

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
4	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
6	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
7	KDB 905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)
8	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection
9	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability

Report No.: 220218001RFC-4

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen Issue 5, Section 6.8 requirement:

According to RSS-Gen Issue 5, Section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 4.0 dBi.

Page 23 of 115 Report No.: 220218001RFC-4

5.326 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)

Test Method: RSS-247 Issue 2 Section 6.2.1.2
KDB 789033 D02 v02r01 Section C.1
Limit: None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

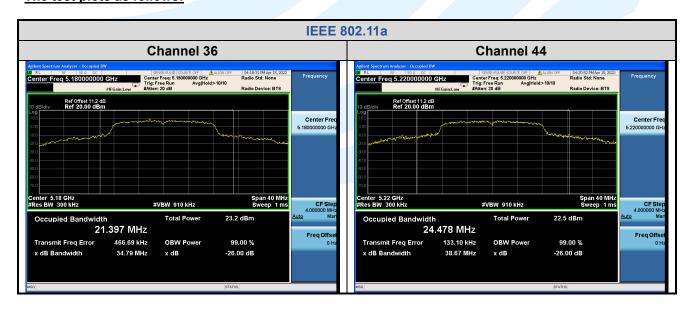
- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Occupied Bandwidth

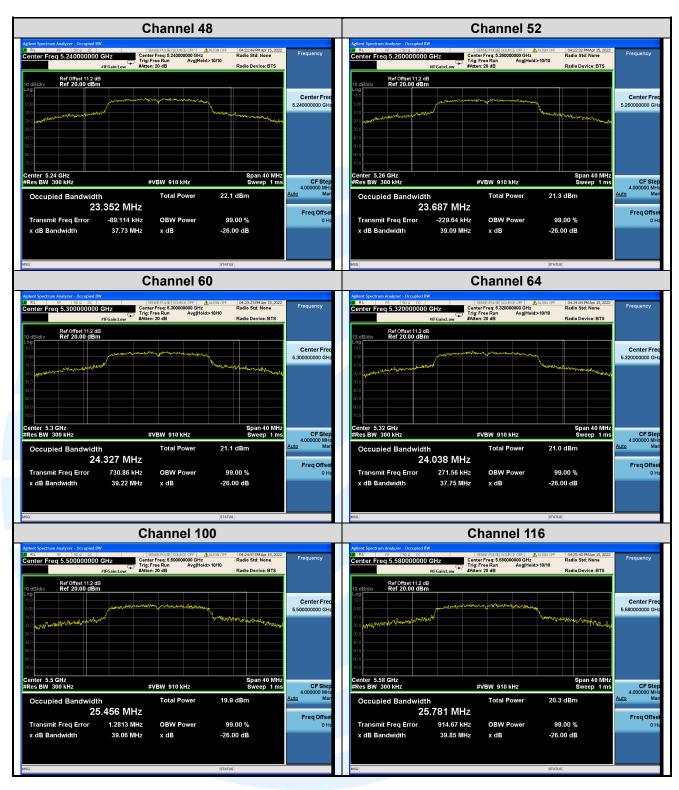
- a) Set RBW = 1% to 5% of the occupied bandwidth
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

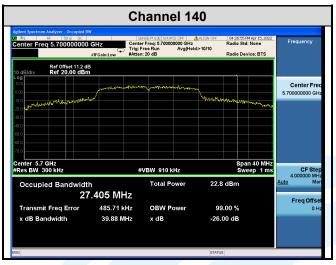
Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass

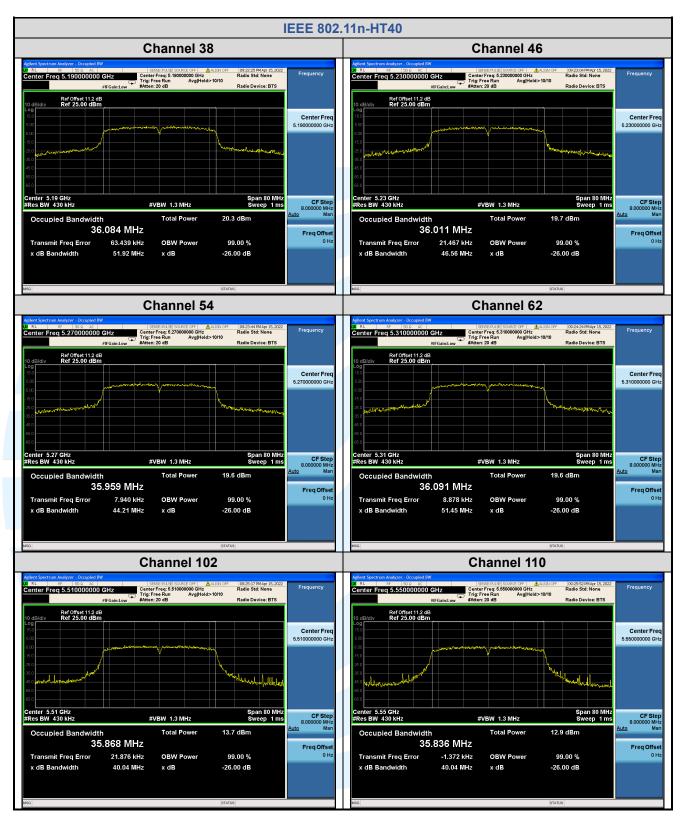
Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	36 (5180)	34.79	21.397
	44 (5220)	38.67	24.478
	48 (5240)	37.73	23.352
	52 (5260)	39.09	23.687
IEEE 802.11a	60 (5300)	39.22	24.327
	64 (5320)	37.75	24.038
	100 (5500)	39.06	25.456
	116 (5580)	39.85	25.781
	140 (5700)	39.88	27.405
	36 (5180)	35.20	19.468
	44 (5220)	39.60	22.817
	48 (5240)	37.57	22.301
JEEE 000 445 LITO0	52 (5260)	39.75	23.513
IEEE 802.11n-HT20	60 (5300)	39.73	24.614
	64 (5320)	37.90	21.750
	100 (5500)	39.94	27.297
	116 (5580)	38.96	23.852

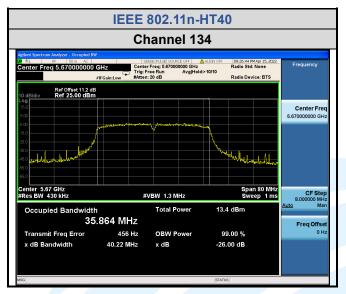

Page 24 of 115 Report No.: 220218001RFC-4

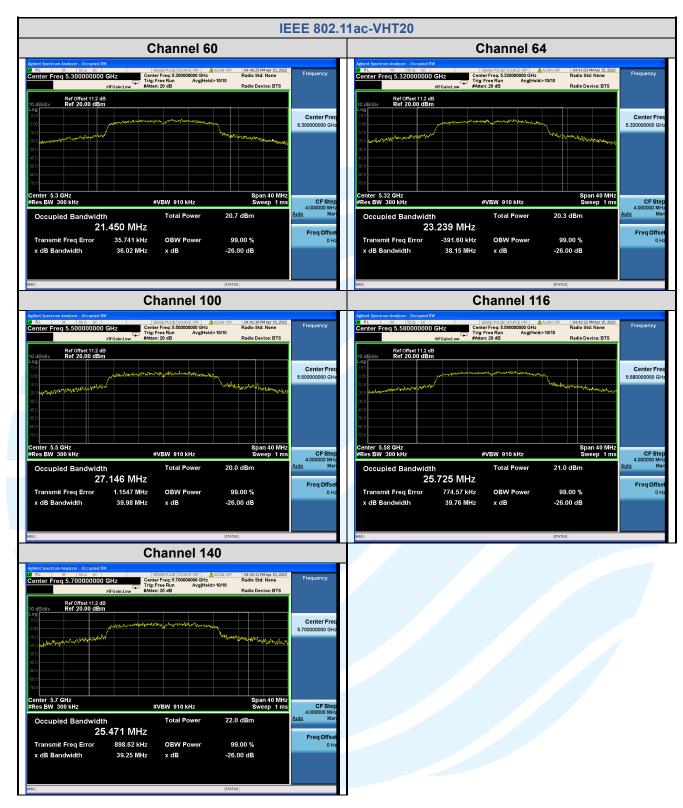
	140 (5700)	39.83	22.303
	38 (5190)	51.92	36.084
	46 (5230)	46.56	36.011
	54 (5270)	44.21	35.959
IEEE 802.11n-HT40	62 (5310)	51.45	36.091
	102 (5510)	40.04	35.868
	110 (5550)	40.04	35.836
	134 (5670)	40.22	35.864
	36 (5180)	38,87	22.638
	44 (5220)	39.87	25.528
	48 (5240)	38.99	23.796
	52 (5260)	39.73	23.121
IEEE 802.11ac-VHT20	60 (5300)	36.02	21.450
	64 (5320)	38.15	23.239
	100 (5500)	39.98	27.146
	116 (5580)	39.76	25.725
	140 (5700)	39.74	23.668
	38 (5190)	47.23	36.054
	46 (5230)	45.12	36.002
	54 (5270)	44.75	36.004
IEEE 802.11ac-VHT40	62 (5310)	46.60	35.956
	102 (5510)	40.74	35.804
	110 (5550)	40.68	35.750
	134 (5670)	40.77	35.828
	42 (5210)	82.87	75.084
IEEE 802.11ac-VHT80	58 (5290)	84.42	75.153
IEEE 002.1180-V1100	106 (5530)	81.72	75.955
	122 (5610)	81.47	75.006

