Sheet 1 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

FOR FCC 47 CFR, Part 15 Subpart C

Report No.: 17-06-MAS-031-02

Client: JET OPTOELECTRONICS CO.,LTD.

Product: SeatTop - Driver Mon A

Model: 620069

FCC ID: Z3K-J78A620069

Manufacturer/supplier: JET OPTOELECTRONICS CO.,LTD.

Date test item received: 2017/06/07
Date test campaign completed: 2017/08/28
Date of issue: 2017/08/28

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 227 pages

Total number of pages of photos: External photos 1 pages

Internal photos 7 pages Setup photos 2 pages

Test Engineer

Checked By

Approved By

Approved By

Falcon Shi

Jerry Huang

ELECTRONICS TESTING CENTER, TAIWAN

No.8, Lane 29, Wenming Rd. Guishan Dist.

Taoyuan City 33383, Taiwan, R.O.C.

TEL: (03) 3276170~4

INT: +886-3-3276170~4

FAX: (03) 3276188

INT: +886-3-3276188

Sheet 2 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Client : JET OPTOELECTRONICS CO.,LTD.

Address : 3F.,No.300,Yangguang St.,Neihu Dist.,Taipei City 11491,Taiwan,R.O.C

Manufacturer : JET OPTOELECTRONICS CO.,LTD.

Address : 3F.,No.300, Yangguang St.,Neihu Dist.,Taipei City 11491, Taiwan,R.O.C

EUT : SeatTop - Driver Mon A

Trade name : MAZDA

Model No. : 620069

Power Source : 12Vdc

Regulations applied : FCC 47 CFR, Part 15 Subpart C

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

The compliance test is only certified for the test equipment and the results of the testing report relate only to the item tested. The compliance test of this report was conducted in accordance with the appropriate standards. It's not intention to assure the quality and performance of the product. This report shall not be reproduced except in full, without the approval of ETC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Laboratory Introduction: Electronics Testing Center, Taiwan is recognized, filed and mutual recognition arrangement as following:

- ① ISO9001: TüV Product Service
- ② ISO/IEC 17025: BSMI, TAF, NCC, NVLAP, ILAC MRA, UL, Compliance
- ③ Filing: FCC, Industry Canada, VCCI
- (4) MRA: Australia, Hong Kong, New Zealand, Singapore, USA, Japan, Korea, China, APLAC through TAF
- ⑤ FCC Registration Number: TW0371, TW1112
- © Industry Canada Site Registration Number: IC 2949A-2

NVlap

NVLAP Lab Code 200133-0

Table of Contents	Page
1 GENERAL INFORMATION	. 5
1.1 Product Description	. 5
1.2 Characteristics of Device	, 5
1.3 Test Methodology	. 5
1.4 Test Facility	. 6
1.5 Test Summary	. 6
2 PROVISIONS APPLICABLE	. 7
2.1 Definition	. 7
2.2 Requirement for Compliance	. 8
2.3 Restricted Bands of Operation	10
2.4 Labeling Requirement	10
2.5 User Information	11
3. SYSTEM TEST CONFIGURATION	12
3.1 Devices for Tested System	12
3.2 Dscription of Test modes	13
4 CONDUCTED EMISSION MEASUREMENT	19
5 ANTENNA REQUIREMENT	20
5.1 Standard Applicable	20
5.2 Antenna Construction and Directional Gain	20
6 EMISSION BANDWIDTH MEASUREMENT	21
6.1 Standard Applicable	21
6.2 Measurement Procedure	21
6.3 Measurement Equipment	21
6.4 Measurement Data	22
7 OUTPUT POWER MEASUREMENT	38
7.1 Standard Applicable	38
7.2 Measurement Procedure	38
7.3 Measurement Equipment	38
7.4 Measurement Data	39
8 POWER DENSITY MEASUREMENT	13
8.1 Standard Applicable	13
8.2 Measurement Procedure	13
8.3 Measurement Equipment	13
8.4 Measurement Data	14

9 SPURIOUS EMISSION - RF CONDUCTED MEASUREMENT	60
9.1 Standard Applicable	60
9.2 Measurement Procedure	60
9.3 Measurement Equipment	60
9.4 Measurement Data	61
10 RADIATED EMISSION MEASUREMENT	95
10.1 Standard Applicable	95
10.2 Measurement Procedure	
10.3 Measuring Instrument	97
10.4 Radiated Emission Data	98
10.5 Field Strength Calculation	226
11. EQUIPMENTS LIST FOR TESTING	227

Sheet 5 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

1 GENERAL INFORMATION

1.1 Product Description

a) Type of EUT : SeatTop - Driver Mon A

b) Trade Name : MAZDA c) Model No. : 620069

d) FCC ID : Z3K-J78A620069

1.2 Characteristics of Device

The EUT is a rear seat entertainment System with built-in DVD player based on the WLAN technology. The module supports IEEE 802.11n with maximum data rates up to 72Mbps (20 MHz channel bandwidth) and 150 Mbps (40MHz channel bandwidth), 802.11g payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps, as well as 802.11b data rates of 1, 2, 5.5 and 11 Mbps for WLAN operation. WLAN operates in the unlicensed ISM Band at 2.4GHz.

RF chain	1T1R
Frequency Range	IEEE 802.11b/g, 802.11n HT20: 2412MHz~2462MHz
	IEEE 802.11n HT40: 2422MHz~2452MHz
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels
	IEEE 802.11n HT40: 7 Channels
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps
	IEEE 802.11g: 54, 48, 36, 24, 18, 12, 11, 9, 6 Mbps
	IEEE 802.11n HT20: 65, 58.5, 52, 39, 26, 19.5, 13, 6.5Mbps
	IEEE 802.11n HT40: 135, 121.5, 108, 81, 54, 40.5, 27, 13.5 Mbps
Type of Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK, BPSK)

1.3 Test Methodology

All testing were performed according to the procedures in ANSI C63.10 (2013) and FCC CFR 47 Part 2 and Part 15 and KDB 558074 D01 v04.

Sheet 6 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

1.4 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wenming Rd. Guishan Dist. Taoyuan City 33383, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

1.5 Test Summary

Requirement	FCC Paragraph #	Test Pass
Antenna Requirement	15.203	Pass
Conducted Emission	15.207	N/A
Emission Bandwidth	15.247 (a)(2)	Pass
Output Power Requirement	15.247 (b)(3)	Pass
Power Density Requirement	15.247 (e)	Pass
Spurious Emissions	15.247 (d)	Pass
Radiated Emission	15.247 (d)	Pass

Note: The test setup and measurement method for conductive output power measurements shown in this test report is different to the "Peak Output Power" test. Certain measurement uncertainty of peak power may be expected with the use of different power detection method or measuring equipment. Therefore, the conductive output power measurement results provided in this test report may be different to the specification of the device under test.

Sheet 7 of 227 Sheets

ETC Report No.: 17-06-MAS-031-02

2 PROVISIONS APPLICABLE

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.

Class B Digital Device:

A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction.

Sheet 8 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

For unintentional device, according to §15.107(a) Line Conducted Emission Limits is as following:

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

^{*}Decreases with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limits is same as above table.

(2) Radiated Emission Requirement

For unintentional device, according to §15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency MHz	Distance Meters	Radiated dB μ V/m	Radiated μV/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
above 960	3	54.0	500

For intentional radiator device, according to §15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Sheet 9 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

(3) Antenna Requirement

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

For systems using digital modulation, according to 15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(4) Bandwidth Requirement

According to 15.247 (a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

(5) Output Power Requirement

For systems using digital modulation, according to 15.247(b), the maximum peak output power of the intentional radiator shall not exceed 1 Watt.

For systems using digital modulation, according to 15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(6) Spurious Emissions Measurement

According to 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Sheet 10 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

(7) Power Density Requirement

According to 15.247 (e), for digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission..

2.3 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

^{**:} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device :

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Sheet 11 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

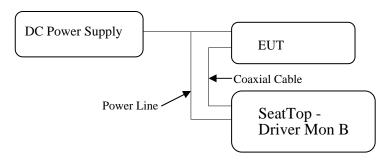
The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.


Sheet 12 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

3. SYSTEM TEST CONFIGURATION 3.1 Devices for Tested System

Device	Manufacture	Model No.	Cable Description
* SeatTop - Driver Mon A	JET OPTOELECTRONICS CO.,LTD.	620069	4.5m*1 shielded Coaxial Cable 2.0m*1 Unshielded Power Line
SeatTop - Driver Mon B	JET OPTOELECTRONICS CO.,LTD.	620070	1.8m*1 Unshielded Power Line
DC Power Supply	GW	GPS-3030D	1.8m*1 Unshielded Power Line

Remark

1. "*" means equipment under test.

2.

Test Software:	DutApi_w8887_BrdigeEth.exe		
Power setting:	Mode	Channel	Setting
	b	Low	15
		Mid	15
		High	15
	g	Low	13
		Mid	13
		High	13
	n HT20	Low	11
		Mid	11
		High	11
	n HT40	Low	8
		Mid	8
		High	8

Sheet 13 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

3.2 Dscription of Test modes

3.2.1 IEEE 802.11b, 802.11g, 802.11n HT20 mode:

There are three channels have been tested as following:

	C
Channel	Frequency (MHz)
Low = 1	2412
Middle = 6	2437
High = 11	2462

IEEE 802.11b mode: 1 Mbps data rate is the worse case for full testing.

IEEE 802.11g mode: 6 Mbps data rate is the worse case for full testing.

IEEE 802.11n HT20 mode: MCS0 6.5 Mbps data rate is the worse case for full testing.

3.2.2 IEEE 802.11n HT40 mode:

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low = 3	2422
Middle = 6	2437
High = 9	2452

IEEE 802.11n HT40 mode: 13.5 Mbps data rate is the worse case for full testing.

3.2.3 Test Mode Description

3.2.3.1 Modulation Type

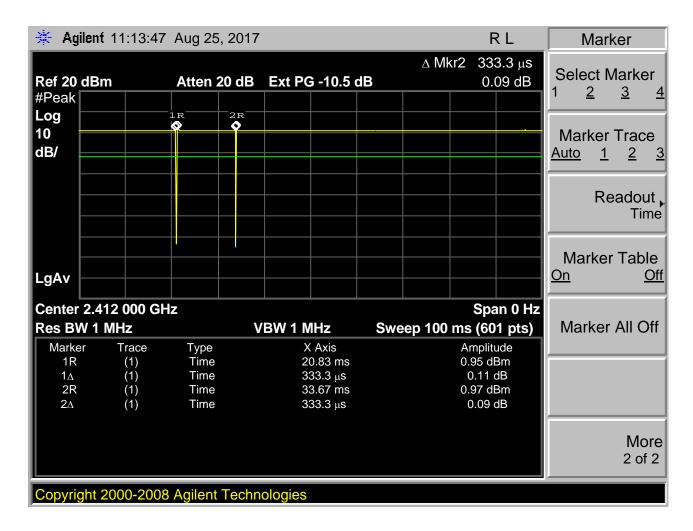
Test Mode	Modulation
A	IEEE 802.11b
В	IEEE 802.11g
С	IEEE 802.11 n HT20
D	IEEE 802.11 n HT40

Test modes A,B,C			
Frequency (MHz)			
2412			
2437			
2462			

Test mode D			
Test Channel Frequency (MH			
Channel Low(L)	2422		
Channel Mid(M)	2437		
Channel High(H)	2452		

Sheet 14 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

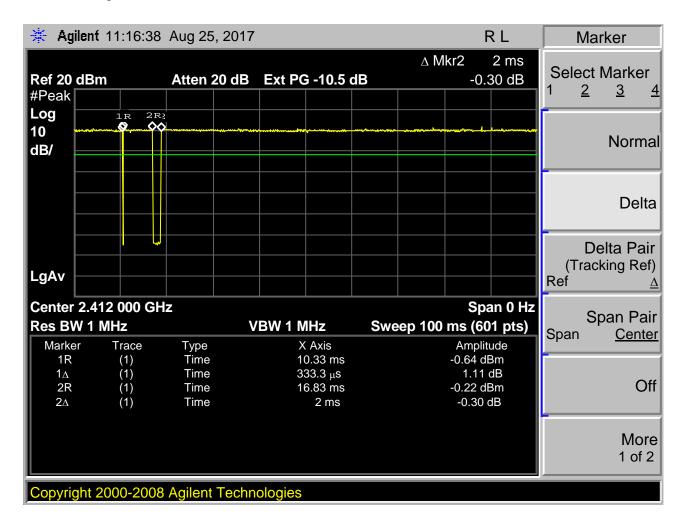
3.2.3.2 Test Mode and Worse Case Determination


Item	Test Item	Test mode	Frequrency(MHz)
1	Conducted emission measurement	-	-
2	Emisson bandwidth measurement	A , B , C , D	L, M, H
3	Output power measurement	A, B, C, D	L, M, H
4	Power density measurement	A, B, C, D	L, M, H
5	Spurious emission	A, B, C, D	L, M, H
6	Radiated emisson measurement(Harmonic)	A , B , C , D	L, M, H
6.1	Radiated emisson measurement (Below 1GHz)	B (note1)	M (note2)
6.2	Radiated emisson measurement (Above 1GHz)	A, B, C, D	L, M, H

Note: 1. Pretest result is no difference in four test modes, Choose one for final testing.

^{2.} Pretest result is no difference by channel low, middle and high. Choose one for final testing and record the result

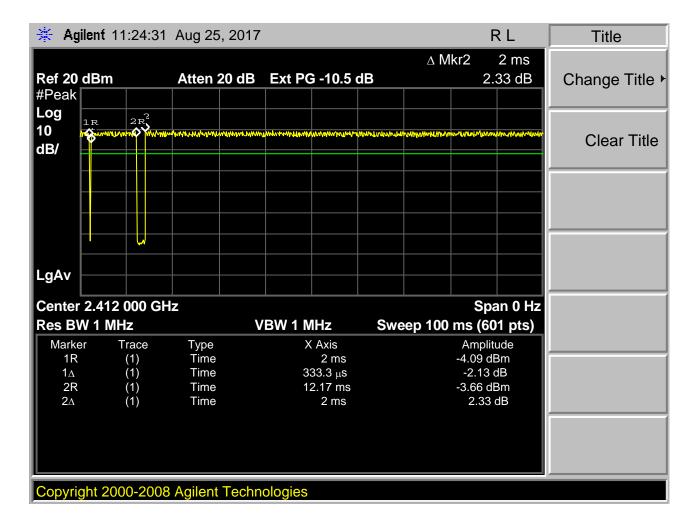
Sheet 15 of 227 Sheets ETC Report No.: 17-06-MAS-031-02


IEEE 802.11b

TX on time = 100 ms - (TX off time) = 100 - (0.3333 + 0.3333) = 99.3334 msDuty cycle = 99.3334/100 = 0.993, Duty cycle > 98%.

Sheet 16 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

IEEE 802.11g

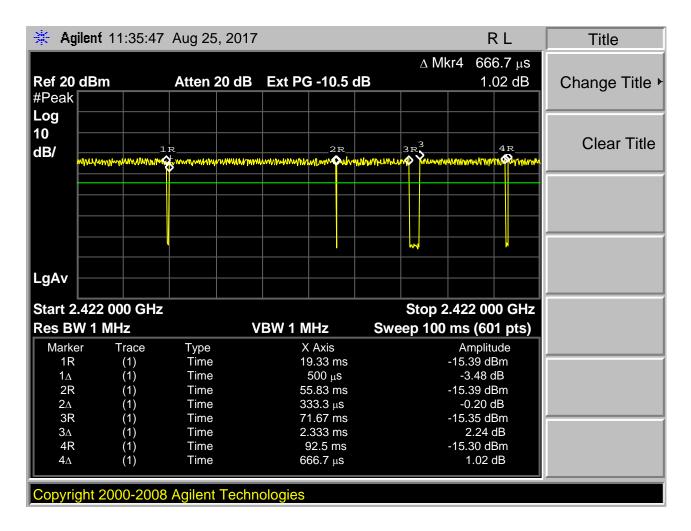

TX on time = 100 ms - (TX off time) = 100 - (0.3333+2) = 97.6667 ms

Duty cycle = 97.6667/100 = 0.977, Duty cycle < 98%.

Duty factor = $10 * \log(1/0.997) = 0.10$

Sheet 17 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

IEEE 802.11 n HT20


TX on time = 100 ms - (TX off time) = 100 - (0.3333+2) = 97.6667 ms

Duty cycle = 97.6667/100 = 0.977, Duty cycle < 98%.

Duty factor = $10 * \log(1/0.997) = 0.10$

Sheet 18 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

IEEE 802.11 n HT40

TX on time = 100 ms - (TX off time) = 100 - (0.5 + 0.3333 + 2.333 + 0.6667) = 96.167 msDuty cycle = 96.167/100 = 0.962, Duty cycle < 98%.

Duty factor = $10 * \log(1/0.962) = 0.17$

Sheet 19 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

4 CONDUCTED EMISSION MEASUREMENT

This EUT is excused from investigation of conducted emission, for it is powered by battery only. According to 15.107(d), measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

Sheet 20 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

5 ANTENNA REQUIREMENT

5.1 Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to §15.247 (b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2 Antenna Construction and Directional Gain

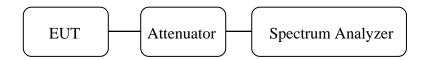
The antennas is a PIFA Antenna

Antenna Type	PIFA
Antenna Gain	0 dBi

The directional gain of antenna doesn't greater than 6 dBi, the power won't be reduced.

Sheet 21 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

6 EMISSION BANDWIDTH MEASUREMENT


6.1 Standard Applicable

According to 15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v04.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 1. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 4. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 5. Repeat above procedures until all frequencies measured were complete.

Figure 1: Measurement onfiguration.

6.3 Measurement Equipment

Equipment Manufacturer		Model No.
Spectrum Analyzer	Agilent	E4446A
Attenuator	WEINSCHEL	56-10

FCC ID:Z3K-J78A620069 Sheet 22 of 227 Sheets

ETC Report No. : 17-06-MAS-031-02

6.4 Measurement Data

6.4.1 IEEE 802.11b

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	9.667	500	Page 23
M	9.713	500	Page 24
Н	10.116	500	Page 25

Note:

- 1. Please refer to page 23 to page 25 for chart
- 2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$

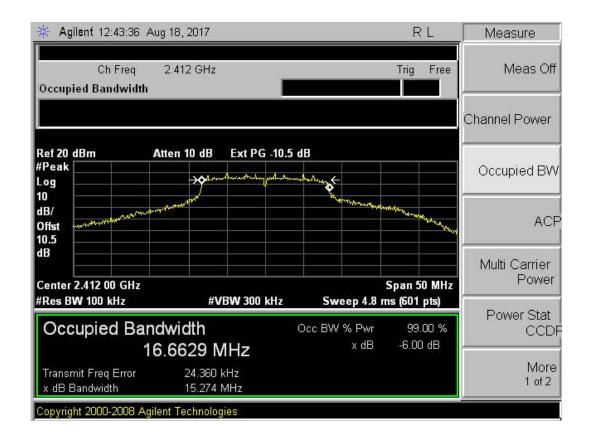

Sheet 23 of 227 Sheets

Sheet 24 of 227 Sheets

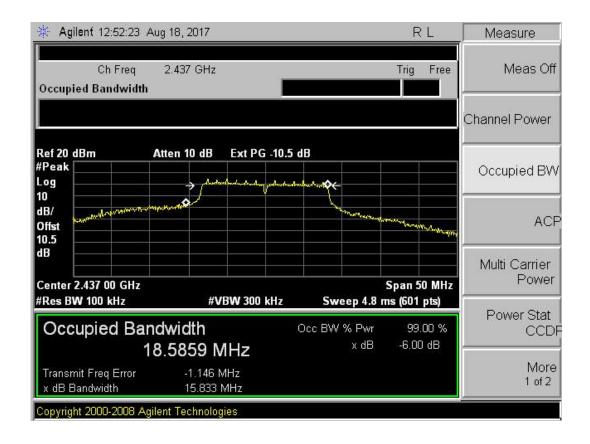
Sheet 25 of 227 Sheets

Sheet 26 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

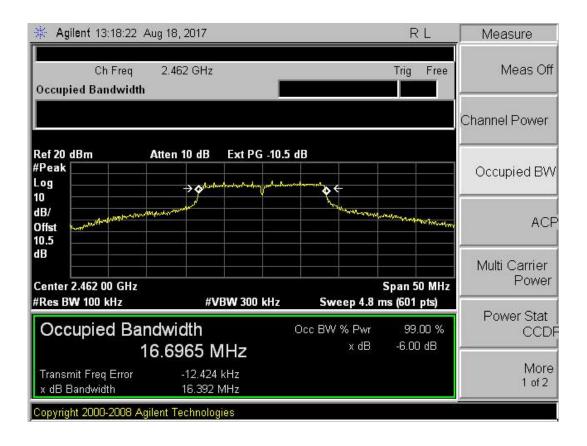
6.4.2 IEEE 802.11g


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	15.274	500	Page 27
M	15.833	500	Page 28
Н	16.392	500	Page 29


Note:

- 1. Please refer to page 27 to page 29 for chart
- 2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$

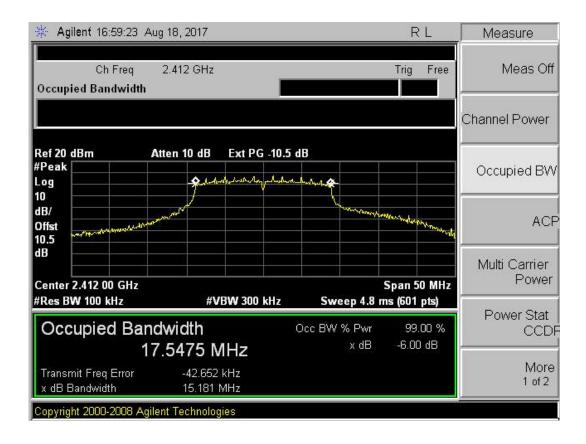

Sheet 27 of 227 Sheets

Sheet 28 of 227 Sheets

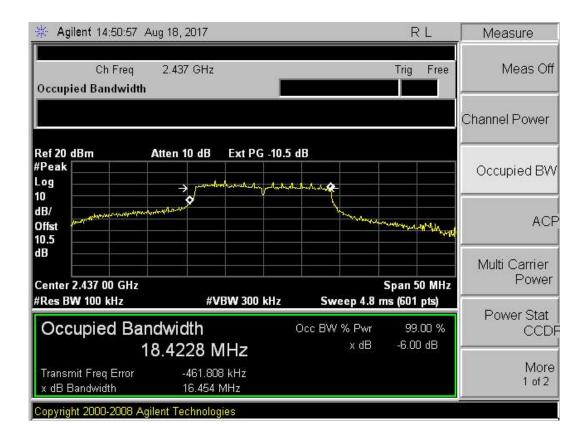
Sheet 29 of 227 Sheets

Sheet 30 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

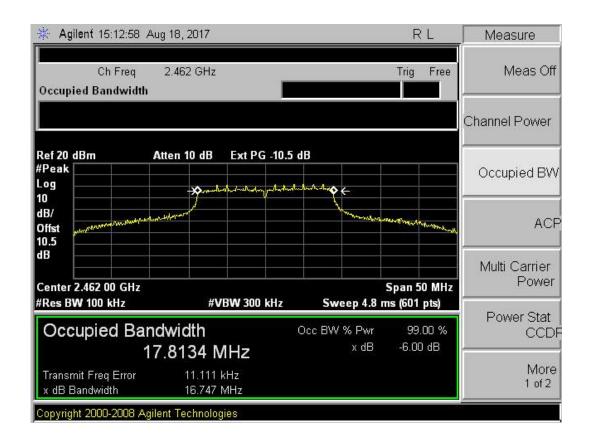
6.4.3 IEEE 802.11n, HT20


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	15.181	500	Page 31
M	16.454	500	Page 32
Н	16.747	500	Page 33


Note:

- 1. Please refer to page 31 to page 33 for chart
- 2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$

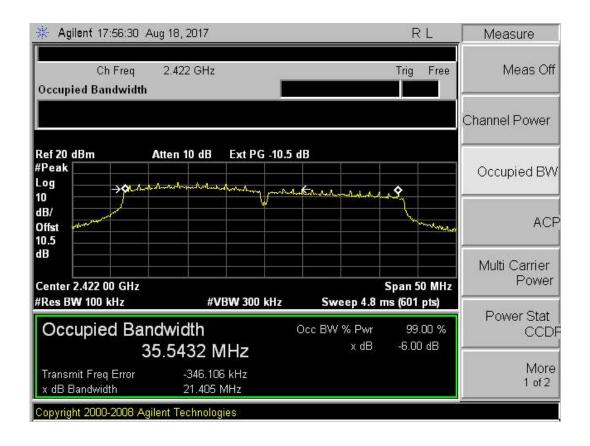

Sheet 31 of 227 Sheets

Sheet 32 of 227 Sheets

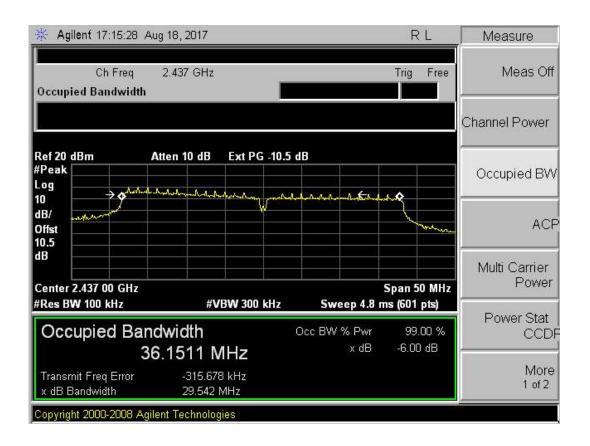
Sheet 33 of 227 Sheets

Sheet 34 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

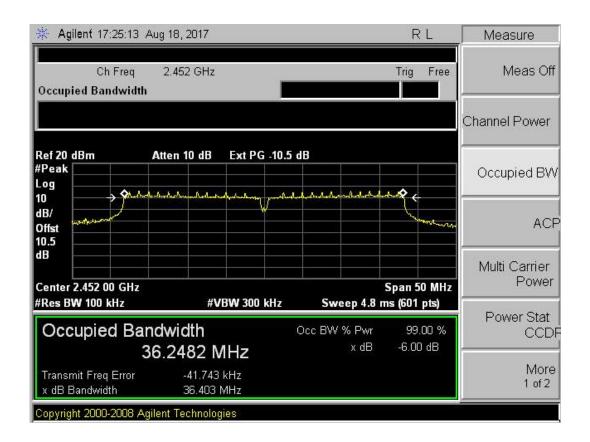
6.4.4 IEEE 802.11n, HT40


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	21.405	500	Page 35
M	29.542	500	Page 36
Н	36.403	500	Page 37


Note:

- 1. Please refer to page 35 to page 37 for chart
- 2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$


Sheet 35 of 227 Sheets

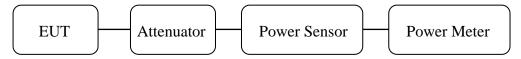
Sheet 36 of 227 Sheets

Sheet 37 of 227 Sheets

Sheet 38 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

7 OUTPUT POWER MEASUREMENT

7.1 Standard Applicable


For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt.

