\ JSparkpad

User Manual

(for Developers)

Updated: Nov 7, 2010

Sparkpad LLC CONFIDENTIAL

Sparkpad Platform Development Guide 11/27/2010

© Copyright 2010 Sparkpad LLC All rights reserved.

This document contains valuable confidential and proprietary information of Sparkpad LLC. No part of this documentation
may be transmitted or distributed, or copied, photocopied, scanned, reproduced, translated, microfilmed, or otherwise
duplicated on any medium without written consent of Sparkpad LLC. If written consent is given, the same confidential,

proprietary, and copyright notices must be affixed to any permitted copies as were affixed to the original.

Use of the software programs described herein and this documentation is subject to applicable terms of service and license
agreements. Unless specifically otherwise agreed in writing, all rights, title, and interest to this software and documentation

remain with Sparkpad LLC.

Information in this documentation has been carefully checked and is believed to be accurate. However, this information is
subject to change without notice, and Sparkpad LLC assumes no responsibility for any inaccuracies that may be contained
in this documentation. In no event will Sparkpad LLC be liable for direct, indirect, special, incidental, or consequential

damages resulting from any defect or omission in this technical note, even if advised of the possibility of such damages.

In the interest of continued product development, Sparkpad LLC reserves the right to make improvements to this

documentation and the products it describes at any time, without notice or obligation.

The trademarks, logos, and service marks ("Marks") displayed in this document are the property of Sparkpad LLC or other
third parties. You are not permitted to use the Marks without the prior written consent of Sparkpad LLC or such third party

which may own the Marks. "Sparkpad LLC," "Sparkpad," and iGala are registered trademarks of Sparkpad LLC
Published by

Sparkpad LLC

46090 Lake Center Plaza, #206
Sterling, Virginia 20165

Phone: (888) 907-7275

Fax: (888) 391-7275

Printed in the United States of America

Sparkpad LLC CONFIDENTIAL 2

Sparkpad Platform Development Guide 11/27/2010

Table of Contents

Platform Development Guide Error! Bookmark not defined.
Table of Contents 3

1. Introduction 5
1.1. Conventions 5
1.2. System architecture 6

2. LUA application development 9

2.1.Overview 9

2.2.Running applications on a PC 10

2.3.Installing applications on a Sparkpad Device 11

2.4. Application invocation 12

2.5.Access Linux shell 15

2.6.Network setup 15

2.7.Touch screen, remote controls & more 16

2.8.LUA programming 16
2.8.1. Filelisting 16
2.8.2. How to create a screen with buttons 18
2.8.3. How to parse an XML file 25
2.8.4. How to enable automatic remote firmware update 26
2.8.5. Wi-Fi connection: wlan.lua 29
2.8.6. Memory management 30
2.8.7. GUI31
2.8.8. Audio Volume Control: music_manager.lua 41
2.8.9. Component: component.lua 41

Sparkpad LLC CONFIDENTIAL 3

Sparkpad Platform Development Guide 11/27/2010

2.9. Notes to application developers 69

Sparkpad LLC CONFIDENTIAL 4

Sparkpad Platform Development Guide 11/27/2010

1. Introduction

Sparkpad is a hardware and software platform solution developed by Sparkpad LLC for
companies or individuals seeking an embedded device that is easily customizable. The
Sparkpad platform offers various hardware options, including:

= TFT touch screen displays (77, 8", 10.1” & 10.4”)

= Non-touch screen (remote operated) displays (15" and above)
= “Video Box” (remote operated) for use with any monitor

= Networking support with both WiFi and Ethernet connections

= A complete Software Development Kit (SDK) and sample applications for creating
customized functionality and user interfaces (Ul)

= QOperating System layer access (Linux)

= A full-featured Emulation and Development Environment for Windows

The iGala Wireless Digital Picture Frame (www.igala.com) is an example of a working
commercial application developed on the Sparkpad platform.

This programming guide is intended for software engineers who plan to build customized
applications on the Sparkpad platform. It provides information on how to use Sparkpad to
develop application extensions and includes sample application code.

1.1. Conventions

The following font conventions are used:

Code: This font is used for any device-generated data such as program codes, web page

source code and/or log messages generated.
Sparkpad LLC CONFIDENTIAL 5

http://www.igala.com/

Sparkpad Platform Development Guide

11/27/2010

Var: Similar to code, but text in this font involves variable identifiers and must be
replaced by other meaningful data. There will be a description on how to replace those
identifiers when they are mentioned in the document. For example, the command-line

arguments:

{code} or {var}: Device-generated data enclosed by {* ‘} indicates the data is optional.

1.2. System architecture

Sparkpad hardware is available in different hardware configurations, including screen
size. Some devices are even available without a screen. For each device there may be
differences in the core DSP, memory size, board configuration, and interface ports. The
following table lists Sparkpad’s currently available (or soon-to-be available) hardware

configurations:
Screen Screen Screen Input DSP Ethernet WiFi
Size Resolution Ratio Type
, Touch | Telechip | USB Host | Marvell
7 800x480 16:9 :
Screen | 7901 Port (integrated)
. Touch | RMI Optional | nternal
8 800x600 4:3 Screen | Aul250 USB
USB Host module
) 800x480 Touch | Telechip Marvell
10.1 16:9 Included _
1024x600 Screen | 8902 (integrated)
10.4” 800)(600 43 Touch Telechip InCIUded Marve"

Sparkpad LLC CONFIDENTIAL

Sparkpad Platform Development Guide

11/27/2010

1024x768 Screen | 8902 (integrated)
, Remote | Telechip Marvell
15 1024x768 4:3 Included _
Control | 7901 (integrated)
Touch | Telechi Marvell
42" 1080x1024 | 16:9 P lincluded |
Screen | 8902 (integrated)
HDMI &
N/A .
. Component Remote | Telechip Marvell
Video Box | . (No Included _
Video Control | 8902 (integrated)
screen)
Output
HDMI &
N/A
i Component Remote Broadcom
Video Box _ (No Broadcom | Included _
Video Control (integrated)
screen)
Output

All hardware options run a modified version of the Linux OS. On top of Linux, Sparkpad
provides three development options for applications: LUA, Flash (coming soon) and
Android (coming soon), as illustrated in the following stack chart:

Sparkpad LLC CONFIDENTIAL

Sparkpad Platform Development Guide 11/27/2010

Customize Flash Android LUA
Layer App App App
[Gnash Flash | JAVA LUA
Sparkpad Android 2.2 Nano X
Platform Linux 2.6.28
L DSP (Telechip 7901, Telechip 8902, or RMI Au1205)

Currently, this document only assists with the development LUA applications (with or
without NanoX). Please note that for non-touch screen models, such as the 15” and “box”
devices, the LUA layer is built directly on top of Linux without NanoX.

Sparkpad LLC CONFIDENTIAL 8

Sparkpad Platform Development Guide 11/27/2010

2. LUA application development

This section provides information on how to build applications on the Sparkpad platform
using the LUA programming language. Sparkpad provides a LUA-based emulator for your
Windows PC, so most development and testing of your application software can be
completed before loading it onto the final end hardware.

2.1. Overview

Sparkpad hardware features different DSPs that run Linux. The display driver is
configured to support digital LCD displays in their native resolutions. All models include at
least 1GB of flash memory and 128MB RAM (most include 256MB).

The flash memory is partitioned into two sections:
= Application partition mounted under /nand1 folder
= Content partition mounted under /nand2 folder

Note: Developers should monitor memory consumption during development. The Linux
system kernel uses about 15 - 20MB of RAM. The LUA layer handles its own memory
management and consumes about 40MB per pool allocation.

Once the system boots up, the application partition will be mounted. The content partition
is mounted in the background. Before using this partition, the application should c that the
content partition has been properly mounted by checking for the directory
/nandl/load+found. The system then checks for the existence of shell scripts with the
name “igala api.sh”under /nandl/config, and runs it automatically.

