
Sparkpad LLC CONFIDENTIAL

User Manual

(for Developers)

Updated: Nov 7, 2010

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 2

© Copyright 2010 Sparkpad LLC All rights reserved.

This document contains valuable confidential and proprietary information of Sparkpad LLC. No part of this documentation

may be transmitted or distributed, or copied, photocopied, scanned, reproduced, translated, microfilmed, or otherwise

duplicated on any medium without written consent of Sparkpad LLC. If written consent is given, the same confidential,

proprietary, and copyright notices must be affixed to any permitted copies as were affixed to the original.

Use of the software programs described herein and this documentation is subject to applicable terms of service and license

agreements. Unless specifically otherwise agreed in writing, all rights, title, and interest to this software and documentation

remain with Sparkpad LLC.

Information in this documentation has been carefully checked and is believed to be accurate. However, this information is

subject to change without notice, and Sparkpad LLC assumes no responsibility for any inaccuracies that may be contained

in this documentation. In no event will Sparkpad LLC be liable for direct, indirect, special, incidental, or consequential

damages resulting from any defect or omission in this technical note, even if advised of the possibility of such damages.

In the interest of continued product development, Sparkpad LLC reserves the right to make improvements to this

documentation and the products it describes at any time, without notice or obligation.

The trademarks, logos, and service marks ("Marks") displayed in this document are the property of Sparkpad LLC or other

third parties. You are not permitted to use the Marks without the prior written consent of Sparkpad LLC or such third party

which may own the Marks. "Sparkpad LLC," "Sparkpad," and iGala are registered trademarks of Sparkpad LLC

Published by

Sparkpad LLC

46090 Lake Center Plaza, #206

Sterling, Virginia 20165

Phone: (888) 907-7275

Fax: (888) 391-7275

Printed in the United States of America

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 3

Table of Contents

Platform Development Guide Error! Bookmark not defined.

Table of Contents 3

1. Introduction 5

1.1. Conventions 5

1.2. System architecture 6

2. LUA application development 9

2.1. Overview 9

2.2. Running applications on a PC 10

2.3. Installing applications on a Sparkpad Device 11

2.4. Application invocation 12

2.5. Access Linux shell 15

2.6. Network setup 15

2.7. Touch screen, remote controls & more 16

2.8. LUA programming 16

2.8.1. File listing 16

2.8.2. How to create a screen with buttons 18

2.8.3. How to parse an XML file 25

2.8.4. How to enable automatic remote firmware update 26

2.8.5. Wi-Fi connection: wlan.lua 29

2.8.6. Memory management 30

2.8.7. GUI 31

2.8.8. Audio Volume Control: music_manager.lua 41

2.8.9. Component: component.lua 41

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 4

2.9. Notes to application developers 69

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 5

1. Introduction

Sparkpad is a hardware and software platform solution developed by Sparkpad LLC for

companies or individuals seeking an embedded device that is easily customizable. The

Sparkpad platform offers various hardware options, including:

 TFT touch screen displays (7”, 8”, 10.1” & 10.4”)

 Non-touch screen (remote operated) displays (15” and above)

 “Video Box” (remote operated) for use with any monitor

 Networking support with both WiFi and Ethernet connections

 A complete Software Development Kit (SDK) and sample applications for creating

customized functionality and user interfaces (UI)

 Operating System layer access (Linux)

 A full-featured Emulation and Development Environment for Windows

The iGala Wireless Digital Picture Frame (www.igala.com) is an example of a working

commercial application developed on the Sparkpad platform.

This programming guide is intended for software engineers who plan to build customized

applications on the Sparkpad platform. It provides information on how to use Sparkpad to

develop application extensions and includes sample application code.

1.1. Conventions

The following font conventions are used:

Code: This font is used for any device-generated data such as program codes, web page

source code and/or log messages generated.

http://www.igala.com/

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 6

Var: Similar to code, but text in this font involves variable identifiers and must be

replaced by other meaningful data. There will be a description on how to replace those

identifiers when they are mentioned in the document. For example, the command-line

arguments:

{code} or {var}: Device-generated data enclosed by ‘{‘ ‘}’ indicates the data is optional.

1.2. System architecture

Sparkpad hardware is available in different hardware configurations, including screen

size. Some devices are even available without a screen. For each device there may be

differences in the core DSP, memory size, board configuration, and interface ports. The

following table lists Sparkpad‟s currently available (or soon-to-be available) hardware

configurations:

Screen

Size

Screen

Resolution

Screen

Ratio

Input

Type

DSP Ethernet WiFi

7” 800x480 16:9
Touch

Screen

Telechip

7901

USB Host

Port

Marvell

(integrated)

8” 800x600 4:3
Touch

Screen

RMI

Au1250

Optional

USB Host

Internal

USB

module

10.1”
800x480

1024x600
16:9

Touch

Screen

Telechip

8902
Included

Marvell

(integrated)

10.4” 800x600 4:3 Touch Telechip Included Marvell

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 7

1024x768 Screen 8902 (integrated)

15” 1024x768 4:3
Remote

Control

Telechip

7901
Included

Marvell

(integrated)

42” 1080x1024 16:9
Touch

Screen

Telechip

8902
Included

Marvell

(integrated)

Video Box

HDMI &

Component

Video

Output

N/A

(No

screen)

Remote

Control

Telechip

8902
Included

Marvell

(integrated)

Video Box

HDMI &

Component

Video

Output

N/A

(No

screen)

Remote

Control
Broadcom Included

Broadcom

(integrated)

All hardware options run a modified version of the Linux OS. On top of Linux, Sparkpad

provides three development options for applications: LUA, Flash (coming soon) and

Android (coming soon), as illustrated in the following stack chart:

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 8

Currently, this document only assists with the development LUA applications (with or

without NanoX). Please note that for non-touch screen models, such as the 15” and “box”

devices, the LUA layer is built directly on top of Linux without NanoX.

DSP (Telechip 7901, Telechip 8902, or RMI Au1205)

Linux 2.6.28

Nano X

LUA Gnash

Android 2.2

Flash JAVA

LUA

App

Flash

App

Android

App

Sparkpad

Platform

Customize

Layer

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 9

2. LUA application development

This section provides information on how to build applications on the Sparkpad platform

using the LUA programming language. Sparkpad provides a LUA-based emulator for your

Windows PC, so most development and testing of your application software can be

completed before loading it onto the final end hardware.

2.1. Overview

Sparkpad hardware features different DSPs that run Linux. The display driver is

configured to support digital LCD displays in their native resolutions. All models include at

least 1GB of flash memory and 128MB RAM (most include 256MB).

The flash memory is partitioned into two sections:

 Application partition mounted under /nand1 folder

 Content partition mounted under /nand2 folder

Note: Developers should monitor memory consumption during development. The Linux

system kernel uses about 15 - 20MB of RAM. The LUA layer handles its own memory

management and consumes about 40MB per pool allocation.

Once the system boots up, the application partition will be mounted. The content partition

is mounted in the background. Before using this partition, the application should c that the

content partition has been properly mounted by checking for the directory

/nand1/load+found. The system then checks for the existence of shell scripts with the

name “igala_api.sh” under /nand1/config, and runs it automatically.

The development environment is structured as follows:

Operation System Linux version 2.6.28

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 10

GCC Version 4.1.2

UI Microwindow nano-X 0.91

Programming Language LUA

The following drivers are supported:

 LCD display

 Touch-Screen

 Wi-Fi 802.11b/g

 Ethernet

 USB host

 SD Card

2.2. Running applications on a PC

Applications developed for the Sparkpad platform using LUA can be run on any Windows

PC (without the need of a Sparkpad hardware device) using the provided emulator.