According to 15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v04.
- 2. The test is performed in accordance with FCC KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)
- 3. Position the EUT as shown in figure 2.

Figure 2: Output power measurement configuration.

7.3 Measurement Equipment

Equipment	Manufacturer	Model No.
Power Meter	Agilent	N1912A
Wideband Power Sensor	Agilent	N1922A
Attenuator	WEINSCHEL	56-10

FCC ID:Z3K-J78A620069 Sheet 39 of 227 Sheets

ETC Report No. : 17-06-MAS-031-02

7.4 Measurement Data

7.4.1 IEEE 802.11b

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Maximum Peak	FCC Limit	Chart
	Output Power (dBm)	(dBm)	
L	12.37	30.0	-
M	8.42	30.0	-
Н	8.09	30.0	-

Note:

Sheet 40 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

7.4.2 IEEE 802.11g

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Maximum Peak	FCC Limit	Chart
	Output Power (dBm)	(dBm)	
L	15.22	30.0	-
M	13.91	30.0	-
Н	14.10	30.0	-

Note:

Sheet 41 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

7.4.3 IEEE 802.11n, HT20

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Maximum Peak	FCC Limit	Chart
	Output Power (dBm)	(dBm)	
L	14.11	30.0	-
M	11.75	30.0	-
Н	11.29	30.0	-

Note:

FCC ID:Z3K-J78A620069 Sheet 42 of 227 Sheets

ETC Report No.: 17-06-MAS-031-02

7.4.4 IEEE 802.11n, HT40

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Maximum Peak	FCC Limit	Chart
	Output Power (dBm)	(dBm)	
L	13.05	30	-
M	10.57	30	-
Н	9.53	30	-

Note:

Sheet 43 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

8 POWER DENSITY MEASUREMENT

8.1 Standard Applicable

According to 15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v04.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 1. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set EUT to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 4. Adjust the center frequency of spectrum analyzer on highest level appearing on spectral display within a 300 kHz frequency span.
- 5. Set the spectrum analyzer on a 3 kHz resolution bandwidth and 10 kHz video bandwidth as well as max. hold function, then record the measurement result.
- 6. Repeat above procedures until all measured frequencies were complete.

8.3 Measurement Equipment

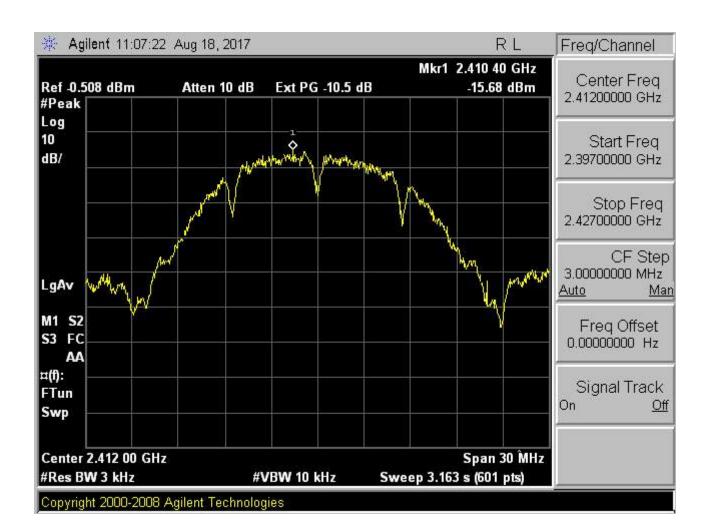
Equipment	Manufacturer	Model No.
Spectrum Analyzer	Agilent	E4446A
Attenuator	WEINSCHEL	56-10

FCC ID:Z3K-J78A620069

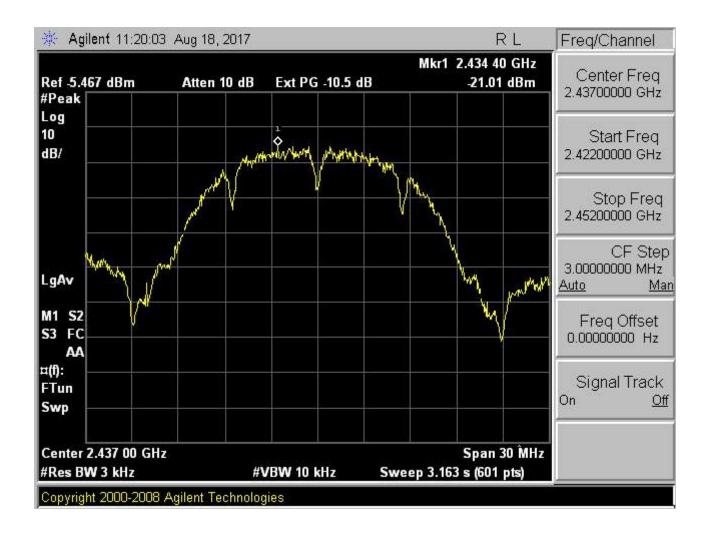
Sheet 44 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

8.4 Measurement Data

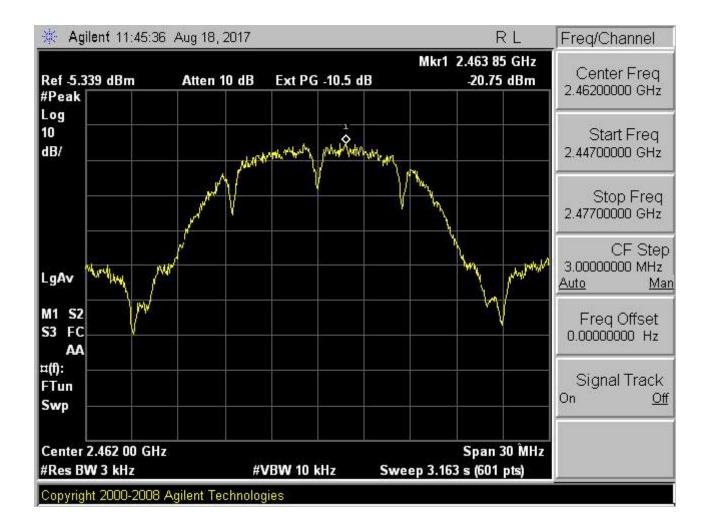
8.4.1 IEEE 802.11b


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Peak Power Spectral Density	FCC Limit	Chart
	(dBm)	(dBm)	
L	-15.68	8	Page 45
M	-21.01	8	Page 46
Н	-20.75	8	Page 47


Note:

- 1. Please refer to page 45 to page 47 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1 GHz \le f \le 18 GHz)$

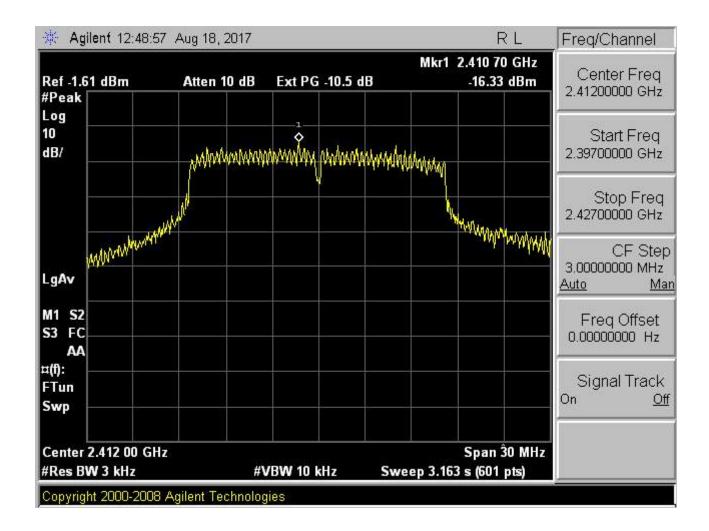

Sheet 45 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Sheet 46 of 227 Sheets

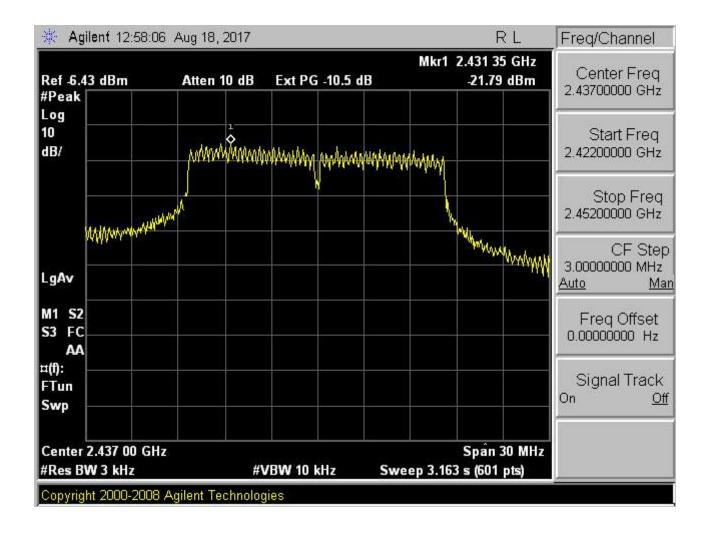
Sheet 47 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Sheet 48 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

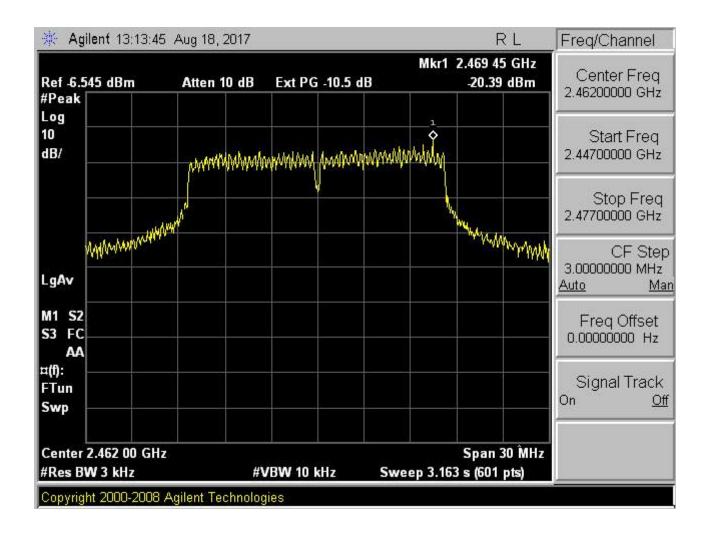
8.4.2 IEEE 802.11g


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Peak Power Spectral Density	FCC Limit	Chart
	(dBm)	(dBm)	
L	-16.33	8	Page 49
M	-21.79	8	Page 50
Н	-20.39	8	Page 51


Note:

- 1. Please refer to page 49 to page 51 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1 GHz \le f \le 18 GHz)$


Sheet 49 of 227 Sheets

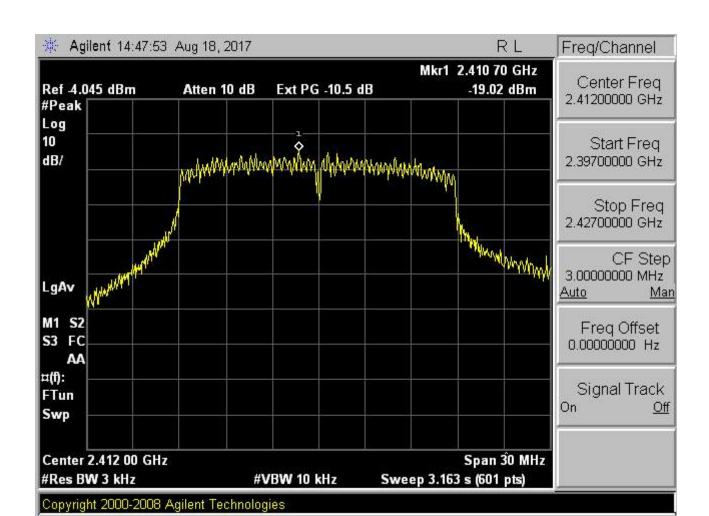
Sheet 50 of 227 Sheets

Sheet 51 of 227 Sheets

Sheet 52 of 227 Sheets

ETC Report No. : 17-06-MAS-031-02

8.4.3 IEEE 802.11n, HT20

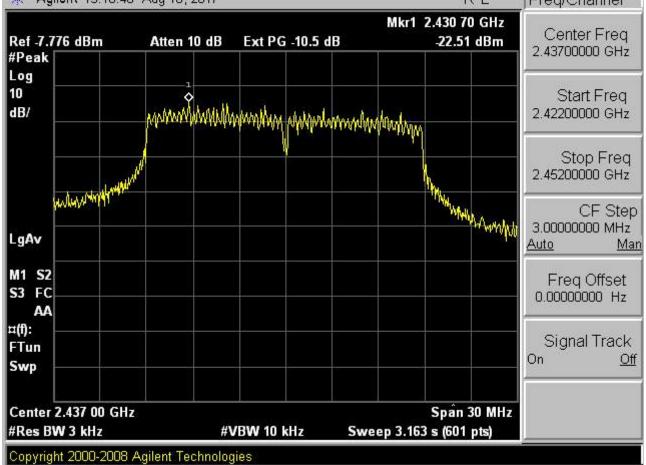

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Peak Power Spectral Density (dBm)	FCC Limit (dBm)	Chart
L	-19.02	8	Page 53
M	-22.51	8	Page 54
Н	-22.95	8	Page 55

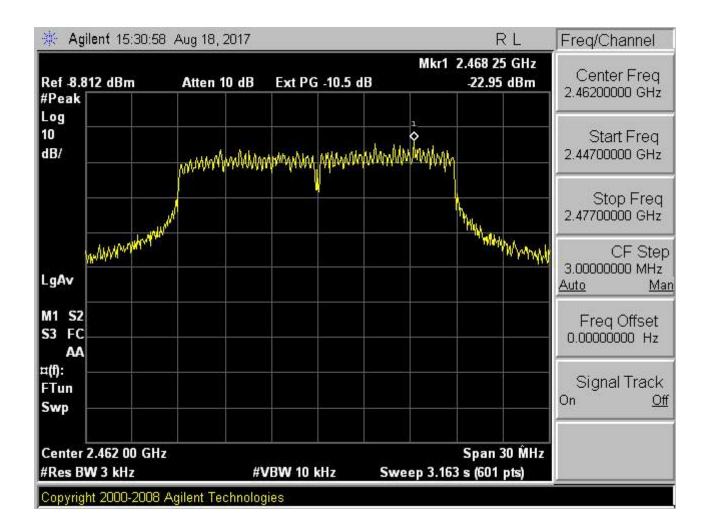
Note:

- 1. Please refer to page 53 to page 55 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1 GHz \le f \le 18 GHz)$

Sheet 53 of 227 Sheets ETC Report No.: 17-06-MAS-031-02


Sheet 54 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Agilent 15:10:40 Aug 18, 2017 R L Freq/Channel


Mkr1 2.430 70 GHz

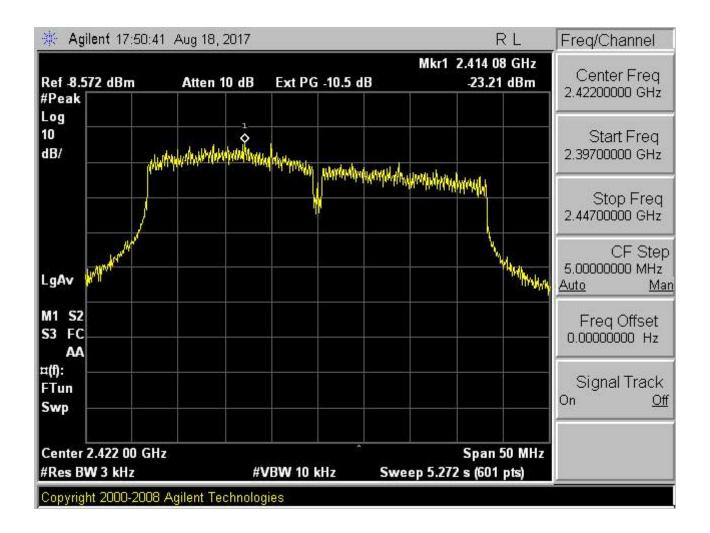
7.776 dBm Atten 10 dB Ext PG -10.5 dB -22.51 dBm

Center Freq

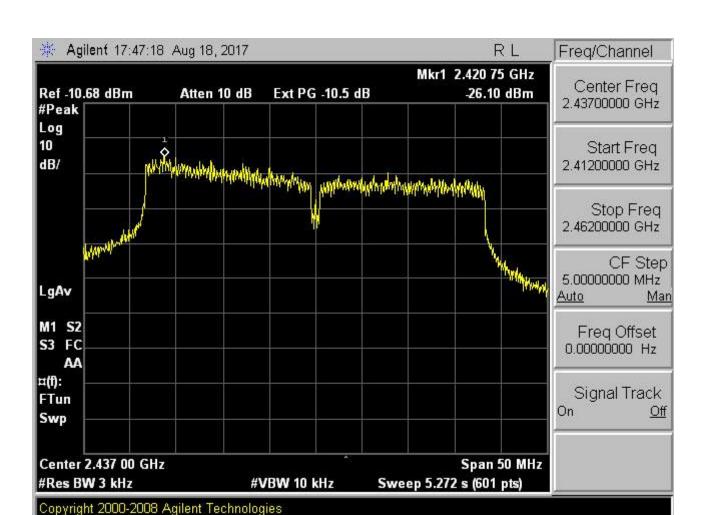
Sheet 55 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Sheet 56 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

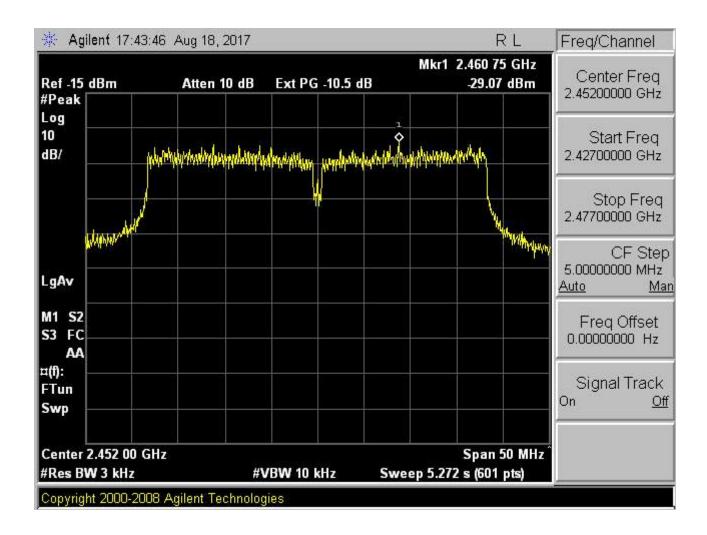
8.4.4 IEEE 802.11n, HT40


Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Peak Power Spectral Density (dBm)	FCC Limit (dBm)	Chart
L	-23.21	8	Page 57
M	-26.10	8	Page 58
Н	-29.07	8	Page 59


Note:

- 1. Please refer to page 57 to page 59 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1 GHz \le f \le 18 GHz)$


Sheet 57 of 227 Sheets

Sheet 58 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Sheet 59 of 227 Sheets

Sheet 60 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

9 SPURIOUS EMISSION - RF CONDUCTED MEASUREMENT

9.1 Standard Applicable

According to 12.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v04.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 1. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 4. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 5. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
 - 6. Repeat above procedures until all measured frequencies were complete.

