -3.4 dB, then final EIRP value is:

EIRP for GSM1900 = 30.2 dBm - 3.4 dBi - 0.6 dB = 26.2 dBm

The relevant equation for determining the ERP/EIRP from the radiated RF output power is:

ERP/EIRP (dBm) = SA Read Value (dBm) + Correction Factor (dB)

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm;

Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is:

ERP (dBm) = 21dBm + 8dB = 29dBm

5.1.4 Test Result

Please refer to ANNEX A.1.

5.2 Peak to Average Ratio

5.2.1 Limit

FCC § 2.1046

In addition, when the transmitter power is measured in terms of average value, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

5.2.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description is used for this test. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

According to KDB 971168 D01, there is CCDF procedure for PAPR:

- a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- b) Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval as follows:
 - 1) for continuous transmissions, set to 1 ms,
 - 2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- e) Record the maximum PAPR level associated with a probability of 0.1%.

Alternate procedure for PAPR:

Use one of the procedures presented in 4.1 to measure the total peak power and record as P_{PK} . Use one of the applicable procedures presented 4.2 to measure the total average power and record as P_{Avg} . Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

$$\text{PAPR (dB)} = P_{PK} (\text{dBm}) - P_{Avg} (\text{dBm}).$$

5.2.4 Test Result

Please refer to ANNEX A.2.

5.3 Occupied Bandwidth

5.3.1 Limit

FCC § 2.1049

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

5.3.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description is used for this test. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The following procedure shall be used for measuring power bandwidth.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the anticipated OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least $10\log(\text{OBW} / \text{RBW})$ below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) For -26 dB OBW, the dynamic range of the spectrum analyzer at the selected RBW shall be at least 10dB below the target “-X dB down” requirement, e.g. -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be 36dB below the reference value.
- f) Set the detection mode to peak, and the trace mode to max hold.
- g) For 99% OBW, use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.

If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is

recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % power bandwidth is the difference between these two frequencies.

h) For -26 dB OBW, determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

Determine the “-X dB down amplitude” as equal to (reference value -X). Alternatively, this calculation can be performed by the analyzer by using the marker-delta function.

Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below “-X dB down amplitude” determined in step g). If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

- i) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
- j) Change variable modulations, coding, or channel bandwidth settings, then repeat above test procedures.

5.3.4 Test Result

Please refer to ANNEX A.3.

5.4 Frequency Stability

5.4.1 Limit

FCC § 2.1055

FCC § 2.1055

The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) The temperature is varied from -30°C to +50°C.
- (2) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10°C through the range.

The frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating and point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

5.4.2 Test Setup

The section 4.4.2 (Diagram 2) test setup description is used for this test. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

1. The EUT is placed in a temperature chamber.
2. The temperature is set to 25°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured.
3. The temperature is increased by not more than 10 degrees, allowed to stabilize and soak, and then repeat the frequency error measurement.
4. Repeat procedure 3 until +50°C and -30°C is reached.
5. Change supply voltage, and repeat measurement until extreme voltage is reached.

5.4.4 Test Result

Please refer to ANNEX A.4.

5.5 Spurious Emission at Antenna Terminals

5.5.1 Limit

FCC § 2.1051 & 96.41(e)

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC § 96.41(e)

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz. The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.5.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P)$ dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside

and adjacent to the frequency blocks a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

1. The EUT is coupled to the system simulator and spectrum analyzer; the RF load attached to EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading.
2. Base Station is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power.
3. The RF output of the transmitter is connected to the input of the spectrum analyzer through sufficient attenuation.
4. Spurious emissions are tested with 0.001MHz RBW for frequency less than 150kHz, 0.01MHz RBW for frequency less than 30MHz, 0.1MHz RBW for frequency less than 1GHz, and 1MHz RBW for frequency above 1GHz. And sweep point number are at least 401, referring to following formula.

Sweep point number = Span/RBW

VBW=3*RBW

Detector Mode=mean or average power

5. Record the frequencies and levels of spurious emissions.

5.5.4 Test Result

Please refer to ANNEX A.5.