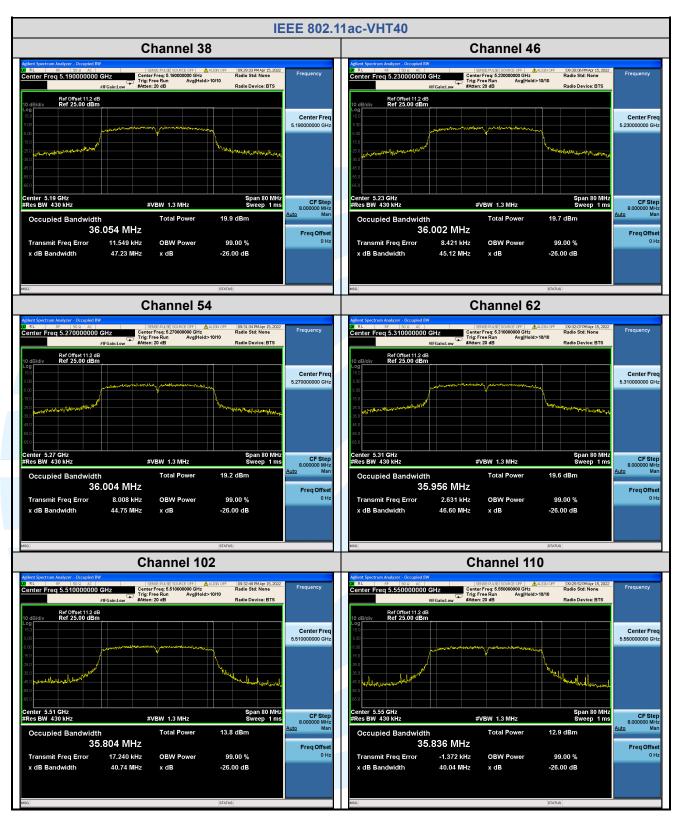

The test plots as follows:

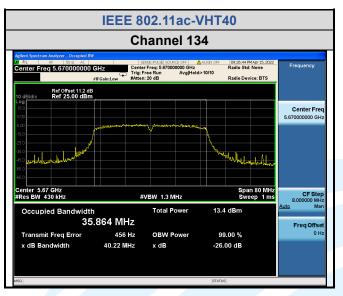












Page 33 of 115 Report No.: 220218001RFC-4

5.46 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (e)

RSS-247 Issue 2 Section 6.2.4.1 **Test Method:**KDB 789033 D02 v02r01 Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

6dB Bandwidth

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 * RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

