

Choose certainty.
Add value.

Report On

RF Exposure Assessment of the Frontier Silicon Ltd Minuet/FS5332

FCC ID: YYX-FS5332 IC: 11458A-FS5332

Document 75934517 Report 08 Issue 1

July 2016

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

REPORT ON	RF Exposure Assessment of the
IVE: OIV! OIV	THE EXPOSURE / NOOCOOMING IN CO. LINE

Frontier Silicon Ltd Minuet/FS5332

Document 75934517 Report 08 Issue 1

July 2016

PREPARED FOR Frontier Silicon Ltd

137 Euston Road,

London, NW1 2AA

PREPARED BY

Ryan Henley Project Manager

APPROVED BY

Simon Bennett
Authorised Signatory

DATED 29 July 2016

CONTENTS

	Page No
REPORT SUMMARY	3
Introduction	4
Regional Requirements	5
Product Information	6
Technical Description	6
Supported Features	6
Antennas	6
EUT Configurations	
Brief Summary of Results	
Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna	15
TEST DETAILS	16
Rationale for Assessment of the RF Exposure	17
Test Result Details	18
Contiguration 8 - Bluetooth and RLAN with 2nd Diversity Antenna	27
DISCLAIMERS AND COPYRIGHT	28
Disclaimers and Copyright	29
	Introduction Regional Requirements Product Information Technical Description Supported Features Antennas Brief Summary of Results Configuration 1 - Bluetooth with 1st Diversity Antenna Configuration 2 - WLAN with 1st Diversity Antenna Configuration 3 - RLAN with 1st Diversity Antenna Configuration 5 - Bluetooth with 2nd Diversity Antenna Configuration 6 - WLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna Configuration 7 - RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 1 - Bluetooth with 1st Diversity Antenna Configuration 3 - RLAN with 1st Diversity Antenna Configuration 4 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 5 - Bluetooth with 2nd Diversity Antenna Configuration 6 - WLAN with 2nd Diversity Antenna Configuration 7 - RLAN with 2nd Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 1st Diversity Antenna Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna

SECTION 1

REPORT SUMMARY

RF Exposure Assessment of the Frontier Silicon Ltd Minuet/FS5332

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the RF Exposure Assessment of the Frontier Silicon Ltd Minuet/FS5332 to the requirements of the applied test specifications.

Objective To perform RF Exposure Assessment to determine the

Equipment Under Test's (EUT's) compliance of the applied

rules.

Applicant Frontier Silicon Ltd

Manufacturer Frontier Silicon Ltd

Manufacturing Description Minuet is a module, which when installed in a consumer

audio product enables high quality audio streaming over

Wi-Fi, Bluetooth and Ethernet.

Model Number(s) Minuet/FS5332

Test Specification/Issue/Date EN 62311:2008

CFR 47 Pt1.1310

Health Canada Safety Code 6

ARPANSA Radiation Protection Series No.3

1.2 REGIONAL REQUIREMENTS

The table below shows the regional requirements that are referenced in this test report. A full list of the requirements is shown in Annex A.

Report Reference	Regional Requirement
EU	EN 62311:2008
FCC	CFR 47 Pt1.1310
IC	Health Canada Safety Code 6
AUS	ARPANSA Radiation Protection Series No.3

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment under test was a Frontier Silicon Ltd Minuet/FS5332. A full technical description can be found in the manufacturer's documentation.

All reported calculations were carried out on the relevant information supplied for the Minuet/FS5332 to demonstrate compliance with the applied test specification(s). The sample assessed was found to comply with the requirements of the applied rules.

1.3.2 Supported Features

The following radio access technologies and frequency bands are supported by the equipment under test.

Radio Access Technology	Bluetooth WLAN
	RLAN
Frequency Band	2400 MHz to 2483.5 MHz
	2400 MHz to 2483.5 MHz
	5150 MHz to 5850 MHz

1.3.3 Antennas

The following antennas are supported by the equipment under test.