The development environment is structured as follows:

Operation System Linux version 2.6.28

Sparkpad LLC CONFIDENTIAL 9

Sparkpad Platform Development Guide 11/27/2010

GCC Version 4.1.2
Ul Microwindow nano-X 0.91
Programming Language LUA

The following drivers are supported:
= LCD display
= Touch-Screen

= Wi-Fi 802.11b/g

= Ethernet
= USB host
= SD Card

2.2. Running applications on a PC

Applications developed for the Sparkpad platform using LUA can be run on any Windows
PC (without the need of a Sparkpad hardware device) using the provided emulator.
Developers can copy the application directory /nand1/bin to Windows and initiate the
application from a Windows command terminal (cmd) using command:

lua.exe app.lua

In this case, the name of the LUA application file is app.lua, which can be replaced with
any other LUA application files.

For standard Sparkpad applications, there is often a background process of fetching
network data from online servers with the name of nettask.lua. To completely emulate the
applications, the developer needs to initiate both the app.lua and nettask.lua processes
from two separate windows command terminals.

Sparkpad LLC CONFIDENTIAL 10

Sparkpad Platform Development Guide 11/27/2010

2.3. Installing applications on a Sparkpad Device

Once application development is completed in the PC emulation environment, developers
can use a USB flash drive or SD memory card to load their application onto the actual
device.

To install applications to a device, copy the following update. sh file and the zipped bin
directory bin. zip to the root directory of either a USB flash drive or SD memory card
and insert it into the respective port on the device. Lastly, power on the device. The
system will execute the update. sh file automatically.

Sample of update.sh

if [-f "/mnt/SD/bin.zip" 1; then
unzip -o /mnt/SD/bin.zip -d /nandl/config
mv -f /mnt/SD/bin.zip /mnt/SD/updated bin.zip
echo 3 > /proc/sys/vm/drop caches

cd /nandl/

if [-d "bin"]; then
rm -f -r /nandl/bin
mv -f /nandl/config/bin /nandl
fi
fi
if [-f "/mnt/OHCI/bin.zip"]; then
unzip -o /mnt/OHCI/bin.zip -d /nandl/config
mv -f /mnt/OHCI/bin.zip /mnt/OHCI/updated bin.zip
echo 3 > /proc/sys/vm/drop caches

cd /nandl/

Sparkpad LLC CONFIDENTIAL 11

Sparkpad Platform Development Guide 11/27/2010

if [-d "bin"]; then
rm -f -r /nandl/bin
mv —-f /nandl/config/bin /nandl
fi
fi

mkdir -p /nand2/bones/flash/abies

cp —af /nandl/bin/mnt/* /nand2/bones
cd /nand2/bones/flash/abies

mkdir -p photo/net/picasa

cd /nandl/bin

cp igala api.sh /nandl/config

When the install process is complete, the device will restart.

Note that bin. zip is renamed automatically upon completion of the install process. This
ensures that the device will not be updated again if the developer has not yet removed
the USB flash drive or SD card.

Developers can rename or rearrange the network download content in the sample
application, as needed, located under /nand2/bones/flash/abies/photo/net/picasa.

2.4. Application invocation

Within the update. sh script, the file igala api.sh is copied tothe /nandl/config
folder. When the system boots up, this file will run automatically.

Sample of igala_api.sh

if [-f "/mnt/SD/bin.zip"] && [-f "/mnt/SD/update.sh"]; then
cd /nandl/bin

Sparkpad LLC CONFIDENTIAL 12

Sparkpad Platform Development Guide

11/27/2010

./lua update info.lua
aplay -B 4096 frameworks/frameImages/alert.wav
cd /mnt/SD
chmod +x update.sh
./update.sh
mv update.sh update pre.sh
reboot
fi
sleep 3

if [-f "/mnt/OHCI/bin.zip"] && [-f "/mnt/OHCI/update.sh"]; then

cd /nandl/bin

./lua update info.lua

aplay -B 4096 frameworks/frameImages/alert.wav
cd /mnt/OHCI

chmod +x update.sh

./update.sh
mv update.sh update pre.sh
reboot
fi
####remote update####
if [-f "/nandl/bin/update.sh"]
then
rm —-f /nandl/bin/update.sh
fi
if [-f "/nandl/bin.zip"]
then

unzip -o /nandl/bin.zip -d /nandl
rm -f /nandl/bin.zip

echo 3 > /proc/sys/vm/drop caches
if [-f "/nandl/bin/update.sh"]

Sparkpad LLC CONFIDENTIAL

13

Sparkpad Platform Development Guide 11/27/2010

then
cd /nandl/bin
chmod +x update.sh
./update.sh
fi
rm -f /nandl/bin/update.sh
echo 3 > /proc/sys/vm/drop caches
fi

cd /nandl/bin

chmod +x 1n.sh

chmod +x lua 8

chmod +x lua

chmod +x alert play.sh
./1ln.sh

./lua_ 8 nettask.luas&
sleep 2

./lua app.luaé&

./lua monitoré&

Telnetd&

The first two sections of the i £-fi code are to trigger the update process from USB/SD
card, if present. The script starts the following three Sparkpad processes and the telnet
daemon:

app.lua — Rendering of all Ul
nettask.lua — Performs all network download activities

lua_monitor.lua — Monitors the health of application and nettask processes

Sparkpad LLC CONFIDENTIAL 14

Sparkpad Platform Development Guide 11/27/2010

2.5. Access Linux shell

The OS shell on the frame can be accessed only after the WiFi or Ethernet connection
has been configured and is running. From a Telnet client on a computer connected via the
same network, run:

telnet {IP address of the device, such as 192.168.0.102}

The shell access account is root/Udo. If successful, it will enter the Linux shell on the
frame. You can run any shell script command to debug your application.

2.6. Network setup

Developers can manually set up the network using LUA code, or from a shell command
line, using the following commands:

Ethernet:
= [fconfig ethO {IP address like 192.168.0.102}
WiFi:
= insmod /lib/modules/sd8686.ko
= jwconfig eth1 essid “{SSID of the wifi network}”
= jfconfig ethl {IP address like 192.168.0.102}

Please note: For both WiFi and Ethernet, the previously established network must be
disconnected before a new network attempt is attempted.

Sparkpad LLC CONFIDENTIAL 15

Sparkpad Platform Development Guide 11/27/2010

2.7. Touch screen, remote controls & more

To be provided. Please contact support@sparkpad.com meanwhile with questions.

2.8. LUA programming

This section describes how to develop a Sparkpad application using the LUA scripting
language.

The Sparkpad SDK includes a LUA executable for both Windows PC and the hardware
device. Developers can execute their LUA applications with commands such as
“lua.exe app.lua”in Windows PC environment and get the exact same application
behavior as they would on an actual Sparkpad hardware device. (One important
exception: the emulator borrows the network connection from the PC and thus the
network configuration process does not reflect the true experience on an actual device.)

