

RF TEST REPORT

Report No.: SET2013-06746

Product Name: IP Phone

FCC ID: YZZGXP2140

Model No.: GXP2140

Applicant: Grandstream Networks, INC

Address: 5F,Bldg #1,No.2 Kefa Rd.,Science & Technology Park, Shenzhen,

China

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzhen, 518055, P. R. China

This test report consists of 85 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 20 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T (00) Page 1 of 85

Test Report

Product Name: IP Phone

Brand Name Grandstream

Trade Name Grandstream

Applicant...... Grandstream Networks, INC

Applicant Address...... 5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park,

Shenzhen, China

Manufacturer..... Grandstream Networks, INC

Manufacturer Address: 5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park,

Shenzhen, China

ANSI C63.10:2009: American National Standard for

Testing Unlicensed Wireless Devices

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Test date...... Nov 20, 2013 - Nov 22, 2013

Test Result PASS

Tested by:

2013.11.22

Lu lei, Test Engineer

Reviewed by:

Shuangwen Zhaneg

2013.11.22

Shuangwen Zhang, Senior Egineer

Approved by:

多沙文

2013.11.22

Wu Li'an, Manager

CCIC-SET/T (00) Page 2 of 85

TABLE OF CONTENTS

1. 6	SENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Test Standards and Results	
1.3.	Facilities and Accreditations	6
2. 4	7 CFR PART 15C REQUIREMENTS	7
2.1.	Antenna requirement	7
2.2.	Number of Hopping Frequency	8
2.3.	Peak Output Power	
2.4.	20dB Bandwidth	18
2.5.	Carried Frequency Separation	25
2.6.	Time of Occupancy (Dwell time)	28
2.7.	Conducted Spurious Emissions	35
2.8.	Band Edge	42
2.9.	Conducted Emission	61
2.10.	Radiated Emission.	64

	Change History					
Issue Date Reason for change						
1.0	Nov 22, 2013	First edition				

1. General Information

1.1. EUT Description

EUT Type: IP Phone

Serial No.....: (n.a, marked #1 by test site)

Hardware Version: N/A Software Version: N/A

Applicant Grandstream Networks, INC

5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park,

Shenzhen, China

Manufacturer: Grandstream Networks, INC

5F, Bldg #1, No.2 Kefa Rd., Science & Technology Park,

Shenzhen, China

intervals of 1MHz);

Modulation Type Bluetooth: FHSS (GFSK(1Mbps), ∏/4-DQPSK(EDR 2Mbps),

8-DPSK(EDR 3Mbps))

Antenna Type..... PIFA
Antenna Gain..... 2.0dBi

Note 1: The EUT is a IP Phone, it contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Note 2: The EUT has two different mainboards, both of which have been tested, only the worse results are reported in this report.

For a more detailed description, please refer to the differences description.

- Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.
- Note 4: a. When power on, the EUT will scan the whole frequency until a Connection command from the other BT devices.
 - b. When receiving the signal from the other BT devices, The EUT transmit are sponse signal.
 - c. The other devices receive the response signal and recognize it, then send a connection command to establish the connection.
 - d. After the connection establish successfully, the data transmission is beginning. At the same time, the both devices will shift frequencies in synchronization per a same pseudo randomly ordered list of hopping frequencies, the hopping rate is 1600 times per second. This device conforms to the criteria in FCC Public Notice DA 00-705.
 - e. The bandwidth of the receiver, which is set to a fixed width by the software.
- Note 5: Bluetooth signal has 9 packages DH1, DH3, DH5, 3DH1, 3DH3, 3DH5, 5DH1, 5DH3, 5DH5, DH5 package is largest, we are testing DH5 in the document.

CCIC-SET/T (00) Page 4 of 85

1.2. Support Equipment

No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.
1	PC	DELL	PP11L	DELL	H5914A03
2	Keyboard	lenovo	KU-0989	(n.a.)	(n.a.)
3	Mouse	logitech	(n.a.)	(n.a.)	(n.a.)

Remark: PC ,Keyboard and Mouse all have FCC DOC approval

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No.	Identity	Document Title	
1	47 CFR Part 15	Radio Frequency Devices	
	Subpart C 2012		
2	ANSIC63.10-2009	American National Standard for Testing	
		Unlicensed Wireless Devices	
3	ANSI C63.4-2009	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result
1	15.203	Antenna Requirement	PASS
2	15.247(a)	Number of Hopping Frequency	PASS
3	15.247(b)	Peak Output Power	PASS
4	15.247(a)	20dB Bandwidth	PASS
5	15.247(a)	Carrier Frequency Separation	PASS
6	15.247(a)	Time of Occupancy (Dwell time)	PASS
7	15.247(d)	Conducted Spurious Emission	PASS
8	15.247(d)	Band Edge	PASS
9	15.207	Conducted Emission	PASS
10	15.209	Radiated Emission	PASS
	15.247(c)		

Note 1: The tests were performed according to the method of measurements prescribed in DA-00-705.

Note 2: The test of Radiated Emission and Conducted Spurious Emission were performed according to the method of measurements prescribed in ANSI C63.10 2009.

CCIC-SET/T (00) Page 5 of 85

1.4. Facilities and Accreditations

1.4.1. Facilities

CNAS-Lab Code: L1659

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, Renewal date Nov. 19, 2011, valid time is until Nov. 18, 2014.

1.4.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86KPa-106KPa

CCIC-SET/T (00) Page 6 of 85

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

And according to FCC 47 CFR section 15.247(c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.1.2. Antenna Information

Antenna Category: External antenna

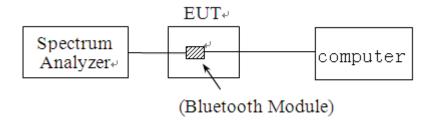
An External antenna was soldered to EUT via an adaptor cable, can't be removed away.