No.	Model	Gain (dBi)
1	SW700M	2.3
2	SW700M	4.6
3	RFPCA431223	1.9
4	RFPCA431223	4.3

1.3.4 EUT Configurations

Configuration 1: 2.4 GHz Bluetooth transmitter with SW700M Antenna

Configuration 2: 2.4 GHz WLAN transmitter with SW700M Antenna

Configuration 3: 5 GHz RLAN transmitter with SW700M Antenna

Configuration 4: 2.4 GHz Bluetooth and 5 GHz RLAN transmitters with SW700M Antenna

Configuration 5: 2.4 GHz Bluetooth transmitter with RFPCA431223 Antenna

Configuration 6: 2.4 GHz WLAN transmitter with RFPCA431223 Antenna

Configuration 7: 5 GHz RLAN transmitter with RFPCA431223 Antenna

Configuration 8: 2.4 GHz Bluetooth and 5 GHz RLAN transmitters with RFPCA431223 Antenna

1.4 BRIEF SUMMARY OF RESULTS

The wireless device described within this report has been shown to be capable of compliance with the basic restrictions related to human exposure to electromagnetic fields for both General Public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specification(s).

Configuration	Required Compliance Boundary (m)		
Configuration	Occupational	General Population	
Bluetooth with 1st Diversity Antenna	0.20	0.20	
WLAN with 1st Diversity Antenna	0.20	0.20	
RLAN with 1st Diversity Antenna	0.20	0.20	
Bluetooth and RLAN with 1st Diversity Antenna	0.20	0.20	
Bluetooth with 2nd Diversity Antenna	0.20	0.20	
WLAN with 2nd Diversity Antenna	0.20	0.20	
RLAN with 2nd Diversity Antenna	0.20	0.20	
Bluetooth and RLAN with 2nd Diversity Antenna	0.20	0.20	

Table 1 - Compliance Boundary Results

1.4.1 Configuration 1 - Bluetooth with 1st Diversity Antenna

Regional	Calculated RF exposure level at compliance boundary of 0.20 m						
Requirement	S Field (W/r	eld (W/m²) E Field (V/m) H Field (A/m					
	Result	Limit	Result	Limit	Result	Limit	
EU	0.0236	50.0000	2.9856	137.0000	0.0079	0.3630	
FCC*	0.0024	5.0000	N/A	N/A	N/A	N/A	
IC	0.0236	31.6361	2.9856	109.2114	0.0079	0.2897	
AUS	0.0236	50.0000	2.9856	137.0000	0.0079	0.3640	

^{*} Requirement and Result in mW/cm²

Table 2 – Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated RF exposure level at compliance boundary of 0.20 m					
Requirement	S Field (W/m²) E Field (V/m) H Field (A/m)					n)
	Result	esult Limit Result Limit		Result	Limit	
EU	0.0236	10.0000	2.9856	61.0000	0.0079	0.1620
FCC*	0.0024	1.0000	N/A	N/A	N/A	N/A
IC	0.0236	5.3508	2.9856	44.9105	0.0079	0.1191
AUS	0.0236	10.0000	2.9856	61.4000	0.0079	0.1630

^{*} Requirement and Result in mW/cm²

Table 3 – General Population Results

1.4.2 Configuration 2 - WLAN with 1st Diversity Antenna

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m					
Requirement	S Field (W/r	W/m²) E Field (V/m) H Field (A/m)				n)	
	Result	Limit	t Result Limit		Result	Limit	
EU	0.3379	50.0000	11.2858	137.0000	0.0299	0.3630	
FCC*	0.0338	5.0000	N/A	N/A	N/A	N/A	
IC	0.3379	31.7019	11.2858	109.3249	0.0299	0.2900	
AUS	0.3379	50.0000	11.2858	137.0000	0.0299	0.3640	