Sparkpad strongly recommends that developers who are new to the platform begin by
attempting to modify top-layer LUA application code, as provided with the SDK. All
interactions with devices, such as the Wi-Fi module and the USB port, are handled in the
provided application. The encrypted LUA files come with the Core Application code are
compiled LUA codes

2.8.1. Filelisting

Directory Calendar (Touch screen only)
Directory frameworks
Directory mnt

Directory sdk

Sparkpad LLC CONFIDENTIAL 16

mailto:support@sparkpad.com

Sparkpad Platform Development Guide

11/27/2010

app_bone.lua

Main entry of Sparkpad LUA Bones Application (Touch screen only)

do_calendar.lua
do_gmail.lua
do_picasa.lua
fpDisplay.lua
fpFrequency.lua
fpGmail.lua
fpPicasa.lua
fpPicasaAlbum.lua
fpPowerSave.lua
fpTransition.lua
fpWifi.lua
fpWifiKeyboard.lua
fpWifiType.lua
fsCalendar.lua
fsMainMenu.lua
fsMedia.lua
fsSetup.lua
gmail.lua

gmail_setup.lua

Sparkpad LLC CONFIDENTIAL

17

Sparkpad Platform Development Guide

11/27/2010

media_manager.lua
nettask.lua
picasa.lua
playlist.lua
setting.lua
system_manager.lua
videoplay.lua
wlan.lua

wlan_check.lua

2.8.2. How to create a screen with buttons

The following example shows how to create a screen with buttons.

function create (scene, back page)

local page = glyph.glyph(scene,0,0,1024,768)

resolution here

local page title = component.text (page,

'Title here',

-— 15 inch screen

guil.WHITE,nil, font factory.load('frameworks/font/arial.ttf’,

50),bit. or(glyph.Alignment.hcenter, glyph.Alignment.vcenter))

page title:hcenter ()
page title:offset (0, 20)

local function create buttons (parent,
local push arg = {
parent = parent,
color = gui.WHITE,--WHITE,

Sparkpad LLC CONFIDENTIAL

18

Sparkpad Platform Development Guide 11/27/2010

image =
'frameworks/frameImages/blue button extra big.png',
caption = 'button',
alignment = bit. or(glyph.Alignment.hleft,
glyph.Alignment.vcenter),
font = font factory.load('frameworks/font/arial.ttf"',
21),
no_auto pop=true
}
local ret ={}
local y = 200
for , f in ipairs(arg) do
push arg.caption = £
ret[#ret + 1] =
component.push button (component.push button arg(push arg))
ret [#ret] :move (200, V)
y =y + 60
end
return ret

end

local button = {}

button = create buttons(page, "button text here")

local zone list = {
{-6, " (UTC-06:00) Central Time (US & Canada)"},
{-5, " (UTC-05:00) Eastern Time (US & Canada)"},
{-4, " (UTC-04:00) Atlantic Time (Canada)"},
{-3, "™ (UTC-03:00) Buenos Aires"},

Sparkpad LLC CONFIDENTIAL 19

Sparkpad Platform Development Guide 11/27/2010

{-2, " (UTC-02:00) Mid-Atlantic"},

{-1, ™ (UTC-01:00) Cape Verde Is."},

{-12, " (UTC-12:00) International Date Line West"},

{-11, " (UTC-11:00) Midway Island, Samoa"},

{-10, " (UTC-10:00) Hawaii"},

{-9, " (UTC-09:00) Alaska"},

{-8, ™ (UTC-08:00) Pacific Time (US & Canada)"},

{-7, ™ (UTC-07:00) Mountain Time (US & Canada)"},

{0, ™ (UTC) GMT : Dublin, Edinburgh, Lisbon, London"},
{1, "™ (UTC+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm,

Vienna"},

{2, ™ (UTC+02:00) Athens, Bucharest, Istanbul"},
{3, " (UTC+03:00) Moscow, St. Petersburg, Volgograd "},
{4, ™ (UTC+04:00) Caucasus Standard Time"},
{5, ™ (UTC+05:00) Islamabad, Karachi"},
{6, " (UTC+06:00) Almaty, Novosibirsk"},
{7, ™ (UTC+07:00) Bangkok, Hanoi, Jakarta"},
{8, "™ (UTC+08:00) Kuala Lumpur, Singapore"},
{9, " (UTC+09:00) Osaka, Sapporo, Tokyo"},
{10, "™ (UTC+10:00) Canberra, Melbourne, Sydney"},
{11, "™ (UTC+11:00) Magadan, Solomon Is., New Caledonia"},
{12, " (UTC+12:00) Auckland, Wellington"},
}
local txt = component.text (page, 'Current:',

gul.WHITE,nil, font factory.load('frameworks/font/arial.ttf’,
25),bit. or(glyph.Alignment.hleft, glyph.Alignment.vcenter))
txt:move (200,100)
local txt next caption = component.text (page,' ',
gui.WHITE,nil,nil,bit. or(glyph.Alignment.hleft,
glyph.Alignment.vcenter))

Sparkpad LLC CONFIDENTIAL 20

Sparkpad Platform Development Guide 11/27/2010

txt next caption:move (300, 100)

txXt next caption:set caption(setting.abies config.zonetime[l
1)
local argu = {
parent = page,
caption = "'

’
image = 'frameworks/frameImages/blue triangle left.png',
color = gui.WHITE

}

local prebtn =

component.push button (component.push button arg(argu))

argu.image = 'frameworks/frameImages/blue triangle right.png'
local nextbtn =

component.push button (component.push button arg(argu))
argu.image = 'frameworks/frameImages/green button small.png'
argu.caption = 'Done'
argu.font = font factory.load('frameworks/font/arial.ttf', 30)
local done =
component.push button (component.push button arg(argu))

prebtn:move (200, 600)

layout.in row center (prebtn, {done, nextbtn}, 100)

function button caption(current zone, pre zone)

local zone = (current zone - pre zone) * 3600
local real hour
local os time year, os time month, os time date,

os_time hour, os time minute, os time noon =

time manager.get time ()
if os_time noon == "PM" and tonumber (os_time hour) ~= 12 then

real hour = os time hour + 12

Sparkpad LLC CONFIDENTIAL 21

Sparkpad Platform Development Guide 11/27/2010

else
real hour = os time hour

end

if setting.abies config.daylight config["dst"] == 1 then
real hour = real hour - 1

end

local changetime = os.time{year = os_time year, month =

os_time month, day = os time date, hour = real hour, min =

os_ time minute,isdst =

setting.abies config.daylight config["dst"]}
local real time = changetime + zone
local d = os.date("*t",real time)
if constant.WIN32 then

os.execute("date " .. d.year .."-".. d.month .."-"..
d.day)
os.execute("time " .. d.hour ..":".. d.min ..":".. d.sec)
else
os.execute ("date -s \"" .. d.year .. "-" .. d.month .. "-" ..
d.day .. "™ " .. d.hour .. ":" .. d.min .. ":" .. d.sec .. "\"")
end
end

local flag = 0
local index = 0
local function click zone (1)
return function ()
windows:add (function ()
setting.load(setting.abies config)

local zone pre = setting.abies config.zonetime[2]

Sparkpad LLC CONFIDENTIAL 22

Sparkpad Platform Development Guide

11/27/2010

Q.

local list index = ((i + index) %

25 + 24) %

txt next caption:set caption(zone list[list index][2])

setting.abies config.zonetime[1l]
zone list[list index] [2]

setting.abies config.zonetime[2]
zone list[list index][1]

now = zone list[list index][1]

25 + 1

local dlg = component.dialog(page, nil, '"\n\nTime Zone

has been successfully changed.',

bit. or(glyph.Alignment.vcenter, glyph.Alignment.hcenter),

'Done', nil, 0, -20)
if dlg:run() == 'Done' then

setting.save (setting.abies config)

button caption (now, zone pre)
end
end)
end

end

function on click()

windows:add (

function ()
for i = 1 ,#button do
local list index = ((i + index
1
button[i] :set caption(zone list[list index][2])
end
end

Sparkpad LLC CONFIDENTIAL

)

Q

<

25 + 24)

o)
°

25

|

23

Sparkpad Platform Development Guide 11/27/2010

end
prebtn.on click = function()
if(flag > 0) then
flag = flag - 1
end
if flag < 0 then
flag = 0

end

index = flag * 6
on click()

end

nextbtn.on click = function()
flag = flag + 1
if flag > 25 then
flag = 0
end
index = flag * 6
on click()

end

for i = 1, #button do
button[i].on click = click zone (1)
end

function done:on click()
page:hide ()
back page:show ()

end

Sparkpad LLC CONFIDENTIAL 24

Sparkpad Platform Development Guide 11/27/2010

return page

end

In the above code, a screen was created with a page title, text, a number of time zone
buttons and a group of action buttons at the bottom of the page, including “previous page”,
“next page” and “done” buttons. Developers can move the location of the buttons using
screen coordinates. Button actions are defined in the on _click functions.