Antenna General Information:

No.	EUT Model	Ant. Type	Ant. Model	Manufacturer	Gain(dBi)
1	GXP2140	PIFA	V1195	SHEN ZHEN VLG WIRELESS TECHNOLOGY CO.,LTD	2.0

2.1.3. Result: comply

CCIC-SET/T (00) Page 7 of 85


2.2. Number of Hopping Frequency

2.2.1. Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2. Test Description

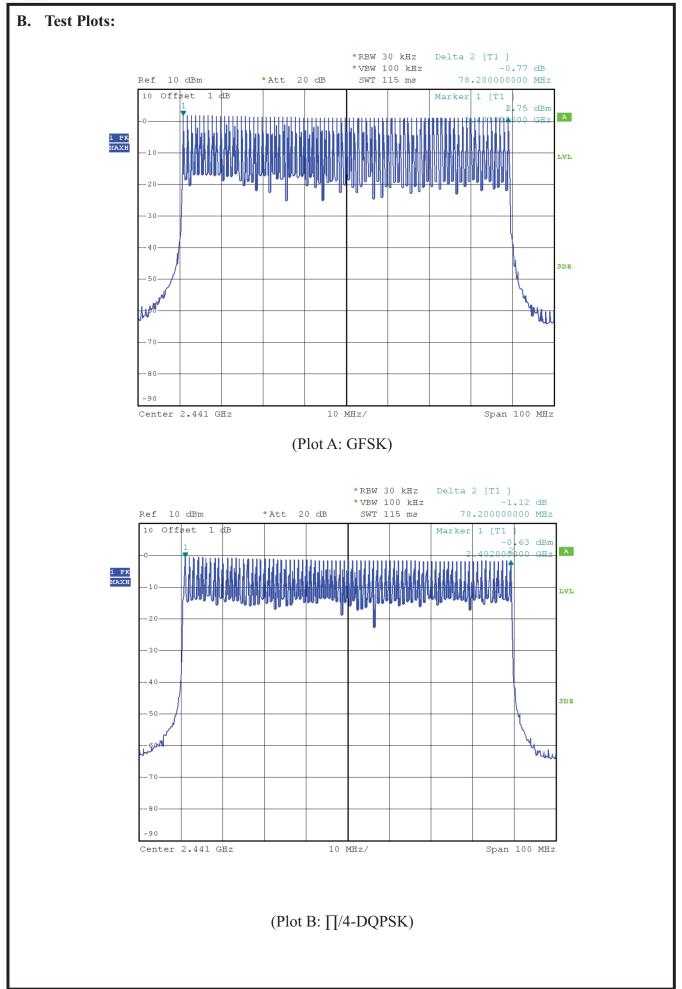
A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

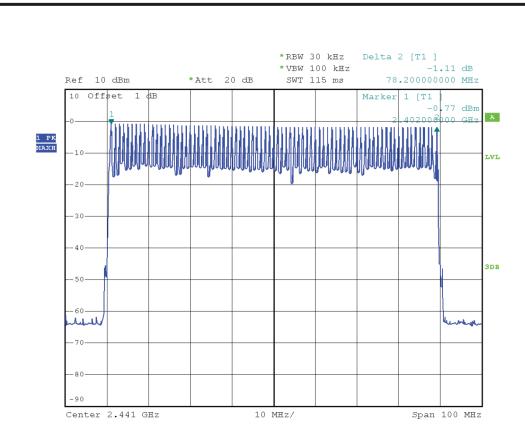
Description Manufacturer		Model	Serial No.	Calibration
				Due. Date
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10

2.2.3. Test Result


The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdict:

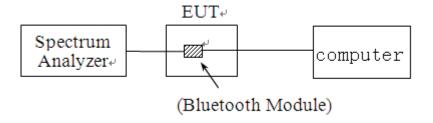
Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS
П/4-DQPSK	2400 - 2483.5	79	15	Plot B	PASS
8-DPSK	2400 - 2483.5	79	15	Plot C	PASS


CCIC-SET/T (00) Page 8 of 85

CCIC-SET/T (00) Page 9 of 85

(Plot C: 8- DPSK)

CCIC-SET/T (00) Page 10 of 85


2.3. Peak Output Power

2.3.1. Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration	
				Due. Date	
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10	

CCIC-SET/T (00) Page 11 of 85

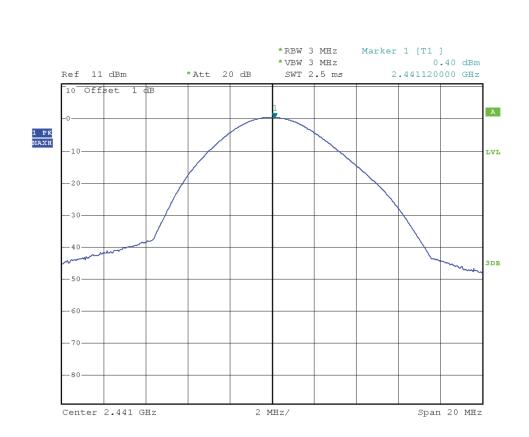
2.3.3. Test Result

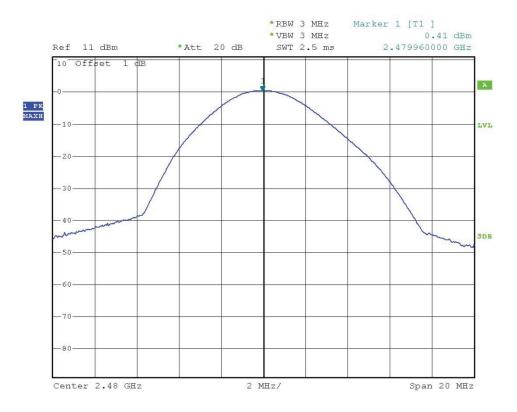

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module. The lowest, middle and highest channel were tested by Power meter.