^{*} Requirement and Result in mW/cm²

Table 4 - Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated RF exposure level at compliance boundary of 0.20 m						
Requirement	S Field (W/r	S Field (W/m²) E Field (V/m)				H Field (A/m)	
	Result	Limit	Limit Result Limit			Limit	
EU	0.3379	10.0000	11.2858	61.0000	0.0299	0.1620	
FCC*	0.0338	1.0000	N/A	N/A	N/A	N/A	
IC	0.3379	5.3660	11.2858	44.9743	0.0299	0.1193	
AUS	0.3379	10.0000	11.2858	61.4000	0.0299	0.1630	

^{*} Requirement and Result in mW/cm²

Table 5 - General Population Results

Product Service

Configuration 3 - RLAN with 1st Diversity Antenna 1.4.3

Regional	Calculated RF exposure level at compliance boundary of 0.20 m					
Requirement	S Field (W/ı	S Field (W/m²) E Field (V/m)			H Field (A/m)	
	Result	ult Limit Result Limit			Result	Limit
EU	0.5738	50.0000	14.7072	137.0000	0.0390	0.3630
FCC*	0.0574	5.0000	N/A	N/A	N/A	N/A
IC	0.5738	46.3233	14.7072	132.1528	0.0390	0.3505
AUS	0.5738	50.0000	14.7072	137.0000	0.0390	0.3640

^{*} Requirement and Result in mW/cm²

Table 6 - Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m					
Requirement	S Field (W/r	` ' '			H Field (A/r	H Field (A/m)	
	Result				Result	Limit	
EU	0.5738	10.0000	14.7072	61.0000	0.0390	0.1620	
FCC*	0.0574	1.0000	N/A	N/A	N/A	N/A	
IC	0.5738	9.0112	14.7072	58.2815	0.0390	0.1546	
AUS	0.5738	10.0000	14.7072	61.4000	0.0390	0.1630	

^{*} Requirement and Result in mW/cm²

Table 7 - General Population Results

1.4.4 Configuration 4 - Bluetooth and RLAN with 1st Diversity Antenna

The tables below show the summed fractional results from the antenna port summary in section 2.2. Where the result is less than one, the EUT is deemed compliant.

Regional Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit								
Requirement	S Field	S Field E Field H Field						
EU	0.0119	0.1291	0.1293					
FCC	0.0119	N/A	N/A					
IC	0.0131	0.1386	0.1386					
AUS	0.0119	0.1291	0.1289					

Table 8 – Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated RF expo	Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit						
Requirement	S Field	E Field	H Field					
EU	0.0597	0.2900	0.2897					
FCC	0.0597	N/A	N/A					
IC	0.0681	0.3188	0.3188					
AUS	0.0597	0.2882	0.2879					

Table 9 - General Population Results

1.4.5 Configuration 5 - Bluetooth with 2nd Diversity Antenna

Regional	Calculated	Calculated RF exposure level at compliance boundary of 0.20 m								
Requirement	S Field (W/ı	m²)	E Field (V/m)		H Field (A/n	n)				
	Result	Limit	Result	Limit	Result	Limit				
EU	0.0216	50.0000	2.8512	137.0000	0.0076	0.3630				
FCC*	0.0022	5.0000	N/A	N/A	N/A	N/A				
IC	0.0216	31.6361	2.8512	109.2114	0.0076	0.2897				
AUS	0.0216	50.0000	2.8512	137.0000	0.0076	0.3640				

^{*} Requirement and Result in mW/cm²

Table 10 - Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m							
Requirement	S Field (W/r	m²)	E Field (V/m)		H Field (A/r	H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit			
EU	0.0216	10.0000	2.8512	61.0000	0.0076	0.1620			
FCC*	0.0022	1.0000	N/A	N/A	N/A	N/A			
IC	0.0216	5.3508	2.8512	44.9105	0.0076	0.1191			
AUS	0.0216	10.0000	2.8512	61.4000	0.0076	0.1630			