2.8.3.How to parse an XML file

With Sparkpad, developers can easily send a network request to an online server with
input parameters, and then parse the returned XML into local content. In the following
example, the developer first needs to construct the requesting URL with input parameters
into a string of “url”.

local http content = http request (url,
setting.abies config.proxy config)
if (http content) then
local result, result set = pcall(collect, http content)
if not result then return nil, 115, "http request " .. url ..
" get invalid content" end
1f (result set[2].label == "xml label here") then
local set = result set[2][1]
ob.weekday = set[1l][3].xarg.abbrv
ob.station = set[3][1]
return ob, set[l], nil
else
return nil, 116, "http request " .. url .. " parse error"
end

else

Sparkpad LLC CONFIDENTIAL 25

Sparkpad Platform Development Guide 11/27/2010

return nil, 404, "http request " .. url .. " get no content"

end

In this example, the developer can retrieve XML attributes as well as the arguments from
the incoming XML as long as the location and the sequence of the elements are known.

2.8.4. How to enable automatic remote firmware update

By following the sample in autoupdate. lua, developers can enable their application to
check for firmware updates periodically.

2.8.4.1. Check Version

Here is the sample of how to check the current firmware version against the version
available on the remote server. This code can be invoked at a different frequencies,
depending on your needs:

local http content, code, status
local update version
if sysutil.fileexists('../' .. 'update version.dat') then
print ('get version from cache file')
update version = sysutil.readlog('../'
'update version.dat')
else
print ('get version from website')
http content, code, , status = http.request (BASE URL
VERSION FILE)
if tonumber (code) ~= 200 then
print ('http request version failure,', status)

return
Sparkpad LLC CONFIDENTIAL 26

Sparkpad Platform Development Guide 11/27/2010

end
update version = http content
sysutil.writelog('../"' .. 'update version.dat',
update version)
end
local current version = sysutil.readlog('version.txt')
print ('update version:', update version)
print ('current version:', current version)
if (current version ~= update version) then
print ('version changed, need upgrade')
else

print ('version is the latest.')

sysutil.writelog('../' .. 'auto update.dat’,
tostring(os.time()))
os.remove ('../"'" .. 'update version.dat')
return
end

2.8.4.2. Getthe new firmware package

After deciding a firmware update is needed, the following sample can be used to fetch the
new upgrade package and initiate a self-installation:

local update md5 -- for integrity check
if sysutil.fileexists('../' .. 'update md5.dat') then
print ('get md5 from cache file')
update md5 = sysutil.readlog('../' .. 'update md5.dat"')
else

print ('get md5 from website')
http content, code, , status = http.request (BASE URL

MD5 FILE)
Sparkpad LLC CONFIDENTIAL 27

Sparkpad Platform Development Guide 11/27/2010

if tonumber (code) ~= 200 then
print ('http request md5 failure')
return

end

update md5 = http content

sysutil.writelog('../"' .. 'update md5.dat', update md5)
end
if sysutil.fileexists('../' .. 'file to get.zip') then

print('zipfile exists, check md5")
sysutil.clean memory ()
local md5value = mdbSutil.md5 file('../' .. file to get.zip')
sysutil.clean memory ()
if md5value ~= update md5 then
os.remove ('../' .. ' file to get.zip"')
else

print ('zip file md5 check success')

sysutil.writelog('../' .. 'auto update.dat',
tostring(os.time ()))
os.remove ('../' .. 'update md5.dat"')
return
end

end
print ('getting zip file ...")
b, msg = get (BASE URL .. ZIP FILE, '../' .. ' file to get.zip'
RN
if b then
sysutil.clean memory ()

local md5value =mdSutil.md5 file('../' .. ' file to get.zip' ..

'!')

Sparkpad LLC CONFIDENTIAL 28

Sparkpad Platform Development Guide 11/27/2010

sysutil.clean memory ()

if md5value ~= update md5 then
print ('md5 check failure')
os.remove ('../' .. ' file to get.zip' .. '!")
os.remove ('../' .. 'update md5.dat"')
return
else

print ('md5 check success')

os.remove ('../' .. 'update md5.dat"')

os.rename ('../' .. ' file to get.zip' .. "!', '"../'" .. "
file to get.zip')

sysutil.writelog('../' .. 'auto update.dat’,

tostring(os.time()))

2.8.5.Wi-Fi connection: wlan.lua

After calling wlan_on() , the network connection may fail. That could be cause by the
delay of the wireless access point association and the allocation of DHCP. The call of
wlan_stats (') may return the status of “connecting” during this time.

To get to the true status of a WiFi connection in real time, the code should use
wlan_check() instead of wlan_on () and wlan_status(). However, the wlan_check() call
may take up to 1-2 minutes to return a response, depending on how long it takes to
connect to the access point.

The code in wlan.lua file shows the use of wlan_on(), wlan_status() and wlan_check().
Remember that a WiFi connection may not be successful even after the call of
wlan_on().

Note that WiFi connection code can be completed before the GUI (graphical user

interface) starts.
Sparkpad LLC CONFIDENTIAL 29

Sparkpad Platform Development Guide 11/27/2010

2.8.6.Memory management

Memory management is handled automatically in LUA. There is no need to free or
allocate memory in the code. It uses a "Mark and Sweep" approach for garbage collection.
Some more complicated cases involve the use of "Weak Reference", of which you will
find several instances in the Sparkpad source code. Other than memory consumption by
regular data structures, the closure routine in LUA could also contain references to some
items, so please pay special attention to large data items such as images within the
closure routines.

You can always trigger the garbage collection manually using collect_garbage(). Within
the provided system, it is being done once for every 10 message event handling in the
message loop, so that memory is freed faster.

The consumption of the memory will NOT be reflected by checking the output of the
system command "top". That is because memory management is done in a layer above
the OS. Two big chunks of memory, each with a size of 16MB, are allocated when the
process is started, and the memory manager handles them internally throughout the
lifetime of the process. As a result, any attempt to use more than 16MB, or three chunks
of 16MB, will cause internal errors.

Sparkpad’s enhanced memory management system causes less defragmentation
compared to the buddy algorithm used by Linux. However, there are also cases where
LUA runs out of usable memory space, even though there is actually space left within the
two 16MB chunks. This is trade off allows the embedded system to work more smoothly,
and run longer, using less internal memory.

Sparkpad LLC CONFIDENTIAL 30

Sparkpad Platform Development Guide 11/27/2010

2.8.7.GUI

This section provides a general description of GUI components. Sparkpad GUI
components provide functionality that is somewhat parallel to the Microwindows system,
including window manipulation and some basic graphics functions.

The overall architecture looks like the following:

SPARKPAD GUI

Microwindows

Frame buffer

At the bottom is the frame buffer and touch panel drivers, which provide elementary touch
panel input and screen output functions. Above that is a full Microwindows system and a
Sparkpad GUI components layer. Sparkpad utilizes Microwindow's message loop as the
underlying input facility and replaces its output with Sparkpad's own functions. Therefore,
all Microwindow functions could be used in a Sparkpad environment. However Sparkpad
usually doesn’t interact with the Microwindows system. The first decision for a GUI
developer to make is which library to use as the GUI framework.

To help with this decision, developers should understand these core differences between
Sparkpad and Microwindows:

Sparkpad only provides limited graphic functions. Only JPEG and PNG image and text

Sparkpad LLC CONFIDENTIAL 31

Sparkpad Platform Development Guide 11/27/2010

output are supported. There are no other graphic primitives like cycle, ellipse, line,
rectangle or polygon in Sparkpad. Conversely, Microwindows provides all those primitive
graphic functions.

Sparkpad doesn't support window clipping, which means the graphic output in one
Sparkpad component could easily overlap with other graphic outputs from other Sparkpad
windows. This feature (or limitation) impacts application design in the following way:

It's easier to perform alpha blending in Sparkpad than in Microwindows.

There will be a performance impact if the Ul is organized in a deep, hierarchical way.
Because the output in the parent window won't be clipped off by the child window, even if
it is not visible on the screen.

Sparkpad provides better image manipulation functions, and usually those functions
outperform Microwindows on large image files.