Developers can copy the application directory /nand1/bin to Windows and initiate the

application from a Windows command terminal (cmd) using command:

lua.exe app.lua

In this case, the name of the LUA application file is app.lua, which can be replaced with

any other LUA application files.

For standard Sparkpad applications, there is often a background process of fetching

network data from online servers with the name of nettask.lua. To completely emulate the

applications, the developer needs to initiate both the app.lua and nettask.lua processes

from two separate windows command terminals.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 11

2.3. Installing applications on a Sparkpad Device

Once application development is completed in the PC emulation environment, developers

can use a USB flash drive or SD memory card to load their application onto the actual

device.

To install applications to a device, copy the following update.sh file and the zipped bin

directory bin.zip to the root directory of either a USB flash drive or SD memory card

and insert it into the respective port on the device. Lastly, power on the device. The

system will execute the update.sh file automatically.

Sample of update.sh

if [-f "/mnt/SD/bin.zip"]; then

 unzip -o /mnt/SD/bin.zip -d /nand1/config

 mv -f /mnt/SD/bin.zip /mnt/SD/updated_bin.zip

 echo 3 > /proc/sys/vm/drop_caches

 cd /nand1/

 if [-d "bin"]; then

 rm -f -r /nand1/bin

 mv -f /nand1/config/bin /nand1

 fi

fi

if [-f "/mnt/OHCI/bin.zip"]; then

 unzip -o /mnt/OHCI/bin.zip -d /nand1/config

 mv -f /mnt/OHCI/bin.zip /mnt/OHCI/updated_bin.zip

 echo 3 > /proc/sys/vm/drop_caches

 cd /nand1/

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 12

 if [-d "bin"]; then

 rm -f -r /nand1/bin

 mv -f /nand1/config/bin /nand1

 fi

fi

mkdir -p /nand2/bones/flash/abies

cp -af /nand1/bin/mnt/* /nand2/bones

cd /nand2/bones/flash/abies

mkdir -p photo/net/picasa

cd /nand1/bin

cp igala_api.sh /nand1/config

When the install process is complete, the device will restart.

Note that bin.zip is renamed automatically upon completion of the install process. This

ensures that the device will not be updated again if the developer has not yet removed

the USB flash drive or SD card.

Developers can rename or rearrange the network download content in the sample

application, as needed, located under /nand2/bones/flash/abies/photo/net/picasa.

2.4. Application invocation

Within the update.sh script, the file igala_api.sh is copied to the /nand1/config

folder. When the system boots up, this file will run automatically.

Sample of igala_api.sh

if [-f "/mnt/SD/bin.zip"] && [-f "/mnt/SD/update.sh"]; then

 cd /nand1/bin

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 13

 ./lua update_info.lua

 aplay -B 4096 frameworks/frameImages/alert.wav

 cd /mnt/SD

 chmod +x update.sh

 ./update.sh

 mv update.sh update_pre.sh

 reboot

fi

sleep 3

if [-f "/mnt/OHCI/bin.zip"] && [-f "/mnt/OHCI/update.sh"]; then

 cd /nand1/bin

 ./lua update_info.lua

 aplay -B 4096 frameworks/frameImages/alert.wav

 cd /mnt/OHCI

 chmod +x update.sh

 ./update.sh

 mv update.sh update_pre.sh

 reboot

fi

####remote update####

if [-f "/nand1/bin/update.sh"]

then

 rm -f /nand1/bin/update.sh

fi

if [-f "/nand1/bin.zip"]

then

 unzip -o /nand1/bin.zip -d /nand1

 rm -f /nand1/bin.zip

 echo 3 > /proc/sys/vm/drop_caches

 if [-f "/nand1/bin/update.sh"]

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 14

 then

 cd /nand1/bin

 chmod +x update.sh

 ./update.sh

 fi

 rm -f /nand1/bin/update.sh

 echo 3 > /proc/sys/vm/drop_caches

fi

cd /nand1/bin

chmod +x ln.sh

chmod +x lua_8

chmod +x lua

chmod +x alert_play.sh

./ln.sh

./lua_8 nettask.lua&

sleep 2

./lua app.lua&

./lua_monitor&

Telnetd&

The first two sections of the if-fi code are to trigger the update process from USB/SD

card, if present. The script starts the following three Sparkpad processes and the telnet

daemon:

app.lua – Rendering of all UI

nettask.lua – Performs all network download activities

lua_monitor.lua – Monitors the health of application and nettask processes

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 15

2.5. Access Linux shell

The OS shell on the frame can be accessed only after the WiFi or Ethernet connection

has been configured and is running. From a Telnet client on a computer connected via the

same network, run:

telnet {IP address of the device, such as 192.168.0.102}

The shell access account is root/Udo. If successful, it will enter the Linux shell on the

frame. You can run any shell script command to debug your application.

2.6. Network setup

Developers can manually set up the network using LUA code, or from a shell command

line, using the following commands:

Ethernet:

 Ifconfig eth0 {IP address like 192.168.0.102}

WiFi:

 insmod /lib/modules/sd8686.ko

 iwconfig eth1 essid “{SSID of the wifi network}”

 ifconfig eth1 {IP address like 192.168.0.102}

Please note: For both WiFi and Ethernet, the previously established network must be

disconnected before a new network attempt is attempted.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 16

2.7. Touch screen, remote controls & more

To be provided. Please contact support@sparkpad.com meanwhile with questions.

2.8. LUA programming

This section describes how to develop a Sparkpad application using the LUA scripting

language.

The Sparkpad SDK includes a LUA executable for both Windows PC and the hardware

device. Developers can execute their LUA applications with commands such as

“lua.exe app.lua” in Windows PC environment and get the exact same application

behavior as they would on an actual Sparkpad hardware device. (One important

exception: the emulator borrows the network connection from the PC and thus the

network configuration process does not reflect the true experience on an actual device.)

Sparkpad strongly recommends that developers who are new to the platform begin by

attempting to modify top-layer LUA application code, as provided with the SDK. All

interactions with devices, such as the Wi-Fi module and the USB port, are handled in the

provided application. The encrypted LUA files come with the Core Application code are

compiled LUA codes

2.8.1. File listing

Directory Calendar (Touch screen only)

Directory frameworks

Directory mnt

Directory sdk

mailto:support@sparkpad.com

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 17

app_bone.lua

Main entry of Sparkpad LUA Bones Application (Touch screen only)

do_calendar.lua

do_gmail.lua

do_picasa.lua

fpDisplay.lua

fpFrequency.lua

fpGmail.lua

fpPicasa.lua

fpPicasaAlbum.lua

fpPowerSave.lua

fpTransition.lua

fpWifi.lua

fpWifiKeyboard.lua

fpWifiType.lua

fsCalendar.lua

fsMainMenu.lua

fsMedia.lua

fsSetup.lua

gmail.lua

gmail_setup.lua

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 18

media_manager.lua

nettask.lua

picasa.lua

playlist.lua

setting.lua

system_manager.lua

videoplay.lua

wlan.lua

wlan_check.lua

2.8.2. How to create a screen with buttons

The following example shows how to create a screen with buttons.

function create(scene, back_page)

 local page = glyph.glyph(scene,0,0,1024,768) -- 15 inch screen

resolution here

 local page_title = component.text(page, 'Title here',

gui.WHITE,nil,font_factory.load('frameworks/font/arial.ttf',

50),bit._or(glyph.Alignment.hcenter, glyph.Alignment.vcenter))

 page_title:hcenter()

 page_title:offset(0, 20)

 local function create_buttons(parent, ...)