^{*} Requirement and Result in mW/cm²

Table 11 – General Population Results

1.4.6 Configuration 6 - WLAN with 2nd Diversity Antenna

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m								
Requirement	S Field (W/r	S Field (W/m²) E Field (V/m)				H Field (A/m)				
	Result	Limit	Result	Limit	Result	Limit				
EU	0.3081	50.0000	10.7778	137.0000	0.0286	0.3630				
FCC*	0.0308	5.0000	N/A	N/A	N/A	N/A				
IC	0.3081	31.7019	10.7778	109.3249	0.0286	0.2900				
AUS	0.3081	50.0000	10.7778	137.0000	0.0286	0.3640				

^{*} Requirement and Result in mW/cm²

Table 12 - Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m							
Requirement	S Field (W/r	m²)	E Field (V/m)		H Field (A/r	H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit			
EU	0.3081	10.0000	10.7778	61.0000	0.0286	0.1620			
FCC*	0.0308	1.0000	N/A	N/A	N/A	N/A			
IC	0.3081	5.3660	10.7778	44.9743	0.0286	0.1193			
AUS	0.3081	10.0000	10.7778	61.4000	0.0286	0.1630			

^{*} Requirement and Result in mW/cm²

Table 13 – General Population Results

1.4.7 Configuration 7 - RLAN with 2nd Diversity Antenna

Regional	Calculated	Calculated RF exposure level at compliance boundary of 0.20 m								
Requirement	S Field (W/ı	m²)	E Field (V/m)		H Field (A/n	n)				
	Result	Limit	Result	Limit	Result	Limit				
EU	0.5355	50.0000	14.2079	137.0000	0.0377	0.3630				
FCC*	0.0535	5.0000	N/A	N/A	N/A	N/A				
IC	0.5355	46.3233	14.2079	132.1528	0.0377	0.3505				
AUS	0.5355	50.0000	14.2079	137.0000	0.0377	0.3640				

^{*} Requirement and Result in mW/cm²

Table 14 - Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.20 m							
Requirement	S Field (W/r	m²)	E Field (V/m)	H Field (A/r	H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit			
EU	0.5355	10.0000	14.2079	61.0000	0.0377	0.1620			
FCC*	0.0535	1.0000	N/A	N/A	N/A	N/A			
IC	0.5355	9.0112	14.2079	58.2815	0.0377	0.1546			
AUS	0.5355	10.0000	14.2079	61.4000	0.0377	0.1630			

^{*} Requirement and Result in mW/cm²

Table 15 – General Population Results

1.4.8 Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna

The tables below show the summed fractional results from the antenna port summary in section 2.2. Where the result is less than one, the EUT is deemed compliant.

Regional	Calculated RF exposi	Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit					
Requirement	quirement S Field E Field H Field						
EU	0.0111	0.1245	0.1247				
FCC	0.0111	N/A	N/A				
IC	0.0122	0.1336	0.1336				
AUS	0.0111	0.1245	0.1243				

Table 16 – Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in the EN 62311:2008, CFR 47 Pt1.1310, Health Canada Safety Code 6 and ARPANSA Radiation Protection Series No.3 at the point of investigation, 0.20 m.

Regional	Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit							
Requirement	S Field E Field H Field							
EU	0.0557	0.2797	0.2793					
FCC	0.0557	N/A	N/A					
IC	0.0635	0.3073	0.3072					
AUS	0.0557	0.2778	0.2776					

Table 17 - General Population Results

SECTION 2

TEST DETAILS

2.1 RATIONALE FOR ASSESSMENT OF THE RF EXPOSURE

The aim of the assessment report is to evaluate the compliance boundary for a set of given input power(s) according to the basic restrictions (directly or indirectly via compliance with reference levels) related to human exposure to radio frequency electromagnetic fields. The chosen assessment method to establish the compliance boundary in the far-field region is the reference method as defined in the relevant specifications.