2.3.3.1. **GFSK Mode**

A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power	Limit	Verdict	Refer to Plot
		dBm	dBm		F 10t
0	2402	1.23		PASS	Plot A
39	2441	0.40	30	PASS	Plot B
78	2480	0.41		PASS	Plot C


B. Test Plots:

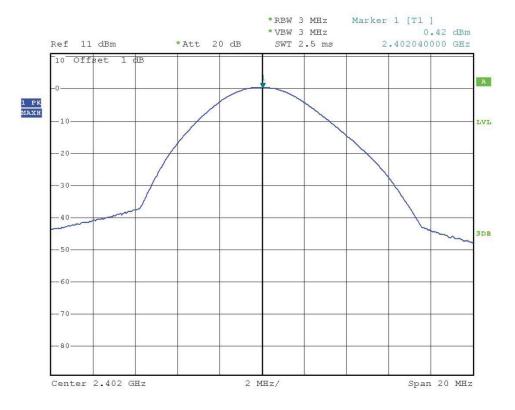

(Plot A: Channel = 2402 @ GFSK)

CCIC-SET/T (00) Page 12 of 85

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

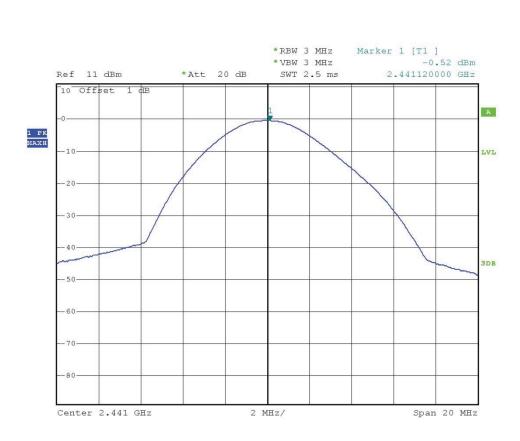
CCIC-SET/T (00) Page 13 of 85

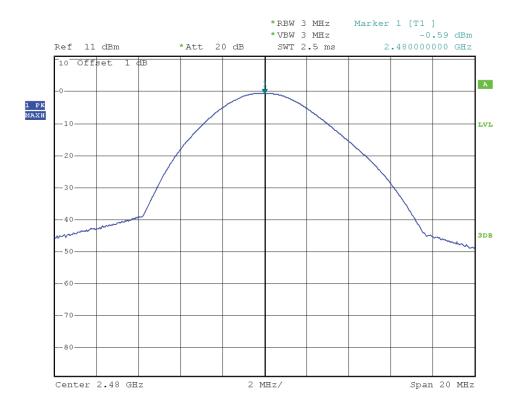


2.3.3.2. ∏/**4-DQPSK** Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power	Limit	Verdict	Refer to Plot
		dBm	dBm		1100
0	2402	0.42		PASS	Plot A
39	2441	-0.52	30	PASS	Plot B
78	2480	-0.59		PASS	Plot C


B. Test Plots:

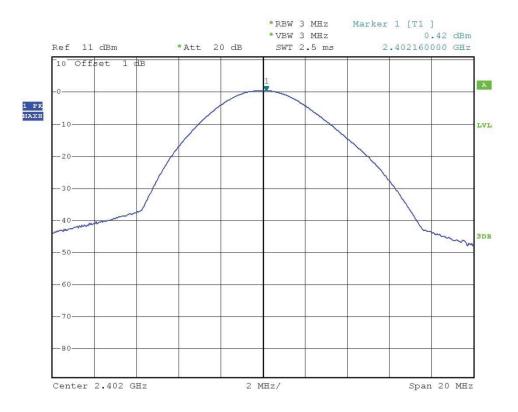

(Plot A: Channel = $2402 @ \Pi/4$ -DQPSK)

CCIC-SET/T (00) Page 14 of 85

(Plot B: Channel = 2441 @ \prod /4-DQPSK)

(Plot C: Channel = 2480 @ \prod /4-DQPSK)

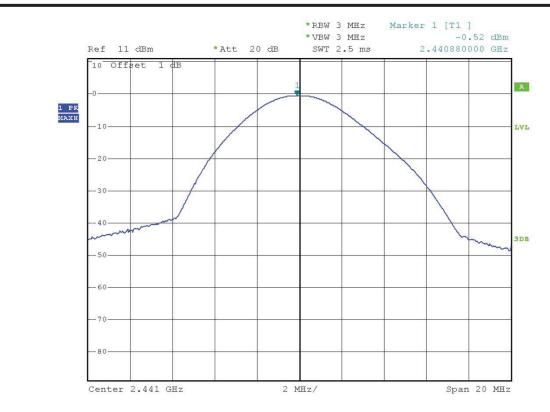
CCIC-SET/T (00) Page 15 of 85

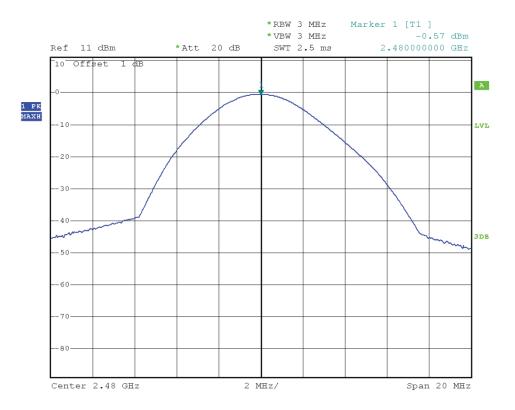


2.3.3.3. 8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power	Limit	Verdict	Refer to Plot
		dBm	dBm		
0	2402	0.42		PASS	Plot A
39	2441	-0.52	30	PASS	Plot B
78	2480	-0.57		PASS	Plot C


B. Test Plots:

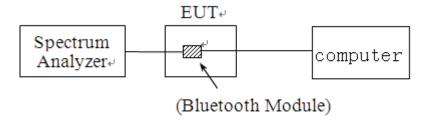

(Plot A: Channel = 2402 @8-DPSK)