 local push_arg = {

 parent = parent,

 color = gui.WHITE,--WHITE,

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 19

 image =

'frameworks/frameImages/blue_button_extra_big.png',

 caption = 'button',

 alignment = bit._or(glyph.Alignment.hleft,

glyph.Alignment.vcenter),

 font = font_factory.load('frameworks/font/arial.ttf',

21),

 no_auto_pop=true

 }

 local ret ={}

 local y = 200

 for _, f in ipairs(arg) do

 push_arg.caption = f

 ret[#ret + 1] =

component.push_button(component.push_button_arg(push_arg))

 ret[#ret]:move(200, y)

 y = y + 60

 end

 return ret

 end

 local button = {}

 button = create_buttons(page, "button text here")

 local zone_list = {

 {-6, " (UTC-06:00) Central Time (US & Canada)"},

 {-5, " (UTC-05:00) Eastern Time (US & Canada)"},

 {-4, " (UTC-04:00) Atlantic Time (Canada)"},

 {-3, " (UTC-03:00) Buenos Aires"},

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 20

 {-2, " (UTC-02:00) Mid-Atlantic"},

 {-1, " (UTC-01:00) Cape Verde Is."},

 {-12, " (UTC-12:00) International Date Line West"},

 {-11, " (UTC-11:00) Midway Island, Samoa"},

 {-10, " (UTC-10:00) Hawaii"},

 {-9, " (UTC-09:00) Alaska"},

 {-8, " (UTC-08:00) Pacific Time (US & Canada)"},

 {-7, " (UTC-07:00) Mountain Time (US & Canada)"},

 {0, " (UTC) GMT : Dublin, Edinburgh, Lisbon, London"},

 {1, " (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm,

Vienna"},

 {2, " (UTC+02:00) Athens, Bucharest, Istanbul"},

 {3, " (UTC+03:00) Moscow, St. Petersburg, Volgograd "},

 {4, " (UTC+04:00) Caucasus Standard Time"},

 {5, " (UTC+05:00) Islamabad, Karachi"},

 {6, " (UTC+06:00) Almaty, Novosibirsk"},

 {7, " (UTC+07:00) Bangkok, Hanoi, Jakarta"},

 {8, " (UTC+08:00) Kuala Lumpur, Singapore"},

 {9, " (UTC+09:00) Osaka, Sapporo, Tokyo"},

 {10, " (UTC+10:00) Canberra, Melbourne, Sydney"},

 {11, " (UTC+11:00) Magadan, Solomon Is., New Caledonia"},

 {12, " (UTC+12:00) Auckland, Wellington"},

 }

 local txt = component.text(page,'Current:',

gui.WHITE,nil,font_factory.load('frameworks/font/arial.ttf',

25),bit._or(glyph.Alignment.hleft, glyph.Alignment.vcenter))

 txt:move(200,100)

 local txt_next_caption = component.text(page,' ',

gui.WHITE,nil,nil,bit._or(glyph.Alignment.hleft,

glyph.Alignment.vcenter))

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 21

 txt_next_caption:move(300, 100)

 txt_next_caption:set_caption(setting.abies_config.zonetime[1

])

 local argu = {

 parent = page,

 caption = ' ',

 image = 'frameworks/frameImages/blue_triangle_left.png',

 color = gui.WHITE

 }

 local prebtn =

component.push_button(component.push_button_arg(argu))

 argu.image = 'frameworks/frameImages/blue_triangle_right.png'

 local nextbtn =

component.push_button(component.push_button_arg(argu))

 argu.image = 'frameworks/frameImages/green_button_small.png'

 argu.caption = 'Done'

 argu.font = font_factory.load('frameworks/font/arial.ttf', 30)

 local done =

component.push_button(component.push_button_arg(argu))

 prebtn:move(200, 600)

 layout.in_row_center(prebtn,{done, nextbtn}, 100)

 function button_caption(current_zone, pre_zone)

 local zone = (current_zone - pre_zone) * 3600

 local real_hour

 local os_time_year, os_time_month, os_time_date,

os_time_hour, os_time_minute, os_time_noon =

time_manager.get_time()

 if os_time_noon == "PM" and tonumber(os_time_hour) ~= 12 then

 real_hour = os_time_hour + 12

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 22

 else

 real_hour = os_time_hour

 end

 if setting.abies_config.daylight_config["dst"] == 1 then

 real_hour = real_hour - 1

 end

 local changetime = os.time{year = os_time_year, month =

os_time_month, day = os_time_date, hour = real_hour, min =

os_time_minute,isdst =

setting.abies_config.daylight_config["dst"]}

 local real_time = changetime + zone

 local d = os.date("*t",real_time)

 if constant.WIN32 then

 os.execute("date " .. d.year .."-".. d.month .."-"..

d.day)

 os.execute("time " .. d.hour ..":".. d.min ..":".. d.sec)

 else

 os.execute("date -s \"" .. d.year .. "-" .. d.month .. "-" ..

d.day .. " " .. d.hour .. ":" .. d.min .. ":" .. d.sec .. "\"")

 end

 end

 local flag = 0

 local index = 0

 local function click_zone(i)

 return function()

 windows:add(function()

 setting.load(setting.abies_config)

 local zone_pre = setting.abies_config.zonetime[2]

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 23

 local list_index = ((i + index) % 25 + 24) % 25 + 1

 txt_next_caption:set_caption(zone_list[list_index][2])

 setting.abies_config.zonetime[1] =

zone_list[list_index][2]

 setting.abies_config.zonetime[2] =

zone_list[list_index][1]

 now = zone_list[list_index][1]

 local dlg = component.dialog(page, nil, '\n\nTime Zone

has been successfully changed.',

bit._or(glyph.Alignment.vcenter, glyph.Alignment.hcenter),

'Done', nil,0, -20)

 if dlg:run() == 'Done' then

 setting.save(setting.abies_config)

 button_caption(now, zone_pre)

 end

 end)

 end

 end

 function on_click()

 windows:add(

 function()

 for i = 1 ,#button do

 local list_index = ((i + index) % 25 + 24) % 25 +

1

 button[i]:set_caption(zone_list[list_index][2])

 end

 end

)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 24

 end

 prebtn.on_click = function()

 if(flag > 0) then

 flag = flag - 1

 end

 if flag < 0 then

 flag = 0

 end

 index = flag * 6

 on_click()

 end

 nextbtn.on_click = function()

 flag = flag + 1

 if flag > 25 then

 flag = 0

 end

 index = flag * 6

 on_click()

 end

 for i = 1, #button do

 button[i].on_click = click_zone(i)

 end

 function done:on_click()

 page:hide()

 back_page:show()

 end

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 25

 return page

end

In the above code, a screen was created with a page title, text, a number of time zone

buttons and a group of action buttons at the bottom of the page, including “previous page”,

“next page” and “done” buttons. Developers can move the location of the buttons using

screen coordinates. Button actions are defined in the on_click functions.

2.8.3. How to parse an XML file

With Sparkpad, developers can easily send a network request to an online server with

input parameters, and then parse the returned XML into local content. In the following

example, the developer first needs to construct the requesting URL with input parameters

into a string of “url”.

 local http_content = http_request(url,

setting.abies_config.proxy_config)

 if(http_content) then

 local result, result_set = pcall(collect, http_content)

 if not result then return nil, 115, "http request " .. url ..

" get invalid content" end

 if (result_set[2].label == "xml label here") then

 local set = result_set[2][1]

 ob.weekday = set[1][3].xarg.abbrv

 ob.station = set[3][1]

 return ob, set[1], nil

 else

 return nil, 116, "http request " .. url .. " parse error"

 end

 else

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 26

 return nil, 404, "http request " .. url .. " get no content"

 end

In this example, the developer can retrieve XML attributes as well as the arguments from

the incoming XML as long as the location and the sequence of the elements are known.

2.8.4. How to enable automatic remote firmware update

By following the sample in autoupdate.lua, developers can enable their application to

check for firmware updates periodically.