The RF exposure assessment is based upon the following criteria:

The Minuet/FS5332 operates with the following transmitters active on the antenna ports shown in Section 1.3.3. For each transmitter, the Radio Access Technology (RAT), EIRP inclusive of antenna gain and duty cycle, gain of the antenna and lowest frequency of operation are shown as they contribute to the calculation of S Field, E field and H field values according to the following formulas.

The power flux (S Field):

$$S = \frac{PG_{(\theta,\phi)}}{4\pi r^2}$$

The electric field strength (E Field):

$$E = \frac{\sqrt{30PG}(\theta,\phi)}{r}$$

The magnetic field strength (H Field):

$$H = \frac{E}{\eta_o}$$

Where:

P = Average Power (W)

G = Antenna Gain (dBi)

r = Distance (cm) or (m)

 $\eta_{o} = 377$

2.2 TEST RESULT DETAILS

The frequencies shown in the tables below have been chosen based on the lowest possible frequency that the EUT can transmit.

2.2.1 Configuration 1 - Bluetooth with 1st Diversity Antenna

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	Frequency (MHz)		RF Exposure Level at compliance boundary of 0.20 m		
								S Field (W/m²)	E Field (V/m)	H Field (A/m)	
1	1	1	Bluetooth	0.012	100	2.3	2402	0.0236	2.9856	0.0079	

Table 18 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure Level at compliance		
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field E Field H Field		H Field
								(W/m ²)	(V/m)	(A/m)
1	1	1	Bluetooth	0.012	100	2.3	2402	0.0236	2.9856	0.0079

Table 19 – General Population Transmitter Summary

2.2.2 Configuration 2 - WLAN with 1st Diversity Antenna

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	' '		RF Exposure Level at compliance boundary of 0.20 m		
								S Field (W/m²)	E Field (V/m)	H Field (A/m)	
1	1	1	WLAN	0.170	100	2.3	2412	0.3379	11.2858	0.0299	

Table 20 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	e Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field	E Field	H Field
								(W/m ²)	(V/m)	(A/m)
1	1	1	WLAN	0.170	100	2.3	2412	0.3379	11.2858	0.0299

Table 21 – General Population Transmitter Summary

Product Service

2.2.3 Configuration 3 - RLAN with 1st Diversity Antenna

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field	E Field	H Field
								(W/m^2)	(V/m)	(A/m)
1	1	2	RLAN	0.288	100	4.6	5150	0.5738	14.7072	0.0390

Table 22 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	e Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field	E Field	H Field
								(W/m^2)	(V/m)	(A/m)
1	1	2	RLAN	0.288	100	4.6	5150	0.5738	14.7072	0.0390

Table 23 – General Population Transmitter Summary

2.2.4 Configuration 4 - Bluetooth and RLAN with 1st Diversity Antenna

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	e Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field	E Field	H Field
								(W/m^2)	(V/m)	(A/m)
1	1	1	Bluetooth	0.012	100	2.3	2402	0.0236	2.9856	0.0079
2	1	2	RLAN	0.288	100	4.6	5150	0.5738	14.7072	0.0390

Table 24 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	RF Exposure Level at compliance		
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m			
								S Field (W/m²)	E Field (V/m)	H Field (A/m)	
1	1	1	Bluetooth	0.012	100	2.3	2402	0.0236	2.9856	0.0079	
2	1	2	RLAN	0.288	100	4.6	5150	0.5738	14.7072	0.0390	

Table 25 – General Population Transmitter Summary

The following tables show the regional requirements for the frequencies used in the RF exposure calculation. A full list of the requirements is shown in Annex A.