9.3 Measurement Equipment

Equipment	Manufacturer	Model No.
Spectrum Analyzer	Agilent	E4446A
Attenuator	WEINSCHEL	56-10

Sheet 61 of 227 Sheets

ETC Report No.: 17-06-MAS-031-02

9.4 Measurement Data

9.4.1 IEEE 802.11b

Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Frequency(MHz)	Chart
1	2412	Page 63, Page 65,66
6	2437	Page 67,68
11	2462	Page 64, Page 69,70

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of -band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 63 to page 70 for chart

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

9.4.2 IEEE 802.11g

Channel	Frequency(MHz)	Chart
1	2412	Page 71, Page 73,74
6	2437	Page 75,76
11	2462	Page 72, Page 77,78

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of -band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 71 to page 78 for chart

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

9.4.3 IEEE 802.11n, HT20

Channel	Frequency(MHz)	Chart
1	2412	Page 79, Page 81,82
6	2437	Page 83,84
11	2462	Page 80, Page 85,86

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of –band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 79 to page 86 for chart

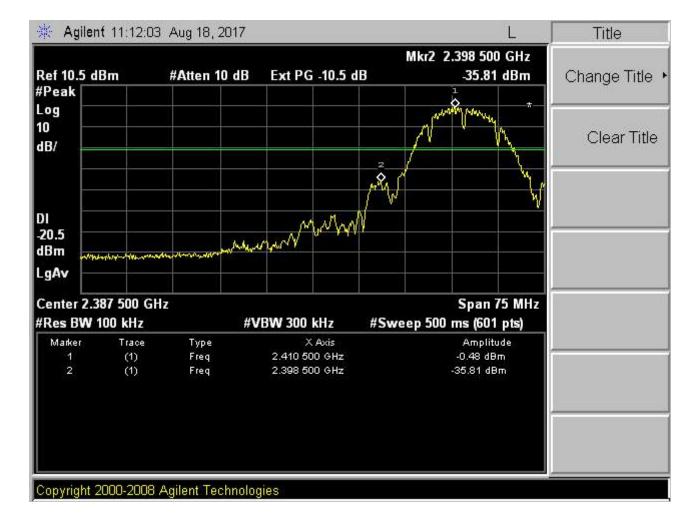
2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

Sheet 62 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

9.4.4 IEEE 802.11n, HT40

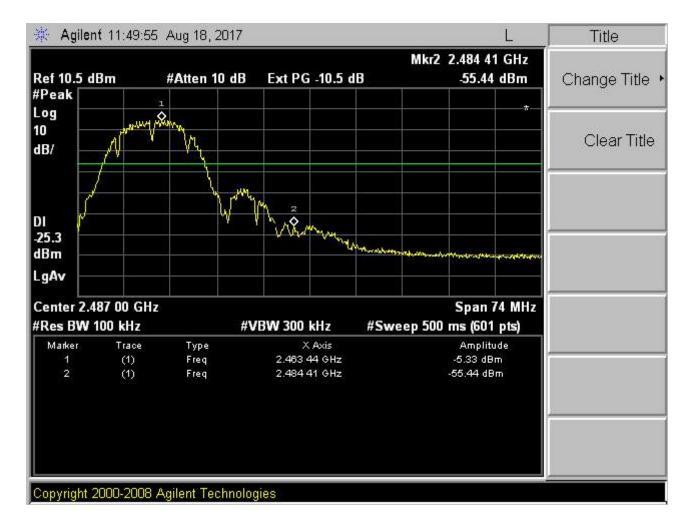
Test Date: Aug. 18, 2017 Temperature: 24°C Humidity: 60%

Channel	Chart
L	Page 87, Page 89,90
M	Page 91,92
Н	Page 88, Page 93,94

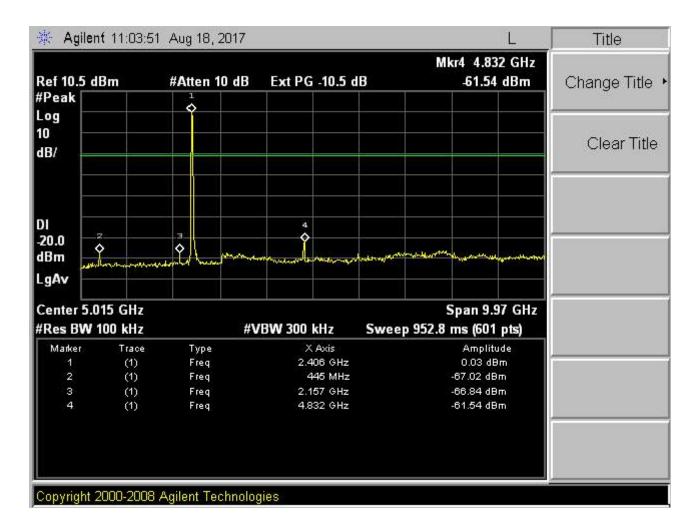

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of -band conducted emissions were more than 20dB below the carrier.

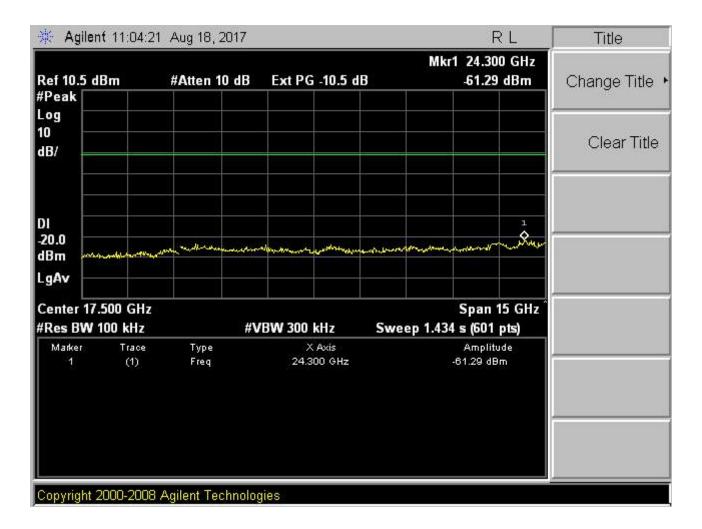
Note: 1. Please refer to page 87 to page 94 for chart


2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

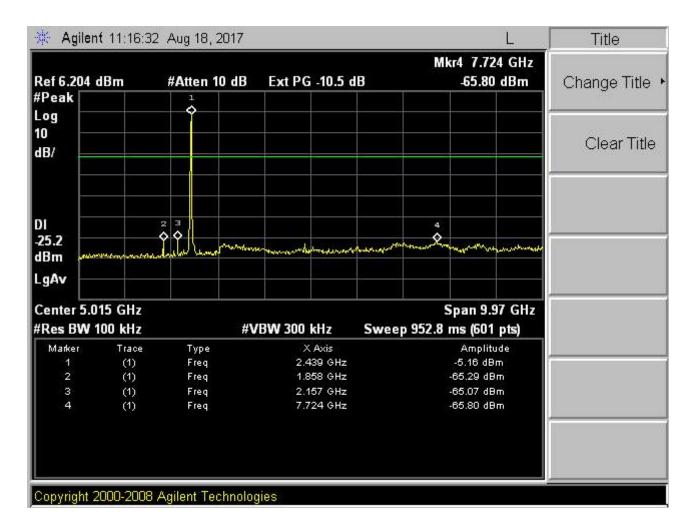
802.11b Low bandedge


Sheet 64 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

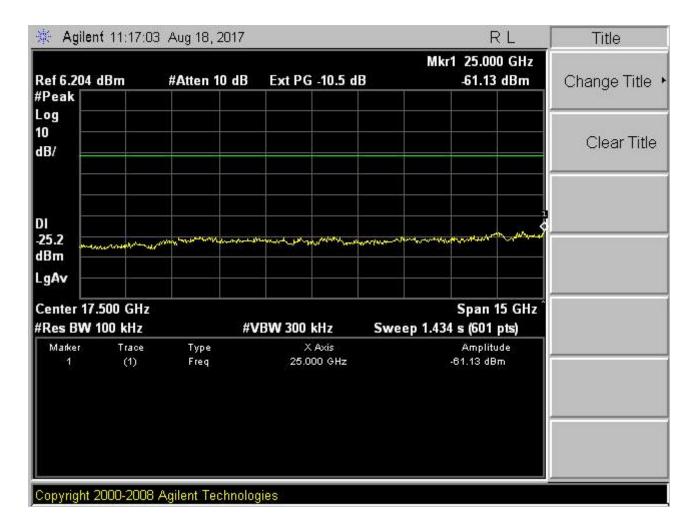
High bandedge


Sheet 65 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

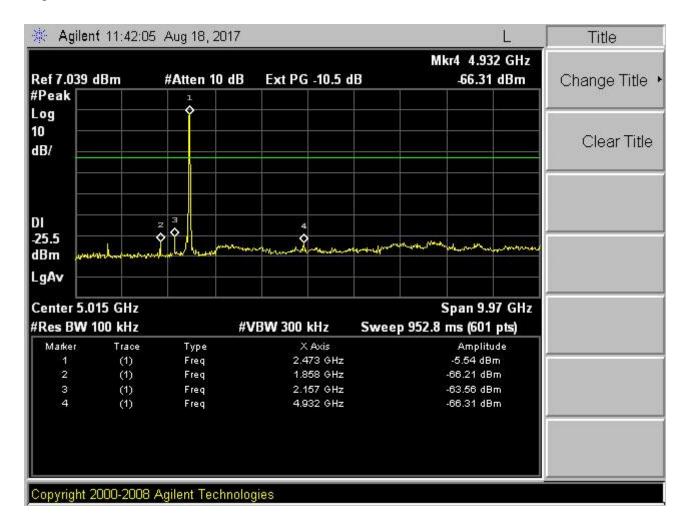
CH Low


Sheet 66 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

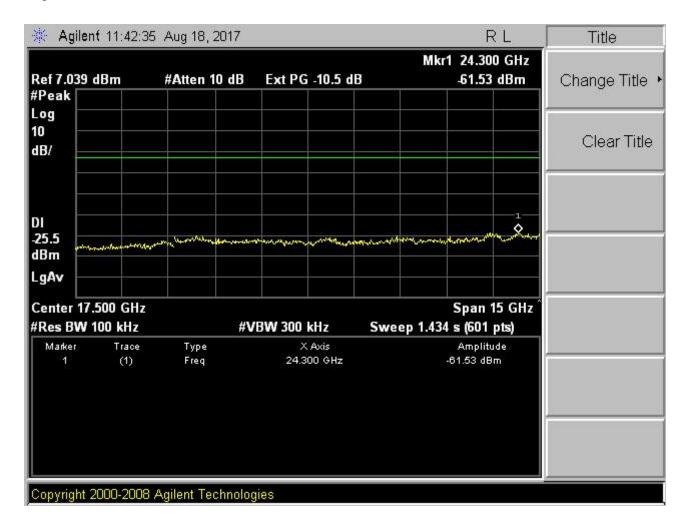
CH Low


Sheet 67 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH Mid


Sheet 68 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH Mid

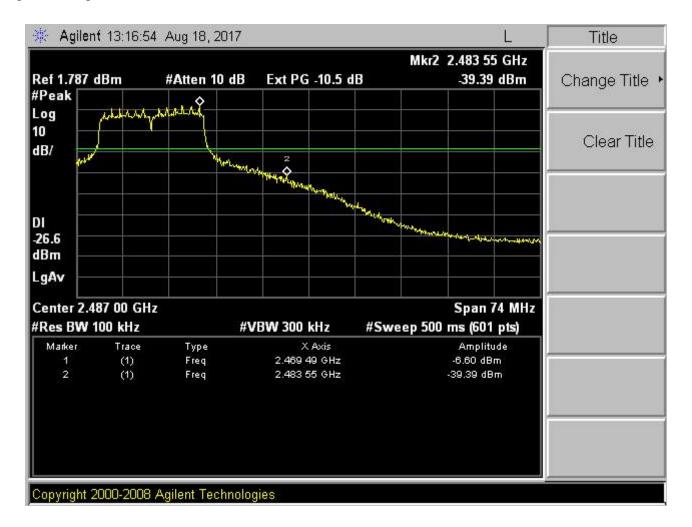

Sheet 69 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH High

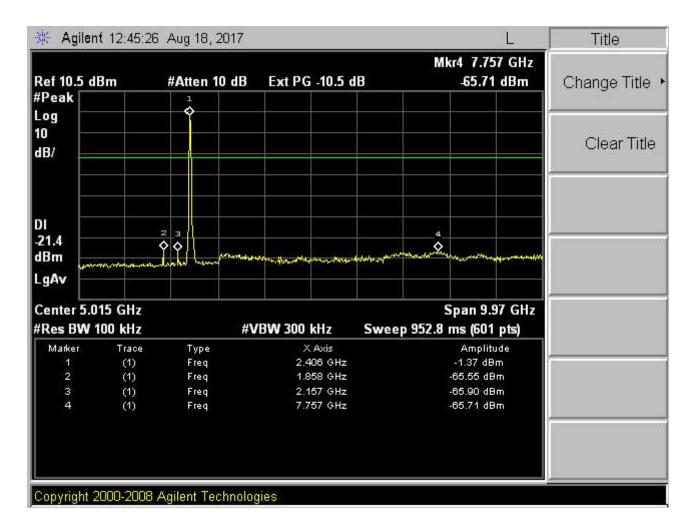


Sheet 70 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

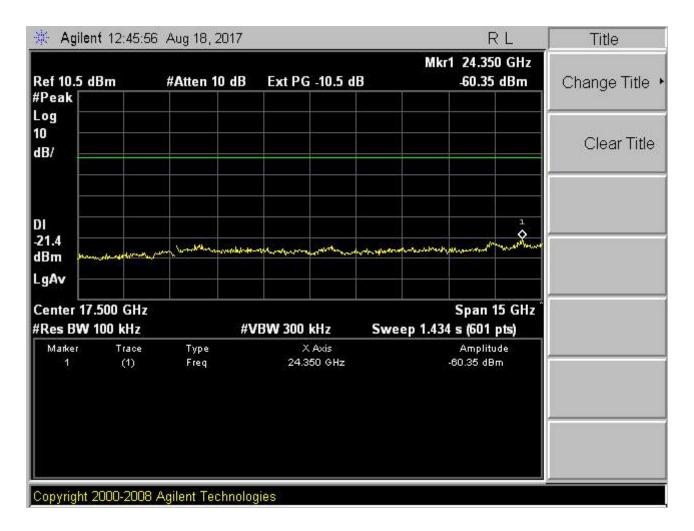
CH High



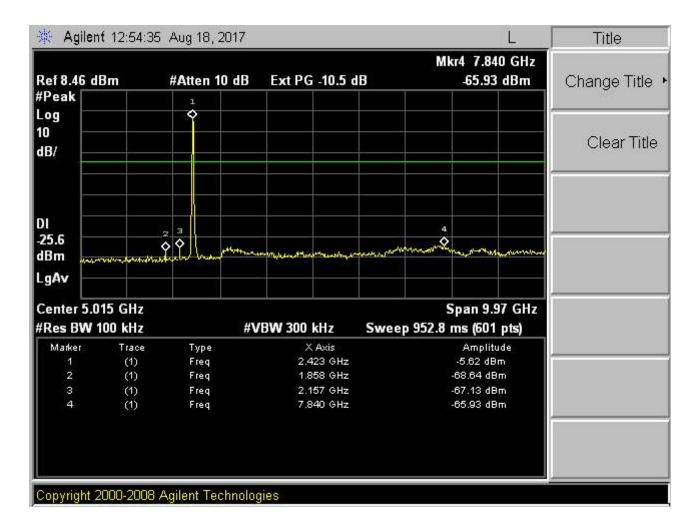
802.11g Low bandedge


Sheet 72 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

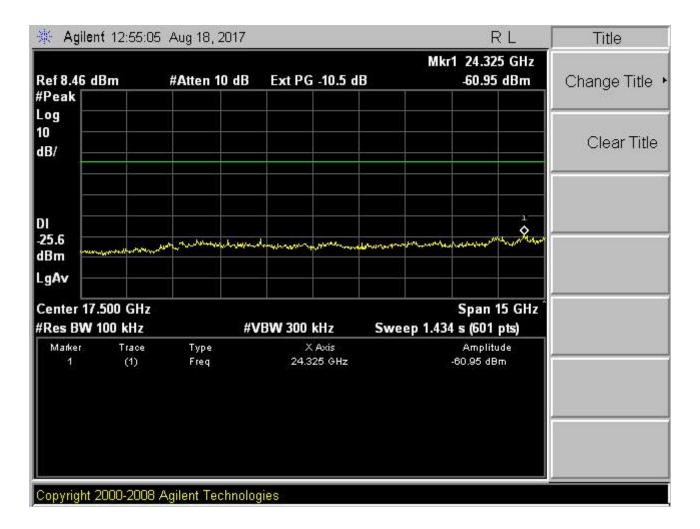
High Bandedge


Sheet 73 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

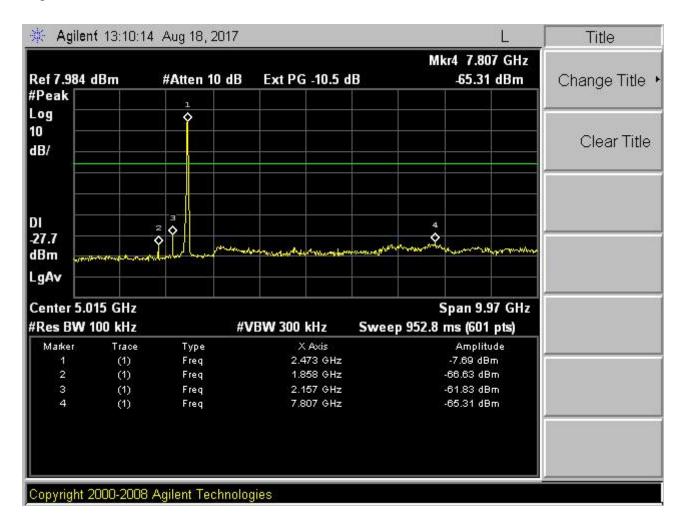
CH Low


Sheet 74 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

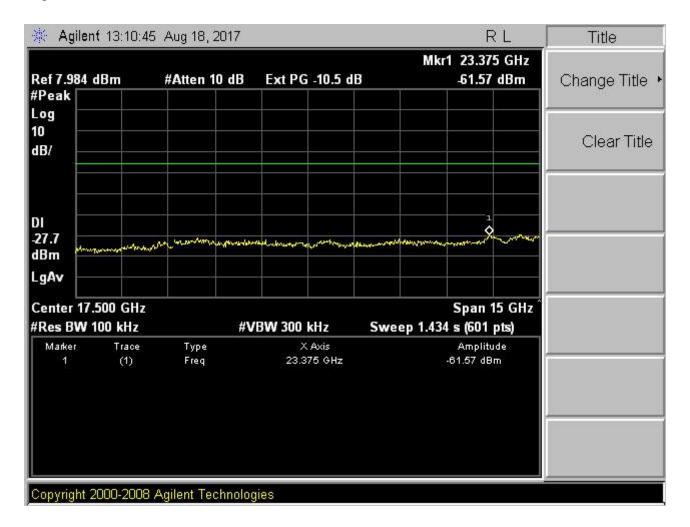
CH Low


Sheet 75 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

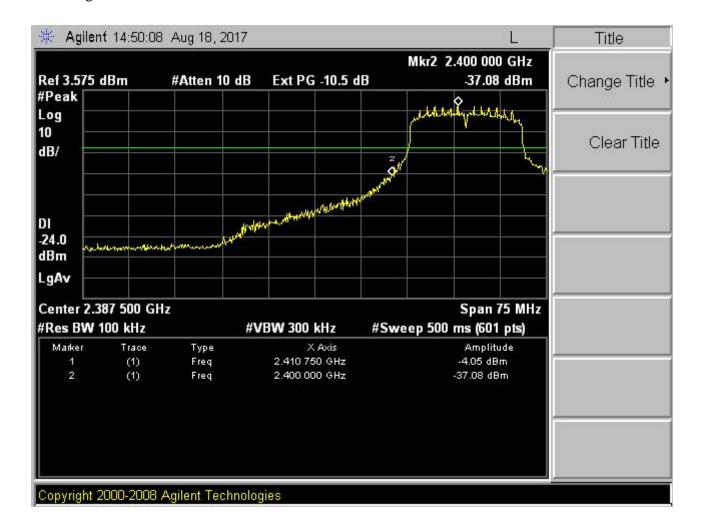
CH Mid


Sheet 76 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH Mid


Sheet 77 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

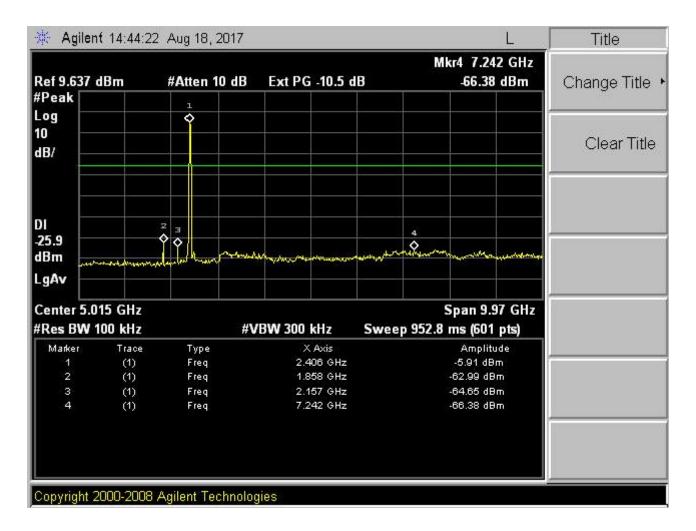
CH High



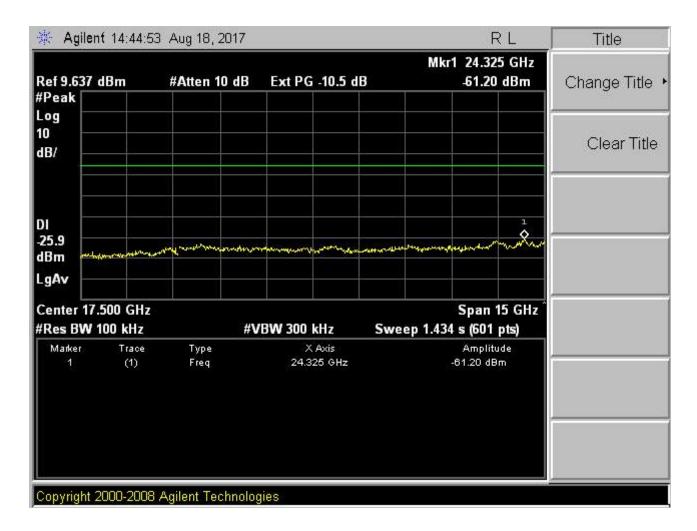
Sheet 78 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH High