2.8.4.1. Check Version

Here is the sample of how to check the current firmware version against the version

available on the remote server. This code can be invoked at a different frequencies,

depending on your needs:

local http_content, code, status

local update_version

if sysutil.fileexists('../' .. 'update_version.dat') then

 print('get version from cache file')

 update_version = sysutil.readlog('../' ..

'update_version.dat')

else

 print('get version from website')

 http_content, code, _, status = http.request(BASE_URL ..

VERSION_FILE)

 if tonumber(code) ~= 200 then

 print('http request version failure,', status)

 return

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 27

 end

 update_version = http_content

 sysutil.writelog('../' .. 'update_version.dat',

update_version)

end

local current_version = sysutil.readlog('version.txt')

print('update version:', update_version)

print('current version:', current_version)

if (current_version ~= update_version) then

 print('version changed, need upgrade')

else

 print('version is the latest.')

 sysutil.writelog('../' .. 'auto_update.dat',

tostring(os.time()))

 os.remove('../' .. 'update_version.dat')

 return

end

2.8.4.2. Get the new firmware package

After deciding a firmware update is needed, the following sample can be used to fetch the

new upgrade package and initiate a self-installation:

local update_md5 -- for integrity check

if sysutil.fileexists('../' .. 'update_md5.dat') then

 print('get md5 from cache file')

 update_md5 = sysutil.readlog('../' .. 'update_md5.dat')

else

 print('get md5 from website')

 http_content, code, _, status = http.request(BASE_URL ..

MD5_FILE)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 28

 if tonumber(code) ~= 200 then

 print('http request md5 failure')

 return

 end

 update_md5 = http_content

 sysutil.writelog('../' .. 'update_md5.dat', update_md5)

end

if sysutil.fileexists('../' .. 'file_to_get.zip') then

 print('zipfile exists, check md5')

 sysutil.clean_memory()

 local md5value = md5util.md5_file('../' .. file_to_get.zip')

 sysutil.clean_memory()

 if md5value ~= update_md5 then

 os.remove('../' .. ' file_to_get.zip')

 else

 print('zip file md5 check success')

 sysutil.writelog('../' .. 'auto_update.dat',

tostring(os.time()))

 os.remove('../' .. 'update_md5.dat')

 return

 end

end

print('getting zip file ...')

b, msg = get(BASE_URL .. ZIP_FILE, '../' .. ' file_to_get.zip' ..

'!')

if b then

 sysutil.clean_memory()

 local md5value = md5util.md5_file('../' .. ' file_to_get.zip' ..

'!')

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 29

 sysutil.clean_memory()

 if md5value ~= update_md5 then

 print('md5 check failure')

 os.remove('../' .. ' file_to_get.zip' .. '!')

 os.remove('../' .. 'update_md5.dat')

 return

 else

 print('md5 check success')

 os.remove('../' .. 'update_md5.dat')

 os.rename('../' .. ' file_to_get.zip' .. '!', '../' .. '

file_to_get.zip')

 sysutil.writelog('../' .. 'auto_update.dat',

tostring(os.time()))

2.8.5. Wi-Fi connection: wlan.lua

After calling wlan_on() , the network connection may fail. That could be cause by the

delay of the wireless access point association and the allocation of DHCP. The call of

wlan_stats () may return the status of “connecting” during this time.

To get to the true status of a WiFi connection in real time, the code should use

wlan_check() instead of wlan_on () and wlan_status(). However, the wlan_check() call

may take up to 1-2 minutes to return a response, depending on how long it takes to

connect to the access point.

The code in wlan.lua file shows the use of wlan_on(), wlan_status() and wlan_check().

Remember that a WiFi connection may not be successful even after the call of

wlan_on().

Note that WiFi connection code can be completed before the GUI (graphical user

interface) starts.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 30

2.8.6. Memory management

Memory management is handled automatically in LUA. There is no need to free or

allocate memory in the code. It uses a "Mark and Sweep" approach for garbage collection.

Some more complicated cases involve the use of "Weak Reference", of which you will

find several instances in the Sparkpad source code. Other than memory consumption by

regular data structures, the closure routine in LUA could also contain references to some

items, so please pay special attention to large data items such as images within the

closure routines.

You can always trigger the garbage collection manually using collect_garbage(). Within

the provided system, it is being done once for every 10 message event handling in the

message loop, so that memory is freed faster.

The consumption of the memory will NOT be reflected by checking the output of the

system command "top". That is because memory management is done in a layer above

the OS. Two big chunks of memory, each with a size of 16MB, are allocated when the

process is started, and the memory manager handles them internally throughout the

lifetime of the process. As a result, any attempt to use more than 16MB, or three chunks

of 16MB, will cause internal errors.

Sparkpad‟s enhanced memory management system causes less defragmentation

compared to the buddy algorithm used by Linux. However, there are also cases where

LUA runs out of usable memory space, even though there is actually space left within the

two 16MB chunks. This is trade off allows the embedded system to work more smoothly,

and run longer, using less internal memory.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 31

2.8.7. GUI

This section provides a general description of GUI components. Sparkpad GUI

components provide functionality that is somewhat parallel to the Microwindows system,

including window manipulation and some basic graphics functions.

The overall architecture looks like the following:

At the bottom is the frame buffer and touch panel drivers, which provide elementary touch

panel input and screen output functions. Above that is a full Microwindows system and a

Sparkpad GUI components layer. Sparkpad utilizes Microwindow's message loop as the

underlying input facility and replaces its output with Sparkpad's own functions. Therefore,

all Microwindow functions could be used in a Sparkpad environment. However Sparkpad

usually doesn‟t interact with the Microwindows system. The first decision for a GUI

developer to make is which library to use as the GUI framework.

To help with this decision, developers should understand these core differences between

Sparkpad and Microwindows:

Sparkpad only provides limited graphic functions. Only JPEG and PNG image and text

SPARKPAD GUI

Components

Microwindows

Frame buffer

el

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 32

output are supported. There are no other graphic primitives like cycle, ellipse, line,

rectangle or polygon in Sparkpad. Conversely, Microwindows provides all those primitive

graphic functions.

Sparkpad doesn't support window clipping, which means the graphic output in one

Sparkpad component could easily overlap with other graphic outputs from other Sparkpad

windows. This feature (or limitation) impacts application design in the following way:

It's easier to perform alpha blending in Sparkpad than in Microwindows.

There will be a performance impact if the UI is organized in a deep, hierarchical way.

Because the output in the parent window won't be clipped off by the child window, even if

it is not visible on the screen.

Sparkpad provides better image manipulation functions, and usually those functions

outperform Microwindows on large image files.

2.8.7.1. LUA object model

(Please ignore this section if you choose Microwindows as your GUI framework.)

Most, though not all, of the Microwindows functions and constants are exported to LUA

without any changes. Please review Microwindows documentation to get complete

information on how to develop GUI programs in Microwindows.

If you are familiar with LUA, then you already know that LUA is not an object-oriented

programming (OOP) language. It does provide enough facility to implement an

object-oriented GUI library, however. This sections describes the approach used by the

Sparkpad platform to establish an OOP framework in LUA.

The first concept that developers need to understand regarding the OOP framework of

LUA is the concept of “closure” of LUA. Closure is a powerful language facility included

with LUA that is a function with its own local states. You can treat closure as a function

combined with its stack frame at the moment that the closure is created.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 33

Here is basic example of closure:

function create_closure(x)

 return function()

 x = x + 1

 return x

 end

end

function use_closure()

 local closure = create_closure(5)

 print(closure()) --this will output 6 on the console

 print(closure()) --print 7 on the console

end

Function 'create_closure' will return a closure that encapsulates a local variable x

(which is „5‟ at the moment of its creation) on its stack frame. And every time the closure is

called, the variable will increment by 1 and be returned from that closure, so it will print „6‟

on the console, and „7‟ for the second time. As a functional language, the positive thing

about LUA is that closure is a first class entity in the LUA language. It can be returned

from a function, or be passed as an argument to a function or stored in a variable. The

variable in a closure could be anything that is legal in the LUA language. In the example

above, the variable is a number, but it could also be a table or another function/closure.