Frequency (MHz)	Occupational Limit			General Population Limit			
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m²)	E Field (V/m)	H Field (A/m)	
2402	50.0000	137.0000	0.3630	10.0000	61.0000	0.1620	
5150	50.0000	137.0000	0.3630	10.0000	61.0000	0.1620	

Table 26 - EN 62311:2008 Limits

Frequency (MHz)	Occupational Limit			General Population Limit			
	S Field (mW/cm ²)	E Field (V/m)	H Field (A/m)	S Field (mW/cm ²)	E Field (V/m)	H Field (A/m)	
2402	5.0000	=	=	1.0000	-	-	
5150	5.0000	-	-	1.0000	-	-	

Table 27 - CFR 47 Pt1.1310 Limits

Frequency (MHz)	Occupational Limit			General Population Limit			
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	
2402	31.6361	109.2114	0.2897	5.3508	44.9105	0.1191	
5150	46.3233	132.1528	0.3505	9.0112	58.2815	0.1546	

Table 28 - Health Canada Safety Code 6 Limits

Frequency (MHz)	Occupational Limit			General Population Limit				
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m ²)	E Field (V/m)	H Field (A/m)		
2402	50.0000	137.0000	0.3640	10.0000	61.4000	0.1630		
5150	50.0000	137.0000	0.3640	10.0000	61.4000	0.1630		

Table 29 - ARPANSA Radiation Protection Series No.3 Limits

2.2.5 Configuration 5 - Bluetooth with 2nd Diversity Antenna

Antenna Port		Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	. ,		RF Exposure Level at compliance boundary of 0.20 m		
								S Field (W/m²)	E Field (V/m)	H Field (A/m)	
1	1	3	Bluetooth	0.011	100	1.9	2402	0.0216	2.8512	0.0076	

Table 30 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	e Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.20 m		
								S Field	E Field	H Field
								(W/m ²)	(V/m)	(A/m)
1	1	3	Bluetooth	0.011	100	1.9	2402	0.0216	2.8512	0.0076

Table 31 – General Population Transmitter Summary

Product Service

Configuration 6 - WLAN with 2nd Diversity Antenna 2.2.6

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	. ,	RF Exposure		pliance
TOIL	140.	140.		(**)	(70)	(dDi)	(IVII IZ)	S Field	E Field (V/m)	H Field (A/m)
1	1	3	WLAN	0.155	100	1.9	2412	0.3081	10.7778	0.0286

Table 32 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of	0.20 m	
								S Field	E Field	H Field
								(W/m^2)	(V/m)	(A/m)
1	1	3	WLAN	0.155	100	1.9	2412	0.3081	10.7778	0.0286

Table 33 – General Population Transmitter Summary

2.2.7 Configuration 7 - RLAN with 2nd Diversity Antenna

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	Frequency (MHz)	RF Exposure boundary of	e Level at com 0.20 m	pliance
								S Field (W/m²)	E Field (V/m)	H Field (A/m)
1	1	4	RLAN	0.269	100	4.3	5150	0.5355	14.2079	0.0377

Table 34 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of	0.20 m	
								S Field	E Field	H Field
								(W/m ²)	(V/m)	(A/m)
1	1	4	RLAN	0.269	100	4.3	5150	0.5355	14.2079	0.0377

Table 35 – General Population Transmitter Summary

2.2.8 Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	, ,	RF Exposure boundary of		pliance
								S Field (W/m²)	E Field (V/m)	H Field (A/m)
1	1	3	Bluetooth	0.011	100	1.9	2402	0.0216	2.8512	0.0076
2	1	4	RLAN	0.269	100	4.3	5150	0.5355	14.2079	0.0377

Table 36 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	Level at com	pliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of	0.20 m	
								S Field (W/m²)	E Field (V/m)	H Field (A/m)
1	1	3	Bluetooth	0.011	100	1.9	2402	0.0216	2.8512	0.0076
2	1	4	RLAN	0.269	100	4.3	5150	0.5355	14.2079	0.0377

Table 37 – General Population Transmitter Summary

The following tables show the regional requirements for the frequencies used in the RF exposure calculation. A full list of the requirements is shown in Annex A.