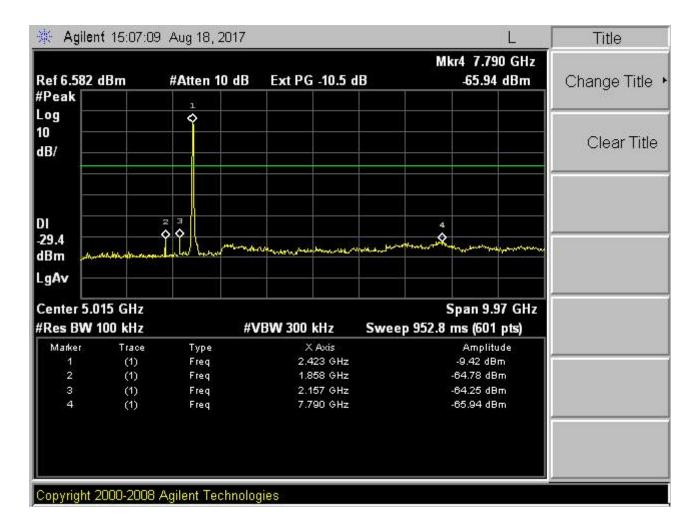
802.11n20 Low bandedge


Sheet 80 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

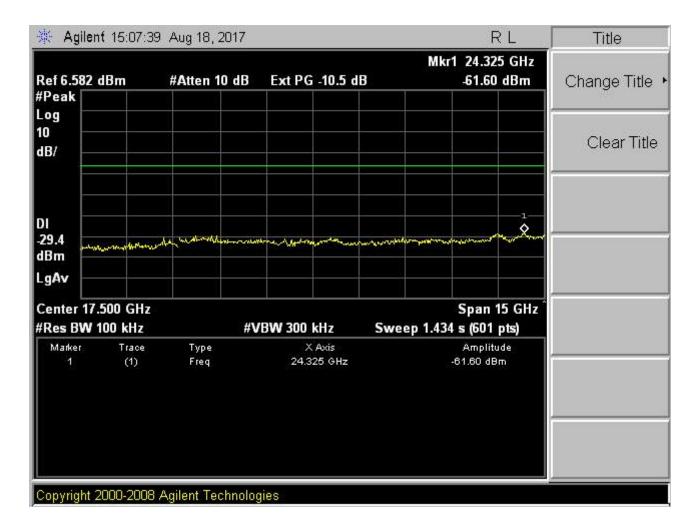
High bandedge


Sheet 81 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

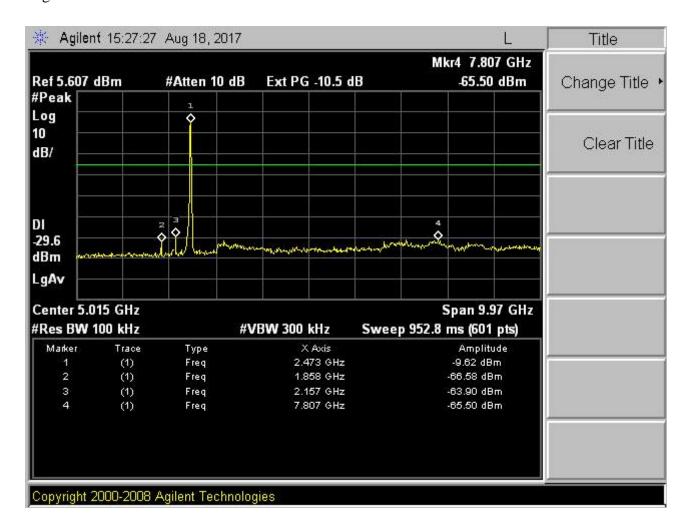
CH Low


Sheet 82 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

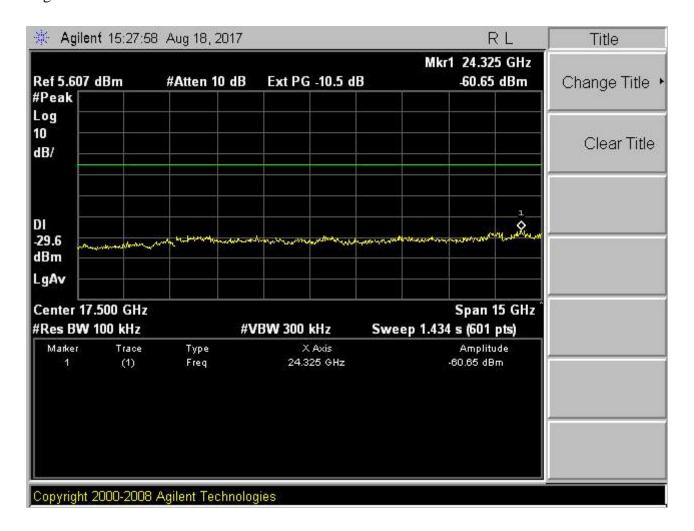
CH Low


Sheet 83 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

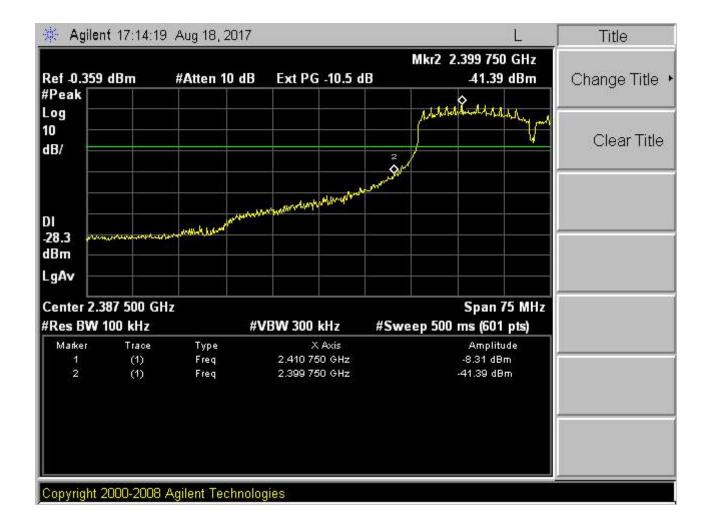
CH Mid


Sheet 84 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH Mid


Sheet 85 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

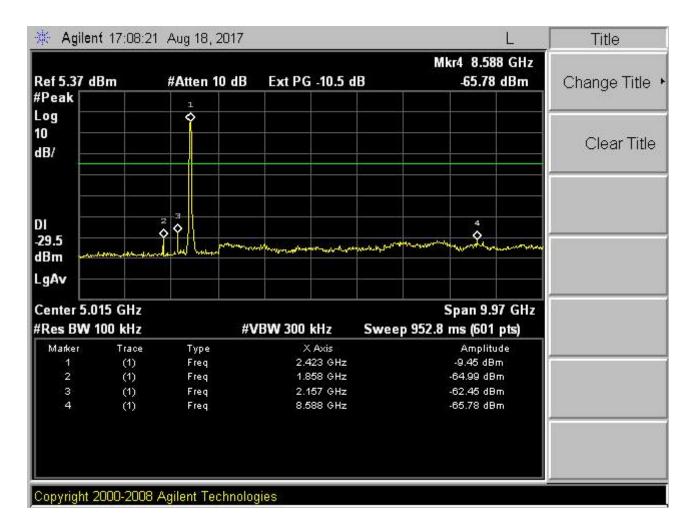
CH High


Sheet 86 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

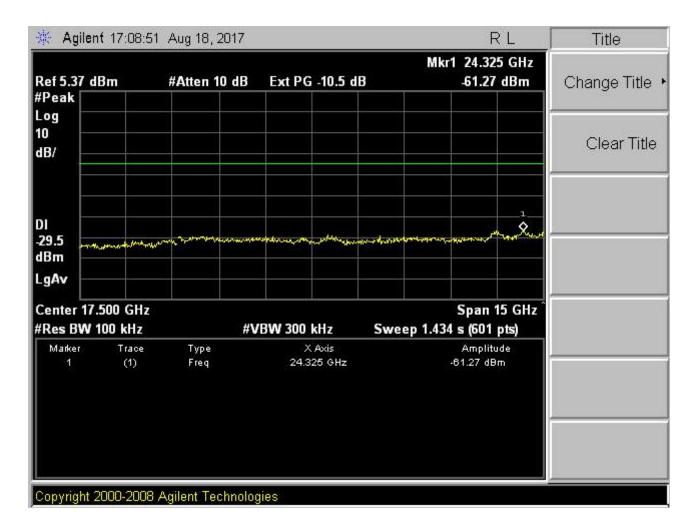
CH High

Sheet 87 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

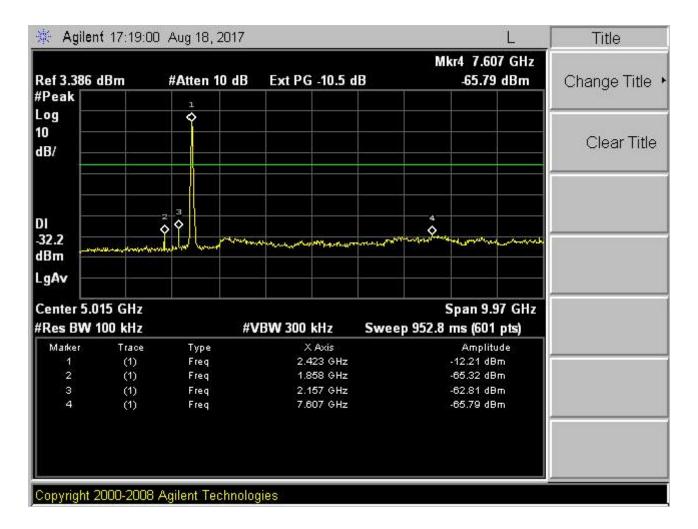
802.11n40 Low bandedge


Sheet 88 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

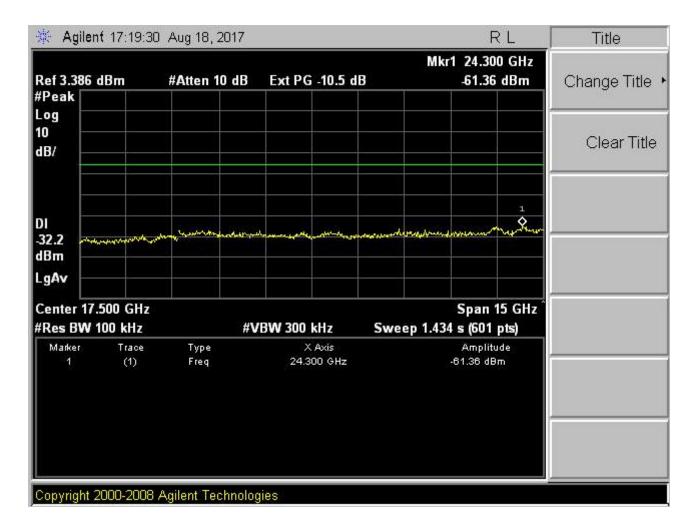
High bandedge


Sheet 89 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

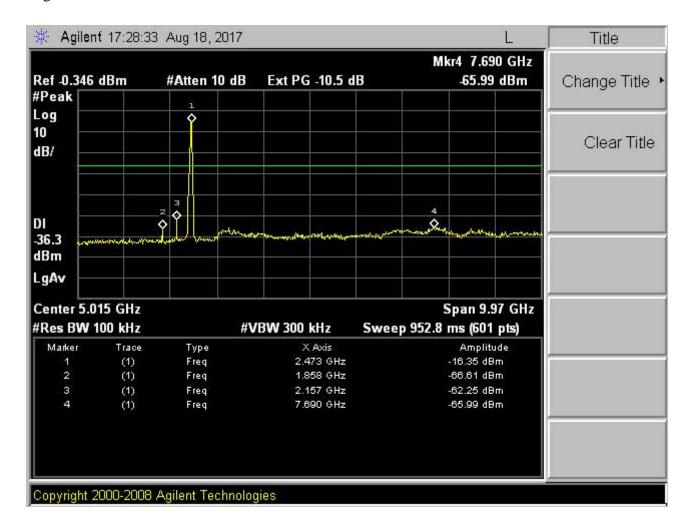
CH Low


Sheet 90 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

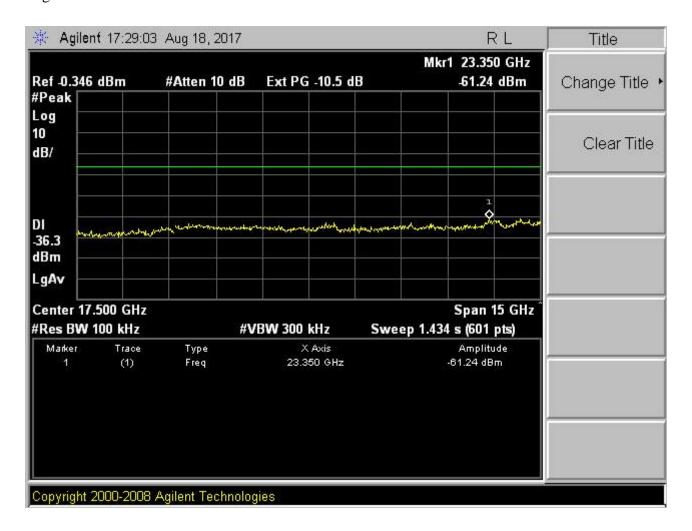
CH Low


Sheet 91 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH Mid


Sheet 92 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH Mid


Sheet 93 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH High

Sheet 94 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

CH High

Sheet 95 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10 RADIATED EMISSION MEASUREMENT

10.1 Standard Applicable

For unintentional radiator, the radiated emission shall comply with §15.109(a).

For intentional radiators, according to §15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with §15.247 (d)

10.2 Measurement Procedure

The testing follows FCC KDB 558074 D01 v04.

A.Preliminary Measurement For Portable Devices.

For movable devices, the following procedure was performed to determine the maximum emission axis of EUT (X,Y and Z axis):

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving number of numbers of n
- 3. Compare the results derived from above two steps. The axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.
- 4. The position in which the maximum noise occurred was "Y axis". (Please see the test setup photos)

B. Final Measurement

- 1. Setup the configuration per figure 2 and 3 for frequencies measured below and above 1 GHz respectively. Turn on EUT and make sure that it is in continuous operating function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a semi-anechoic chamber to determine the accurate frequencies of higher emissions and then each selected frequency is precisely measured. As the same purpose, for emission measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission measured below and above 1 GHz, set the spectrum analyzer on a 120 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 ° to 360 ° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.

Figure 2: Frequencies measured below 1 GHz configuration

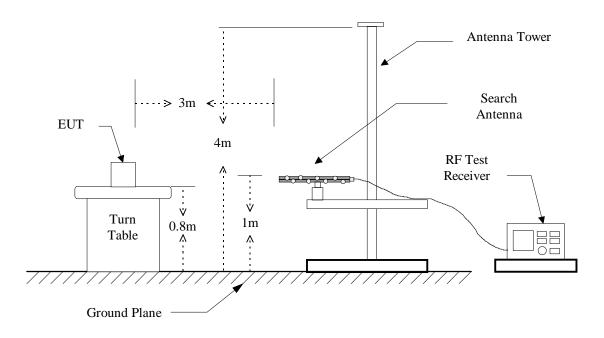
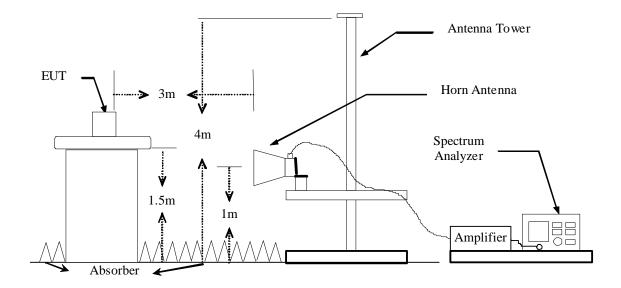



Figure 3: Frequencies measured above 1 GHz configuration

Sheet 97 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.3 Measuring Instrument

The following instrument are used for radiated emissions measurement:

Equipment	Manufacturer	Model No.
EMI Receiver	R&S	ESCI
Spectrum Analyzer	R&S	FSU46
Horn Antenna	EMCO	3115
BiLog Antenna	ETC	MCTD 2786B
Horn Antenna	EMCO	3116
Preamplifier	Hewlett-Packard	8449B
PRE-Amplifier	Agilent	8447D
Loop Antenna	EMCO	6512

Measuring instrument setup in measured frequency band when specified detector function is used:

Frequency Band (MHz)	Instrument	Function	Resolution Bandwidth	Video Bandwidth
, , ,	RF Test Receiver	Quasi-Peak	120 kHz	300 kHz
30 to 1000	Spectrum Analyzer	Peak	120 kHz	300 kHz
41 1000	Spectrum Analyzer	Peak	1 MHz	1 MHz
Above 1000	Spectrum Analyzer	Average	1 MHz	10 Hz

FCC ID:Z3K-J78A620069 Sheet 98 of 227 Sheets

ETC Report No. : 17-06-MAS-031-02

10.4 Radiated Emission Data

10.4.1 Harmonic

10.4.1.1 IEEE 802.11b

Test Date: Aug. 14, 2017 Temperature: 21°C Humidity: 63%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			0.0			74.0	54.0	
4824.0000	V			0.0			74.0	54.0	
7236.0000	Н			3.4			74.0	54.0	
7236.0000	V			3.4			74.0	54.0	
9648.0000	Н			5.4			74.0	54.0	
9648.0000	V			5.4			74.0	54.0	
12060.0000	Н			8.2			74.0	54.0	
12060.0000	V			8.2			74.0	54.0	
14472.0000	Н			13.6			74.0	54.0	
14472.0000	V			13.6			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 99 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н	50.2		0.2	50.4		74.0	54.0	-3.6
4874.0000	V	52.8	46.6	0.2	53.0	46.8	74.0	54.0	-7.2
7311.0000	Н			3.6			74.0	54.0	
7311.0000	V			3.6			74.0	54.0	
9748.0000	Н			5.5			74.0	54.0	
9748.0000	V			5.5			74.0	54.0	
12185.0000	Н			8.3			74.0	54.0	
12185.0000	V			8.3			74.0	54.0	
14622.0000	Н			12.9			74.0	54.0	
14622.0000	V			12.9			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 100 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4924.0000	Н	50.8		0.3	51.1		74.0	54.0	-2.9
4924.0000	V	53.6	47.6	0.3	53.9	47.9	74.0	54.0	-6.1
7386.0000	Н			3.8			74.0	54.0	
7386.0000	V			3.8			74.0	54.0	
9848.0000	Н			5.6			74.0	54.0	
9848.0000	V			5.6			74.0	54.0	
12310.0000	Н			8.4			74.0	54.0	
12310.0000	V			8.4			74.0	54.0	
14772.0000	Н			12.0			74.0	54.0	
14772.0000	V			12.0			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 101 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.1.2 IEEE 802.11g

Test Date: Aug. 14, 2017 Temperature: 21°C Humidity: 63%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			0.0			74.0	54.0	
4824.0000	V			0.0			74.0	54.0	
7236.0000	Н			3.4			74.0	54.0	
7236.0000	V			3.4			74.0	54.0	
9648.0000	Н			5.4			74.0	54.0	
9648.0000	V			5.4			74.0	54.0	
12060.0000	Н			8.2			74.0	54.0	
12060.0000	V			8.2			74.0	54.0	
14472.0000	Н			13.6			74.0	54.0	
14472.0000	V			13.6			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 102 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			0.2			74.0	54.0	
4874.0000	V	52.2	38.5	0.2	52.4	38.7	74.0	54.0	-15.3
7311.0000	Н			3.6			74.0	54.0	
7311.0000	V			3.6			74.0	54.0	
9748.0000	Н			5.5			74.0	54.0	
9748.0000	V			5.5			74.0	54.0	
12185.0000	Н			8.3			74.0	54.0	
12185.0000	V			8.3			74.0	54.0	
14622.0000	Н			12.9			74.0	54.0	
14622.0000	V			12.9			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 103 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Result Factor (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)	
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4924.0000	Н			0.3			74.0	54.0	
4924.0000	V	53.3	38.6	0.3	53.6	38.9	74.0	54.0	-15.1
7386.0000	Н			3.8			74.0	54.0	
7386.0000	V			3.8			74.0	54.0	
9848.0000	Н			5.6			74.0	54.0	
9848.0000	V			5.6			74.0	54.0	
12310.0000	Н			8.4			74.0	54.0	
12310.0000	V			8.4			74.0	54.0	
14772.0000	Н			12.0			74.0	54.0	
14772.0000	V			12.0			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 104 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.1.3 IEEE 802.11n, HT20

Test Date: Aug. 14, 2017 Temperature: 21°C Humidity: 63%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			0.0			74.0	54.0	
4824.0000	V			0.0			74.0	54.0	
7236.0000	Н			3.4			74.0	54.0	
7236.0000	V			3.4			74.0	54.0	
9648.0000	Н			5.4			74.0	54.0	
9648.0000	V			5.4			74.0	54.0	
12060.0000	Н			8.2			74.0	54.0	
12060.0000	V			8.2			74.0	54.0	
14472.0000	Н			13.6			74.0	54.0	
14472.0000	V			13.6			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 105 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			0.2			74.0	54.0	
4874.0000	V	52.7	37.0	0.2	52.9	37.2	74.0	54.0	-16.8
7311.0000	Н			3.6			74.0	54.0	
7311.0000	V			3.6			74.0	54.0	
9748.0000	Н			5.5			74.0	54.0	
9748.0000	V			5.5			74.0	54.0	
12185.0000	Н			8.3			74.0	54.0	
12185.0000	V			8.3			74.0	54.0	
14622.0000	Н			12.9			74.0	54.0	
14622.0000	V			12.9			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 106 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4924.0000	Н			0.3			74.0	54.0	
4924.0000	V	52.4	37.1	0.3	52.7	37.4	74.0	54.0	-16.6
7386.0000	Н			3.8			74.0	54.0	
7386.0000	V			3.8			74.0	54.0	
9848.0000	Н			5.6			74.0	54.0	
9848.0000	V			5.6			74.0	54.0	
12310.0000	Н			8.4			74.0	54.0	
12310.0000	V			8.4			74.0	54.0	
14772.0000	Н			12.0			74.0	54.0	
14772.0000	V			12.0			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 107 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.1.4 IEEE 802.11n, HT40

Test Date: Aug. 14, 2017 Temperature: 21°C Humidity: 63%

a) Channel 1

Fundamental Frequency: 2422 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4844.0000	Н			0.1			74.0	54.0	
4844.0000	V			0.1			74.0	54.0	
7266.0000	Н			3.5			74.0	54.0	
7266.0000	V			3.5			74.0	54.0	
9688.0000	Н			5.4			74.0	54.0	
9688.0000	V			5.4			74.0	54.0	
12110.0000	Н			8.2			74.0	54.0	
12110.0000	V			8.2			74.0	54.0	
14532.0000	Н			13.5			74.0	54.0	
14532.0000	V			13.5			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 108 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			0.2			74.0	54.0	
4874.0000	V			0.2			74.0	54.0	
7311.0000	Н			3.6			74.0	54.0	
7311.0000	V			3.6			74.0	54.0	
9748.0000	Н			5.5			74.0	54.0	
9748.0000	V			5.5			74.0	54.0	
12185.0000	Н			8.3			74.0	54.0	
12185.0000	V			8.3			74.0	54.0	
14622.0000	Н			12.9			74.0	54.0	
14622.0000	V			12.9			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected. detected.

Sheet 109 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

c) Channel 11

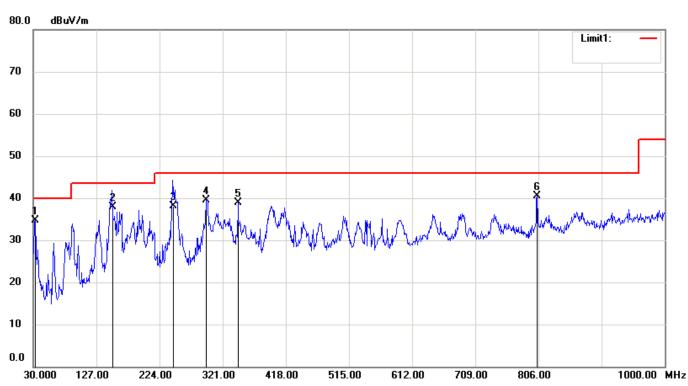
Fundamental Frequency: 2452 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4904.0000	Н			0.2			74.0	54.0	
4904.0000	V			0.2			74.0	54.0	
7356.0000	Н			3.7			74.0	54.0	
7356.0000	V			3.7			74.0	54.0	
9808.0000	Н			5.5			74.0	54.0	
9808.0000	V			5.5			74.0	54.0	
12260.0000	Н			8.3			74.0	54.0	
12260.0000	V			8.3			74.0	54.0	
14712.0000	Н			12.4			74.0	54.0	
14712.0000	V			12.4			74.0	54.0	

Note:

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

Sheet 110 of 227 Sheets ETC Report No.: 17-06-MAS-031-02


10.4.2 Spurious Emission

10.4.2.1 30MHz to 1GHz

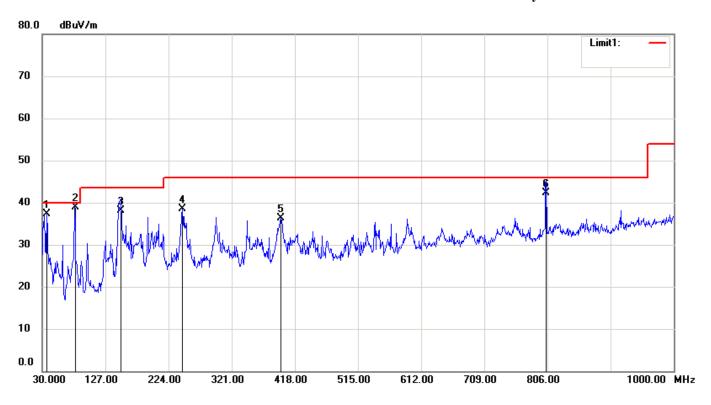
File: 17-06-MAS- Data: #1 Date: 2017/8/14 Temperature: $21 \,^{\circ}$ C

031_B

Time: PM 03:10:03 Humidity: 63 %

Condition: FCC Polarization: Horizontal EUT: Distance: 3m

Model: Test Mode: Note:


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)
1	32.9100	37.87	peak	-3.11	34.76	40.00	-5.24
2	151.3000	45.74	QP	-7.79	37.95	43.50	-5.55
3	244.8500	43.94	QP	-5.74	38.20	46.00	-7.80
4	295.7800	42.95	peak	-3.45	39.50	46.00	-6.50
5	344.2800	41.42	peak	-2.46	38.96	46.00	-7.04
6	804.0600	35.51	peak	4.96	40.47	46.00	-5.53

Sheet 111 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

File: 17-06-MAS- Data: #2 Date: 2017/8/14 Temperature: 21 °C

031_B

Time: PM 03:12:35 Humidity: 63 %

Condition: FCC Polarization: Vertical EUT: Oistance: 3m

Model: Test Mode: Note:

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV/m)		Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)
1	36.7900	42.44	QP	-5.18	37.26	40.00	-2.74
2	79.9945	52.37	QP	-13.37	39.00	40.00	-1.00
3	150.2100	45.86	QP	-7.76	38.10	43.50	-5.40
4	245.3400	44.09	peak	-5.67	38.42	46.00	-7.58
5	396.6600	37.95	peak	-1.68	36.27	46.00	-9.73
6	803.2310	37.37	QP	4.93	42.30	46.00	-3.70

Sheet 112 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.2.2 above 1GHz

10.4.2.2.1 IEEE 802.11b

10.4.2.2.1.1 Fundamental Frequency: 2412 MHz

Frequency	Ant Pol	Rea (dBuV/	ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	nit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1042.6282	V	53.0		-13.10	39.9		74	54	-14.1
1044.8717	Н	54.1		-13.10	41.0		74	54	-13.0
1134.6153	V	52.4		-12.60	39.8		74	54	-14.2
1177.2436	V	53.0		-12.40	40.6		74	54	-13.4
1210.8974	V	52.4		-12.20	40.2		74	54	-13.8
1293.9103	V	51.7		-11.80	39.9		74	54	-14.1
1504.8077	V	59.0		-10.70	48.3		74	54	-5.7
1511.5386	Н	61.1		-10.70	50.4		74	54	-3.6
2112.8204	Н	49.9		-7.30	42.6		74	54	-11.4

10.4.2.2.1.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Liı (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1040.3846	V	53.2		-13.10	40.1		74	54	-13.9
1042.6282	Н	53.7		-13.10	40.6		74	54	-13.4
1121.1538	V	52.5		-12.70	39.8		74	54	-14.2
1143.5896	V	53.1		-12.60	40.5		74	54	-13.5
1462.1794	Н	58.1		-10.90	47.2		74	54	-6.8
1502.5641	V	58.1		-10.70	47.4		74	54	-6.6
2112.8204	Н	49.6		-7.30	42.3		74	54	-11.7
2112.8204	V	49.6		-7.30	42.3		74	54	-11.7
2155.4486	Н	50.3		-7.10	43.2		74	54	-10.8
2682.4295	Н	49.9		-5.60	44.3		74	54	-9.7

Sheet 113 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.4.2.2.1.3 Fundamental Frequency: 2462 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1031.4103	V	52.3		-13.10	39.2		74	54	-14.8
1044.8717	Н	52.2		-13.10	39.1		74	54	-14.9
1100.9614	V	50.3		-12.80	37.5		74	54	-16.5
1139.1025	V	53.9		-12.60	41.3		74	54	-12.7
1179.4872	V	51.7		-12.40	39.3		74	54	-14.7
1385.8974	V	51.7		-11.30	40.4		74	54	-13.6
1464.4230	Н	58.1		-10.90	47.2		74	54	-6.8
1498.0770	Н	56.2		-10.70	45.5		74	54	-8.5
1502.5641	V	56.5		-10.70	45.8		74	54	-8.2

- Note: 1. Place of Measurement: Measuring site of the ETC.
 - 2. Item of margin shown in above table refer to average limit.
 - 3. Remark "---" means that the emissions level is too low to be measured.
 - 4. If the peak result is under the average limit, that is deemed to meet the average limit.