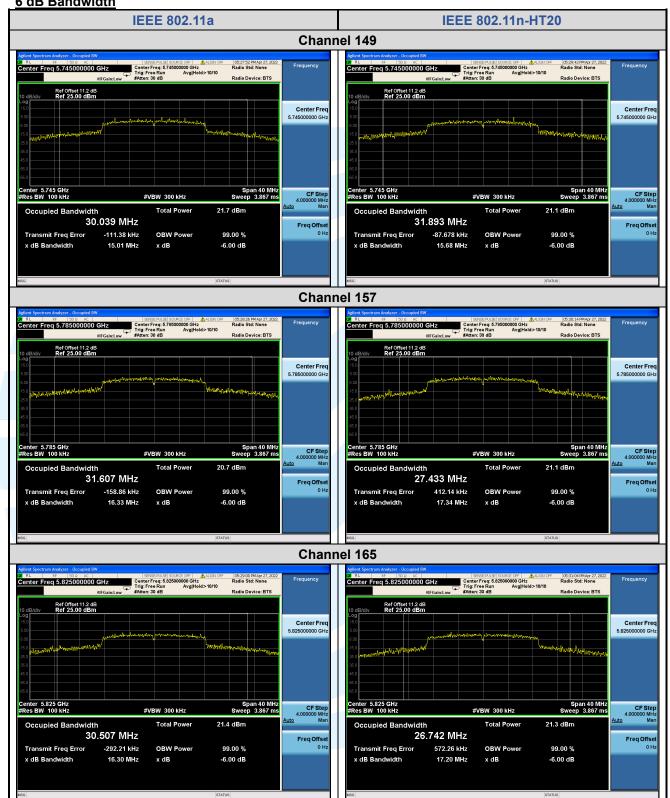
- a) Set RBW = 1% to 5% of the occupied bandwidth
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

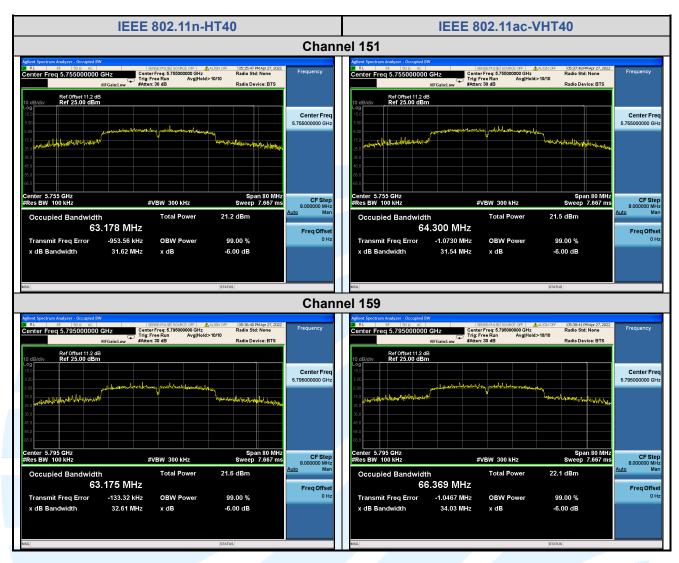
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

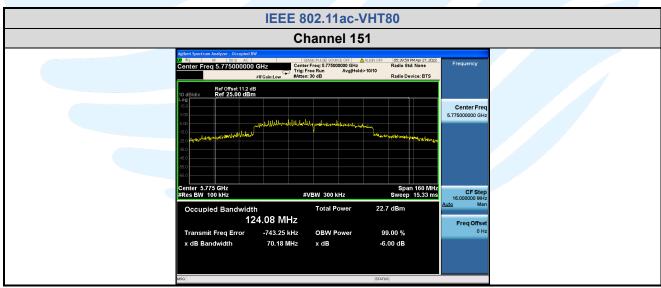
Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