Frequency (MHz)	Occupational Limit	Occupational Limit			General Population Limit		
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m²)	E Field (V/m)	H Field (A/m)	
2402	50.0000	137.0000	0.3630	10.0000	61.0000	0.1620	
5150	50.0000	137.0000	0.3630	10.0000	61.0000	0.1620	

Table 38 - EN 62311:2008 Limits

Frequency (MHz)	Occupational Limit			General Population Limit		
	S Field (mW/cm ²)	E Field (V/m)	H Field (A/m)	S Field (mW/cm ²)	E Field (V/m)	H Field (A/m)
2402	5.0000	-	-	1.0000	-	-
5150	5.0000	-	-	1.0000	-	-

Table 39 - CFR 47 Pt1.1310 Limits

Frequency (MHz)	Occupational Limit			General Population Limit		
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m ²)	E Field (V/m)	H Field (A/m)
2402	31.6361	109.2114	0.2897	5.3508	44.9105	0.1191
5150	46.3233	132.1528	0.3505	9.0112	58.2815	0.1546

Table 40 - Health Canada Safety Code 6 Limits

Frequency (MHz)	Occupational Limit			General Population Limit			
	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	S Field (W/m ²)	E Field (V/m)	H Field (A/m)	
2402	50.0000	137.0000	0.3640	10.0000	61.4000	0.1630	
5150	50.0000	137.0000	0.3640	10.0000	61.4000	0.1630	

Table 41 - ARPANSA Radiation Protection Series No.3 Limits

2.2.9 Configuration 4 - Bluetooth and RLAN with 1st Diversity Antenna

As the frequency of operation for each transmitter is not the same, in order to evaluate compliance with the limit which is dependent on frequency, the calculated RF exposure fields are divided by the limit to get a fractional exposure value. Any values less than one are compliant with the limit. Table 2 shows a summary of each antenna port and the summation of the fractional RF exposure results of each transmitter.

Antenna Port	EIRP (W)	Regional Requirement						
			S Field	E Field	H Field			
1	0.012	EU	0.0005	0.0218	0.0218			
		FCC	0.0005	N/A	N/A			
		IC	0.0007	0.0273	0.0273			
		AUS	0.0005	0.0218	0.0218			
2	0.288	EU	0.0115	0.1074	0.1075			
		FCC	0.0115	N/A	N/A			
		IC	0.0124	0.1113	0.1113			
		AUS	0.0115	0.1074	0.1072			

Table 42 – Occupational Antenna Port Summary

Antenna	EIRP	Regional		ure level at compliance b	oundary of 0.20 m as a Fraction of the
Port	(W)	Requirement	Limit S Field	E Field	H Field
1	0.012	EU	0.0024	0.0489	0.0489
		FCC	0.0024	N/A	N/A
		IC	0.0044	0.0665	0.0665
		AUS	0.0024	0.0486	0.0486
2	0.288	EU	0.0574	0.2411	0.2408
		FCC	0.0574	N/A	N/A
		IC	0.0637	0.2523	0.2523
		AUS	0.0574	0.2395	0.2393

Table 43 – General Population Antenna Port Summary

2.2.10 Configuration 8 - Bluetooth and RLAN with 2nd Diversity Antenna

As the frequency of operation for each transmitter is not the same, in order to evaluate compliance with the limit which is dependent on frequency, the calculated RF exposure fields are divided by the limit to get a fractional exposure value. Any values less than one are compliant with the limit. Table 2 shows a summary of each antenna port and the summation of the fractional RF exposure results of each transmitter.