 - 5. If there is only peak result, item "Margin" referred to "peak result average limit".6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
 - 7. The estimated measurement uncertainty of the result measurement is
 - $\pm 4.2 dB (9kHz \le f \le 30MHz)$
 - ± 4.6 dB (30MHz $\leq f$ <300MHz).
 - ± 4.4 dB (300MHz $\leq f$ <1000MHz).
 - ± 2.9 dB (1GHz $\le f<18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).
 - 8. Please refer to page 120 to page 137 for chart.

Sheet 114 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.2.2.2 IEEE 802.11g

10.4.2.2.2.1 Fundamental Frequency: 2412 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1044.8717	V	52.2		-13.10	39.1		74	54	-14.9
1047.1153	Н	54.1		-13.10	41.0		74	54	-13.0
1121.1538	V	53.7		-12.70	41.0		74	54	-13.0
1298.3974	V	51.4		-11.80	39.6		74	54	-14.4
1484.6153	Н	56.8		-10.80	46.0		74	54	-8.0
1504.8077	V	57.3		-10.70	46.6		74	54	-7.4
2112.8204	Н	50.3		-7.30	43.0		74	54	-11.0
2112.8204	V	49.4		-7.30	42.1		74	54	-11.9
2757.0280	Н	49.2		-5.30	43.9		74	54	-10.1

10.4.2.2.2.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Liı (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1040.3846	Н	52.9	-	-13.10	39.8		74	54	-14.2
1044.8717	V	52.5	-	-13.10	39.4		74	54	-14.6
1096.4744	V	54.0		-12.80	41.2		74	54	-12.8
1136.8590	V	52.1		-12.60	39.5		74	54	-14.5
1284.9358	V	51.2		-11.80	39.4		74	54	-14.6
1468.9103	Н	56.5		-10.90	45.6		74	54	-8.4
1504.8077	V	58.3		-10.70	47.6		74	54	-6.4
2112.8204	Н	49.5		-7.30	42.2		74	54	-11.8
2112.8204	V	49.3		-7.30	42.0		74	54	-12.0
2229.4872	Н	49.3		-7.00	42.3		74	54	-11.7
2707.2957	Н	48.9		-5.50	43.4		74	54	-10.6

Sheet 115 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.4.2.2.2.3 Fundamental Frequency: 2462 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1031.4103	V	52.1		-13.10	39.0		74	54	-15.0
1044.8717	Н	53.1		-13.10	40.0		74	54	-14.0
1098.7180	V	51.6		-12.80	38.8		74	54	-15.2
1145.8333	V	53.4		-12.60	40.8		74	54	-13.2
1464.4230	V	54.6		-10.90	43.7		74	54	-10.3
1477.8846	Н	56.8		-10.90	45.9		74	54	-8.1
1489.1024	V	56.0		-10.80	45.2		74	54	-8.8
1504.8077	V	56.3		-10.70	45.6		74	54	-8.4
2112.8204	Н	50.7		-7.30	43.4		74	54	-10.6

- Note: 1. Place of Measurement: Measuring site of the ETC.
 - 2. Item of margin shown in above table refer to average limit.
 - 3. Remark "---" means that the emissions level is too low to be measured.
 - 4. If the peak result is under the average limit, that is deemed to meet the average limit.

 - 5. If there is only peak result, item "Margin" referred to "peak result average limit".6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
 - 7. The estimated measurement uncertainty of the result measurement is
 - $\pm 4.2 dB (9kHz \le f \le 30MHz)$
 - ± 4.6 dB (30MHz $\leq f$ <300MHz).
 - ± 4.4 dB (300MHz $\leq f$ <1000MHz).
 - ± 2.9 dB (1GHz $\le f<18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).
 - 8. Please refer to page 138 to page 155 for chart.

Sheet 116 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.2.2.3 IEEE 802.11n, HT20

10.4.2.2.3.1 Fundamental Frequency: 2412 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1031.4103	Н	54.0		-13.10	40.9		74	54	-13.1
1031.4103	V	52.5	-	-13.10	39.4		74	54	-14.6
1042.6282	V	53.0	-	-13.10	39.9		74	54	-14.1
1044.8717	Н	54.9		-13.10	41.8		74	54	-12.2
1094.2308	V	52.4		-12.80	39.6		74	54	-14.4
1141.3461	V	53.5		-12.60	40.9		74	54	-13.1
1300.6410	V	51.5		-11.80	39.7		74	54	-14.3
1462.1794	Н	58.0		-10.90	47.1		74	54	-6.9
1511.5385	V	57.2		-10.70	46.5		74	54	-7.5
1572.1153	Н	51.1		-10.30	40.8		74	54	-13.2
2732.1620	Н	49.5		-5.40	44.1		74	54	-9.9

10.4.2.2.3.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Liı (dBuV/	mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1031.4103	Н	53.7		-13.10	40.6		74	54	-13.4
1042.6282	V	53.3		-13.10	40.2		74	54	-13.8
1098.7180	V	51.0		-12.80	38.2		74	54	-15.8
1134.6153	V	52.2		-12.60	39.6		74	54	-14.4
1161.5385	Н	51.1		-12.50	38.6		74	54	-15.4
1199.6793	Н	51.1		-12.30	38.8		74	54	-15.2
1269.2308	Н	50.6		-11.90	38.7		74	54	-15.3
1462.1794	Н	58.5		-10.90	47.6		74	54	-6.4
1507.0513	V	56.3		-10.70	45.6		74	54	-8.4
2112.8204	Н	49.3		-7.30	42.0		74	54	-12.0
2112.8204	V	50.1		-7.30	42.8		74	54	-11.2
2707.2957	V	48.6		-5.50	43.1		74	54	-10.9

Sheet 117 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.4.2.2.3.3 Fundamental Frequency: 2462 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1002.2436	Н	52.3		-13.30	39.0		74	54	-15.0
1031.4103	Н	53.1		-13.10	40.0		74	54	-14.0
1042.6282	V	52.5		-13.10	39.4		74	54	-14.6
1136.8590	V	52.6		-12.60	40.0		74	54	-14.0
1271.4744	V	51.4		-11.90	39.5		74	54	-14.5
1305.1282	V	51.1		-11.70	39.4		74	54	-14.6
1462.1794	Н	58.9		-10.90	48.0		74	54	-6.0
1483.8460	Н	50.4		-10.80	39.6		74	54	-14.4
1504.8077	V	57.1		-10.70	46.4		74	54	-7.6
2732.1620	Н	49.3		-5.40	43.9		74	54	-10.1
2732.1620	V	48.8		-5.40	43.4		74	54	-10.6

- Note: 1. Place of Measurement: Measuring site of the ETC.
 - 2. Item of margin shown in above table refer to average limit.
 - 3. Remark "---" means that the emissions level is too low to be measured.
 - 4. If the peak result is under the average limit, that is deemed to meet the average limit.

 - 5. If there is only peak result, item "Margin" referred to "peak result average limit".6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
 - 7. The estimated measurement uncertainty of the result measurement is
 - $\pm 4.2 dB (9kHz \le f \le 30MHz)$
 - ± 4.6 dB (30MHz $\leq f$ <300MHz).
 - ± 4.4 dB (300MHz $\leq f$ <1000MHz).
 - ± 2.9 dB (1GHz $\le f<18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).
 - 8. Please refer to page 156 to page 173 for chart.

Sheet 118 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.4.2.2.4 IEEE 802.11n, HT40

10.4.2.2.4.1 Fundamental Frequency: 2422 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor					Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1044.8717	Н	53.1		-13.10	40.0		74	54	-14.0
1047.1153	V	52.3		-13.10	39.2		74	54	-14.8
1141.3461	V	52.2		-12.60	39.6		74	54	-14.4
1287.1794	V	52.2		-11.80	40.4		74	54	-13.6
1466.6666	Н	57.2		-10.90	46.3		74	54	-7.7
1477.8846	Н	57.0		-10.90	46.1		74	54	-7.9
1507.0513	V	56.6		-10.70	45.9		74	54	-8.1
2112.8204	Н	50.1		-7.30	42.8		74	54	-11.2
2112.8204	V	49.4		-7.30	42.1		74	54	-11.9

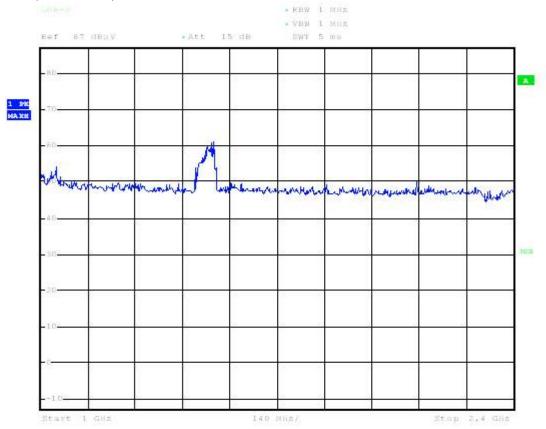
10.4.2.2.4.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1040.3846	V	52.9		-13.10	39.8		74	54	-14.2
1094.2308	V	52.2		-12.80	39.4		74	54	-14.6
1107.6922	Н	51.3		-12.70	38.6		74	54	-15.4
1125.6410	V	52.5		-12.70	39.8		74	54	-14.2
1141.3461	V	52.8		-12.60	40.2		74	54	-13.8
1249.0385	Н	50.7		-12.00	38.7		74	54	-15.3
1280.4486	V	51.9		-11.90	40.0		74	54	-14.0
1468.9103	Н	58.7		-10.90	47.8		74	54	-6.2
1489.1025	V	57.4		-10.80	46.6		74	54	-7.4
1516.0255	Н	55.4		-10.60	44.8		74	54	-9.2
2732.1620	Н	49.7		-5.40	44.3		74	54	-9.7

Sheet 119 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

10.4.2.2.4.3 Fundamental Frequency: 2452 MHz

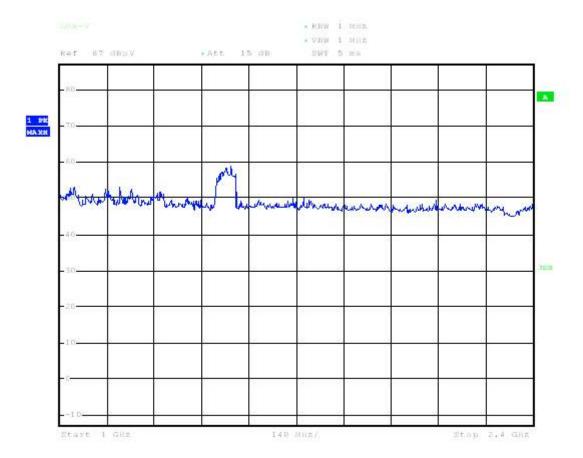
Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1031.4103	V	52.5		-13.10	39.4		74	54	-14.6
1042.3896	V	54.2		-13.10	41.1		74	54	-12.9
1042.6282	Н	52.0		-13.10	38.9		74	54	-15.1
1083.0127	Н	52.6		-12.90	39.7		74	54	-14.3
1143.5896	V	52.9		-12.60	40.3		74	54	-13.7
1300.6410	V	51.6		-11.80	39.8		74	54	-14.2
1462.1794	V	55.3		-10.90	44.4		74	54	-9.6
1468.9103	Н	58.9		-10.90	48.0		74	54	-6.0
1486.8590	V	55.8		-10.80	45.0		74	54	-9.0
1513.7820	Н	54.5		-10.60	43.9		74	54	-10.1


- Note: 1. Place of Measurement: Measuring site of the ETC.
 - 2. Item of margin shown in above table refer to average limit.
 - 3. Remark "---" means that the emissions level is too low to be measured.
 - 4. If the peak result is under the average limit, that is deemed to meet the average limit.

 - 5. If there is only peak result, item "Margin" referred to "peak result average limit".6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
 - 7. The estimated measurement uncertainty of the result measurement is
 - $\pm 4.2 dB (9kHz \le f \le 30MHz)$
 - ± 4.6 dB (30MHz $\leq f$ <300MHz).
 - ± 4.4 dB (300MHz $\leq f$ <1000MHz).
 - ± 2.9 dB (1GHz $\le f<18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).
 - 8. Please refer to page 174 to page 191 for chart.

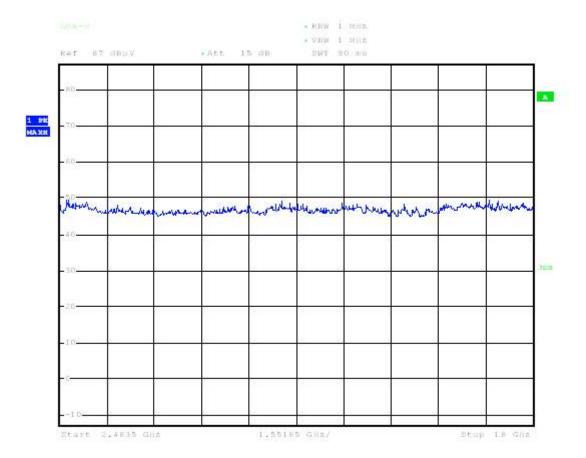
Sheet 120 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

IEEE 802.11b


CH Low (Horizontal)

