

RF Exposure Report

Report No.: SA130927E080

FCC ID: Z3M-FG1100

Test Model: FiOS-G1100

Received Date: Mar. 29, 2016

Test Date: Apr. 18, 2016

Issued Date: Apr. 28, 2016

Applicant: Greenwave Systems Pte. Ltd.

Address: 10 Science Park Road, #02-07/08, The Alpha (Science Park II), Singapore 117684

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin
Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 RF Exposure	5
2.1 Limits for Maximum Permissible Exposure (MPE).....	5
2.2 MPE Calculation Formula	5
2.3 Classification	5
2.4 Antenna Gain	6
3 Calculation Result of Maximum Conducted Power	7

A D T

Release Control Record

Issue No.	Description	Date Issued
SA130927E08O	Original release.	Apr. 28, 2016

A D T

1 Certificate of Conformity

Product: FiOS Gateway

Brand: Frontier

Test Model: FiOS-G1100

Sample Status: ENGINEERING SAMPLE

Applicant: Greenwave Systems Pte. Ltd.

Test Date: Apr. 18, 2016

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : C L, **Date:** Apr. 28, 2016
Claire Kuan / Specialist

Approved by : M, **Date:** Apr. 28, 2016
May Chen / Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)
Limits For General Population / Uncontrolled Exposure				
300-1500	F/1500	30
1500-100,000	1.0	30

F = Frequency in MHz

2.2 MPE Calculation Formula

$$Pd = (Pout \cdot G) / (4 \cdot \pi \cdot r^2)$$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 28cm away from the body of the user. So, this device is classified as **Mobile Device**.

2.4 Antenna Gain

WLAN Antenna Spec.					
2.4GHz					
Transmitter Circuit	Gain (dBi) (Include cable loss)	Antenna Type	Connector Type	Frequency range (GHz to GHz)	
Chain (0)	3.97	Dipole(Metal)	NA	2.4~2.4835	
Chain (1)	4.1	Dipole(Metal)	NA	2.4~2.4835	
Chain (2)	3.36	PIFA(Metal)	NA	2.4~2.4835	
5GHz					
Transmitter Circuit	Gain (dBi) (Include cable loss)	Antenna Type	Connector Type	Frequency range (GHz to GHz)	
Chain (0)	3.56	Dipole(Metal)	NA	5.15~5.25	
	3.86			5.25~5.35	
	4.05			5.47~5.725	
	4.05			5.725~5.85	
Chain (1)	5.3	Dipole(Metal)	NA	5.15~5.25	
	5.75			5.25~5.35	
	5.75			5.47~5.725	
	5.71			5.725~5.85	
Chain (2)	4.6	Dipole(Metal)	NA	5.15~5.25	
	4.35			5.25~5.35	
	4.35			5.47~5.725	
	4.21			5.725~5.85	
Z-Wave Antenna Spec.					
Gain (dBi) (Include cable loss)	Antenna Type	Connector Type		Frequency range (MHz to MHz)	
1.73	PIFA (Metal)	NA		902~928	
Note: 1. For 1Tx mode will fix transmission on Chain (0). 2. For 2Tx mode will fix transmission on Chain (0) and Chain (1)					

3 Calculation Result of Maximum Conducted Power

For WLAN 2.4GHz:

CDD Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	535.959	8.59	28	0.39319	1

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.59 \text{ dBi}$.

STBC Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	919.616	4.1	28	0.23992	1

For WLAN 5GHz:

2TX CDD / Beamforming Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
5260-5320	47.709	7.87	28	0.02965	1
5500-5720	93.702	7.95	28	0.05932	1

NOTE:

5GHz (5260-5320MHz): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 7.87 \text{ dBi}$

5GHz (5500-5720MHz): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 7.95 \text{ dBi}$

2TX STBC Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
5260-5320	69.627	5.75	28	0.02656	1
5500-5720	93.702	5.75	28	0.03575	1

For WLAN 5GHz:
3TX CDD / Beamforming Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
5260-5320	39.38	9.46	28	0.03530	1
5500-5720	67.047	9.52	28	0.06093	1

NOTE:

5GHz (5260-5320MHz): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.46 \text{dBi}$
 5GHz (5500-5720MHz): Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.52 \text{dBi}$

3TX STBC Mode

Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
5260-5320	39.38	5.75	28	0.01502	1
5500-5720	83.069	5.75	28	0.03169	1

For Zwave:

Frequency BAND (MHz)	Field Strength of Fundamental@3m (dBuV/m)	Pout EIRP (dBm)	Pout EIRP (mW)	Distance (cm)	Power Density (mW/ cm ²)	Limit (mW/cm ²)
908.4-916.0	100.9	5.67	3.691	28	0.00037	0.61

Conclusion:

All of the Z-Wave and WLAN (2.4GHz & 5GHz) can transmit simultaneously, the formula of calculated the MPE is:

$$\text{CPD}_1 / \text{LPD}_1 + \text{CPD}_2 / \text{LPD}_2 + \dots \text{etc.} < 1$$

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is $0.39319 / 1 + 0.06093 / 1 + 0.00037 / 0.61 = 0.45473$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

--- END ---