5.6 Band Edge

5.6.1 Limit

FCC § 2.1051 & 96.41(e)

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC § 96.41(e)

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz. The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.6.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

1. The EUT is coupled to the system simulator and spectrum analyzer; the RF load attached to EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.
2. Base Station is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power.

3. The RF output of the transmitter is connected to the input of the spectrum analyzer through sufficient attenuation.
4. The center of the spectrum analyzer was set to block edge frequency.
5. Band edge are tested with $1\% * c\text{BW}$ (RBW), and sweep point number referred to following formula.

Sweep point number = $2 * \text{Span}/\text{RBW}$

$\text{VBW} = 3\text{RBW}$

6. Record the frequencies and levels of spurious emissions.

For mobile and portable stations, on all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than $65 + 10 \log (P)$ dB in a 6.25 kHz band segment. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

$$10 * \log(10 \text{ kHz} / 6.25 \text{ kHz}) = 2.04 \text{ dB}$$

$$\text{Limit Line} = -35 \text{ dBm} + 2.04 \text{ dB} = -32.96 \text{ dBm}$$

5.6.4 Test Result

Please refer to ANNEX A.6.

5.7 Field Strength of Spurious Radiation

5.7.1 Limit

FCC § 2.1051 & 96.41(e)

In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC § 96.41(e)

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz. The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.7.2 Test Setup

The section 4.4.3 and 4.4.4 (Diagram 3, 4) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.7.3 Test Procedure

1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position close to normal use as declared by the applicant.
2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.

4. During the measurement of the EUT, the resolution bandwidth was to 1 MHz and the average bandwidth was set to 1 MHz.

5. The transmitter shall be switched on; the measuring receiver shall be tuned to the frequency of the transmitter under test.

6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.

7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.

9. The maximum signal level detected by the measuring receiver shall be noted.

10. The EUT was replaced by half-wave dipole (824 ~ 849 MHz) or horn antenna (1 850 ~ 1 910 MHz) connected to a signal generator.

11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.

13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.

14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Final measurement calculation as below:

The relevant equation for determining the ERP/EIRP from the radiated RF output power is:

$$\text{ERP/EIRP (dBm)} = \text{SA Read Value (dBm)} + \text{Correction Factor (dB)}$$

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm;

Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is:

$$\text{ERP (dBm)} = 21\text{dBm} + 8\text{dB} = 29\text{dBm}$$

5.7.4 Test Result

Please refer to ANNEX A.7.

ANNEX A TEST RESULTS

A.1 Transmitter Radiated Power (EIRP/ERP)

NR Mode Test Data

Test BW	Test Channel	Test Mode	UL RB Number	UL RB Position	Conducted Output AV Power(dBm)	EIRP (W)	Limit (W)	Verdict	
NR Band n48									
10	10	LCH	QPSK	12	6	19.64	0.111	0.200	Pass
				1	1	19.62	0.110	0.200	Pass
				1	22	19.62	0.110	0.200	Pass
			16QAM	12	6	18.64	0.088	0.200	Pass
				1	1	18.52	0.086	0.200	Pass
				1	22	18.51	0.086	0.200	Pass
			64QAM	12	6	17.09	0.062	0.200	Pass
				1	1	17.11	0.062	0.200	Pass
				1	22	17.1	0.062	0.200	Pass
			256QAM	12	6	15.15	0.039	0.200	Pass
				1	1	15.12	0.039	0.200	Pass
				1	22	15.15	0.039	0.200	Pass
		MCH	QPSK	12	6	20.2	0.126	0.200	Pass
				1	1	20.17	0.125	0.200	Pass
				1	22	20.19	0.126	0.200	Pass
			16QAM	12	6	19.2	0.100	0.200	Pass
				1	1	19.01	0.096	0.200	Pass
				1	22	19.05	0.097	0.200	Pass
			64QAM	12	6	17.65	0.070	0.200	Pass
				1	1	17.62	0.070	0.200	Pass
				1	22	17.67	0.070	0.200	Pass
			256QAM	12	6	15.75	0.045	0.200	Pass
				1	1	15.69	0.045	0.200	Pass
				1	22	15.7	0.045	0.200	Pass
		HCH	QPSK	12	6	20.3	0.129	0.200	Pass
				1	1	20.23	0.127	0.200	Pass
				1	22	20.21	0.126	0.200	Pass
			16QAM	12	6	19.31	0.103	0.200	Pass
				1	1	19.34	0.104	0.200	Pass
				1	22	19.33	0.103	0.200	Pass
			64QAM	12	6	17.74	0.072	0.200	Pass
				1	1	17.91	0.074	0.200	Pass
				1	22	17.88	0.074	0.200	Pass
			256QAM	12	6	15.78	0.046	0.200	Pass