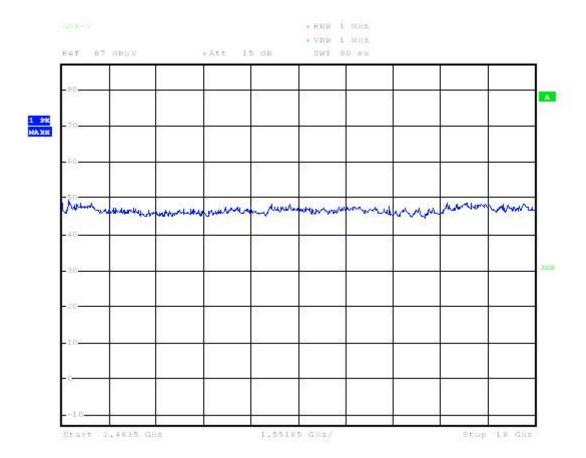
Date: 22.AUG.2017 03:08:05

Sheet 121 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

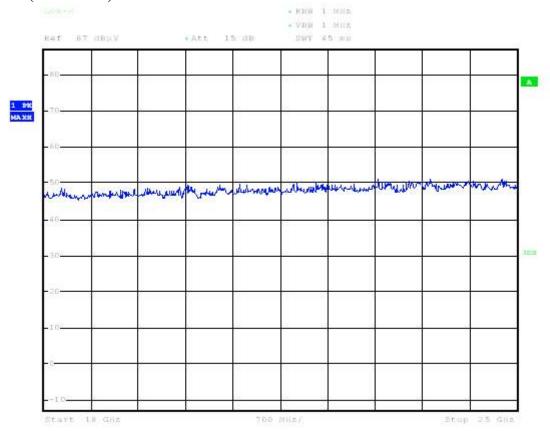
Date: 22.AUG.2017 03:10:48

Sheet 122 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

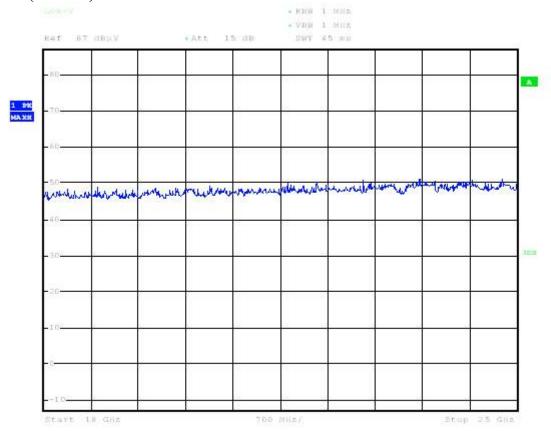
Date: 22.AUG.2017 03:09:16

Sheet 123 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

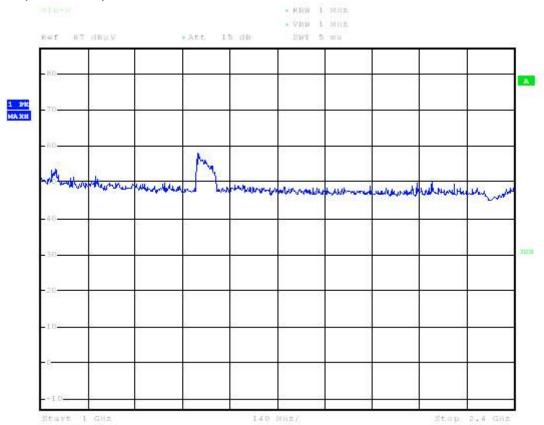
Date: 22.AUG.2017 03:11:59

Sheet 124 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

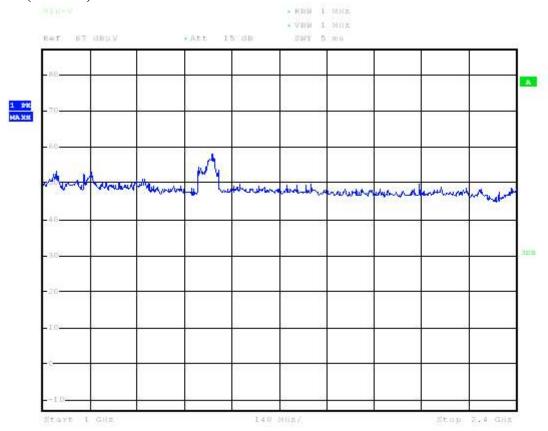
Date: 22.AUG.2017 03:09:36

Sheet 125 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

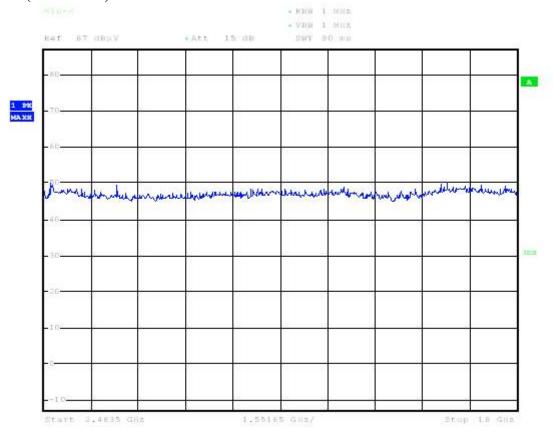
Date: 22.AUG.2017 03:12:19

Sheet 126 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

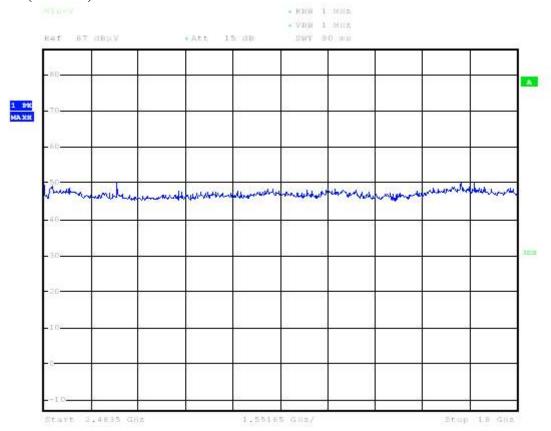
Date: 22.AUG.2017 09:44:52

Sheet 127 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

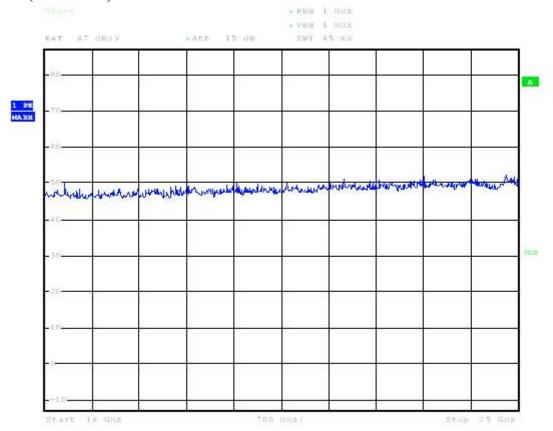
Date: 22.AUG.2017 09:47:36

Sheet 128 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

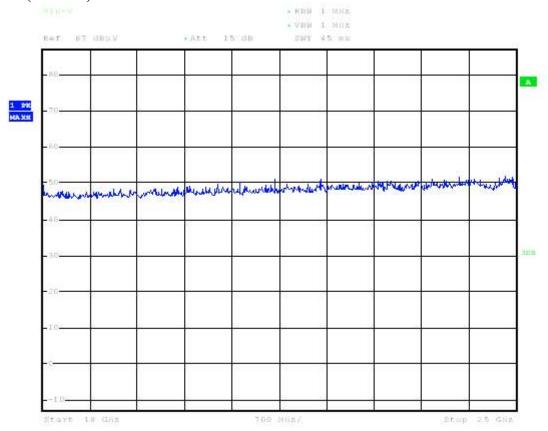
Date: 22.AUG.2017 09:46:04

Sheet 129 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

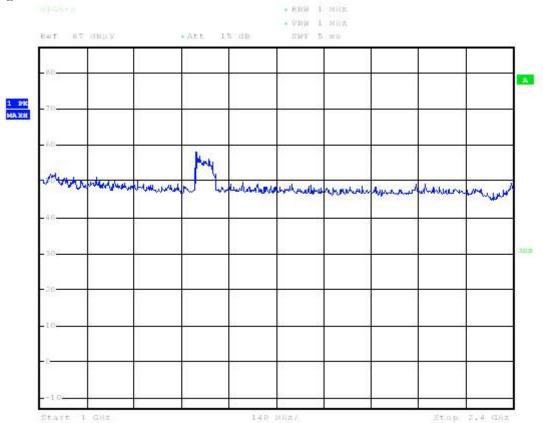
Date: 22.AUG.2017 09:48:48

Sheet 130 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

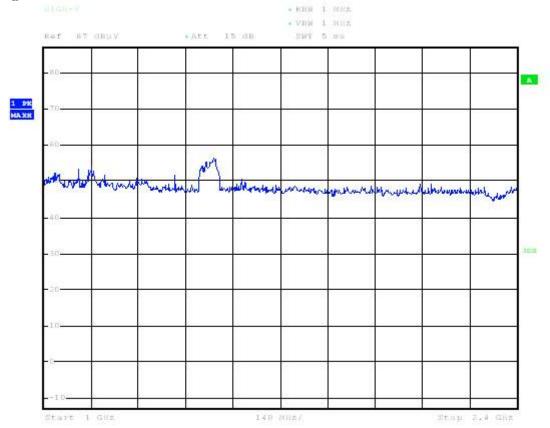
Date: 22.AUG.2017 09:45:25

Sheet 131 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

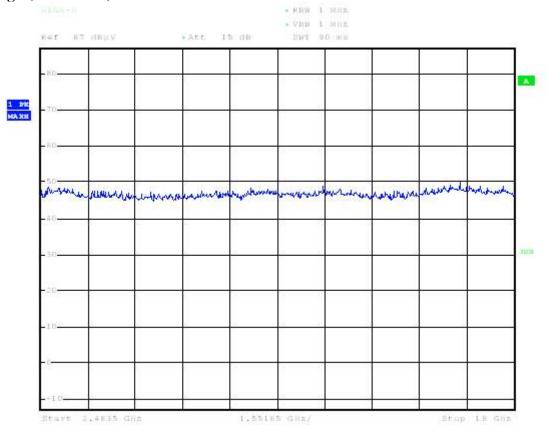
Date: 22.AUG.2017 09:49:08

Sheet 132 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

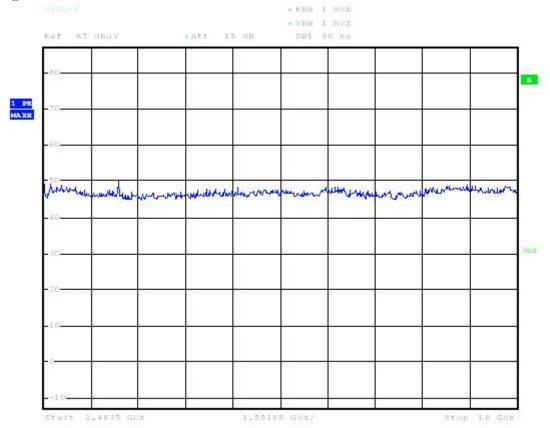
Date: 22.AUG.2017 10:08:28

Sheet 133 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

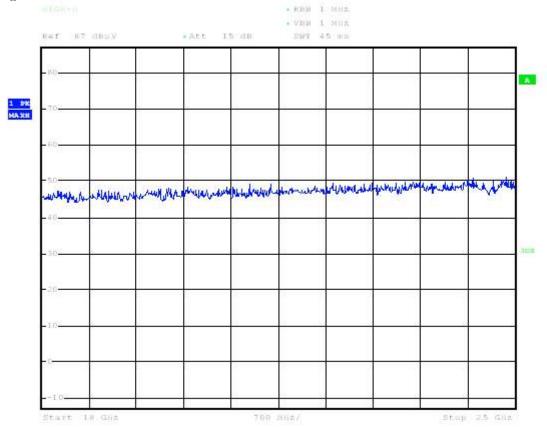
Date: 22.AUG.2017 10:11:11

Sheet 134 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

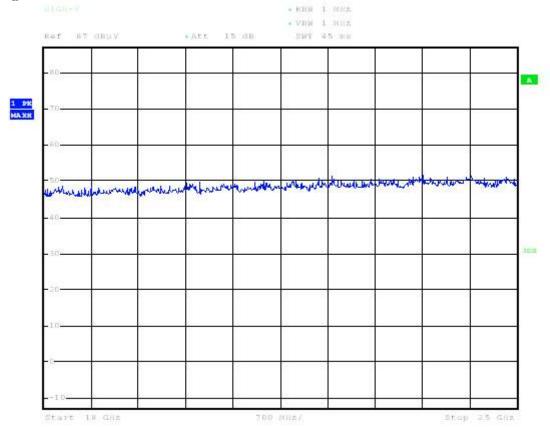
Date: 22.AUG.2017 10:09:39

Sheet 135 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

Date: 22.AUG.2017 10:12:22

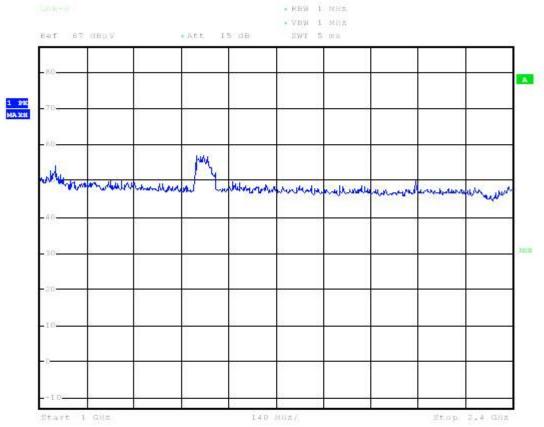
Sheet 136 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

Date: 22.AUG.2017 10:09:59

Sheet 137 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

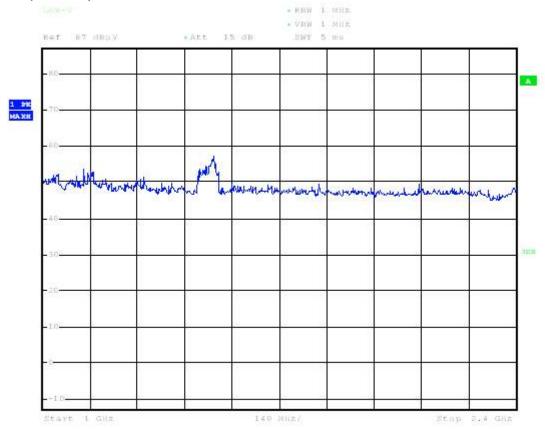
CH High (Vertical)



Date: 22.AUG.2017 10:12:50

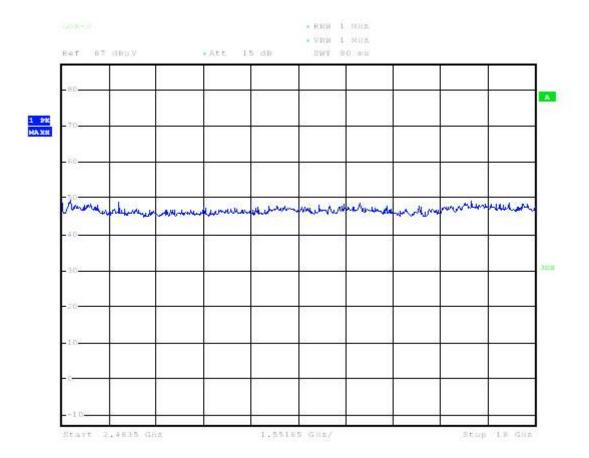
Sheet 138 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

IEEE 802.11g


CH Low (Horizontal)

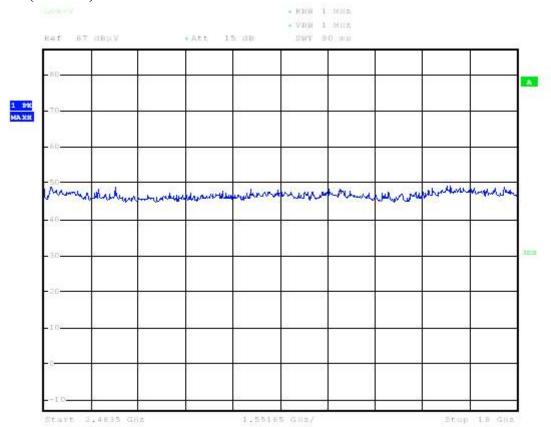
Date: 22.AUG.2017 10:34:39

Sheet 139 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

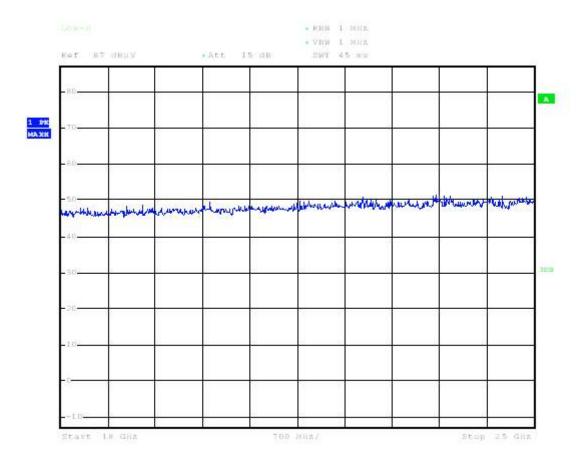
Date: 22.AUG.2017 10:37:22

Sheet 140 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

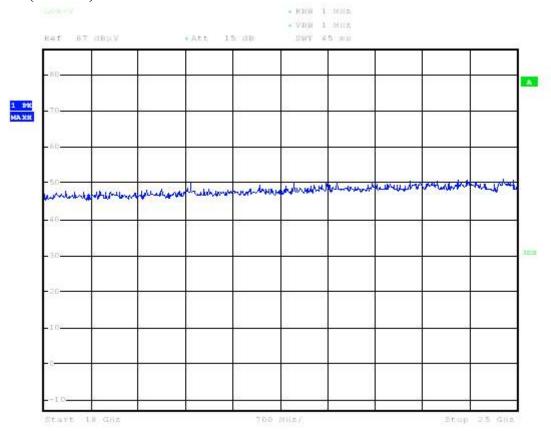
Date: 22.AUG.2017 10:35:51

Sheet 141 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

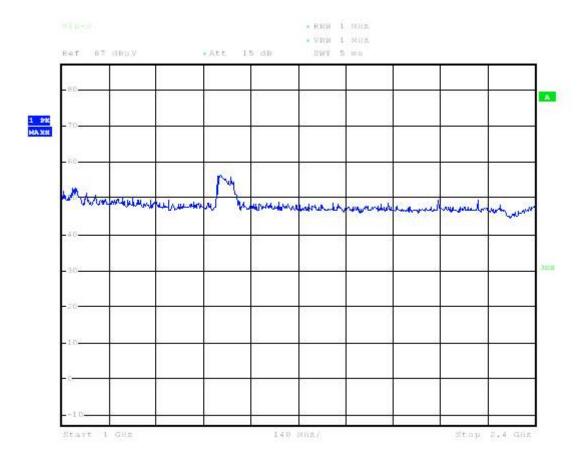
Date: 22.AUG.2017 10:38:34

Sheet 142 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

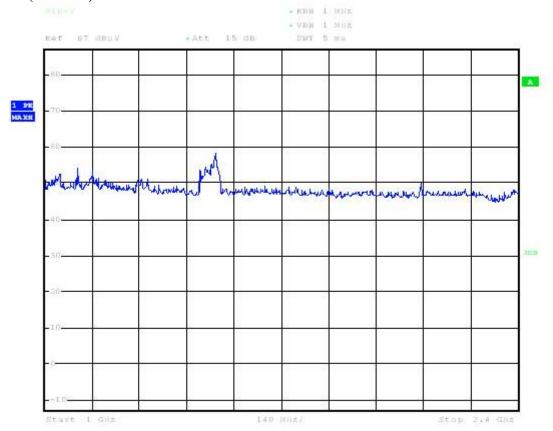
Date: 22.AUG.2017 10:36:11

Sheet 143 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

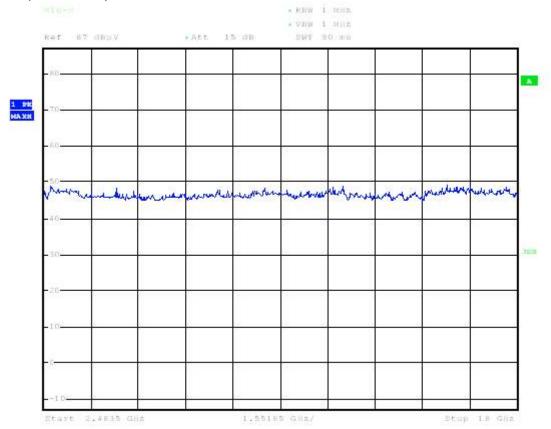
Date: 22.AUG.2017 10:38:54

Sheet 144 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

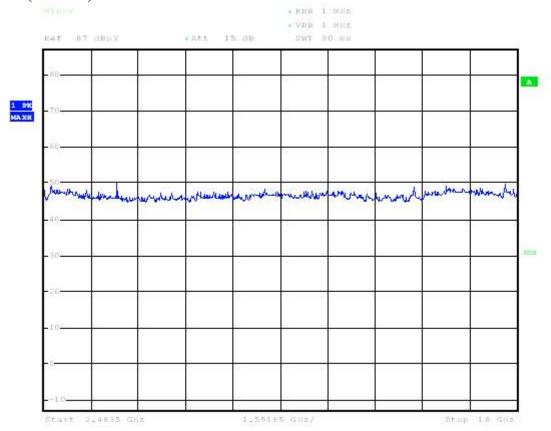
Date: 22.AUG.2017 10:48:52

Sheet 145 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

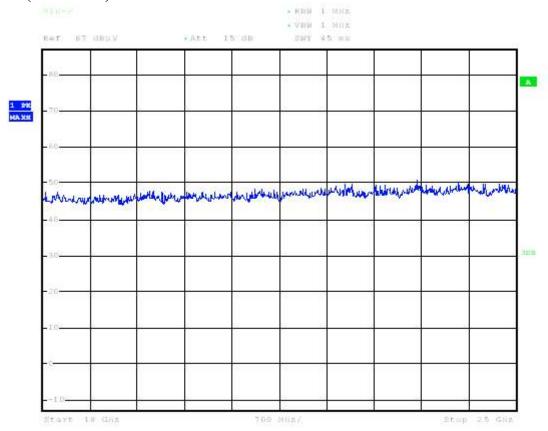
Date: 22.AUG.2017 10:51:35

Sheet 146 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

Date: 22.AUG.2017 10:50:04

Sheet 147 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

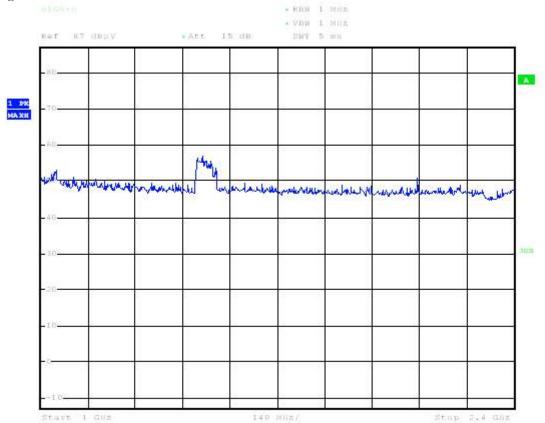
Date: 22.AUG.2017 10:52:47

Sheet 148 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH Mid (Horizontal)

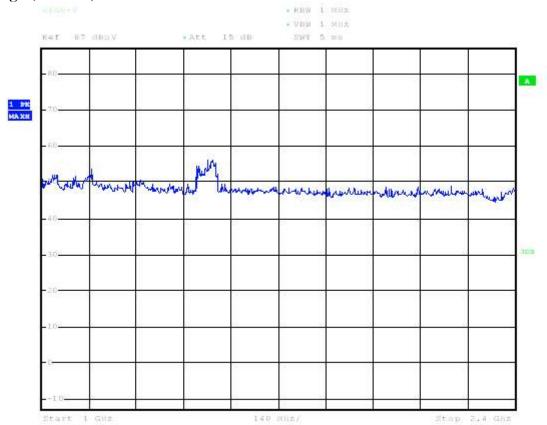
Date: 22.AUG.2017 10:50:24

Sheet 149 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

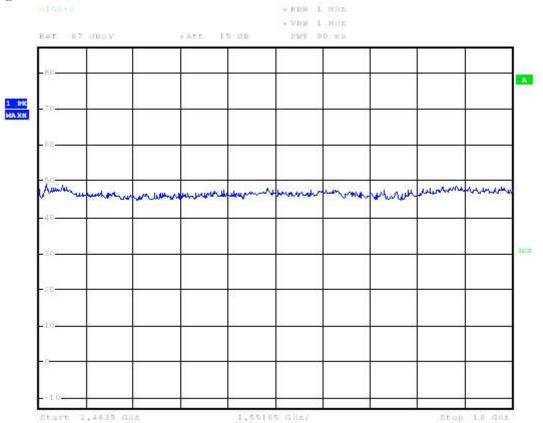
Date: 22.AUG.2017 10:53:07

Sheet 150 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

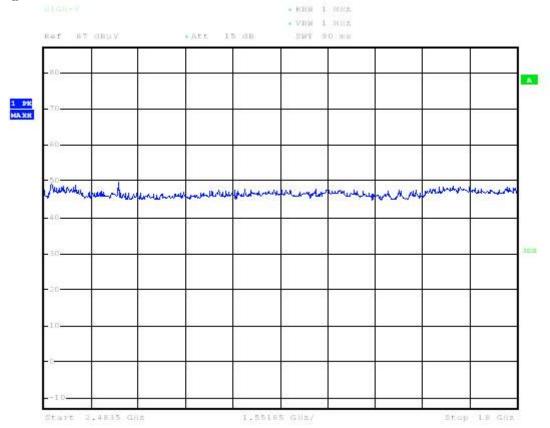
Date: 22.AUG.2017 11:05:43

Sheet 151 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

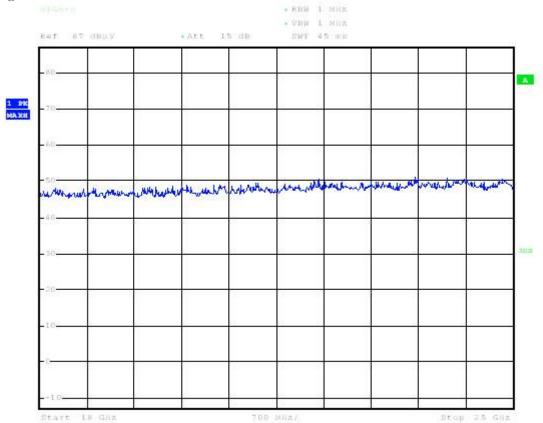
Date: 22.AUG.2017 11:08:25

Sheet 152 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

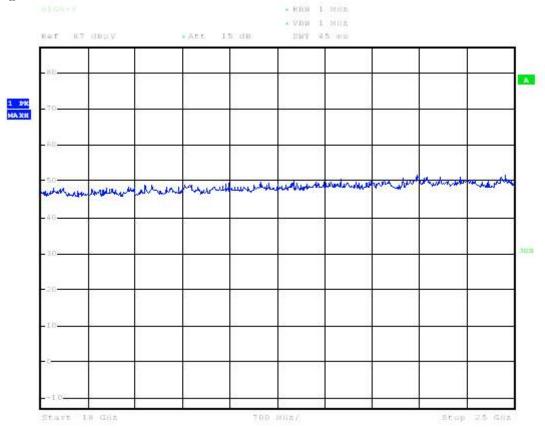
Date: 22.AUG.2017 11:05:54

Sheet 153 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

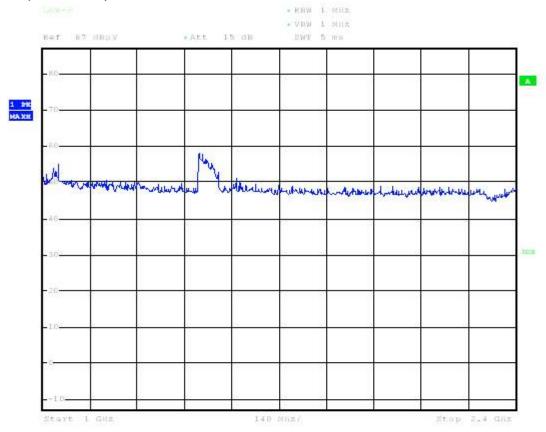
Date: 22.AUG.2017 11:09:37

Sheet 154 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

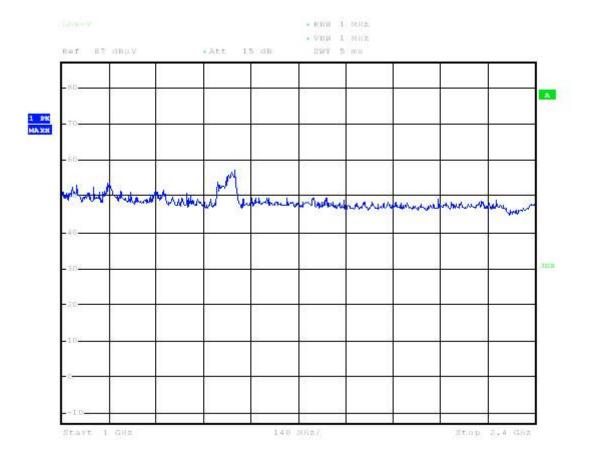
Date: 22.AUG.2017 11:07:15

Sheet 155 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

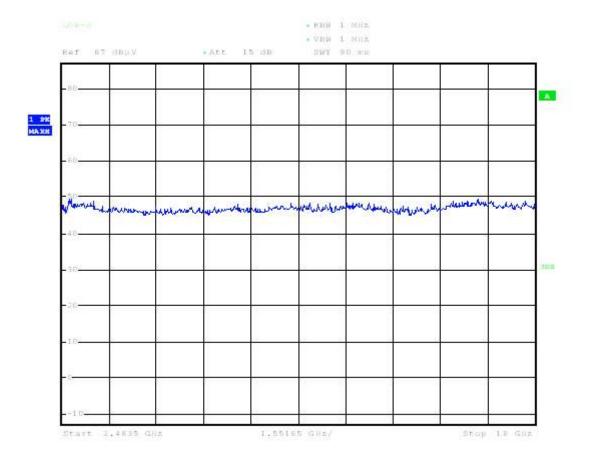
Date: 22.AUG.2017 11:10:05

Sheet 156 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


IEEE 802.11n HT20 CH Low (Horizontal)