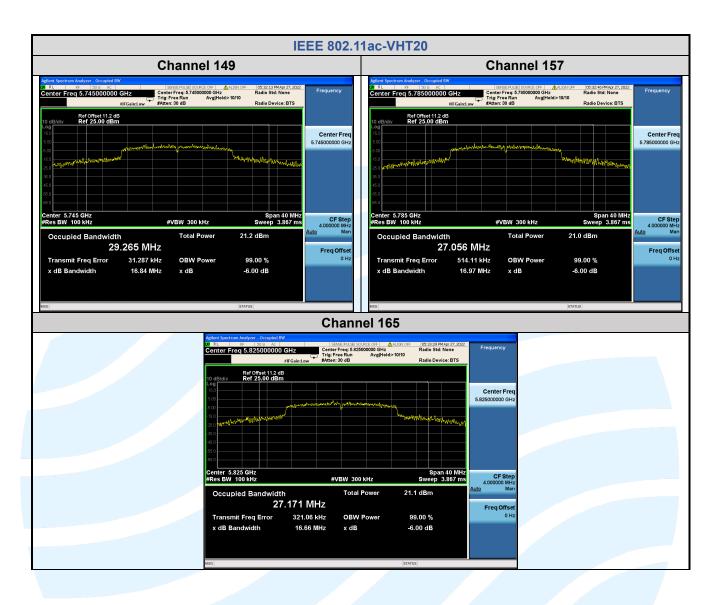
Test Results: Pass

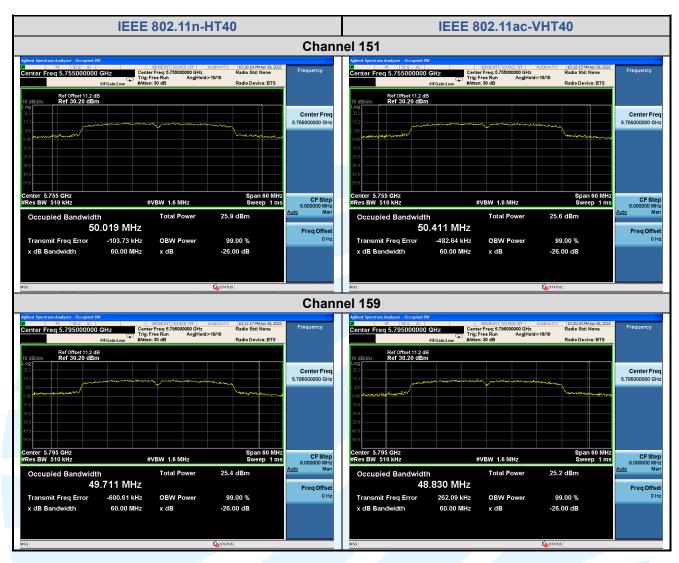

Test Data:

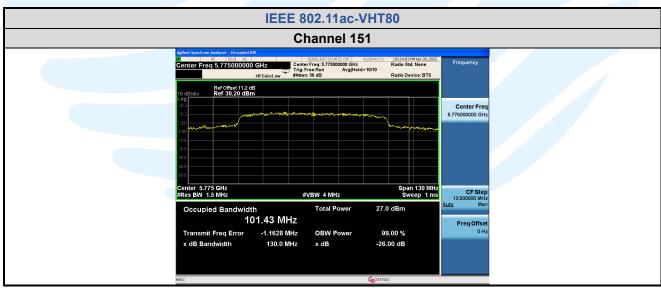

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	149 (5745)	15.01	25.483	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	16.33	25.053	> 500 kHz	Pass
	165 (5825)	16.30	23.614	> 500 kHz	Pass
	149 (5745)	15.68	25.578	> 500 kHz	Pass
IEEE 802.11n- HT20	157 (5785)	17.34	23.975	> 500 kHz	Pass
11120	165 (5825)	17.20	23.312	> 500 kHz	Pass
IEEE 802.11n-	151 (5755)	31.62	50.019	> 500 kHz	Pass
HT40	159 (5795)	32.61	49.711	> 500 kHz	Pass
	149 (5745)	16.84	25.667	> 500 kHz	Pass
IEEE 802.11ac- VHT20	157 (5785)	16.97	25.463	> 500 kHz	Pass
V11120	165 (5825)	16.66	23.433	> 500 kHz	Pass
IEEE 802.11ac-	151 (5755)	31.54	50.411	> 500 kHz	Pass
VHT40	159 (5795)	34.03	48.830	> 500 kHz	Pass
IEEE 802.11ac- VHT80	155 (5775)	70.18	101.43	> 500 kHz	Pass