			1	1	15.82	0.046	0.200	Pass
			1	22	15.89	0.047	0.200	Pass
20	LCH	QPSK	25	12	19.67	0.112	0.200	Pass
			1	1	19.6	0.110	0.200	Pass
			1	49	19.66	0.111	0.200	Pass
		16QAM	25	12	18.7	0.089	0.200	Pass
			1	1	18.71	0.090	0.200	Pass
			1	49	18.74	0.090	0.200	Pass
		64QAM	25	12	17.14	0.062	0.200	Pass
			1	1	17.29	0.065	0.200	Pass
			1	49	17.32	0.065	0.200	Pass
		256QAM	25	12	15.1	0.039	0.200	Pass
			1	1	15.22	0.040	0.200	Pass
			1	49	15.3	0.041	0.200	Pass
40	MCH	QPSK	25	12	20.18	0.126	0.200	Pass
			1	1	20.03	0.121	0.200	Pass
			1	49	20.07	0.122	0.200	Pass
		16QAM	25	12	19.2	0.100	0.200	Pass
			1	1	19.13	0.099	0.200	Pass
			1	49	19.16	0.099	0.200	Pass
		64QAM	25	12	17.64	0.070	0.200	Pass
			1	1	17.73	0.071	0.200	Pass
			1	49	17.78	0.072	0.200	Pass
		256QAM	25	12	15.64	0.044	0.200	Pass
			1	1	15.61	0.044	0.200	Pass
			1	49	15.7	0.045	0.200	Pass
40	HCH	QPSK	25	12	20.25	0.128	0.200	Pass
			1	1	20.05	0.122	0.200	Pass
			1	49	20.14	0.124	0.200	Pass
		16QAM	25	12	19.26	0.102	0.200	Pass
			1	1	18.92	0.094	0.200	Pass
			1	49	18.97	0.095	0.200	Pass
		64QAM	25	12	17.69	0.071	0.200	Pass
			1	1	17.59	0.069	0.200	Pass
			1	49	17.68	0.071	0.200	Pass
		256QAM	25	12	15.66	0.044	0.200	Pass
			1	1	15.59	0.044	0.200	Pass
			1	49	15.65	0.044	0.200	Pass
40	LCH	QPSK	50	25	20.26	0.128	0.200	Pass
			1	1	19.74	0.114	0.200	Pass
			1	104	19.8	0.115	0.200	Pass
		16QAM	50	25	19.23	0.101	0.200	Pass
			1	1	18.62	0.088	0.200	Pass

		1	104	18.73	0.090	0.200	Pass
64QAM	256QAM	50	25	17.72	0.071	0.200	Pass
		1	1	17.37	0.066	0.200	Pass
		1	104	17.43	0.067	0.200	Pass
		50	25	15.7	0.045	0.200	Pass
MCH	QPSK	1	1	15.38	0.042	0.200	Pass
		1	104	15.4	0.042	0.200	Pass
		50	25	20.58	0.138	0.200	Pass
	16QAM	1	1	20.23	0.127	0.200	Pass
		1	104	20.27	0.128	0.200	Pass
		50	25	19.59	0.110	0.200	Pass
	64QAM	1	1	19.09	0.098	0.200	Pass
		1	104	19.09	0.098	0.200	Pass
		50	25	18.1	0.078	0.200	Pass
HCH	256QAM	1	1	17.8	0.073	0.200	Pass
		1	104	17.78	0.072	0.200	Pass
		50	25	16.07	0.049	0.200	Pass
	QPSK	1	1	15.76	0.045	0.200	Pass
		1	104	15.82	0.046	0.200	Pass
		50	25	20.65	0.140	0.200	Pass
	16QAM	1	1	20.27	0.128	0.200	Pass
		1	104	20.26	0.128	0.200	Pass
		50	25	19.63	0.111	0.200	Pass
	64QAM	1	1	19.06	0.097	0.200	Pass
		1	104	19.08	0.097	0.200	Pass
		50	25	18.16	0.079	0.200	Pass
	256QAM	1	1	17.78	0.072	0.200	Pass
		1	104	17.79	0.072	0.200	Pass
		50	25	16.13	0.049	0.200	Pass
	QPSK	1	1	15.77	0.045	0.200	Pass
		1	104	15.8	0.046	0.200	Pass