The second concept developers need to understand is the ':' syntax of the LUA language.

The ':' in LUA is similar to '->' in C++, and 'object:methos()' in LUA means the same thing

as 'object->method()' in C++. The details behind this syntax are described in LUA's full

documentation.

With closure and ':' syntax, we have enough to implement an object-oriented framework

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 34

in LUA. An object within the Sparkpad environment is simply a collection of closures that

share some local variables in common and support inheritance and override.

Here is how it works:

function constructor(x)

 local y = 0

 local object = {} --create an empty table

 function object:method1()

 x = x + 1

 end

 object.method2= function(obj)

 y = y + 1

 end

 function object:dump()

 print(x,y)

 end

 return object

end

local obj = constructor(5)

obj:method1() -- x = x + 1

obj:method2() -- y = y + 1

obj:dump() -- print 6, 1

The following code illustrates how to inherit objects and the override method:

function sub_object(x)

 local super = constructor(x)

 local super_dump = super.dump

 function super:dump()

 print('super')

 super_dump(self)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 35

 end

end

local s = sub_object(16)

s:method1()

s:method2()

s:dump() -- print out 17, 1

The function constructor initializes an object with its argument x and a local variable y

and three methods (method1, method2 and dump). Those three methods are closures

and are stored in the returned object, which is a LUA table. The ':' syntax is used to define

and call those methods. In this object, x is an input argument of constructor and y is a

local variable. These two variables are shared by 'method1', 'method2' and 'dump'.

The function sub_object creates an object that is inherited from the object created by

constructor and overrides its 'dump' method. So method1 and method2 could be

called on sub_object without any change in its semantics. Method dump is overridden,

which prints 'super' followed by its super method's output.

In the above example, there are two different syntaxes to define methods of an object.

They are semantically equal.

1) local object = {}

 object.method = function(obj)

 ...

 end

2) local object={}

 function object:method()

 ...

 end

Both methods could be invoked by obj:method(). For additional context, please refer to

LUA's full documentation for details.

So far, the essence of OOP/OOD can be conveniently represented in LUA. The major

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 36

difference between Sparkpad's object model and other popular object models, such as

C++/Java, is that Sparkpad has no classes. The terms „class‟ and „object‟ are used

interchangeably in the following section. These patterns are used in Sparkpad‟s library

universally.

2.8.7.2. Runtime behavior of the Sparkpad GUI program

The cornerstone of Sparkpad GUI library is glyph.lua and microwindow.lua, which

implement the fundamental GUI elements and interface with Microwindows' message

loop, respectively.

Every Sparkpad GUI program begins with a call like “windows = Microwindow.create()”.

Please note the variable name of "windows" is mandatory. This statement will initialize the

Microwindows system, set up the root window and message filter, and create other data

structures in Sparkpad‟s GUI library.

The return object of Microwindow.create() is an object that interacts with Microwindows‟

message queue. The most important one: windows:process_message(timeout,

event, allow, forbidden). This function drives the main message loop (all of its

arguments are optional), so the simplest usage is windows:process_message(), which

means: wait until the next event arrives and then dispatch it to the root Sparkpad scene

that attached to windows previously. The root Sparkpad scene should be registered to

windows by windows:attach(scene) before calling windows:process_message. Then the

root scene will determine which component should be responsible for handling the

message. For example, if a touch panel message arrives, the windows object will deliver

the message to the current scene object and the scene will check the coordinates in the

message. It will then dispatch accordingly.

The scene is defined in glyph.lua and it is the root window of the Sparkpad GUI

program. Developers can create as many scenes as they want if there is sufficient

memory, however only one scene can be attached to windows as the current scene.

Scene is derived from glyph which is the root class of any GUI element, therefore any

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 37

method that is applicable to a glyph is also applicable to a scene. Additionally, a scene is

different from a glyph in the following aspects:

A scene carries with an off-screen buffer of size 800*600 pixels.

A scene carries with an optional background image, and the image could be changed by

calling scene:set_background(image)

Scene can't be sub window of another window.

Scene always covers full screen of 800*600 pixels.

Now, here‟s an example of a very basic Sparkpad GUI program:

require "Microwindow"

require "glyph"

windows = Microwindow.create()

local scene = glyph.scene()

scene:set_background('background.jpg')

local quit

function scene:on_pendown()

 quit = true

end

windows:attach(scene)

while(not quit) do

 windows:process_message()

end

This program creates an empty scene with a background image, and quits when the user

taps the screen.

There are several concepts in the above code worth noting:

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 38

There is no 'local' keyword before variable 'windows', as 'windows' is a reserved global

name in Sparkpad (not in LUA).

All methods of windows objects are called by the ':' syntax, while the windows object is

created by '.' syntax. This is because Microwindow.create() is a function of module

Microwindow, not a method of an object.

There is no problem with overriding the message handler in the main program. In fact,

any method can be overridden anywhere.

The code above demonstrates the basic elements of a Sparkpad GUI program, but of

course developers must use more components in most scenes. A Sparkpad component is

anything that inherits from glyph directly or indirectly. A glyph is simply a window in the

Sparkpad environment. It defines the fundamental behavior of GUI elements, such as

show, hide, move, draw image or text, add a child glyph, etc.

There are several predefined basic components in component.lua, including button,

label, single line editor, panel, thumbnail view, sandglass and dialog. If a developer‟s

desired component is not in the list, or the given component doesn't fulfill all requirements,

then the developer must implement a solution by overriding specific methods in glyph. In

these cases, the code in component.lua is a good reference for implementing custom

components.

2.8.7.3. Implement your own components

There are four methods in glyph that are intended to be overridden by developers:

on_pendown

on_penup

on_penmove

on_draw

The first three methods deal with the input from a touch panel. The last method is in

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 39

charge of output on the screen. The following example brings these together in a simple

component that displays a picture and invokes a user-defined method when the user

selects the picture:

function picture(p, img, on_pendown)

 local g = glyph.glyph(p)

 img = display.to_image(img) --load image if it is a file name

 function g:on_draw(gc)

 print('on_draw')

 gc:blit(0,0, img, 0, 0, img:width(), img:height())

 end

 g.on_pendown = on_pendown or g.on_pendown

 return g

end

The function picture is the constructor of our new component, which takes three

arguments. The first argument the parent glyph, the second argument is an image object

or the file name of an image, and the third argument is a user-defined function. Here is

how to use this new component:

require "Microwindow"

require "glyph"

require 'display'

local function picture(p, img, on_pendown)

 local g = glyph.glyph(p)

 img = display.to_image(img) --load image if it is a file name

 function g:on_draw(gc)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 40

 print('on_draw')

 gc:blit(0,0, img, 0, 0, img:width(), img:height())

 end

 g.on_pendown = on_pendown or g.on_pendown

 return g

end

windows = Microwindow.create()

local scene = glyph.scene(800,600)

local quit

local pic = picture(scene, 'frameImages/bg1.jpg',

 function()

 quit = true

 print ('quit')

 end)

pic:move(0,0,scene:width(), scene:height())

windows:attach(scene)

while(not quit) do

 windows:process_message()

end

In the above example, aside from the minimal Sparkpad GUI program and the definition

of our new component, there are two lines before entering the message loop:

local pic = picture(scene, 'frameImages/bg1.jpg',

 function()

 quit = true

 print ('quit')

 end)

pic:move(0,0,scene:width(), scene:height())

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 41

The first line creates a new component by calling function picture and the second line

displays the component as big as the scene. All components in the Sparkpad

environment are created and used in this way – they mostly differ in how they respond to

user inputs and how they perform the screen output. Please review glyph.txt for more

details.