CCIC-SET/T (00) Page 16 of 85

(Plot B: Channel = 2441 @ 8-DPSK)

(Plot C: Channel = 2480 @ 8-DPSK)

CCIC-SET/T (00) Page 17 of 85


2.4. 20dB Bandwidth

2.4.1. Definition

According to FCC \$15.247(a)(1), the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description Manufacturer		Model	Serial No.	Calibration	
				Due. Date	
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10	

2.4.1. Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

 $VBW \ge RBW$

Sweep = auto

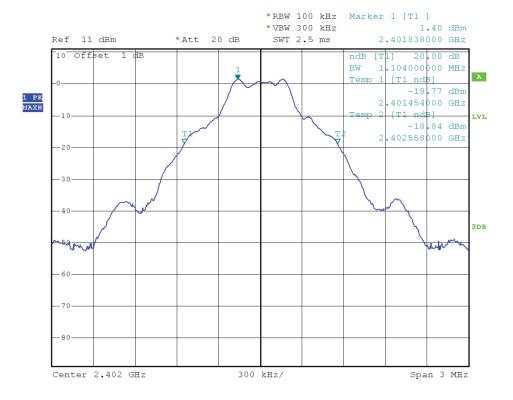
Detector function = peak

Trace = max hold

CCIC-SET/T (00) Page 18 of 85

2.4.2. Test Result

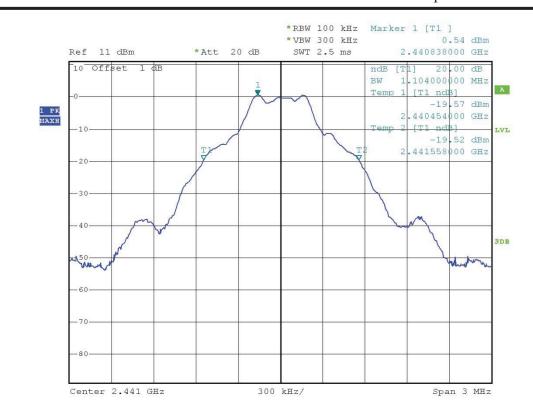
The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

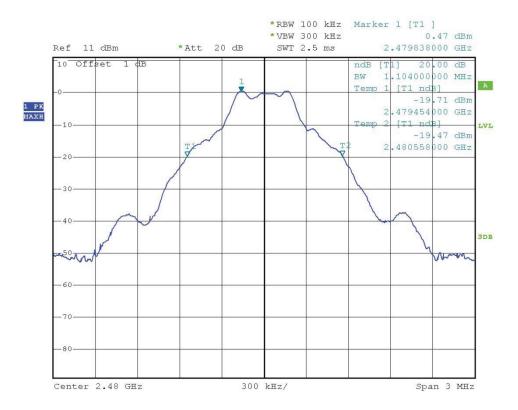

2.4.2.1. GFSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.104MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.104	Plot A
39	2441	1.104	Plot B
78	2480	1.104	Plot C


C. Test Plots:

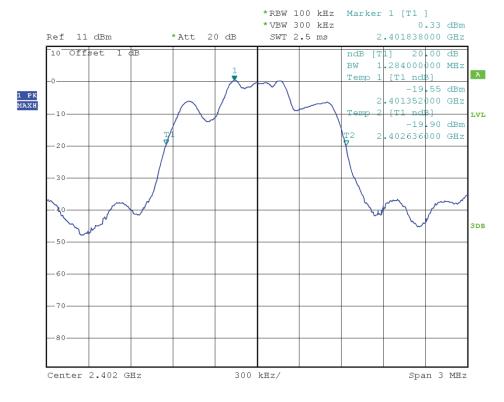

(Plot A: Channel = 2402 @ GFSK)

CCIC-SET/T (00) Page 19 of 85

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

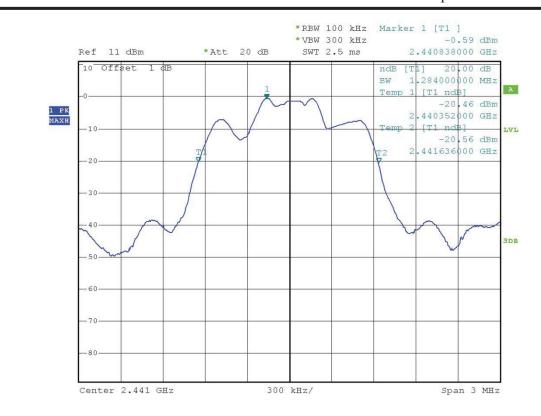
CCIC-SET/T (00) Page 20 of 85

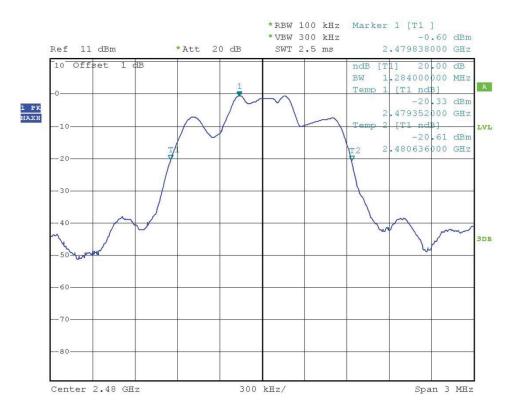

2.4.2.2. _□/**4-DQPSK Mode**

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.284MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.284	Plot A
39	2441	1.284	Plot B
78	2480	1.284	Plot C


Test Plots:

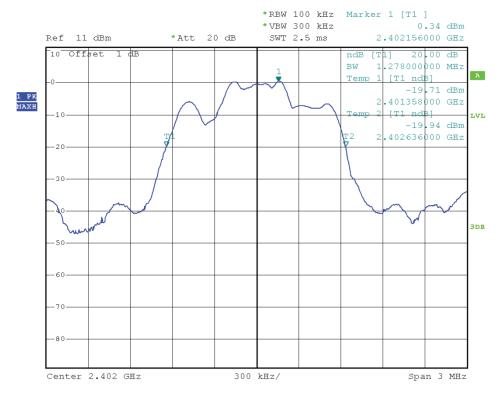

(Plot A: Channel = 2402 @ $\pi/4$ -DQPSK)

CCIC-SET/T (00) Page 21 of 85

(Plot B: Channel = 2441 @ π /4-DQPSK)

(Plot C: Channel = 2480 @ π /4-DQPSK)

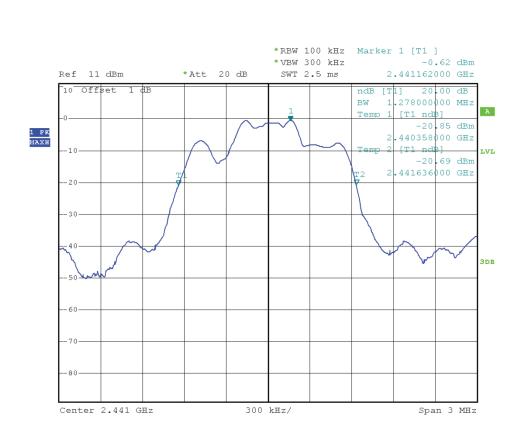
CCIC-SET/T (00) Page 22 of 85

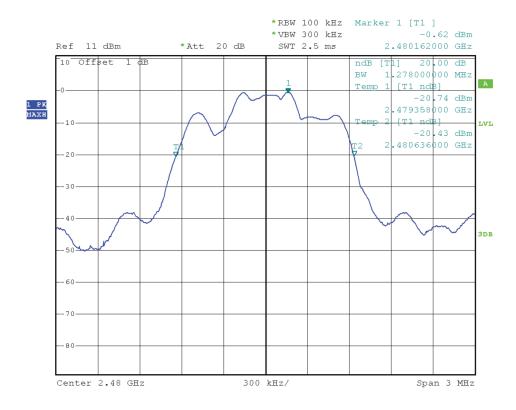

2.4.2.3. 8-DPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.278MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	1.278	Plot A
39	2441	1.278	Plot B
78	2480	1.278	Plot C


B. Test Plots:

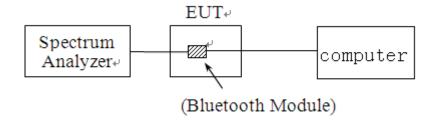

(Plot A: Channel = 2402 @ 8-DPSK)

CCIC-SET/T (00) Page 23 of 85

(Plot B: Channel = 2441 @ 8-DPSK)

(Plot C: Channel = 2480 @ 8-DPSK)

CCIC-SET/T (00) Page 24 of 85


2.5. Carried Frequency Separation

2.5.1. Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description Manufacturer		Model	Serial No.	Calibration	
				Due. Date	
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10	

2.5.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) $\geq 1\%$ of the span

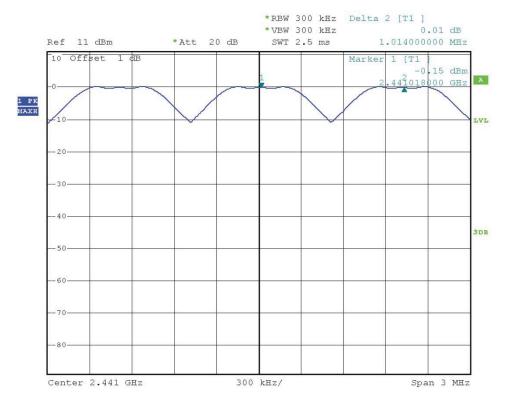
Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

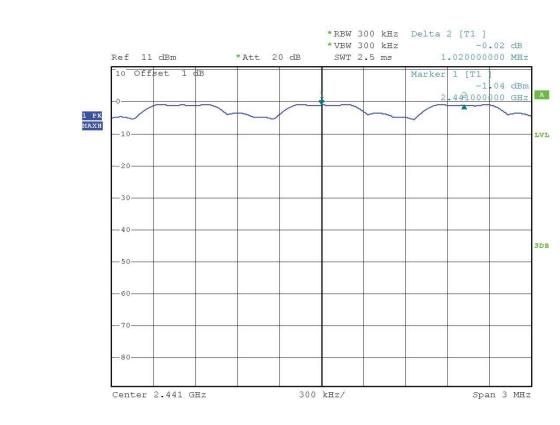
Trace = max hold

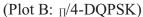
Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

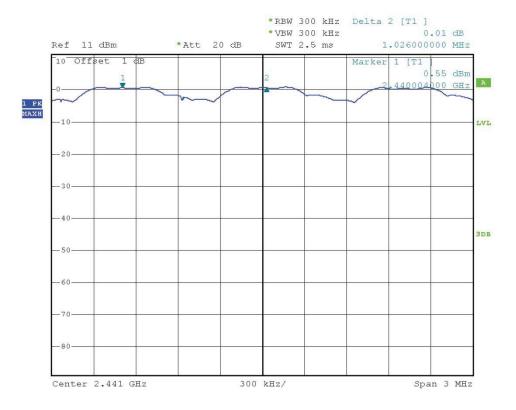

CCIC-SET/T (00) Page 25 of 85

2.5.4. Test Result

The Bluetooth Module operates at hopping-on test mode.