A.2 Peak to Average Ratio

Note 1: Test plots please refer to the document “Annex No.:BL-SZ23C1113-501 Data Part 1.pdf”.

NR Mode Test Data

Test Band	NR Test Bandwidth	Test Channel	Test Mode	NR UL RB No.	NR UL RB Pos.	Peak to Average Ratio (dB)	Limit (dB)	Refer to Plot ^{Note2}	Verdict
n48	20 MHz	LCH	QPSK	1	0	5.25	13	1.1	Pass
				50	0	5.48	13	1.2	Pass
			16-QAM	1	0	6	13	1.3	Pass
				50	0	6.14	13	1.4	Pass
			64QAM	1	0	5.91	13	1.5	Pass
				50	0	6.42	13	1.6	Pass
			256QAM	1	0	6.14	13	1.7	Pass
				50	0	6.66	13	1.8	Pass
		MCH	QPSK	1	0	5.11	13	1.9	Pass
				50	0	5.53	13	1.10	Pass
			16-QAM	1	0	6.33	13	1.11	Pass
				50	0	6.19	13	1.12	Pass
			64QAM	1	0	6.05	13	1.13	Pass
				50	0	6.47	13	1.14	Pass
			256QAM	1	0	6.19	13	1.15	Pass
				50	0	6.66	13	1.16	Pass
		HCH	QPSK	1	0	4.83	13	1.17	Pass
				50	0	5.53	13	1.18	Pass
			16-QAM	1	0	6.19	13	1.19	Pass
				50	0	6.14	13	1.20	Pass
			64QAM	1	0	6	13	1.21	Pass
				50	0	6.47	13	1.22	Pass
			256QAM	1	0	6.14	13	1.23	Pass
				50	0	6.66	13	1.24	Pass

A.3 Occupied Bandwidth

Note 1: All modes were tested, but only the typical data were reported in this report.

Note 2: Test plots please refer to the document “Annex No.:BL-SZ23C1113-501 Data Part 2.pdf”.

NR Mode Test Data

Test Band	NR Test Bandwidth	Test Channel	Test Mode	NR UL RB No.	NR UL RB Pos.	Measured 99% Occupied Bandwidth (MHz)	Measured - 26 dB Occupied Bandwidth (MHz)	Verdict	Refer to Plot Note2
n48	10 MHz	LCH	QPSK	24	0	8.57	9.12	Pass	1.1
		MCH	QPSK	24	0	8.56	9.12	Pass	1.2
		HCH	QPSK	24	0	8.57	9.05	Pass	1.3
	15 MHz	LCH	QPSK	38	0	13.54	14.17	Pass	1.4
		MCH	QPSK	38	0	13.55	14.15	Pass	1.5
		HCH	QPSK	38	0	13.53	14.23	Pass	1.6
	20 MHz	LCH	QPSK	51	0	18.16	18.89	Pass	1.7
		MCH	QPSK	51	0	18.16	18.84	Pass	1.8
		HCH	QPSK	51	0	18.18	19.23	Pass	1.9
	40 MHz	LCH	QPSK	106	0	38.01	46.99	Pass	1.10
		MCH	QPSK	106	0	38	40.47	Pass	1.11
		HCH	QPSK	106	0	37.98	40.51	Pass	1.12

A.4 Frequency Stability

NR Band n48 QPSK 40 MHz

Test Conditions		Frequency Deviation		Verdict	
Power (VDC)	Temperature (°C)	MCH 3624.99 MHz			
		Value(Hz)	Limits (Hz)		
3.85	-30	-10.9	± 9062.475	Pass	
	-20	-8			
	-10	-6.3			
	0	-6.8			
	10	-5.4			
	20	-7			
	25	-7.3			
	30	-7.1			
	40	-4.5			
	50	-4.7			
4.235	25	-5.3			
3.465	25	-10.1			

A.5 Spurious Emission at Antenna Terminals

Note 1: The frequencies of verdict which are marked by "N/A" should be ignored because they are UE carrier frequency.