2.8.8. Audio Volume Control: music_manager.lua

The audio control is defined under file music_manager.lua. Here is sample code for

controlling the volume:

local volume = 220

 os.execute("echo " .. volume .. " >

/proc/asound/wm8750L/wm8750_vol”)

Please note that while the legal value of variable volume is between 0 and 255, the value

should always remain under 230.

2.8.9. Component: component.lua

This section describes the components in component.lua. Not all functions are listed

here. This section only lists those that (1) have a clear semantic/interface, (2) are not

specific to a certain application or (3) demonstrate important concepts.

Component.lua includes the implementation of most UI components. Usually the

constructor of those components has many arguments, and many of them are optional

and could be given a nil value when called with the constructor. However, if an argument

has a value then all the arguments before it should be specified. To simplify the invocation

of the constructor, a little trick is commonly used in component.lua.

For instance, function panel (p, pixmap, caption, color, align, txt_margin,

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 42

w, h, isSingleLine, n) has 10 arguments, and it would be cumbersome to write

down each of them every time we called the constructor. So, we use a helper:

function panel_arg(p)

 return p.parent, p.pixmap, p.caption, p.color, p.alignment,

p.text_margin, p.width, p.height, p.is_single_line, p.name

end

Tis function takes a table and flatten all its member fields. Then

we could have a much cleaner interface like:

local arg={

 pixmap='1.jpg',

 caption='hello world'

}

local p = panel(panel_arg(arg))

In the above example, only two arguments are given, and the rest are omitted.

2.8.9.1. Panel

function panel(p, pixmap, caption, color, align, txt_margin, w,

h, isSingleLine, n)

This function creates a panel. A panel is a glyph that can display a label and an image.

p:parent

pixmap:the initial value of the background image.

caption:the initial value of the text label

color:the color of the text

align: the alignment of the text

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 43

txt_margin: the margin around the text label

w,h: the width, height of the component

isSingleLine: a boolean value to indicate if the text should be displayed in one line

n:name of the component

2.8.9.2. Image Functions

function s:get_picture()

function s:set_picture(pic)

Get/change the background image, where 'pic' could be the image file name or an image

object.

function s:set_color(clr)

function s:get_color()

Get/change the color of text.

function s:set_align(al)

function s:get_align()

Get/set the alignment of text, where the alignment should be the bitwise 'or' of

glyph.Alignment.

function s:set_text_margin(ml)

function s:get_text_margin()

Get/set the margin around the text.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 44

function s:set_caption(cp)

function s:get_caption()

Get/set the text caption.

function scrollbar(p, finished, unfinished, markup, markdown)

Create a horizontal scrollbar.

p:parent

finished: the image of a 100% scrollbar

unfinished: the image of a 0% scrollbar

markup: the image of a released handle

markdown: the image of a pressed handle

function bar:set_percent(pct, has_event)

function bar:get_percent()

Get/set the finished percentage of the scrollbar, where argument, has_event determines

if an on_change event should be fired.

function sand_glass(x, y)

Create a sand_glass animation at x,y on the screen. The default value of x,y is the center

of the screen.

function picture(p, img, margin)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 45

Create a glyph to display an image, where the created glyph has the same size of the

image plus the margin around it.

p:parent

img: the file name of the image or the image object

margin: the margin around the image

function text(p, caption, color, margin, fnt, align)

Create a glyph to display text.

p:parent

caption: the text to display

color: the color of the text

margin: the margin around the text

fnt: the font of the text, currently only one font face is supported, so the only option is a

font with a different size

align: the alignment of the text

function g:set_caption(c)

function g:get_caption(c)

Get/set the caption of the glyph.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 46

2.8.9.3. Glyph

function deligate(obj1, obj2, ...)

Typically a UI component is built from simpler primitive components. For instance, a

dialog box is composed of a button, a label and their parent, the dialog itself. When the

user selects the „OK‟ button, the dialog box will be closed. In the Sparkpad environment,

every event is delivered to the leaf component.

|--|

| Are you sure? |

| |

| |-----------| |

| | OK | |

| |-----------| |

|--|

Therefore, to handle the on_pendown event of selecting the „OK‟ button, the developer

would need to write the following:

function create_dialog()

 local dialog = glyph()

 local ok_button = create_button(dialog)

 function dialog:get_ok_button()

 return ok_button

 end

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 47

 return dialog

end

And in the application code, the developer would write:

dialog:get_ok_button().on_pendown = function(self, x,y)

 ...

End

This function will hook a handler in the ok_button. The function

dialog:get_ok_button is mandatory, since we can't access ok_button outside the

closure of create_dialog. Another solution is to call dialog's on_pendown in the

handler of ok_button:

function create_dialog()

 local dialog = glyph()

 local ok_button = create_button(dialog)

 function ok_button:on_pendown(x,y)

 return dialog:on_pendown(x,y)

 end

 return dialog

end

…then in the application code, the developer would include:

dialog:on_pendown = function(self, x,y)

 ...

end

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 48

Both solutions are tedious, and would be even more cumbersome if a deeper hierarchical

component tree were built. In practice, when moving from basic components to more

complex ones, it's a common requirement to expose the event handler of the

sub-component to its parent. Function deligate can help in these situations. Using

deligate, the code becomes:

function create_dialog()

 local dialog = glyph()

 local ok_button = create_button(dialog)

 glyph.deligate(ok_button,

dialog,'on_pendown','on_penup','on_penmove')

 return dialog

end

… and then in the application code, the developer would write:

dialog:on_pendown = function(self, x,y)

 ...

End

Please note, in the above example, not only on_pendown, but also on_penup and

on_penmove are all exposed to the dialog in a single function call.

function deligate has two fixed arguments, the first is the source of the event and

the second is the receiver of event. Then the function expects a serial of function/event

name. (In the Sparkpad environment, there is no difference between event and function).

function inherit(obj, method, overriden, mode)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 49

In object oriented programming it's common to override a method of base class and

calling base class's implementation in the function body.

function base_class()

 local base = {}

 function base:method()

 ...

 end

 return base

end

…then in the sub-class:

function sub_class()

 local sub_class = base_class()

 local method = sub_class.method

 function sub_class:method()

 method()

 ...

 end

 return sub_class

end

In this example, to call the implementation of base class, we have to store the base class'

implementation in a local variable before we use it.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 50

Function inherit could make this job a little easier. With inherit, the code looks like:

function sub_class()

 local sub_class = base_class()

 glyph.inherit(sub_class, 'method',function() ... end, 'so')

 return sub_class

end

This function takes four arguments:

the first is the object whose method needs to be overridden;

the second is the name of the method;

the third is the new implementation of the method;

the fourth is a string that tells inherit how to deal with base class's implementation.