For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (1.104MHz for GFSK mode, 1.284MHz for $\Pi/4$ -DQPSK mode and 1.278MHz for 8-DPSK mode, refer to section 2.4.1), whichever is greater. So, the verdict is PASSING

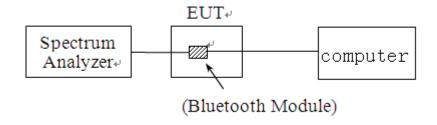



(Plot A: GFSK)

CCIC-SET/T (00) Page 26 of 85

(Plot C: 8-DPSK)

CCIC-SET/T (00) Page 27 of 85


2.6. Time of Occupancy (Dwell time)

2.6.1. Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the PC is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration
				Due. Date
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10

2.6.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

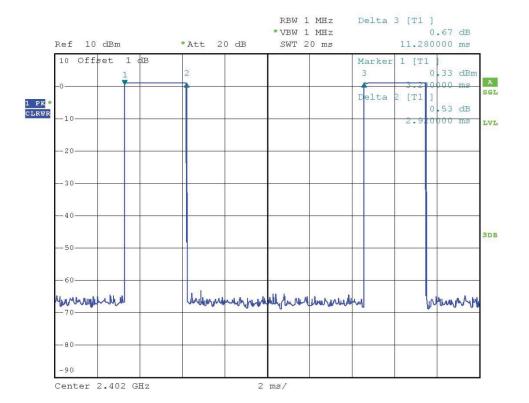
CCIC-SET/T (00) Page 28 of 85

2.6.4. Test Result

The average time of occupancy on any channel within the Period can be calculated with formulas (for DH5 package type):

```
{Total of Dwell} = {Pulse Time} * (1600 / 6) / {Number of Hopping Frequency} * {Period} 
{Period} = 0.4s * {Number of Hopping Frequency}
```

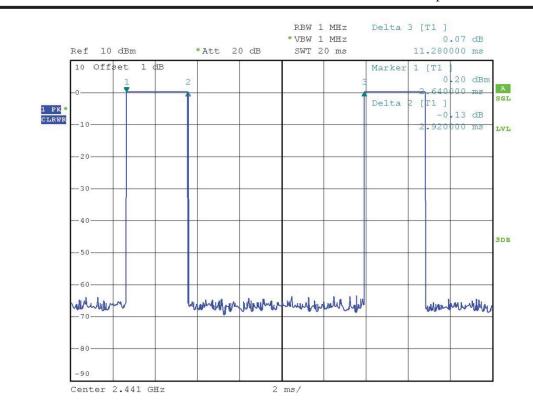
The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

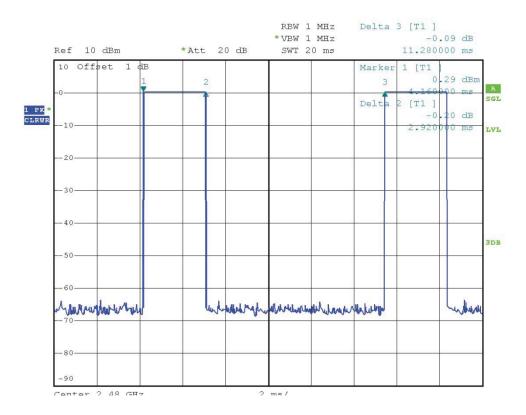

2.6.4.1. GFSK Mode

A. Test Verdict:

Channel	Frequency	Pu	Pulse Time Total of Dwell		Limit (mg)	Verdict
Chamilei	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
0	2402	2.92	Plot A	311.467		PASS
39	2441	2.92	Plot B	311.467	400	PASS
78	2480	2.92	Plot C	311.467		PASS

B. Test Plots:


Note: the following plots record the Pulse Time of the Module carrier.

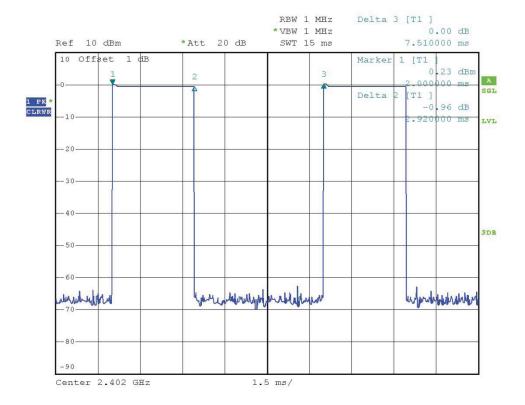

(Plot A: Channel = 2402 @ GFSK)

CCIC-SET/T (00) Page 29 of 85

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

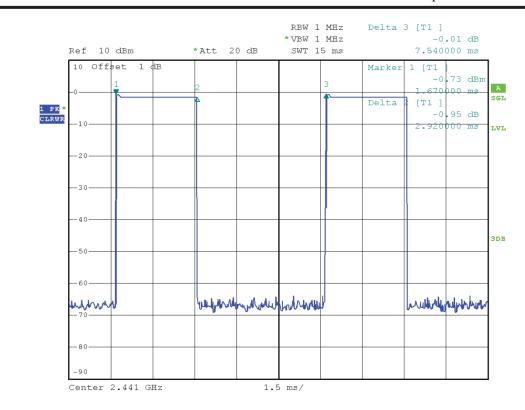
CCIC-SET/T (00) Page 30 of 85

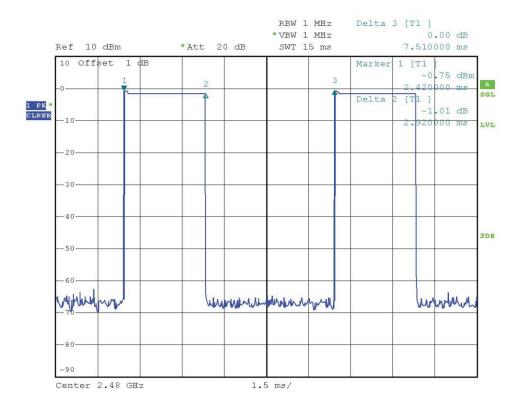

2.6.4.2. Π /4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Pulse Time		Total of Dwell	Limit (mg)	Verdict
Chamilei	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
0	2402	2.92	Plot A	311.467		PASS
39	2441	2.92	Plot B	311.467	400	PASS
78	2480	2.92	Plot C	311.467		PASS

B. Test Plots:


Note: the following plots record the Pulse Time of the Module carrier.