2.8.7.1. LUA object model

(Please ignore this section if you choose Microwindows as your GUI framework.)

Most, though not all, of the Microwindows functions and constants are exported to LUA
without any changes. Please review Microwindows documentation to get complete
information on how to develop GUI programs in Microwindows.

If you are familiar with LUA, then you already know that LUA is not an object-oriented
programming (OOP) language. It does provide enough facility to implement an
object-oriented GUI library, however. This sections describes the approach used by the
Sparkpad platform to establish an OOP framework in LUA.

The first concept that developers need to understand regarding the OOP framework of
LUA is the concept of “closure” of LUA. Closure is a powerful language facility included
with LUA that is a function with its own local states. You can treat closure as a function
combined with its stack frame at the moment that the closure is created.

Sparkpad LLC CONFIDENTIAL 32

Sparkpad Platform Development Guide 11/27/2010

Here is basic example of closure:

function create closure (x)
return function ()
x =x + 1
return x
end

end

function use closure()

local closure = create closure(5)
print (closure()) --this will output 6 on the console
print (closure()) --print 7 on the console

end

Function 'create closure' will return a closure that encapsulates a local variable x
(which is ‘5’ at the moment of its creation) on its stack frame. And every time the closure is
called, the variable will increment by 1 and be returned from that closure, so it will print ‘6’
on the console, and ‘7’ for the second time. As a functional language, the positive thing
about LUA is that closure is a first class entity in the LUA language. It can be returned
from a function, or be passed as an argument to a function or stored in a variable. The
variable in a closure could be anything that is legal in the LUA language. In the example
above, the variable is a number, but it could also be a table or another function/closure.

The second concept developers need to understand is the "' syntax of the LUA language.
The "' in LUAis similar to '->' in C++, and 'object:methos()' in LUA means the same thing
as 'object->method()' in C++. The details behind this syntax are described in LUA's full
documentation.

With closure and "' syntax, we have enough to implement an object-oriented framework

Sparkpad LLC CONFIDENTIAL 33

Sparkpad Platform Development Guide 11/27/2010

in LUA. An object within the Sparkpad environment is simply a collection of closures that
share some local variables in common and support inheritance and override.

Here is how it works:

function constructor (x)

local vy =0

local object = {} --create an empty table

function object:methodl ()
x =x + 1

end

object.method2= function (obj)
y=y +1

end

function object:dump ()
print (x,vy)

end

return object

end

local obj = constructor (5)
obj:methodl () -- x = x + 1
obj:method2() -- y =y + 1
obj :dump () -- print 6, 1

The following code illustrates how to inherit objects and the override method:

function sub object (x)
local super = constructor (x)
local super dump = super.dump
function super:dump ()
print ('super')

super dump (self)

Sparkpad LLC CONFIDENTIAL 34

Sparkpad Platform Development Guide 11/27/2010

end
end
local s = sub object (16)
s:methodl ()
s:method2 ()
s :dump () -—- print out 17, 1

The function constructor initializes an object with its argument x and a local variable y
and three methods (methodl1, method2 and dump). Those three methods are closures
and are stored in the returned object, which is a LUA table. The ":' syntax is used to define
and call those methods. In this object, x is an input argument of constructor andy is a
local variable. These two variables are shared by 'method1’, 'method2' and 'dump'.

The function sub_object creates an object that is inherited from the object created by
constructor and overrides its 'dump' method. So method1 and method2 could be
called on sub object without any change in its semantics. Method dump is overridden,
which prints 'super’ followed by its super method's output.

In the above example, there are two different syntaxes to define methods of an object.
They are semantically equal.

1) local object = {}
object.method = function (obj)

end
2) local object={}

function object:method ()

end

Both methods could be invoked by obj:method(). For additional context, please refer to
LUA's full documentation for details.

So far, the essence of OOP/OOD can be conveniently represented in LUA. The major
Sparkpad LLC CONFIDENTIAL 35

Sparkpad Platform Development Guide 11/27/2010

difference between Sparkpad's object model and other popular object models, such as
C++/Java, is that Sparkpad has no classes. The terms ‘class’ and ‘object’ are used
interchangeably in the following section. These patterns are used in Sparkpad’s library
universally.

2.8.7.2. Runtime behavior of the Sparkpad GUI program

The cornerstone of Sparkpad GUI library is glyph.lua and microwindow. lua, which
implement the fundamental GUI elements and interface with Microwindows' message
loop, respectively.

Every Sparkpad GUI program begins with a call like “windows = Microwindow.create()”.
Please note the variable name of "windows" is mandatory. This statement will initialize the
Microwindows system, set up the root window and message filter, and create other data
structures in Sparkpad’s GUI library.

The return object of Microwindow.create() is an object that interacts with Microwindows’
message queue. The most important one: windows :process message (timeout,
event, allow, forbidden) . This function drives the main message loop (all of its
arguments are optional), so the simplest usage is windows:process_message(), which
means: wait until the next event arrives and then dispatch it to the root Sparkpad scene
that attached to windows previously. The root Sparkpad scene should be registered to
windows by windows:attach(scene) before calling windows:process_message. Then the
root scene will determine which component should be responsible for handling the
message. For example, if a touch panel message arrives, the windows object will deliver
the message to the current scene object and the scene will check the coordinates in the
message. It will then dispatch accordingly.

The scene is defined in glyph.lua and it is the root window of the Sparkpad GUI
program. Developers can create as many scenes as they want if there is sufficient
memory, however only one scene can be attached to windows as the current scene.
Scene is derived from glyph which is the root class of any GUI element, therefore any
Sparkpad LLC CONFIDENTIAL 36

Sparkpad Platform Development Guide 11/27/2010

method that is applicable to a glyph is also applicable to a scene. Additionally, a scene is
different from a glyph in the following aspects:

A scene carries with an off-screen buffer of size 800*600 pixels.

A scene carries with an optional background image, and the image could be changed by
calling scene:set_background(image)

Scene can't be sub window of another window.

Scene always covers full screen of 800*600 pixels.

Now, here’s an example of a very basic Sparkpad GUI program:

require "Microwindow"

require "glyph"

windows = Microwindow.create ()

local scene = glyph.scene()

scene:set background('background.jpg')

local quit

function scene:on pendown ()
quit = true

end

windows:attach (scene)

while (not quit) do
windows:process message ()

end

This program creates an empty scene with a background image, and quits when the user
taps the screen.

There are several concepts in the above code worth noting:

Sparkpad LLC CONFIDENTIAL 37

Sparkpad Platform Development Guide 11/27/2010

There is no 'local' keyword before variable 'windows', as ‘windows' is a reserved global
name in Sparkpad (not in LUA).

All methods of windows objects are called by the "' syntax, while the windows object is
created by "' syntax. This is because Microwindow.create() is a function of module
Microwindow, not a method of an object.

There is no problem with overriding the message handler in the main program. In fact,
any method can be overridden anywhere.

The code above demonstrates the basic elements of a Sparkpad GUI program, but of
course developers must use more components in most scenes. A Sparkpad component is
anything that inherits from glyph directly or indirectly. A glyph is simply a window in the
Sparkpad environment. It defines the fundamental behavior of GUI elements, such as
show, hide, move, draw image or text, add a child glyph, etc.

There are several predefined basic components in component . lua, including button,
label, single line editor, panel, thumbnail view, sandglass and dialog. If a developer’s
desired component is not in the list, or the given component doesn't fulfill all requirements,
then the developer must implement a solution by overriding specific methods in glyph. In
these cases, the code in component. 1ua is a good reference for implementing custom
components.