If the mode argument is 'so' then the super-class' implementation will be called before

calling the overridden version. If this argument is 'os' then the overridden version will be

called before super-class‟ version. Otherwise, the super-class' version is totally omitted.

function gc(img, delta_x, delta_y, w, h, uplist)

This function is the constructor of GC object, which is the first argument of

glyph:on_draw. So it's not necessary to call this function directly. A GC object

encapsulates the coordinates transformation and several methods to perform graphical

operations.

function gc:blit(x1, y1, src, imgx, imgy, imgw, imgh)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 51

This function will bitblit an image to the GC object.

x1,y1 is the left top corner in local coordinates

src, is the image to draw

imgx,imgy,imgw,imgh is the rectangle in image's coordinates

function gc:blend(x1, y1, src, imgx, imgy, imgw, imgh, alpha)

This function is similar to blit, except it performs alpha blending instead of a raw bitblit.

x1, y1, src, imgx, imgy, imgw, imgh are the same as blit (see above)

alpha, 0 < alpha < 255, specifies the value of alpha channel.

function gc:fill(color, alpha, x1,y1,w1,h1)

Draws a rectangle on GC.

color: the color of the rectangle

alpha: the alpha value of the rectangle

x1, y1, w1, h1: the coordinates of the rectangle (default is the extent of the target glyph)

function gc:text_out(txt, color, align, x1, y1, w1, h1)

Outputs text on the GC object.

txt: the output string

color: the color of the text, default is gui.BLACK

align: specifies the alignment of the text within the rectangle of (x1,y1,w1,h1); default is

the bitwise 'or' of Alignment.hcenter and Alignment.vcenter

x1, y1, w1, h1: the coordinates of the rectangle (default is the extent of the target glyph)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 52

function glyph(p,x, y, w, h, n)

This function creates a blank glyph

p: parent should be a glyph or nil for root glyph

x, y, w,h: the initial value of the glyph's extent

n: the name of the glyph

function g:set_enable(e)

function g:get_enable()

Get or set the enabled property of a glyph to enable or disable the glyph. (A disabled

glyph cannot a receive a mouse event.)

function g:get_root()

Retrieve the root glyph of the given glyph.

function g:set_user_data(u)

function g:get_user_data()

Get or set user data of a glyph. The user data of glyph is arbitrary data provided by the

user, and the platform doesn't imply any structure to this data or interpretation of it.

function g:get_visible()

Check if the glyph is visible.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 53

function g:get_children()

Return a table of all children of the glyph.

function g:top()

function g:left()

function g:width()

function g:height()

These four functions return the extent of the glyph.

function g:size()

Returns the width and height as a tuple.

function g:pos()

Returns left and top as a tuple.

function g:get_parent()

Return the parent of the glyph, or nil in case of root glyph.

function g:name()

Return the name of a glyph. The name is given by the sixth argument of the glyph's

constructor, and is prefixed by all of its parent names.

function g:snap(x1, y1, w1, h1)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 54

Returns a screen shot of the rectangle of (x1,y1,w1,h1), where the rectangle is in the local

coordinates of the glyph.

function g:to_global(x1, y1)

Returns the global coordinates of (x1, y1), (x1,y1) should be in local coordinates of the

glyph.

function g:to_local(x1,y1)

Returns the local coordinates of (x1,y1), where (x1,y1) is in the global coordinates.

function g:invalidate(x1,y1,w1,h1)

Force the glyph to redraw by calling on_draw method of the glyph as well as its children.

x1,y1,w1,h1, specifies the invalidation rectangle

function g:glyph_at(x1, y1)

Returns the leaf glyph under the point of (x1,y1).

function g:gc()

Returns the GC object of the glyph.

function g:remove()

Remove a child glyph from its parent.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 55

function g:insert(c1)

Insert c1 into g's children table.

function g:hide()

Hide the glyph, change visible to false.

function g:show()

Show the glyph, change visible to true.

function g:move(x1, y1, w1, h1)

Change glyph's left ,top, width and height.

function g:set_show_extent(s)

Since glyph does not provide a default on_draw function nor does it clip the graphical

output, it can be difficult to ascertain the position of a glyph at design time. This function

overlaps a transparent rectangle on the glyph to indicate the glyph on the screen. The

size of the rectangle is the extent of the glyph.

function scene(w, h, background,name)

Scene is the root window in the GUI library.

w,h: specifies the size of the root scene

background: the background image

name: the name of the scene

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 56

function s:set_background(bg)

Change the background of the scene.

function s:flush_update()

Scene will accumulate all graphical output in its off screen buffer -- this function will flush

the off screen buffer to the real screen.

function content_size(g)

Return a tuple of (x,y,w,h), which is the smallest rectangle that could contain all the

children of the glyph.

2.8.9.4. Buttons

checkbox, radio_button and push_button are three similar components in

Sparkpad. Although their appearance is different, each has similar behaviors. (Basically

they are all buttons.)

In the Sparkpad environment, a button can be any glyph that has two states: UP or

DOWN. The function buttonize could convert a glyph to a button if the glyph

implements a method called change_state. Please see function button for a

complete example of how to implement a button.

The key method is change_state, in which the glyph changes its appearance

according to the current state that is returned by method get_up.

function button(...)

 ...

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 57

 function s:change_state()

 if s:get_up() then

 s:set_picture(imgup)

 else

 s:set_picture(imgdown)

 end

 end

 ...

End

buttonize is not a constructor, it just hooks on_pendown and on_penup to deal with

the mouse events, and encapsulates the internal state of a button.

function buttonize(p,toggle, group)

p: is the glyph that will be converted to a button; note it is not the parent of the button

toggle: determines if the button is a toggle button.

group: this argument could be nil or a function returned by function 'group'. Function

group () returns a function that represents a group object.

The buttons that share one group object will be mutually exclusive on its DOWN state,

which means that at any time only one button in the group could be in DOWN state, this is

the Sparkpad way to implement radio_button.

function checkbox(p, group, margin, imgup, imgdown)

Create a checkbox without caption.

p:the parent of the checkbox

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 58

group: the resule of group()

margin: a table with field top,left,right and bottom

imgup: the image to represents UP state

imgdown: the image to represents DOWN state

function radio_button(parent, caption, caption_left, group, color)

Create a radio button.

parent: the parent of the radio_button

caption: the caption of the button

caption_left: a boolean value to indicate if the text should put at the left side of the radio

icon.

group: the result of group()

color: the color of text, default is gui.WHITE

function push_button(p, caption, color, fnt, image, toggle, group,

alignment, margin, xoffset, yoffset, no_auto_pop)

Create a standard button.

p:the parent of the button

caption: the caption of the button

color: the color of the caption

fnt: the font of the caption. In the current implementation, Sparkpad only supports one font

face, so the only option here is the same font in a different size

image: the image of the button, push_button use only one image to represents UP and

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 59

DOWN states, and it offsets the image to right-bottom direction if the button is in DOWN

state.

toggle: indicates if the button is a toggle button

group: the result of group()

alignment: the alignment of the caption

margin: the margin around the button image

xoffset, yoffset: how far should the button be moved if it is in DOWN state

no_auto_pop: obsolete, just ignore

function push_button:get_caption()

function push_button:set_caption(c)

Get/set the caption of push_button.

function push_button:set_font(f)

Change the font of push_button.

function push_button:get_image()

function push_button:set_image(im)

Get/set the image of push_button.

2.8.9.5. Focus Control

Besides the group property of radio_button, focus control is another feature in the

Sparkpad environment that needs mutually exclusive control among a group of

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 60

components. Therefore we can abstract the common aspect of these two features and

the result is:

local function _group(outfunc, infunc)

This function encapsulates a reference to a glyph which will be called as “position” in the

following remark. If the position is occupied by a glyph, then we say the glyph is in the

state, otherwise we say the glyph is out of state. As there is only one position in a group,

the semantic of 'mutually exclusive' is maintained naturally by this structure.

outfunc: is the name of the method that will be called when a glyph becomes out of

state.

infunc: is the name of the method that will be called when a glyph becomes in the state.