Antenna Port	EIRP (W)		Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit		
			S Field	E Field	H Field
1	0.011	EU	0.0004	0.0208	0.0208
		FCC	0.0004	N/A	N/A
		IC	0.0007	0.0261	0.0261
		AUS	0.0004	0.0208	0.0208
2	0.269	EU	0.0107	0.1037	0.1038
		FCC	0.0107	N/A	N/A
		IC	0.0116	0.1075	0.1075
		AUS	0.0107	0.1037	0.1035

Table 44 – Occupational Antenna Port Summary

Antenna Port	EIRP (W)	Regional Reguirement	Calculated RF exposure level at compliance boundary of 0.20 m as a Fraction of the Limit			
1 OIL	(**)	Requirement	S Field	E Field	H Field	
1	0.011	EU	0.0022	0.0467	0.0467	
		FCC	0.0022	N/A	N/A	
			IC	0.0040	0.0635	0.0635
		AUS	0.0022	0.0464	0.0464	
2 0.269	EU	0.0535	0.2329	0.2326		
		FCC	0.0535	N/A	N/A	
		IC	0.0594	0.2438	0.2438	
		AUS	0.0535	0.2314	0.2312	

Table 45 – General Population Antenna Port Summary

SECTION 3

DISCLAIMERS AND COPYRIGHT

3.1 DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2016 TÜV SÜD Product Service

ANNEX A

REGIONAL REQUIREMENTS

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.065 - 1	-	610/f	1.6/f
1 - 10	-	610/f	1.6/f
10 - 400	10	61	0.162
400 - 2000	f/40	3*f^0.5	0.00796*f^0.5
2000 - 300000	50	137	0.363

Table A.1 - EN 62311:2008 Occupational Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.003 - 0.15	-	87	5
0.15 - 1	-	87/f	0.73/f
1 - 10	-	87/f^0.5	0.73/f
10 - 400	2	27	0.071
400 - 2000	f/200	1.375*f^0.5	0.00364*f^0.5
2000 - 300000	10	61	0.162

Table A.2 – EN 62311:2008 General Population Limits

Frequency Range (MHz)	S Field (mW/cm²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	900/f^2	1842/f	4.89/f
30 - 300	1	61.4	0.163
300 - 1500	f/300	-	-
1500 - 100000	5	-	-

Table A.3 – CFR 47 Pt1.1310 Occupational Limits

Frequency Range (MHz)	S Field (mW/cm ²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	180/f^2	824/f	2.19/f
30 - 300	0.2	27.5	0.073
300 - 1500	f/1500	-	-
1500 - 100000	1	-	-

Table A.4 – CFR 47 Pt1.1310 General Population Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	10	61.4	0.163
20 - 48	44.72/f^0.5	129.8/f^0.25	0.3444/f^0.25
48 - 100	6.455	49.33	0.1309
100 - 6000	0.6455*f^0.5	15.60*f^0.25	0.04138*f^0.25
6000 - 150000	50	137	0.364

Table A.5 – Health Canada Safety Code 6 Occupational Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	2	27.46	0.0728
20 - 48	8.944/f^0.5	58.07/f^0.25	0.1540/f^0.25
48 - 300	1.291	22.06	0.05852
300 - 6000	0.02619*f^0.6834	3.142*f^0.3417	0.008335*f^0.3417
6000 - 15000	10	61.4	0.163

Table A.6 – Health Canada Safety Code 6 General Population Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.1 - 1	-	614	1.63/f

Product Service

1 - 10	1000/f^2	614	1.63/f
10 - 400	10	61.4	0.163
400 - 2000	f/40	3.07*f^0.5	0.00814*f^0.5
2000 - 300000	50	137	0.364

Table A.7 – ARPANSA Radiation Protection Series No.3 Occupational Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0.1 - 0.15	-	86.8	4.86
0.15 - 1	-	86.8	0.729/f
1 - 10	-	86.8/f^0.5	0.729/f
10 - 400	2	27.4	0.0729
400 - 2000	f/200	1.37*f^0.5	0.00364*f^0.5
2000 - 300000	10	61.4	0.163

Table A.8 – ARPANSA Radiation Protection Series No.3 General Population Limits