2.8.7.3. Implement your own components

There are four methods in glyph that are intended to be overridden by developers:
on_pendown

on_penup

on_penmove

on draw

The first three methods deal with the input from a touch panel. The last method is in
Sparkpad LLC CONFIDENTIAL 38

Sparkpad Platform Development Guide 11/27/2010

charge of output on the screen. The following example brings these together in a simple
component that displays a picture and invokes a user-defined method when the user
selects the picture:

function picture(p, img, on pendown)
local g = glyph.glyph (p)
img = display.to image (img) --load image if it is a file name
function g:on draw(gc)
print ('on draw')
gc:blit (0,0, img, 0, 0, img:width(), img:height())
end
g.on _pendown = on pendown Or g.on pendown
return g

end

The function picture is the constructor of our new component, which takes three
arguments. The first argument the parent glyph, the second argument is an image object
or the file name of an image, and the third argument is a user-defined function. Here is
how to use this new component:

require "Microwindow"
require "glyph"

require 'display'

local function picture(p, img, on pendown)
local g = glyph.glyph (p)
img = display.to image(img) --load image 1if it is a file name

function g:on draw(gc)

Sparkpad LLC CONFIDENTIAL 39

Sparkpad Platform Development Guide 11/27/2010

print ('on draw')

gc:blit (0,0, img, 0, 0, img:width(), img:height())
end
g.on_pendown = on pendown Or g.on pendown
return g

end

windows = Microwindow.create ()

local scene = glyph.scene(800,600)

local quit
local pic = picture(scene, 'framelImages/bgl.]jpg',
function ()
quit = true

print ('quit')
end)
pic:move (0,0, scene:width (), scene:height{())
windows:attach (scene)
while (not quit) do
windows:process message ()

end

In the above example, aside from the minimal Sparkpad GUI program and the definition
of our new component, there are two lines before entering the message loop:

local pic = picture(scene, 'framelmages/bgl.]jpg',
function ()
quit = true
print ('quit')
end)

pic:move (0,0, scene:width (), scene:height{())

Sparkpad LLC CONFIDENTIAL 40

Sparkpad Platform Development Guide 11/27/2010

The first line creates a new component by calling function picture and the second line
displays the component as big as the scene. All components in the Sparkpad
environment are created and used in this way — they mostly differ in how they respond to
user inputs and how they perform the screen output. Please review glyph.txt for more
details.

2.8.8. Audio Volume Control: music_manager.lua

The audio control is defined under file music manager.lua. Here is sample code for
controlling the volume:

local volume = 220
os.execute("echo " .. volume .. " >
/proc/asound/wm8750L/wm8750 vol”)

Please note that while the legal value of variable volume is between 0 and 255, the value
should always remain under 230.

2.8.9.Component: component.lua

This section describes the components in component. lua. Not all functions are listed
here. This section only lists those that (1) have a clear semantic/interface, (2) are not
specific to a certain application or (3) demonstrate important concepts.

Component.lua includes the implementation of most Ul components. Usually the
constructor of those components has many arguments, and many of them are optional
and could be given a nil value when called with the constructor. However, if an argument
has a value then all the arguments before it should be specified. To simplify the invocation
of the constructor, a little trick is commonly used in component. lua.

For instance, function panel (p, pixmap, caption, color, align, txt margin,

Sparkpad LLC CONFIDENTIAL 41

Sparkpad Platform Development Guide 11/27/2010

Wy

h, isSingleLine, n) has 10 arguments, and it would be cumbersome to write

down each of them every time we called the constructor. So, we use a helper:

In

2.

function panel arg(p)

return p.parent, p.pixmap, p.caption, p.color, p.alignment,
p.text margin, p.width, p.height, p.is single line, p.name
end
Tis function takes a table and flatten all its member fields. Then
we could have a much cleaner interface like:
local arg={

pixmap="1l.Jjpg",

caption="hello world'
}
local p = panel (panel arg(arg))

the above example, only two arguments are given, and the rest are omitted.

8.9.1. Panel

function panel (p, pixmap, caption, color, align, txt margin, w,

h, isSingleline, n)

This function creates a panel. A panel is a glyph that can display a label and an image.

p:parent

pixmap:the initial value of the background image.

caption:the initial value of the text label

color:the color of the text

ali

gn: the alignment of the text

Sparkpad LLC CONFIDENTIAL 42

Sparkpad Platform Development Guide 11/27/2010

txt_margin: the margin around the text label
w,h: the width, height of the component
isSingleLine: a boolean value to indicate if the text should be displayed in one line

n:name of the component

2.8.9.2. Image Functions

function s:get picture()
function s:set picture(pic)

Get/change the background image, where 'pic' could be the image file name or an image
object.

function s:set color(clr)
function s:get color()

Get/change the color of text.

function s:set align(al)
function s:get align()

Get/set the alignment of text, where the alignment should be the bitwise 'or' of
glyph.Alignment.

function s:set text margin (ml)
function s:get text margin()

Get/set the margin around the text.
Sparkpad LLC CONFIDENTIAL 43

Sparkpad Platform Development Guide 11/27/2010

function s:set caption(cp)
function s:get caption()

Get/set the text caption.

function scrollbar(p, finished, unfinished, markup, markdown)
Create a horizontal scrollbar.

p:parent

finished: the image of a 100% scrollbar

unfinished: the image of a 0% scrollbar

markup: the image of a released handle

markdown: the image of a pressed handle

function bar:set percent (pct, has event)
function bar:get percent()

Get/set the finished percentage of the scrollbar, where argument, has_event determines
if an on_change event should be fired.

function sand glass(x, V)

Create a sand_glass animation at x,y on the screen. The default value of x,y is the center
of the screen.

function picture(p, img, margin)

Sparkpad LLC CONFIDENTIAL 44

Sparkpad Platform Development Guide 11/27/2010

Create a glyph to display an image, where the created glyph has the same size of the
image plus the margin around it.

p:parent
img: the file name of the image or the image object

margin: the margin around the image

function text (p, caption, color, margin, fnt, align)
Create a glyph to display text.

p:parent

caption: the text to display

color: the color of the text

margin: the margin around the text

fnt: the font of the text, currently only one font face is supported, so the only option is a
font with a different size

align: the alignment of the text

function g:set caption(c)

function g:get caption(c)

Get/set the caption of the glyph.

Sparkpad LLC CONFIDENTIAL 45

Sparkpad Platform Development Guide 11/27/2010

2.8.9.3. Glyph

function deligate (objl, obj2, ...)

Typically a Ul component is built from simpler primitive components. For instance, a
dialog box is composed of a button, a label and their parent, the dialog itself. When the
user selects the ‘OK’ button, the dialog box will be closed. In the Sparkpad environment,
every event is delivered to the leaf component.

| Are you sure? |

Therefore, to handle the on_pendown event of selecting the ‘OK’ button, the developer
would need to write the following:

function create dialog()
local dialog = glyph()
local ok button = create button (dialog)
function dialog:get ok button()
return ok button

end

Sparkpad LLC CONFIDENTIAL 46

Sparkpad Platform Development Guide 11/27/2010

return dialog
end

And in the application code, the developer would write:

dialog:get ok button().on pendown = function(self, x,y)

End

This function will hook a handler in the ok_button. The function

dialog:get ok button is mandatory, since we can't access ok button outside the
closure of create dialog. Another solution is to call dialog's on pendown in the
handler of ok button:

function create dialog()
local dialog = glyph()
local ok button = create button(dialog)
function ok button:on pendown (x,y)
return dialog:on pendown (X,Vy)
end
return dialog
end
...then in the application code, the developer would include:

dialog:on pendown = function(self, x,y)

end

Sparkpad LLC CONFIDENTIAL 47

Sparkpad Platform Development Guide 11/27/2010

Both solutions are tedious, and would be even more cumbersome if a deeper hierarchical
component tree were built. In practice, when moving from basic components to more
complex ones, it's a common requirement to expose the event handler of the
sub-component to its parent. Function deligate can help in these situations. Using
deligate, the code becomes:

function create dialog()
local dialog = glyph()
local ok button = create button(dialog)

glyph.deligate (ok button,

dialog, 'on pendown', 'on penup', 'on penmove')
return dialog

end

... and then in the application code, the developer would write:

dialog:on pendown = function(self, x,y)

End

Please note, in the above example, not only on_pendown, but also on_penup and
on_penmove are all exposed to the dialog in a single function call.

function deligate has two fixed arguments, the first is the source of the event and
the second is the receiver of event. Then the function expects a serial of function/event
name. (In the Sparkpad environment, there is no difference between event and function).

function inherit (obj, method, overriden, mode)
Sparkpad LLC CONFIDENTIAL 48

Sparkpad Platform Development Guide 11/27/2010

In object oriented programming it's common to override a method of base class and
calling base class's implementation in the function body.

function base class{()
local base = {}

function base:method ()

end
return base

end

...then in the sub-class:

function sub class()
local sub class = base class()
local method = sub class.method
function sub class:method()

method ()

end
return sub class

end

In this example, to call the implementation of base class, we have to store the base class'
implementation in a local variable before we use it.