This function returns an anonymous function (gly,query). When called, if the second

argument is nil or false, then the current 'in the state' glyph will be replaced by the first

argument and will return the previous 'in the state' glyph. If the second argument is not nil

or false, then the first argument is ignored, and it will return the current 'in the state' glyph.

function focus_group()

Create a group that maintains the focus of components.

function group()

Create a group that maintains the UP/DOWN states of buttons.

function editor(p, cp, length, mask, insert_mode, focus_gp)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 61

Create a single line editor.

p:parent of editor

cp:the initial text in the editor

length: the max length of the editor

mask: a function with prototype of mask(editor, caret, text, new_input). This function is

used to validate/translate the input text

insert_mode: indicates if the editor is in insert mode

focus_group: the result of focus_group()

function editor:on_input(good)

An event that is fired when a new input character is accepted.

function editor:set_mask(m)

Change the mask function.

function editor:insert(c)

Insert a character.

function editor:delete()

Delete the character after the caret.

function editor:backspace()

Delete the character before the caret.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 62

function editor:set_caret(ct)

function editor:get_caret()

Get/set the caret.

function editor:get_max_length()

Retrieve the max length of the editor.

function editor:set_insert_mode(i)

function editor:get_insert_mode()

Get/set insert mode of the editor.

function editor:set_color(f)

Change the color of the text.

function editor:set_focus_group(f)

function editor:get_focus_group()

Get/set the focus group.

function editor:on_focus(has_focus)

function editor:focus_in()

function editor:focus_out()

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 63

These three functions are required by focus group control.

function dialog(p, icon, captions, align, ok, cancel, x, y)

This function creates a dialog box that blocks other components on the screen.

p: the parent of the dialog

icon: an optional icon that display on the dialog

captions: a multi-line text message

align: the alignment of the message

ok, cancel: the caption of ok and cancel button

x,y: the offset along x and y axis relative to the center of its parent, the default value is 0,0

function dialog:modal(loop)

This function begins a new message loop to iterate the messages in Microwindows‟

message queue. It doesn't return until one of the following conditions is met:

user clicks ok button: it returns the label of the ok button, which is the fifth argument of the

constructor

user clicks cancel button: it returns the label of the cancel button, which is the sixth

argument of the constructor

The result of function loop is not nil nor false, it returns the result of loop().

function msgbox(p, msg, x, y)

Displays a simple message box on the screen.

p: parent of the message box

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 64

msg: message of the message box

x,y: the offset along x and y axis relative to the center of its parent, the default value is 0,0

2.8.9.6. Image Module

This section lists out all functions defined in the image module.

image.image(width, height)

Returns the width * height image.

image.size(filename)

Return the size of the given image filename.

filename: the name of image file

Return value: a tuple of (width, height), this function doesn't load the image

image.load(filename, width, height)

Load image from file.

filename: the name of image file

width: optional, the max width of the result image, default is the width of the image

height: optional, the max height of the result image, default is the width of the image

Return value: the image that loaded from filename, which is scaled up/down to width *

height.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 65

image.load_fit(filename, width, height)

Load image from file.

filename: the name of image file

width: the max width of the result image

height: the max height of the result image

Return value: the image that loaded from filename, which is scaled up/down to fit into the

size of width * height. This function preserves the ratio of width/height of the original

image.

image.snap(x,y,width,height)

Snap a rectangular area of the screen.

x: optional, the left coordinate of the rectangle, default 0

y: optional, the top coordinate of the rectangle, default 0

width: optional, the width of the rectangle, default 800

height: optional, the height of the rectangle, default 600

image.rgba(r,g,b,a)

Return a pixel of color (r,g,b,a).

r:the value of red channel

g:the value of green channel

b:the value of blue channel

a:the value of alpha channel

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 66

2.8.9.7. Instance method of image object

image object is created by image.image, image.load, image.load_fit or image.snap. As

the following functions are the instance method of an image object, please note the first

'image' is not a module name but an image object.

image:draw(x,y,x1,y1,width,height)

Draw a rectangle area of the image on the screen.

x: the destination left coordinate on the screen

y: the destination top coordinate on the screen

x1: the source left coordinate in the image

y1: the source top coordinate in the image

width: the width of the source rectangle

height: the height of the source rectangle

image:rotate(angle, x, y)

Rotate the image in counter-clockwise direction.

angle: degree of the rotation

x,y: the center of the rotation

return value: a new image, which is the result of the operation, the original image won't

change

image:scale(width, height)

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 67

Scale the image to width * height.

width: desired width

height: desired height

Return value: a new image, which is the result of the operation, the original image won't

change.

image:width()

Return the width of the image.

image:height()

Return the height of the image.

image:fill(color, x, y, width, height, alpha)

Draw a rectangle on the image.

color: optional, the color of the rectangle, default is black

x: optional, the left coordinate of the rectangle, default is 0

y: optional, the top coordinate of the rectangle, default is 0

width: optional, the width of the rectangle, default is the width of the image

height:optional, the height of the rectangle, default is the height of the image

alpha:optional, the value of the alpha channel, default is 255

image:clone()

Return a new image which is identical to the original one.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 68

image:save(filename)

Save the image to file in JPEG format.

filename: the name of the file

image:name()

Return the name of the image. If the image is created by image.load/image.load_fit then

the name is the file name of the image file. Otherwise the name is empty, and it could be

altered by image:set_name.

image:set_name(name)

Change the name of image.

name:the new name

image:blit(x,y,source, x1,y1,w1,h1)

Copy a rectangular area of pixel from source to the image.

x,y: the left,top coordinate in the destination image

source: the source image

x1,y1: the left, top coordinate in the source image

w1,h1: the width and height of the source rectangle

image:blend(x,y,source ,x1,y1,w1,h1,alpha)

Perform alpha blend of a rectangular area of source with the image.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 69

x,y: the left, top coordinate in the destination image

source: the source image

x1,y1: the left, top coordinate in the source image

w1, h1: the width and height of the source rectangle

alpha: the value of alpha channel

2.9. Notes to application developers

Before beginning application development on the Sparkpad platform, please note the

following miscellaneous items:

The memory usage of a scene is about 800 x 600 x 3 bytes, which equals about 1.4MB

for one screen buffer. There are three (3) buffers for the Telechip 8901 board and one (1)

buffer for the ADI Blackfin board.

For the Blackfin board, not all USB drive brands are supported.

All LUA and shell scripts (*.sh) are in Linux format. Please do NOT edit and save those as

text files in a Windows environment, as text files contain different EOF markings and such

files will not be picked up by the system after being copied to the device.

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 70

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 71

3. Additional Hardware Information

3.1.1.1. Working temperature range:

 Celsius Fahrenheit

Minimum Temperature 0 32

Maximum Temperature 40 104

3.1.1.2. USB Port

All USB ports support USB 2.0 (or higher) only. Do not connect “Powered USB” cable or

devices.

3.1.1.3. FCC Rules, Part 15

This equipment has been tested and found to comply with the limits for a Class B digital

device, pursuant to part 15 of the FCC Rules. These limits are designed to provide

reasonable protection against harmful interference in a residential installation. This

equipment generates, uses and can radiate radio frequency energy and, if not installed

and used in accordance with the instructions, may cause harmful interference to radio

communications. However, there is no guarantee that interference will not occur in a

particular installation. If this equipment does cause harmful interference to radio or

television reception, which can be determined by turning the equipment off and on, the

Sparkpad Platform Development Guide 11/27/2010

 Sparkpad LLC CONFIDENTIAL 72

user is encouraged to try to correct the interference by one or more of the following

measures:

 -Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver

is connected.

-Consult the dealer or an experienced radio / TV technician for help.

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:

• This device may not cause harmful interference.

 • This device must accept any interference received, including interference that may

cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance

could void the user‟s authority to operate the equipment.

Responsible Party:

Sparkpad LLC

46090 Lake Center Plaza #206

Sterling VA 20165

USA

888-907-7275

support@sparkpad.com