The test plots as follows: 6 dB Bandwidth







Occupied Bandwidth IEEE 802.11n-HT 20 **IEEE 802.11a** Channel 149 Ref Offset 11.2 dB Ref 30.20 dBm Ref Offset 11.2 dB Ref 30.20 dBm Center Freq 5.745000000 GHz Center Freq enter 5.745 GHz Res BW 300 kHz CF Step 3.000000 MH Center 5.745 GHz Res BW 300 kHz Span 30 MH Sweep 1 m CF Ste 3.000000 MH #VBW 910 kHz #VBW 910 kHz Total Pow Occupied Bandwidt Occupied Bandwidt 25.483 MHz 25.578 MHz Freq Offse Transmit Freq Error -60.939 kHz OBW Power 99.00 % Transmit Freq Error 55.456 kHz OBW Power 99.00 % x dB Bandwidth 30.00 MHz x dB -26.00 dB x dB Bandwidth 30.00 MHz x dB -26.00 dB Channel 157 10:02:09 PM Apr 28, Radio Std: None Center Freq 5.785000000 GHz Ref Offset 11.2 dB Ref 30.20 dBm Ref Offset 11.2 dE Ref 30.20 dBm Center Free Center Freq CF Step 3.000000 MHz Mar CF Step 3.000000 MI Center 5.785 GHz #Res BW 300 kHz Center 5.785 GHz Res BW 300 kHz Span 30 MHz Sweep 1 ms Span 30 MH Sweep 1 m #VBW 910 kHz 25.7 dBm 25.3 dBm 25.053 MHz 23.975 MHz Freq Offse Freq Offse 322.12 kHz 292 Hz Transmit Freg Error **OBW Power** 99.00 % Transmit Freg Error 99.00 % **OBW Power** 30.00 MHz 30.00 MHz x dB Bandwidth x dB -26.00 dB x dB Bandwidth -26.00 dB x dB **Channel 165** Center Freq: 5.825000 Trig: Free Run Center Freq: 5.8250 Trig: Free Run Ref Offset 11.2 dB Ref 30.20 dBm Ref Offset 11.2 dB Ref 30.20 dBm Center Freq Center Fred CF Step 3.000000 MU-CF Step 3.000000 MHz #VBW 910 kHz #VBW 910 kHz 25.4 dBm Total Powe 24.9 dBm 23.614 MHz 23.312 MHz Freq Offse 366.83 kHz Transmit Freq Error 417.94 kHz 99.00 % Transmit Freq Error OBW Power OBW Power 30.00 MHz -26.00 dB 30.00 MHz -26.00 dB

5.5 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P.

FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) **Test Requirement:** RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1 **Test Method:** KDB 789033 D02 v02r01 Section E.3.a (Method PM)

Limits: FCC 47 CFR Part 15 Subpart E

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-topoint operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain

Page 42 of 115 Report No.: 220218001RFC-4

directional antennas are used exclusively for fixed, point-to-point operations.

Limits: RSS-247 Issue 2

1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log₁₀B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log₁₀B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log₁₀B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

```
i. -13 dBW/MHz for 0^{\circ} \le \theta < 8^{\circ} ii. -13 - 0.716 (\theta-8) dBW/MHz for 8^{\circ} \le \theta < 40^{\circ} iii. -35.9 - 1.22 (\theta-40) dBW/MHz for 40^{\circ} \le \theta \le 45^{\circ} iv. -42 dBW/MHz for \theta > 45^{\circ}
```

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
 - i. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
 - ii. devices shall implement a method to permanently reduce their e.i.r.p. via a firmwarefeature in the event that the Department requires it. The test report must demonstratehow the device's power table can be updated to meet this firmware requirement. Themanufacturer shall provide this firmware to update all systems automatically incompliance with the directions received from the Department.

3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log₁₀B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices

Page 43 of 115

operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint³ systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

Report No.: 220218001RFC-4

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Page 44 of 115 Report No.: 220218001RFC-4

Frequency band 5150-5250 MHz RSS-247 Issue 2:

For IEEE 802.11 a/n-HT20/ac-VHT20, the minimum 99% emission bandwidth is 19.468 MHz 10 dBm + $10\log_{10}(19.468) = 22.89$ dBm < 23 dBm So, the 22.89 dBm limit applicable

For IEEE 802.11 n-HT40/ac-VHT40/ac-VHT80, the minimum 99% emission bandwidth is 36.002MHz $10 \text{ dBm} + 10 \text{log}_{10} (36.002) = 25.56 \text{ dBm} > 23 \text{ dBm}$ So, the 23 dBm limit applicable