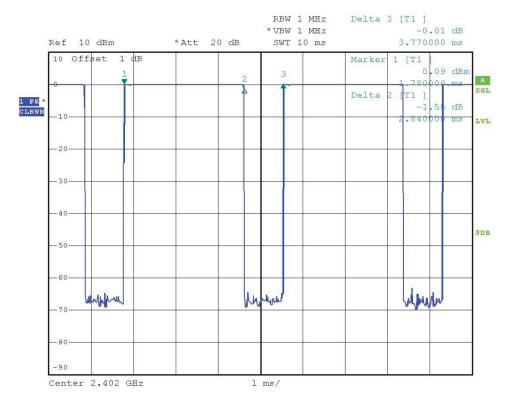

(Plot A: Channel = $2402 @ \pi/4$ -DQPSK)

CCIC-SET/T (00) Page 31 of 85

(Plot B: Channel = 2441 $@_{\Pi}/4$ -DQPSK)

(Plot C: Channel = 2480 @ π /4-DQPSK)

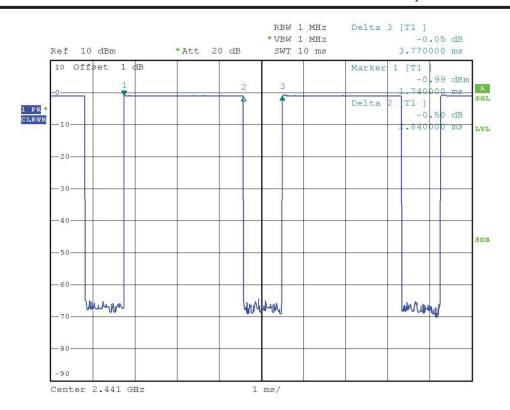
CCIC-SET/T (00) Page 32 of 85

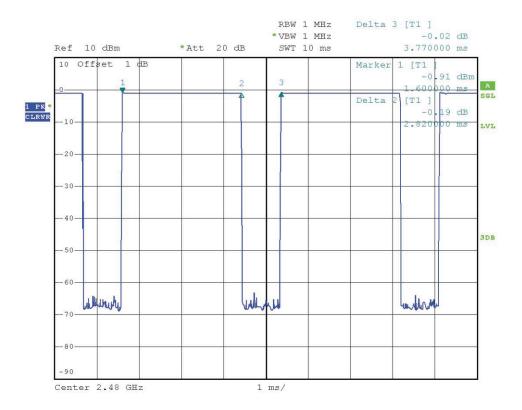

2.6.4.3. 8-DPSK mode

A. Test Verdict:

Channel	Frequency	Pulse Time To		Total of Dwell	Limit (mg)	Verdict
Chamilei	(MHz)	ms	Refer to Plot	(ms)	Limit (ms)	verdict
0	2402	2.84	Plot A	302.933		PASS
39	2441	2.84	Plot B	302.933	400	PASS
78	2480	2.82	Plot C	300.800		PASS

B. Test Plots:


Note: the following plots record the Pulse Time of the Module carrier.

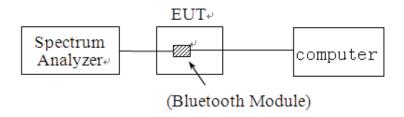

(Plot A: Channel = 2402 @ 8-DPSK)

CCIC-SET/T (00) Page 33 of 85

(Plot B: Channel = 2441 @ 8-DPSK)

(Plot C: Channel = 2480 @ 8-DPSK)

CCIC-SET/T (00) Page 34 of 85


2.7. Conducted Spurious Emissions

2.7.1. Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2. Test Description

A. Test Setup:

The Bluetooth Module of the EUT, which is powered by the Battery, is connected to the Spectrum Analyzer (SA), the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the PC, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Calibration
				Due. Date
Spectrum Analyzer	R&S	FSP40	1164.4391.40	2014.06.10

2.7.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

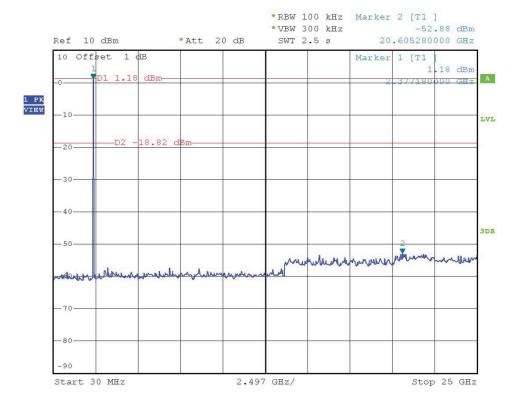
Trace = max hold

Allow the trace to stabilize.

CCIC-SET/T (00) Page 35 of 85

2.7.4. Test Result

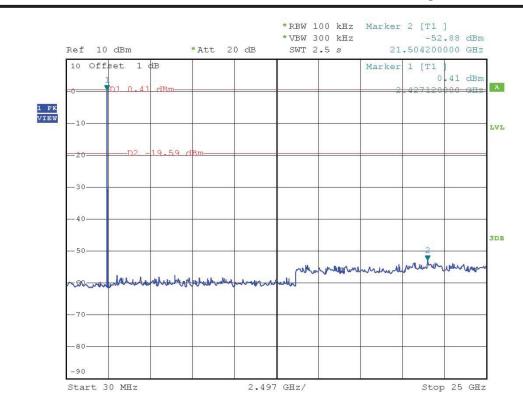
The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