Note 2: Test plots please refer to the document "Annex No.:BL-SZ23C1113-501 Data Part 3.pdf".

Note 3: The disturbance above 26.5GHz was very low, and the above harmonics were the highest point could be found when testing, so only the worst case data displayed in this report.

NR Mode Test Verdict

Test Band	NR Test Bandwidth (MHz)	Test Channel	Test Mode	NR UL RB No.	NR UL RB Pos.	Refer to Plot ^{Note3}	Verdict
n48	10 MHz	LCH	QPSK	1	0	1.1	Pass
			QPSK	1	23	1.2	Pass
			QPSK	24	0	1.3	Pass
		MCH	QPSK	1	0	1.4	Pass
			QPSK	1	23	1.5	Pass
			QPSK	24	0	1.6	Pass
		HCH	QPSK	1	0	1.7	Pass
			QPSK	1	23	1.8	Pass
			QPSK	24	0	1.9	Pass
	20 MHz	LCH	QPSK	1	0	1.10	Pass
			QPSK	1	50	1.11	Pass
			QPSK	51	0	1.12	Pass
		MCH	QPSK	1	0	1.13	Pass
			QPSK	1	50	1.14	Pass
			QPSK	51	0	1.15	Pass
		HCH	QPSK	1	0	1.16	Pass
			QPSK	1	50	1.17	Pass
			QPSK	51	0	1.18	Pass
	40 MHz	LCH	QPSK	1	0	1.19	Pass
			QPSK	1	105	1.20	Pass
			QPSK	106	0	1.21	Pass
		MCH	QPSK	1	0	1.22	Pass
			QPSK	1	105	1.23	Pass
			QPSK	106	0	1.24	Pass
		HCH	QPSK	1	0	1.25	Pass
			QPSK	1	105	1.26	Pass
			QPSK	106	0	1.27	Pass

A.6 Band Edge

Note 1: Test plots please refer to the document “Annex No.:BL-SZ23C1113-501 Data Part 4.pdf”.

NR Mode Test Verdict

Test Band	NR Test Bandwidth (MHz)	Test Channel	Test Mode	NR UL RB No.	NR UL RB Pos.	Refer to Plot ^{Note3}	Verdict
n48	10	LCH	QPSK	1	0	1.1	Pass
				24	0	1.2	Pass
		HCH	QPSK	1	23	1.3	Pass
				24	0	1.4	Pass
	20	LCH	QPSK	1	0	1.5	Pass
				51	0	1.6	Pass
		HCH	QPSK	1	50	1.7	Pass
				51	0	1.8	Pass
	40	LCH	QPSK	1	0	1.9	Pass
				106	0	1.10	Pass
		HCH	QPSK	1	105	1.11	Pass
				106	0	1.12	Pass

A.7 Field Strength of Spurious Radiation

Note 1: All modes have been tested, and only the worst case data are shown here.

Note 2: The frequencies of verdict which are marked by "N/A" should be ignored because they are UE carrier frequency.

Note 3: Test plots please refer to the document "Annex No.:BL-SZ23C1113-501 Data Part 5.pdf".

Note 4: The disturbance above 26.5GHz was very low, and the above harmonics were the highest point could be found when testing, so only the worst case data displayed in this report.

NR Mode Test Verdict

Test Band	NR Test Bandwidth (MHz)	Test Channel	Refer to Plot ^{Note3}	Verdict
n48	10	HIGH	1.1	Pass

ANNEX B TEST SETUP PHOTOS

Please refer to the document “BL-SZ23C1113-AR.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer to the document “BL-SZ23C1113-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-SZ23C1113-AI.PDF”.

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--