		FCC Part	15E	RSS		
Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm)	Limit (dBm)	Maximum e.i.r.p (dBm)	e.i.r.p Limit (dBm)	Pass / Fail
	36 (5180)	15.54	24	19.54	22.89	Pass
IEEE 802.11a	44 (5220)	16.46	24	20.46	22.89	Pass
	48 (5240)	16.85	24	20.85	22.89	Pass
	36 (5180)	15.00	24	19.00	22.89	Pass
IEEE 802.11n-HT20	44 (5220)	15.84	24	19.84	22.89	Pass
	48 (5240)	16.35	24	20.35	22.89	Pass
IEEE 802.11n-HT40	38 (5190)	15.40	24	19.40	23	Pass
IEEE 002.1111-1140	46 (5230)	16.20	24	20.20	23	Pass
1555 000 44	36 (5180)	15.10	24	19.10	22.89	Pass
IEEE 802.11ac- VHT20	44 (5220)	15.96	24	19.96	22.89	Pass
VIIIZO	48 (5240)	16.30	24	20.30	22.89	Pass
IEEE 802.11ac-	38 (5190)	15.28	24	19.28	23	Pass
VHT40	46 (5230)	16.23	24	20.23	23	Pass
IEEE 802.11ac- VHT80	42 (5210)	15.37	24	19.37	23	Pass

Remark:

- 1. Maximum conducted output power = Conducted output power + Duty Cycle Factor
- 2. Maximum e.i.r.p = Maximum conducted output power + Antenna Gain
- 3. The maximum ERP/EIRP is calculated from max output power and antenna gain, the antenna gain provided by the customer, and the customer takes all the responsibilities for the accuracy of antenna gain.

Page 45 of 115 Report No.: 220218001RFC-4

Frequency band 5250-5350 MHz RSS-247 Issue 2:

For IEEE 802.11 a/n-HT20/ac-VHT 20, the minimum 99% emission bandwidth is 21.450 MHz

11 dBm + $10\log_{10}(21.450) = 24.31$ dBm > 24dBm

So, the 24 dBm limit applicable

 $17dBm + 10log_{10}(21.450) = 30.31 dBm > 30 dBm(1W)$

So, the 30 dBm limit applicable for e.i.r.p

For IEEE 802.11 n-HT40/ac-VHT80, the minimum 99% emission bandwidth is 35.956 MHz 11 dBm + $10log_{10}$ (35.956) = 26.56dBm > 24 dBm (250mW) So, the 24 dBm limit applicable

FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 36.02 MHz 11 dBm + $10\log_{10}(36.02) = 26.57$ dBm > 24 dBm (250mW) So, the 24 dBm limit applicable

	Channel/	Maximum	Maximum e.i.r.p (dBm)	Limit (dBm)			Dana (
Mode	Frequency (MHz)	conducted output power		Conducted		e.i.r.p	Pass / Fail
	(WITIZ)	(dBm)		FCC Part 15E	RSS	5-247	
	52 (5260)	17.07	21.07	24	24	30	Pass
IEEE 802.11a	60 (5300)	17.15	21.15	24	24	30	Pass
	64 (5320)	17.84	21.84	24	24	30	Pass
1555 000 44	52 (5260)	16.76	20.76	24	24	30	Pass
IEEE 802.11n- HT20	60 (5300)	16.83	20.83	24	24	30	Pass
11120	64 (5320)	17.47	21.47	24	24	30	Pass
IEEE 802.11n-	54 (5270)	16.84	20.84	24	24	30	Pass
HT40	62 (5310)	16.91	20.91	24	24	30	Pass
1555 000 44	52 (5260)	16.80	20.80	24	24	30	Pass
IEEE 802.11ac- VHT20	60 (5300)	16.75	20.75	24	24	30	Pass
V11120	64 (5320)	17.49	21.49	24	24	30	Pass
IEEE 802.11ac- VHT40	54 (5270)	16.91	20.91	24	24	30	Pass
	62 (5310)	16.73	20.73	24	24	30	Pass
IEEE 802.11ac- VHT80	58 (5290)	16.89	20.89	24	24	30	Pass

Remark:

- 1. Maximum conducted output power = Conducted output power + Duty Cycle Factor
- 2. Maximum e.i.r.p = Maximum conducted output power + Antenna Gain
- 3. The maximum ERP/EIRP is calculated from max output power and antenna gain, the antenna gain provided by the customer, and the customer takes all the responsibilities for the accuracy of antenna gain.