Sparkpad LLC CONFIDENTIAL 49

Sparkpad Platform Development Guide 11/27/2010

Function inherit could make this job a little easier. With inherit, the code looks like:
function sub class()
local sub class = base class()
glyph.inherit (sub class, 'method',6 function() ... end, 'so'")
return sub class

end

This function takes four arguments:

the first is the object whose method needs to be overridden;

the second is the name of the method;

the third is the new implementation of the method,;

the fourth is a string that tells inherit how to deal with base class's implementation.

If the mode argument is 'so’ then the super-class' implementation will be called before
calling the overridden version. If this argument is 'os' then the overridden version will be
called before super-class’ version. Otherwise, the super-class' version is totally omitted.

function gc(img, delta x, delta y, w, h, uplist)

This function is the constructor of GC object, which is the first argument of
glyph:on_draw. So it's not necessary to call this function directly. A GC object
encapsulates the coordinates transformation and several methods to perform graphical
operations.

function gc:blit(x1l, vyl, src, imgx, imgy, imgw, imgh)
Sparkpad LLC CONFIDENTIAL 50

Sparkpad Platform Development Guide 11/27/2010

This function will bitblit an image to the GC object.
x1,yl is the left top corner in local coordinates
src, is the image to draw

imgx,imgy,imgw,imgh is the rectangle in image's coordinates

function gc:blend(xl, yl, src, imgx, imgy, imgw, imgh, alpha)
This function is similar to blit, except it performs alpha blending instead of a raw bitblit.
x1, y1, src, imgx, imgy, imgw, imgh are the same as blit (see above)

alpha, 0 < alpha < 255, specifies the value of alpha channel.

function gc:fill (color, alpha, x1,yl,wl,hl)
Draws a rectangle on GC.

color: the color of the rectangle

alpha: the alpha value of the rectangle

x1, y1, wl, hl: the coordinates of the rectangle (default is the extent of the target glyph)

function gc:text out(txt, color, align, x1, yl, wl, hl)
Outputs text on the GC object.

txt: the output string

color: the color of the text, default is gui.BLACK

align: specifies the alignment of the text within the rectangle of (x1,y1,wl,h1); default is
the bitwise 'or' of Alignment.hcenter and Alignment.vcenter

x1, y1, wl, hl: the coordinates of the rectangle (default is the extent of the target glyph)
Sparkpad LLC CONFIDENTIAL 51

Sparkpad Platform Development Guide 11/27/2010

function glyph(p,x, y, w, h, n)
This function creates a blank glyph

p: parent should be a glyph or nil for root glyph
X, Y, w,h: the initial value of the glyph's extent

n: the name of the glyph

function g:set enable (e)
function g:get enable()

Get or set the enabled property of a glyph to enable or disable the glyph. (A disabled
glyph cannot a receive a mouse event.)

function g:get root ()

Retrieve the root glyph of the given glyph.

function g:set user data(u)
function g:get user data()

Get or set user data of a glyph. The user data of glyph is arbitrary data provided by the
user, and the platform doesn't imply any structure to this data or interpretation of it.

function g:get visible()

Check if the glyph is visible.

Sparkpad LLC CONFIDENTIAL 52

Sparkpad Platform Development Guide 11/27/2010

function g:get children()

Return a table of all children of the glyph.

function g:top()
function g:left ()
function g:width ()
function g:height ()

These four functions return the extent of the glyph.

function g:size()

Returns the width and height as a tuple.

function g:pos ()

Returns left and top as a tuple.

function g:get parent()

Return the parent of the glyph, or nil in case of root glyph.

function g:name ()

Return the name of a glyph. The name is given by the sixth argument of the glyph's
constructor, and is prefixed by all of its parent names.

function g:snap(xl, yl, wl, hl)
Sparkpad LLC CONFIDENTIAL 53

Sparkpad Platform Development Guide 11/27/2010

Returns a screen shot of the rectangle of (x1,y1,w1,h1), where the rectangle is in the local
coordinates of the glyph.

function g:to global (x1, yl)

Returns the global coordinates of (x1, y1), (x1,y1) should be in local coordinates of the
glyph.

function g:to local (x1,yl)

Returns the local coordinates of (x1,y1), where (x1,y1) is in the global coordinates.

function g:invalidate (x1,yl,wl,hl)
Force the glyph to redraw by calling on draw method of the glyph as well as its children.

x1,y1,wl,hl, specifies the invalidation rectangle

function g:glyph at(x1l, y1)

Returns the leaf glyph under the point of (x1,y1).

function g:gc ()

Returns the GC object of the glyph.

function g:remove ()

Remove a child glyph from its parent.

Sparkpad LLC CONFIDENTIAL 54

Sparkpad Platform Development Guide 11/27/2010

function g:insert(cl)

Insert c1 into g's children table.

function g:hide ()

Hide the glyph, change visible to false.

function g:show ()

Show the glyph, change visible to true.

function g:move(x1, yl, wl, hl)

Change glyph's left ,top, width and height.

function g:set show extent (s)

Since glyph does not provide a default on_draw function nor does it clip the graphical
output, it can be difficult to ascertain the position of a glyph at design time. This function
overlaps a transparent rectangle on the glyph to indicate the glyph on the screen. The
size of the rectangle is the extent of the glyph.

function scene(w, h, background,name)
Scene is the root window in the GUI library.

w,h: specifies the size of the root scene
background: the background image

name: the name of the scene

Sparkpad LLC CONFIDENTIAL 55

Sparkpad Platform Development Guide 11/27/2010

function s:set background (bg)

Change the background of the scene.

function s:flush update|()

Scene will accumulate all graphical output in its off screen buffer -- this function will flush
the off screen buffer to the real screen.

function content size(g)

Return a tuple of (x,y,w,h), which is the smallest rectangle that could contain all the
children of the glyph.

2.8.9.4. Buttons

checkbox, radio button and push _button are three similar components in
Sparkpad. Although their appearance is different, each has similar behaviors. (Basically
they are all buttons.)

In the Sparkpad environment, a button can be any glyph that has two states: UP or
DOWN. The function buttonize could convert a glyph to a button if the glyph
implements a method called change state. Please see function button for a
complete example of how to implement a button.

The key method is change state, in which the glyph changes its appearance
according to the current state that is returned by method get up.

function button(...)

Sparkpad LLC CONFIDENTIAL 56

Sparkpad Platform Development Guide 11/27/2010

function s:change state()
if s:get up() then
s:set picture (imgup)
else
s:set picture (imgdown)
end

end
End

buttonize is not a constructor, it just hooks on pendown and on_penup to deal with
the mouse events, and encapsulates the internal state of a button.

function buttonize (p, toggle, group)
p: is the glyph that will be converted to a button; note it is not the parent of the button
toggle: determines if the button is a toggle button.

group: this argument could be nil or a function returned by function 'group’. Function
group () returns a function that represents a group object.