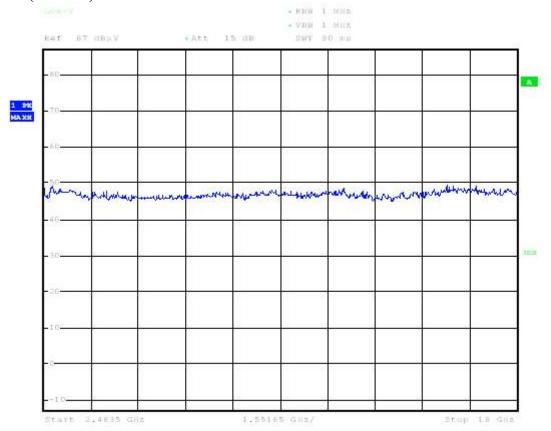
Date: 22.AUG.2017 12:09:45

Sheet 157 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

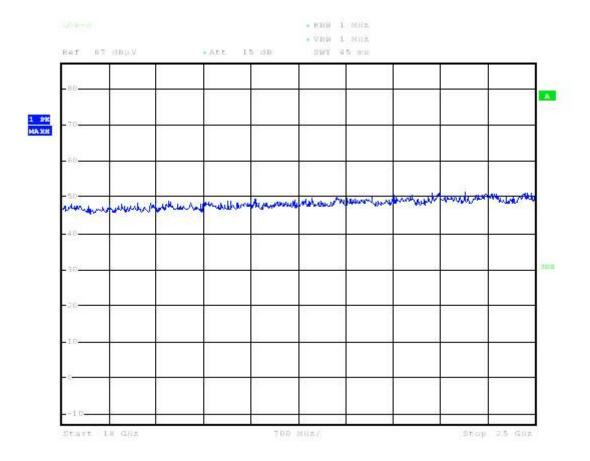
Date: 22.AUG.2017 12:12:28

Sheet 158 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

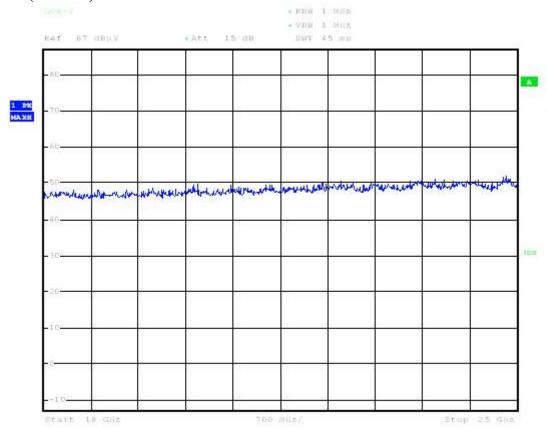
Date: 22.AUG.2017 12:10:57

Sheet 159 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

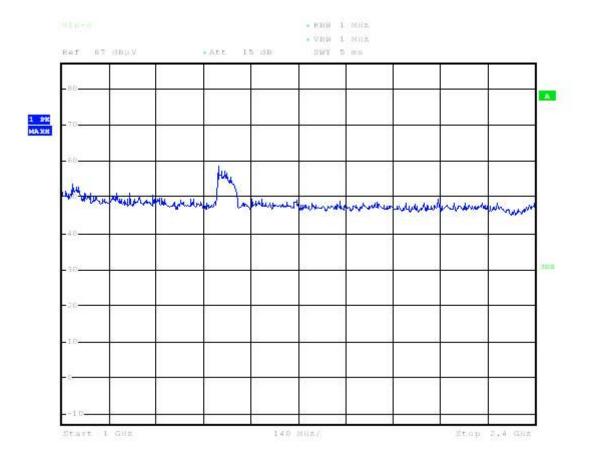
Date: 22.AUG.2017 12:13:39

Sheet 160 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

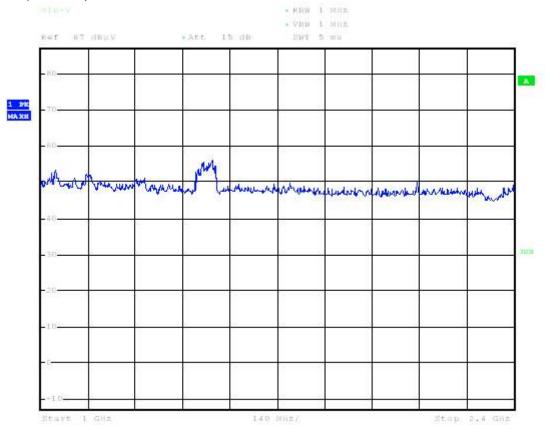
Date: 22.AUG.2017 12:11:17

Sheet 161 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

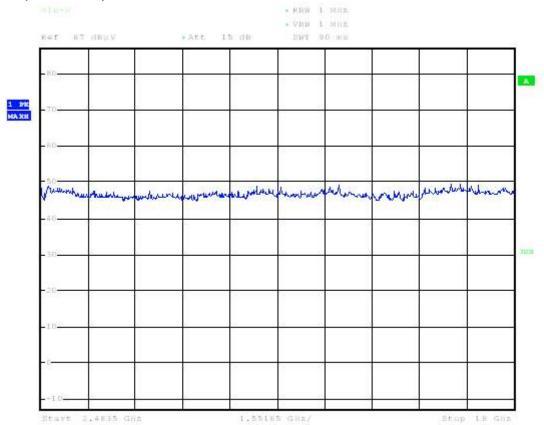
Date: 22.AUG.2017 12:13:59

Sheet 162 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

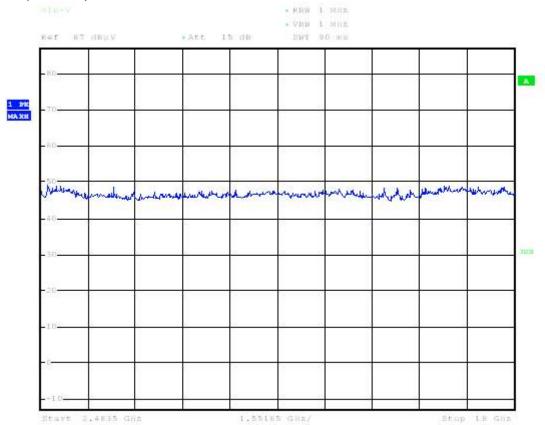
Date: 22.AUG.2017 12:22:06

Sheet 163 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

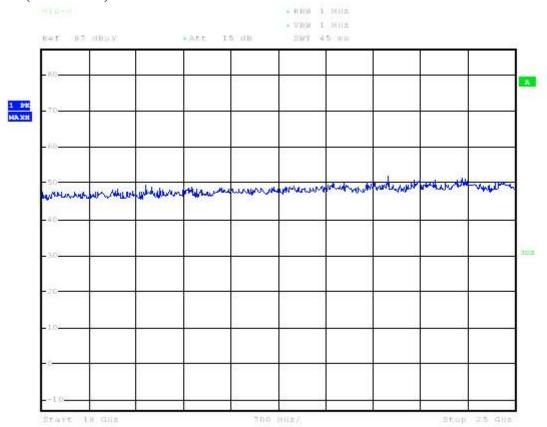
Date: 22.AUG.2017 12:24:48

Sheet 164 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

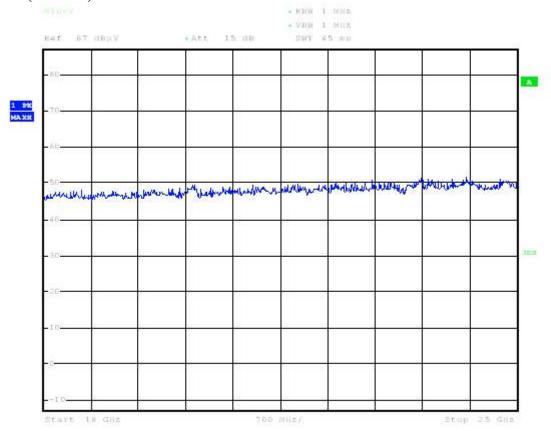
Date: 22.AUG.2017 12:23:17

Sheet 165 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

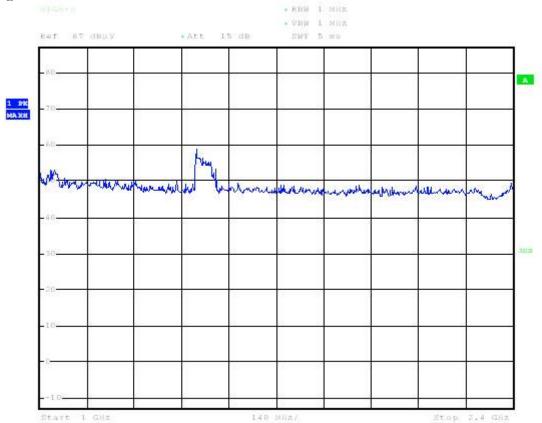
Date: 22.AUG.2017 12:25:59

Sheet 166 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

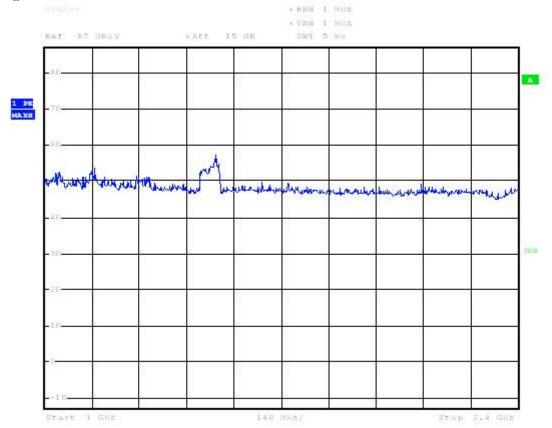
Date: 22.AUG.2017 12:23:37

Sheet 167 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

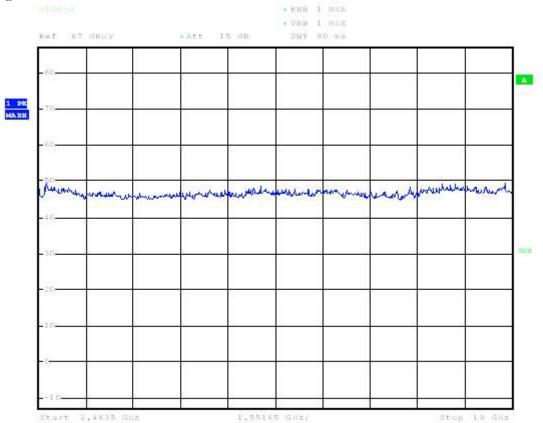
Date: 22.AUG.2017 12:26:19

Sheet 168 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

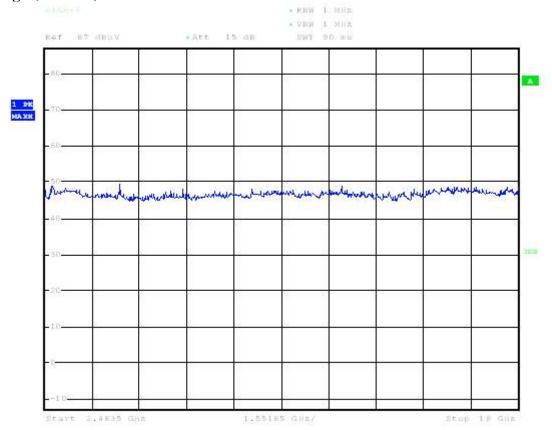
Date: 22.AUG.2017 12:39:53

Sheet 169 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

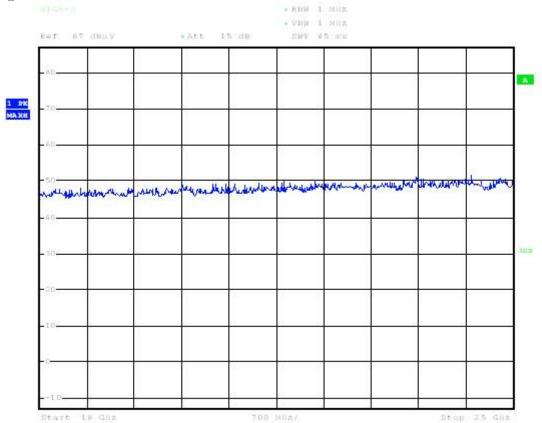
Date: 22.AUG.2017 12:42:35

Sheet 170 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

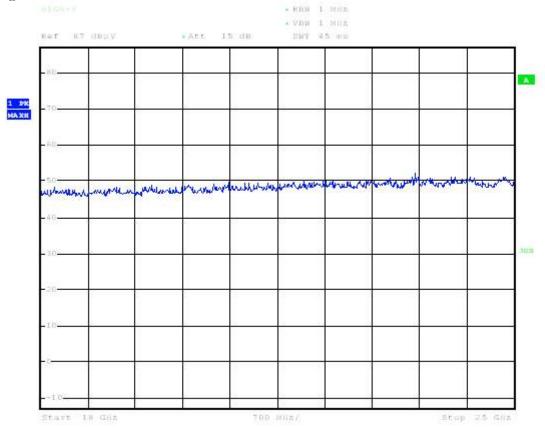
Date: 22.AUG.2017 12:41:04

Sheet 171 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

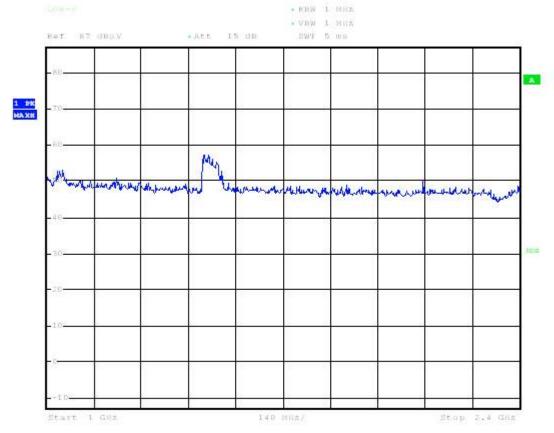
Date: 22.AUG.2017 12:43:47

Sheet 172 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

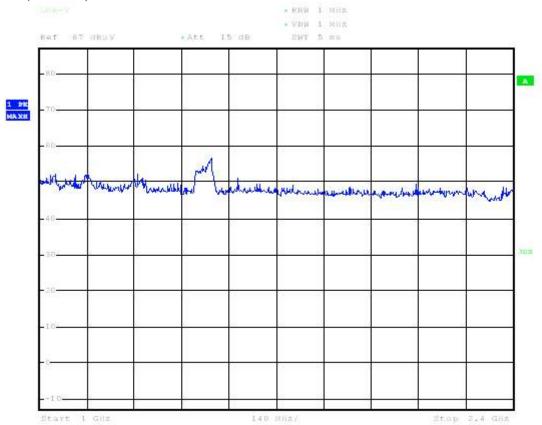
Date: 22.AUG.2017 12:41:25

Sheet 173 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

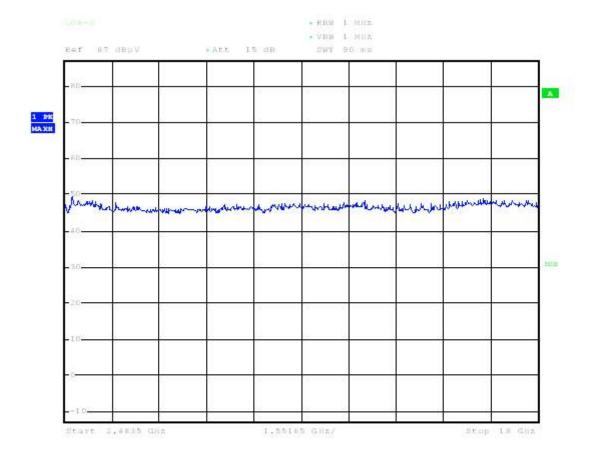
Date: 22.AUG.2017 12:44:16

Sheet 174 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


IEEE 802.11n HT40 CH Low (Horizontal)

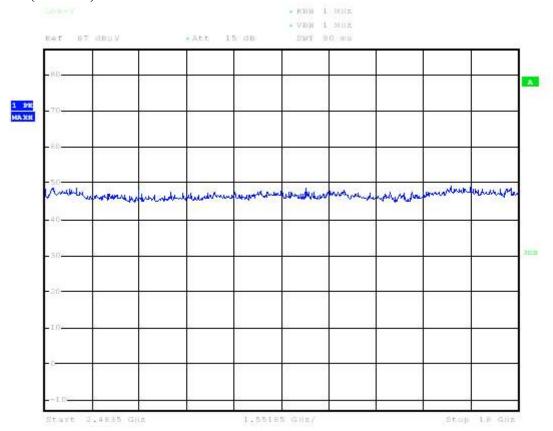
Date: 22.AUG.2017 13:32:09

Sheet 175 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

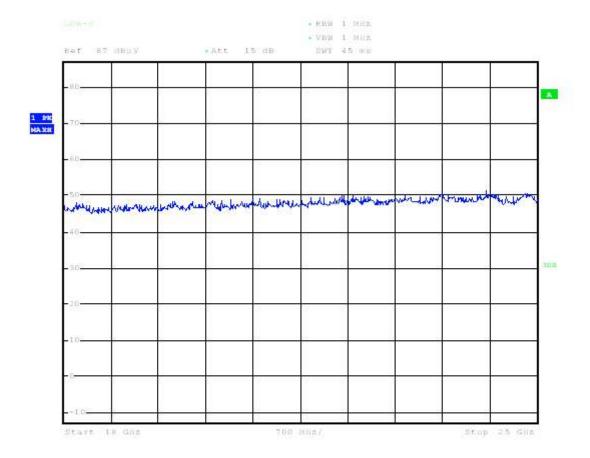
Date: 22.AUG.2017 13:34:52

Sheet 176 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

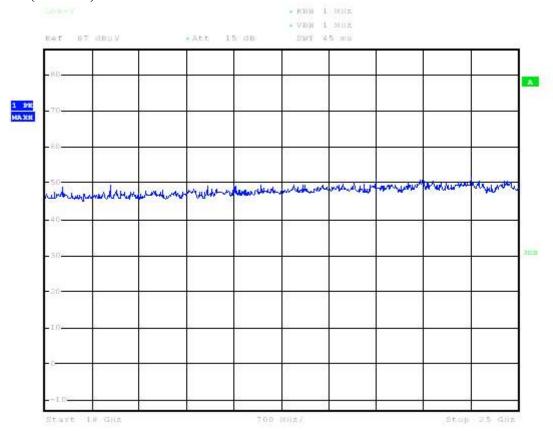
Date: 22.AUG.2017 13:33:20

Sheet 177 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

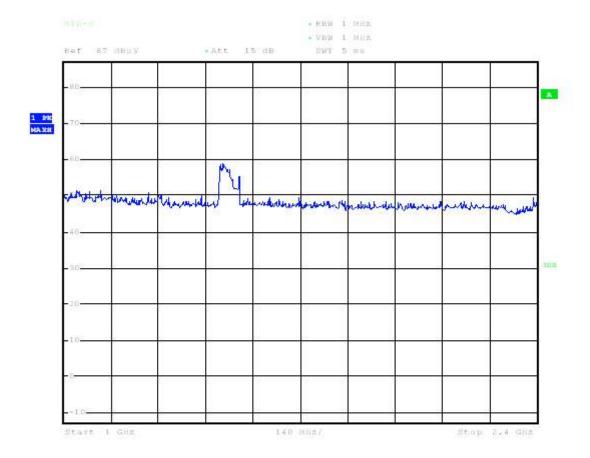
Date: 22.AUG.2017 13:35:04

Sheet 178 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Horizontal)

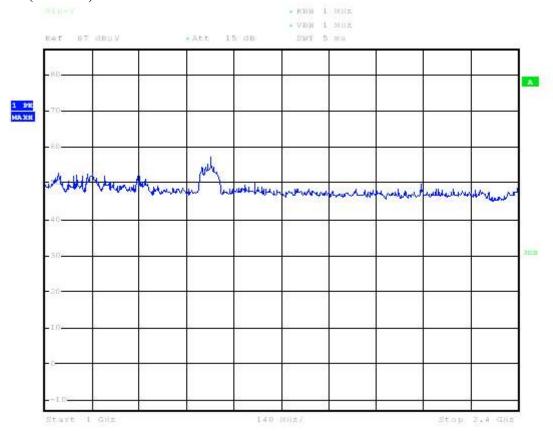
Date: 22.AUG.2017 13:33:40

Sheet 179 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Low (Vertical)

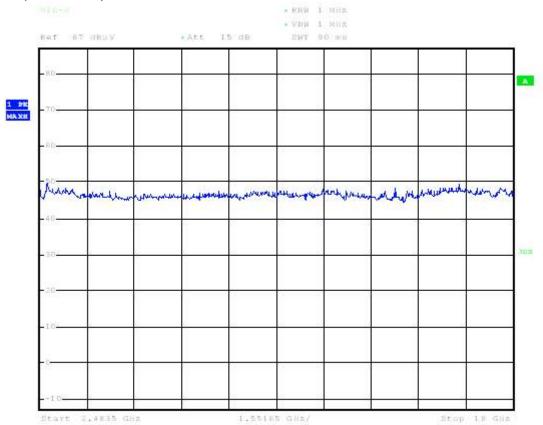
Date: 22.AUG.2017 13:35:24

Sheet 180 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

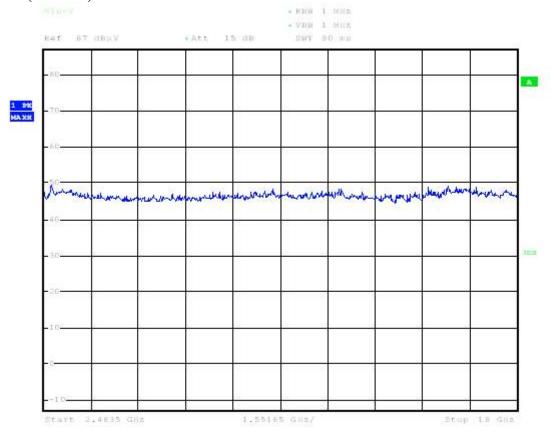
Date: 22.AUG.2017 13:56:46

Sheet 181 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

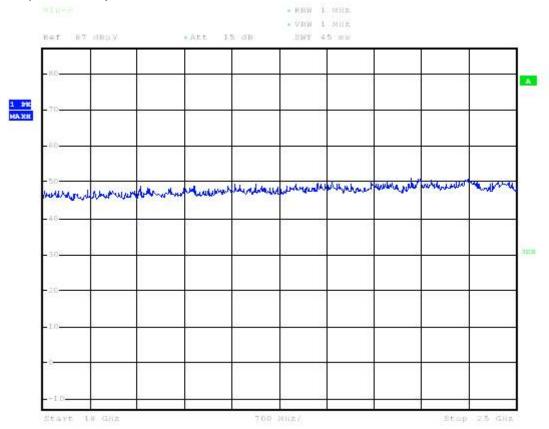
Date: 22.AUG.2017 13:59:29

Sheet 182 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

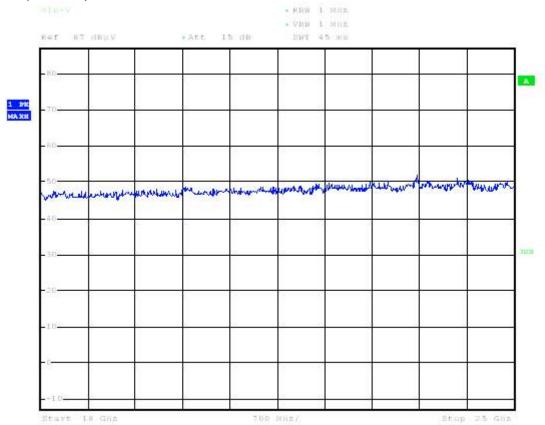
Date: 22.AUG.2017 13:57:57

Sheet 183 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

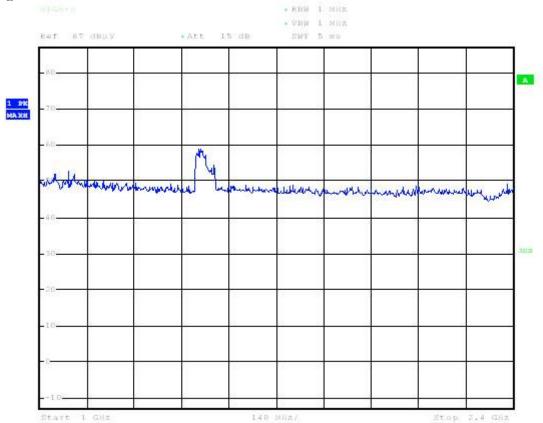
Date: 22.AUG.2017 14:00:41

Sheet 184 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Horizontal)

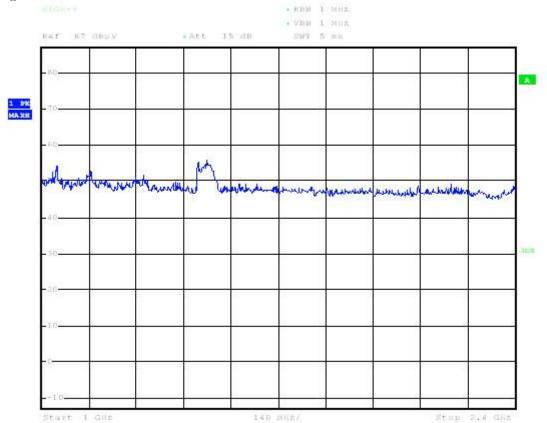
Date: 22.AUG.2017 13:58:18

Sheet 185 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH Mid (Vertical)

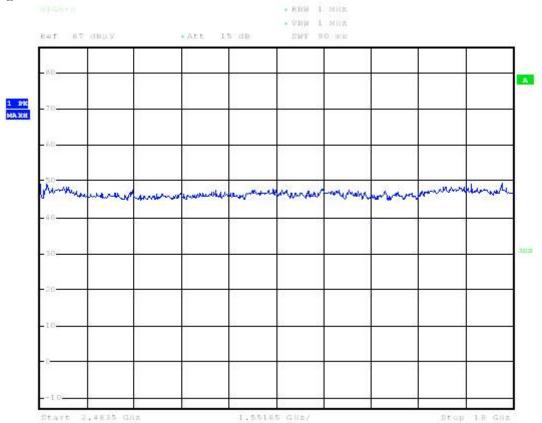
Date: 22.AUG.2017 14:01:01

Sheet 186 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

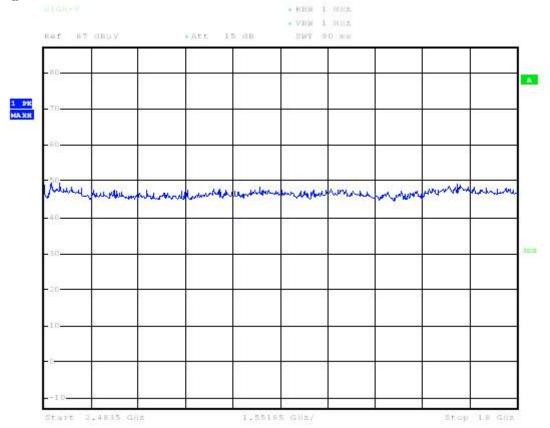
Date: 22.AUG.2017 14:08:25

Sheet 187 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

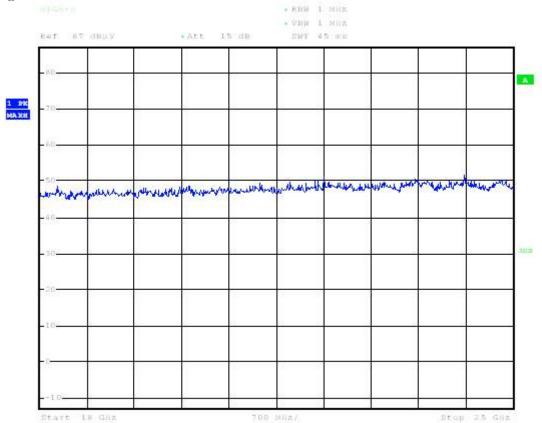
Date: 22.AUG.2017 14:11:10

Sheet 188 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Horizontal)