Page 46 of 115 Report No.: 220218001RFC-4

Frequency bands 5470-5725 MHz (RSS-247 Issue 2 Not including 5600-5650 MHz) RSS-247 Issue 2:

For IEEE 802.11 a/n-HT20/ac-VHT 20, the minimum 99% emission bandwidth is 22.303 MHz

11 dBm + $10\log_{10}(22.303) = 24.48$ dBm > 24 dBm

So, the 24 dBm limit applicable for conducted

 $17dBm + 10log_{10} (22.303) = 30.48dBm > 30 dBm(1W)$

So, the 30 dBm limit applicable for e.i.r.p

For IEEE 802.11 n-HT40/ac-VHT 40/ac-VHT80, the minimum 99% emission bandwidth is 35.75 MHz 11 dBm + $10\log_{10}$ (35.75) = 26.56 dBm > 24 dBm So, the 24 dBm limit applicable

FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 38.96 MHz 11 dBm + $10\log_{10}(30) = 26.91$ dBm > 24 dBm (250mW) So, the 24 dBm limit applicable

	Channel/	Maximum	Maximum e.i.r.p (dBm)	Limit (dBm)			
Mode	Frequency (MHz)	conducted output power		Conducted		e.i.r.p	Pass / Fail
	(WITIZ)	(dBm)	FCC Part 15E RSS-247				
	100 (5500)	16.24	20.24	24	24	30	Pass
IEEE 802.11a	116 (5580)	14.43	18.43	24	24	30	Pass
	140 (5700)	13.37	17.37	24	24	30	Pass
IEEE 000 44	100 (5500)	15.99	19.99	24	24	30	Pass
IEEE 802.11n- HT20	116 (5580)	13.76	17.76	24	24	30	Pass
11120	140 (5700)	13,55	17.55	24	24	30	Pass
IEEE 000 44	102 (5510)	14.47	18.47	24	24	30	Pass
IEEE 802.11n- HT40	110 (5550)	13.54	17.54	24	24	30	Pass
11140	134(5670)	12.84	16.84	24	24	30	Pass
IEEE 000 44	100 (5500)	15.92	19.92	24	24	30	Pass
IEEE 802.11ac- VHT20	116 (5580)	14.02	18.02	24	24	30	Pass
VIIIZO	140 (5700)	13.67	17.67	24	24	30	Pass
IEEE 000 44	102 (5510)	14.56	18.56	24	24	30	Pass
IEEE 802.11ac- VHT40	110 (5550)	13.65	17.65	24	24	30	Pass
	134(5670)	12.74	16.74	24	24	30	Pass
IEEE 802.11ac-	110 (5550)	12.53	16.53	24	24	30	Pass
VHT80	122(5610)	11.89	15.89	24	24	30	Pass

Remark:

- 4. Maximum conducted output power = Conducted output power + Duty Cycle Factor
- 5. Maximum e.i.r.p = Maximum conducted output power + Antenna Gain
- 6. The maximum ERP/EIRP is calculated from max output power and antenna gain, the antenna gain provided by the customer, and the customer takes all the responsibilities for the accuracy of antenna gain.

Frequency band 5725-5850 MHz

Frequency band 3723-3630 Minz							
Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm)	Limit (dBm)	Pass / Fail			
	149 (5745)	14.21	30	Pass			
IEEE 802.11a	157 (5785)	14.22	30	Pass			
	165 (5825)	14.41	30	Pass			
	149 (5745)	13.99	30	Pass			
IEEE 802.11n-HT20	157 (5785)	14.13	30	Pass			
	165 (5825)	14.43	30	Pass			
IEEE 002 445 LIT40	151 (5755)	13.88	30	Pass			
IEEE 802.11n-HT40	159 (5795)	14.31	30	Pass			
	149 (5745)	14.02	30	Pass			
IEEE 802.11ac-VHT20	157 (5785)	13.87	30	Pass			
	165 (5825)	14.39	30	Pass			
IEEE 902 1100 VIII 10	151 (5755)	14.01	30	Pass			
IEEE 802.11ac-VHT40	159 (5795)	14.19	30	Pass			
IEEE 802.11ac-VHT80	155 (5775)	13.98	30	Pass			