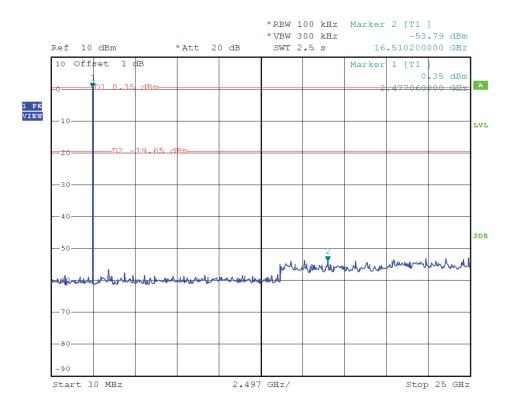

2.7.4.1. GFSK Mode

A. Test Verdict:

Engan	Етадиатах	Measured Max.		Limi		
Channel	Frequency	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(MHz)	EmissiondBm)	EmissiondBm)		-20dBc Limit	
0	2402	-52.88	Plot A	1.18	-18.82	PASS
39	2441	-52.88	Plot B	0.41	-19.59	PASS
78	2480	-53.79	Plot C	0.35	-19.65	PASS

B. Test Plots:


Note: the power of the Module transmitting frequency should be ignored.

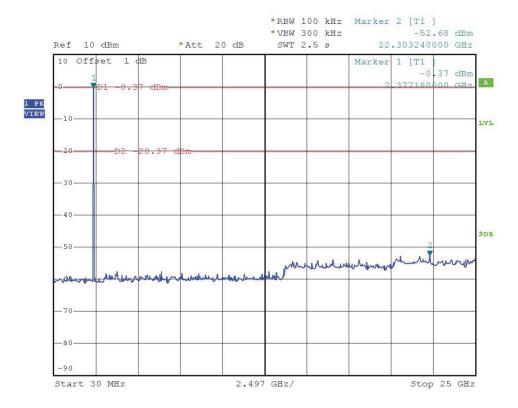

(Plot A: Channel = 0, 30MHz to 25GHz @ GFSK Mode)

CCIC-SET/T (00) Page 36 of 85

(Plot B: Channel = 39, 30MHz to 25GHz @ GFSK Mode)

(Plot C: Channel = 78, 30MHz to 25GHz @ GFSK Mode)

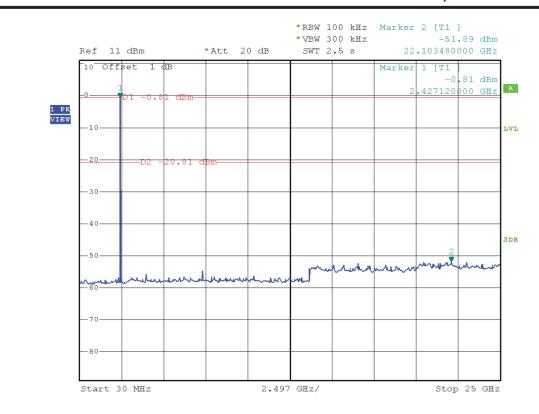
CCIC-SET/T (00) Page 37 of 85

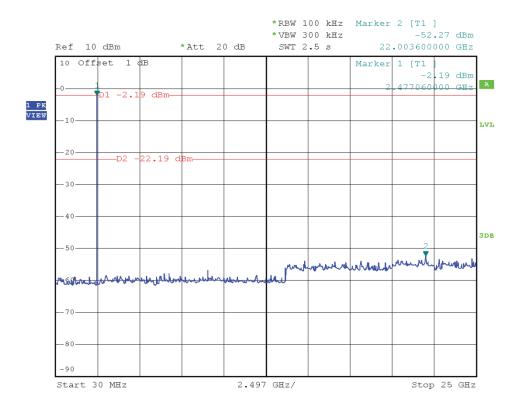

2.7.4.2. ∏/4-DQPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Max.	Refer to Plot	Limit (dBm)		
		Out of Band		Carrier	Calculated	Verdict
		Emission (dBm)		Level	-20dBc Limit	
0	2402	-52.68	Plot A	-0.37	-20.37	PASS
39	2441	-51.89	Plot B	-0.81	-20.81	PASS
78	2480	-52.27	Plot C	-2.19	-22.19	PASS

B. Test Plots:


Note: the power of the Module transmitting frequency should be ignored.

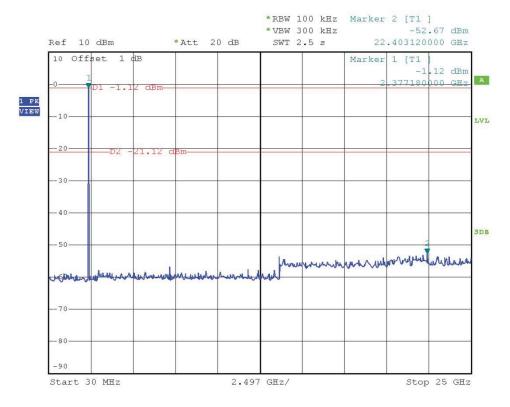

(Plot A: Channel = 0, 30MHz to 25GHz @ π /4-DQPSK)

CCIC-SET/T (00) Page 38 of 85

(Plot B: Channel = 39, 30MHz to 25GHz @ π /4-DQPSK)

(PlotC: Channel = 78, 30MHz to 25GHz @ $\pi/3$ -DQPSK)

CCIC-SET/T (00) Page 39 of 85


2.7.4.3. 8-DPSK Mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Max.	Refer to Plot	Limit (dBm)		
		Out of Band		Carrier	Calculated	Verdict
		Emission (dBm)		Level	-20dBc Limit	
0	2402	-52.67	Plot G.1	-1.12	-21.12	PASS
39	2441	-53.09	Plot H.1	-2.11	-22.11	PASS
78	2480	-52.91	Plot I.1	-2.22	-22.22	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot G.1: Channel = 0, 30MHz to 25GHz @ 8-DPSK)

CCIC-SET/T (00) Page 40 of 85