Date: 22.AUG.2017 14:09:35

Sheet 189 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


CH High (Vertical)

Date: 22.AUG.2017 14:12:21

Sheet 190 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH High (Horizontal)

Date: 22.AUG.2017 14:09:57

Sheet 191 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

CH High (Vertical)

Date: 22.AUG.2017 14:12:49

Sheet 192 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.3 Radiated Measurement at Bandedge with Fundamental Frequencies and co-location

Test Date: Aug. 14, 2017 Temperature: 21°C Humidity: 63%

10.4.3.1 IEEE 802.11b

Operation Channel	Frequency	Reading @3m (dBuV/m)			Factor	Result		Limit @3m		Margin (worse)		
		H V			(dBuV/m)		(dBuV/m)		(dB)			
	(MHz)	Peak	Ave	Peak	Ave	(dB)	Peak	Ave	Peak	Ave	Peak	Ave
Low	2390.000	27.1	14.5	26.4	14.2	30.8	57.9	45.3	74	54	-16.1	-8.7
High	2483.500	27.8	15.4	26.9	15.4	31.0	58.8	46.4	74	54	-15.2	-7.6

10.4.3.2 IEEE 802.11g

10.4.5.2 IEEE 002.11g												
Operation Channel	Frequency	Reading @3m (dBuV/m)			Factor	Result		Limit @3m		Margin (worse)		
		H V			(dBuV/m)		(dBuV/m)		(dB)			
	(MHz)	Peak	Ave	Peak	Ave	(dB)	Peak	Ave	Peak	Ave	Peak	Ave
Low	2390.000	35.7	21.1	31.0	17.7	30.8	66.5	51.9	74	54	-7.5	-2.1
High	2483.500	37.5	22.6	35.8	21.6	31.0	68.5	53.6	74	54	-5.5	-0.4

10.4.3.3 IEEE 802.11n HT20

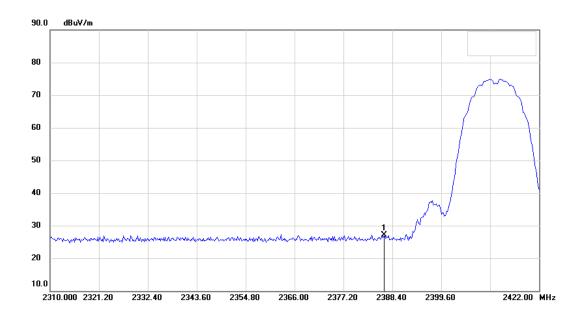
Operation Channel	Frequency	Reading @3m (dBuV/m)				Factor	Result		Limit @3m		Margin (worse)	
		H V			(dBuV/m)		(dBuV/m)		(dB)			
	(MHz)	Peak	Ave	Peak	Ave	(dB)	Peak	Ave	Peak	Ave	Peak	Ave
Low	2390.000	35.2	19.2	32.0	16.3	30.8	66.0	50.0	74	54	-8.0	-4.0
High	2483.500	38.3	22.4	37.5	21.0	31.0	69.3	53.4	74	54	-4.7	-0.6

Note:

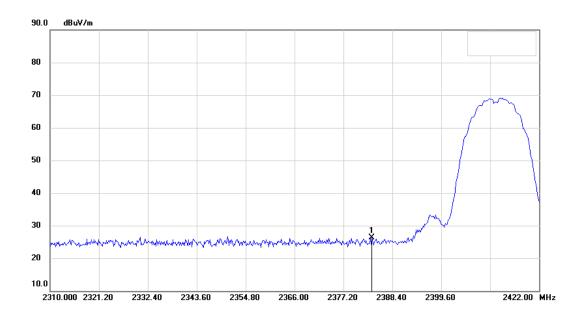
- 1. Remark "---" means that the emissions level is too low to be measured.
- 2. The result is the highest value of radiated emission from restrict band of 2310 \sim 2390 MHz and 2483.5 \sim 2500 MHz.

Sheet 193 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.4.3.4 IEEE 802.11n HT40


Operation Channel	Frequency	Re	ading @31	m (dBuV/	m)	Factor	Result		Limit @3m		Margin (worse)	
		H V			(dBuV/m)		(dBuV/m)		(dB)			
	(MHz)	Peak	Ave	Peak	Ave	(dB)	Peak	Ave	Peak	Ave	Peak	Ave
Low	2390.000	33.3	20.1	30.1	16.8	30.8	64.1	50.9	74	54	-9.9	-3.1
High	2483.500	36.5	22.5	35.3	20.5	31.0	67.5	53.5	74	54	-6.5	-0.5

Note:

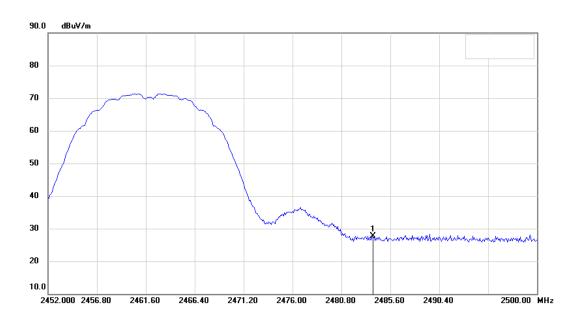

- 1. Remark "---" means that the emissions level is too low to be measured.
- 2. The result is the highest value of radiated emission from restrict band of 2310 \sim 2390 MHz and 2483.5 \sim 2500 MHz.

IEEE 802.11b

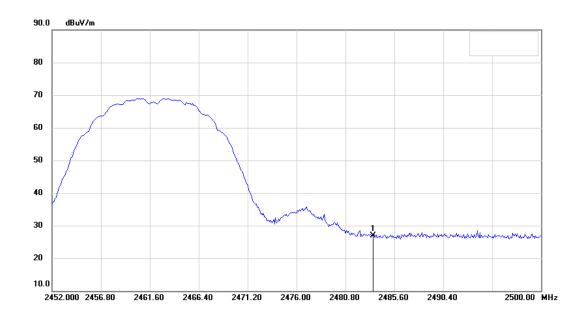
Horizontal (Peak)



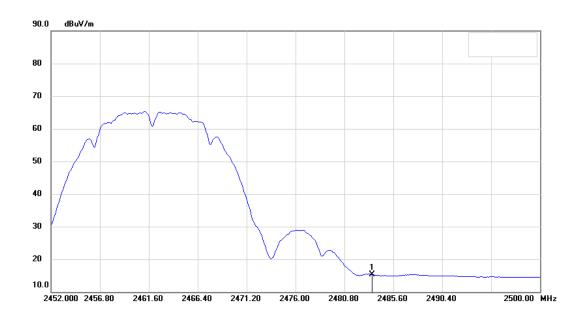
Vertical (Peak)

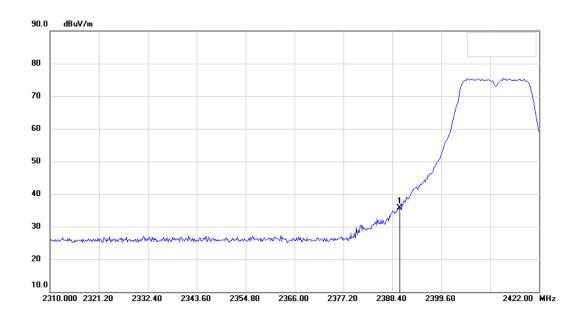


Horizontal (Average)

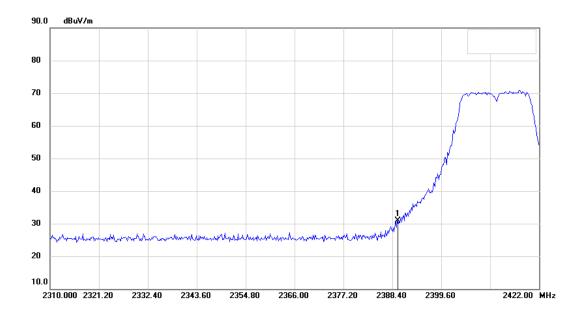


Horizontal (Peak)

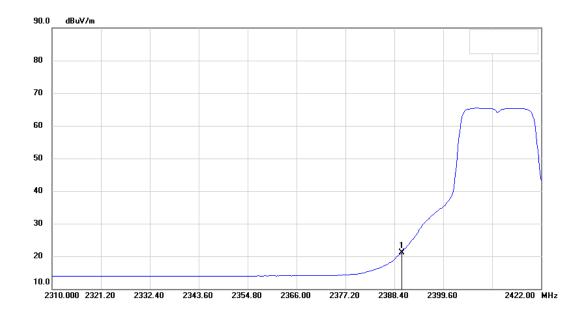

Vertical (Peak)


Sheet 200 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

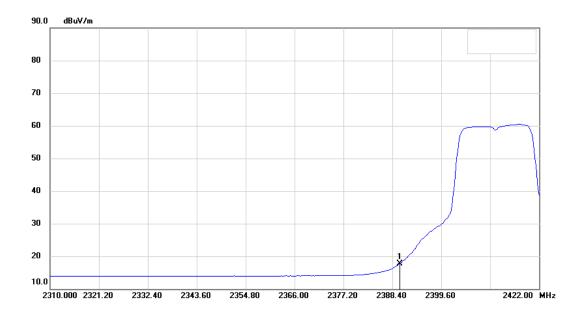
Horizontal (Average)



IEEE 802.11g Horizontal (Peak)

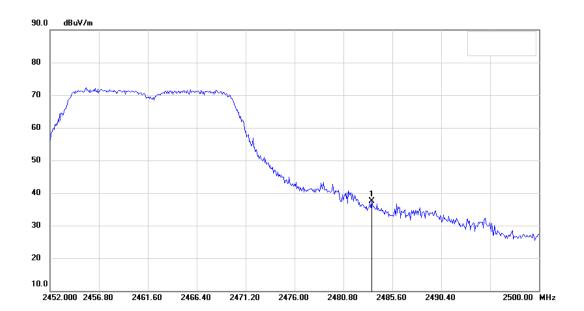


Vertical (Peak)

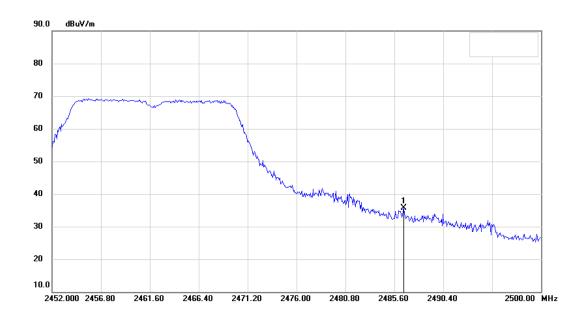


Sheet 204 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

Horizontal (Average)

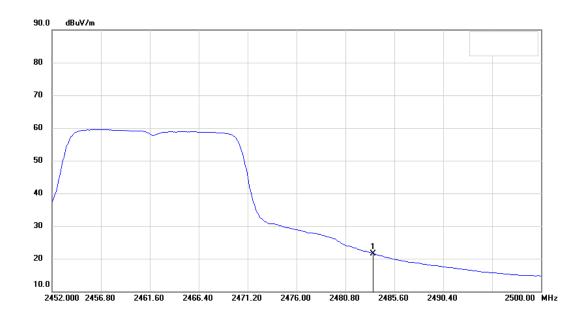


Sheet 205 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

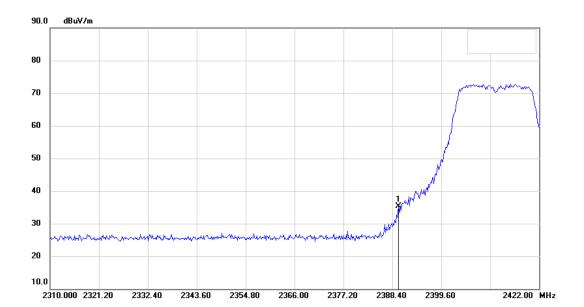


Sheet 206 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

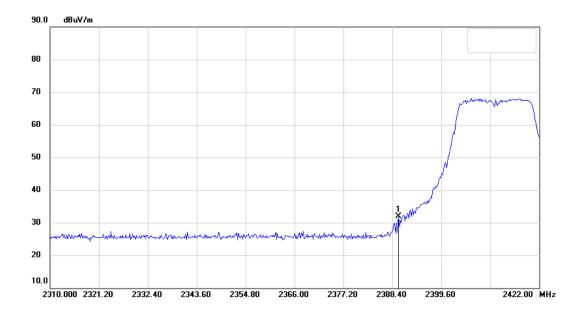
Horizontal (Peak)


Vertical (Peak)

Horizontal (Average)

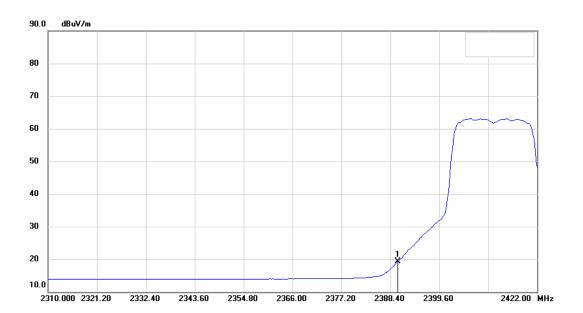


Sheet 209 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

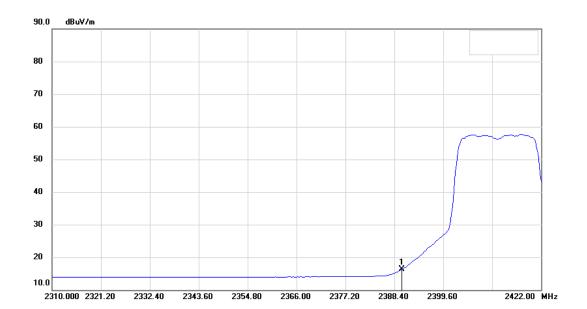


IEEE 802.11n HT20

Horizontal (Peak)

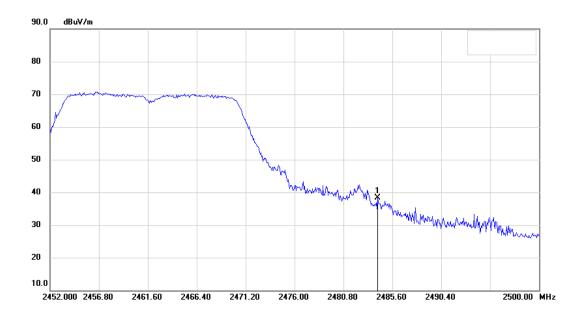


Sheet 211 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

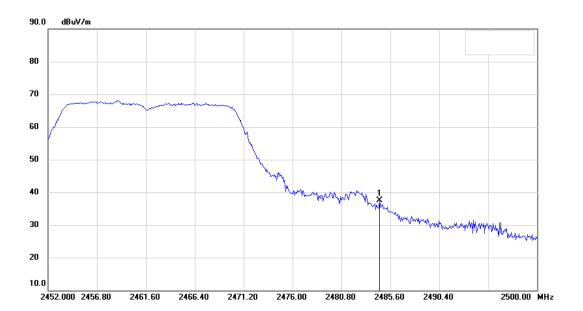


Sheet 212 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

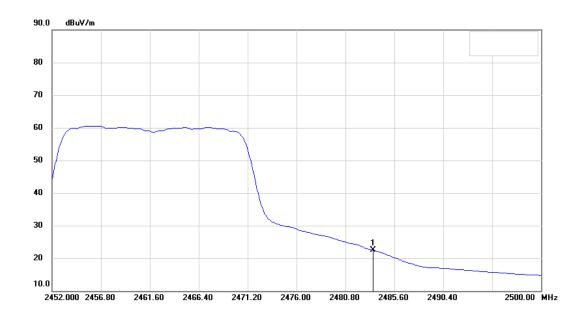
Horizontal (Peak)



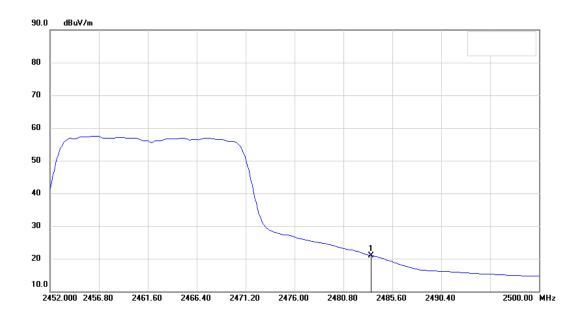
Sheet 213 of 227 Sheets ETC Report No. : 17-06-MAS-031-02


Sheet 214 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

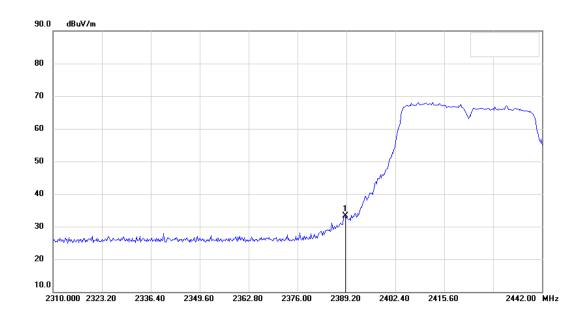
Horizontal (Peak)

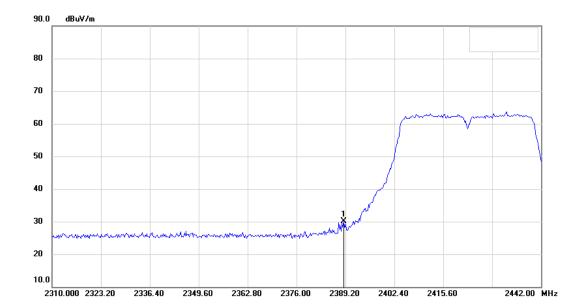

Sheet 215 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

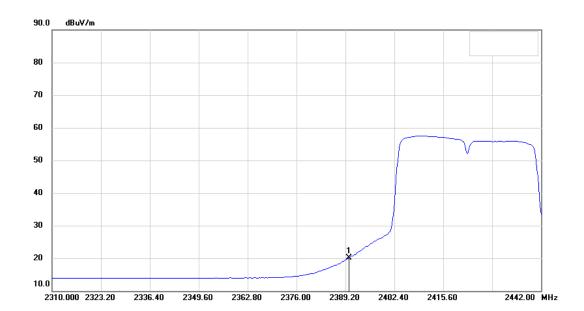
Vertical (Peak)

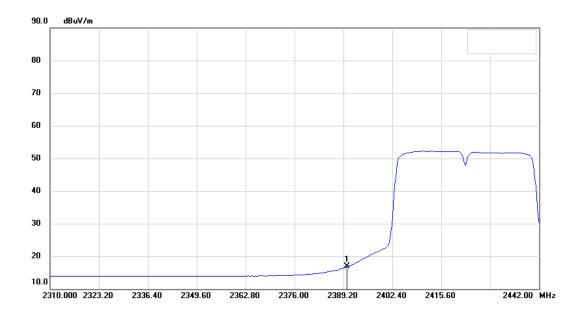


Sheet 216 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

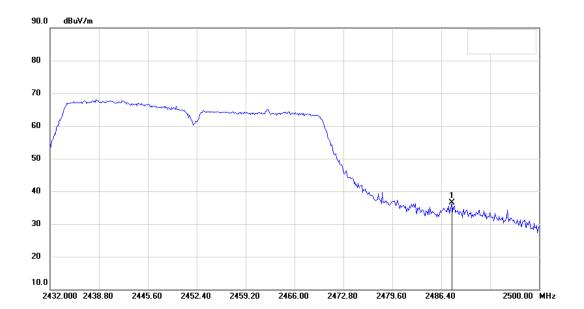

Horizontal (Average)

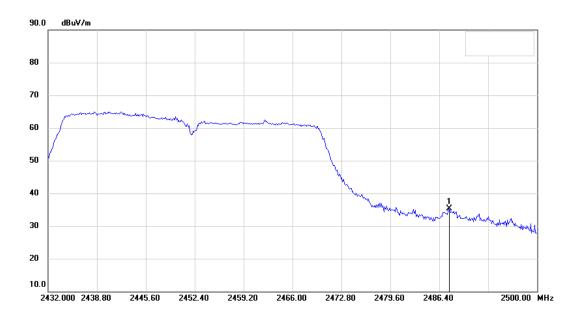

Sheet 217 of 227 Sheets ETC Report No.: 17-06-MAS-031-02


IEEE 802.11n HT40 Horizontal (Peak)

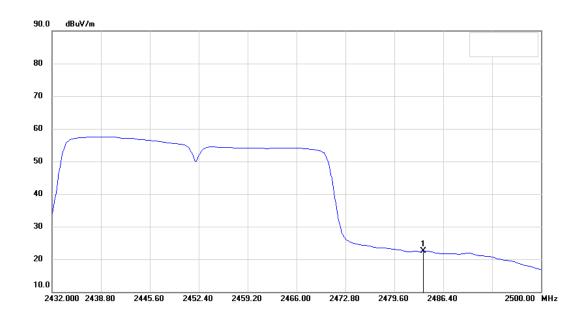


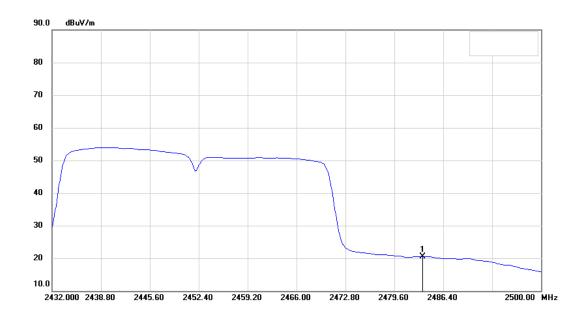
Vertical (Peak)


Horizontal (Average)


Sheet 222 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

Horizontal (Peak)




Sheet 223 of 227 Sheets ETC Report No.: 17-06-MAS-031-02

Vertical (Peak)

Horizontal (Average)

Sheet 226 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

10.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Sheet 227 of 227 Sheets ETC Report No. : 17-06-MAS-031-02

11. EQUIPMENTS LIST FOR TESTING

Equipment	Manufacturer	Model No.	S/N	Calibration Date	Next Cal. Due
Spectrum Analyzer	Agilent	E4446A	13052013-001	10/18/2016	10/17/2017
Power Meter	Agilent	N1922A	13053523-001	10/12/2016	10/11/2017
Peak Power Sensor	Agilent	N1912A	13050625-001	10/12/2016	10/11/2017
EMI Receiver	R&S	ESCI	13054423-001	01/13/2017	01/12/2018
Spectrum Analyzer	R&S	FSU46	13040904-001	01/10/2017	01/09/2018
Horn Antenna	EMCO	3115	13059201-001	11/09/2016	11/08/2017
BiLog Antenna	ETC	MCTD 2786B	BLB17F04016	02/15/2017	02/14/2018
Horn Antenna	EMCO	3116	13059202-001	10/18/2016	10/17/2017
PRE-Amplifier	Agilent	8449B	13040709-001	01/10/2017	01/09/2018
PRE-Amplifier	Agilent	8447D	13040715-002	04/25/2017	04/24/2018
Loop Antenna	EMCO	6512	13054104-001	09/01/2016	08/31/2017
Attenuator	WEINSCHEL	56-10	58772	04/25/2017	04/24/2018