The buttons that share one group object will be mutually exclusive on its DOWN state,
which means that at any time only one button in the group could be in DOWN state, this is
the Sparkpad way to implement radio button.

function checkbox (p, group, margin, imgup, imgdown)
Create a checkbox without caption.
p:the parent of the checkbox

Sparkpad LLC CONFIDENTIAL 57

Sparkpad Platform Development Guide 11/27/2010

group: the resule of group()
margin: a table with field top,left,right and bottom
imgup: the image to represents UP state

imgdown: the image to represents DOWN state

function radio button (parent, caption, caption left, group, color)
Create a radio button.

parent: the parent of the radio_button

caption: the caption of the button

caption_left: a boolean value to indicate if the text should put at the left side of the radio
icon.

group: the result of group()

color: the color of text, default is gui.WHITE

function push button(p, caption, color, fnt, image, toggle, group,

alignment, margin, xoffset, yoffset, no auto pop)
Create a standard button.

p:the parent of the button

caption: the caption of the button

color: the color of the caption

fnt: the font of the caption. In the current implementation, Sparkpad only supports one font
face, so the only option here is the same font in a different size

image: the image of the button, push_button use only one image to represents UP and

Sparkpad LLC CONFIDENTIAL 58

Sparkpad Platform Development Guide 11/27/2010

DOWN states, and it offsets the image to right-bottom direction if the button is in DOWN
state.

toggle: indicates if the button is a toggle button

group: the result of group()

alignment: the alignment of the caption

margin: the margin around the button image

xoffset, yoffset: how far should the button be moved if it is in DOWN state

no_auto_pop: obsolete, justignore

function push button:get caption()
function push button:set caption(c)

Get/set the caption of push button.

function push button:set font (f)

Change the font of push button.

function push button:get image ()
function push button:set image (im)

Get/set the image of push _button.

2.8.9.5. Focus Control

Besides the group property of radio button, focus control is another feature in the

Sparkpad environment that needs mutually exclusive control among a group of
Sparkpad LLC CONFIDENTIAL 59

Sparkpad Platform Development Guide 11/27/2010

components. Therefore we can abstract the common aspect of these two features and
the result is:

local function group(outfunc, infunc)

This function encapsulates a reference to a glyph which will be called as “position” in the
following remark. If the position is occupied by a glyph, then we say the glyph is in the
state, otherwise we say the glyph is out of state. As there is only one position in a group,
the semantic of 'mutually exclusive' is maintained naturally by this structure.

outfunc: is the name of the method that will be called when a glyph becomes out of
state.

infunc: is the name of the method that will be called when a glyph becomes in the state.

This function returns an anonymous function (gly,query). When called, if the second
argument is nil or false, then the current 'in the state’ glyph will be replaced by the first
argument and will return the previous 'in the state' glyph. If the second argument is not nil
or false, then the first argument is ignored, and it will return the current 'in the state' glyph.

function focus group ()

Create a group that maintains the focus of components.
function group ()

Create a group that maintains the UP/DOWN states of buttons.

function editor(p, cp, length, mask, insert mode, focus gp)
Sparkpad LLC CONFIDENTIAL 60

Sparkpad Platform Development Guide 11/27/2010

Create a single line editor.
p:parent of editor

cp:the initial text in the editor
length: the max length of the editor

mask: a function with prototype of mask(editor, caret, text, new_input). This function is
used to validate/translate the input text

insert_mode: indicates if the editor is in insert mode

focus_group: the result of focus_group()

function editor:on input (good)

An event that is fired when a new input character is accepted.

function editor:set mask (m)

Change the mask function.

function editor:insert (c)

Insert a character.

function editor:delete()

Delete the character after the caret.

function editor:backspace /()

Delete the character before the caret.
Sparkpad LLC CONFIDENTIAL 61

Sparkpad Platform Development Guide

11/27/2010

function editor:set caret(ct)
function editor:get caret()

Get/set the caret.

function editor:get max length/()

Retrieve the max length of the editor.

function editor:set insert mode (i)
function editor:get insert mode ()

Get/set insert mode of the editor.

function editor:set color (f)

Change the color of the text.

function editor:set focus group (f)
function editor:get focus group()

Get/set the focus group.

function editor:on focus (has focus)
function editor:focus in()

function editor:focus_ out ()

Sparkpad LLC CONFIDENTIAL

62

Sparkpad Platform Development Guide 11/27/2010

These three functions are required by focus group control.

function dialog(p, icon, captions, align, ok, cancel, x, V)
This function creates a dialog box that blocks other components on the screen.
p: the parent of the dialog

icon: an optional icon that display on the dialog

captions: a multi-line text message

align: the alignment of the message

ok, cancel: the caption of ok and cancel button

X,y: the offset along x and y axis relative to the center of its parent, the default value is 0,0

function dialog:modal (loop)

This function begins a new message loop to iterate the messages in Microwindows’
message queue. It doesn't return until one of the following conditions is met:

user clicks ok button: it returns the label of the ok button, which is the fifth argument of the
constructor

user clicks cancel button: it returns the label of the cancel button, which is the sixth
argument of the constructor

The result of function loop is not nil nor false, it returns the result of loop().

function msgbox (p, msg, %X, V)
Displays a simple message box on the screen.
p: parent of the message box

Sparkpad LLC CONFIDENTIAL 63

Sparkpad Platform Development Guide 11/27/2010

msg: message of the message box

X,y: the offset along x and y axis relative to the center of its parent, the default value is 0,0

2.8.9.6. Image Module

This section lists out all functions defined in the image module.

image.image (width, height)

Returns the width * height image.

image.size (filename)
Return the size of the given image filename.
filename: the name of image file

Return value: a tuple of (width, height), this function doesn't load the image

image.load (filename, width, height)

Load image from file.

filename: the name of image file

width: optional, the max width of the result image, default is the width of the image
height: optional, the max height of the result image, default is the width of the image

Return value: the image that loaded from filename, which is scaled up/down to width *
height.

Sparkpad LLC CONFIDENTIAL 64

Sparkpad Platform Development Guide 11/27/2010

image.load fit(filename, width, height)
Load image from file.

filename: the name of image file

width: the max width of the result image

height: the max height of the result image

Return value: the image that loaded from filename, which is scaled up/down to fit into the
size of width * height. This function preserves the ratio of width/height of the original
image.

image.snap (x,y,width, height)

Snap a rectangular area of the screen.

X: optional, the left coordinate of the rectangle, default O
y: optional, the top coordinate of the rectangle, default 0
width: optional, the width of the rectangle, default 800

height: optional, the height of the rectangle, default 600

image.rgba(r,g,b, a)
Return a pixel of color (r,g,b,a).
r:the value of red channel
g:the value of green channel
b:the value of blue channel

a:the value of alpha channel

Sparkpad LLC CONFIDENTIAL 65

Sparkpad Platform Development Guide 11/27/2010

2.8.9.7. Instance method of image object

image object is created by image.image, image.load, image.load_fit or image.snap. As
the following functions are the instance method of an image object, please note the first
'image’ is not a module name but an image object.

image:draw (x,y,x1,yl,width, height)
Draw a rectangle area of the image on the screen.
x: the destination left coordinate on the screen

y: the destination top coordinate on the screen

x1: the source left coordinate in the image

y1: the source top coordinate in the image

width: the width of the source rectangle

height: the height of the source rectangle

image:rotate (angle, x, V)

Rotate the image in counter-clockwise direction.
angle: degree of the rotation

X,y: the center of the rotation

return value: a new image, which is the result of the operation, the original image won't
change

image:scale (width, height)

Sparkpad LLC CONFIDENTIAL 66

Sparkpad Platform Development Guide 11/27/2010

Scale the image to width * height.
width: desired width
height: desired height

Return value: a new image, which is the result of the operation, the original image won't
change.

image:width ()

Return the width of the image.

image:height ()

Return the height of the image.

image:fill (color, x, y, width, height, alpha)

Draw a rectangle on the image.

color: optional, the color of the rectangle, default is black

X: optional, the left coordinate of the rectangle, default is O

y: optional, the top coordinate of the rectangle, default is O

width: optional, the width of the rectangle, default is the width of the image
height:optional, the height of the rectangle, default is the height of the image

alpha:optional, the value of the alpha channel, default is 255

image:clone ()

Return a new image which is identical to the original one.
Sparkpad LLC CONFIDENTIAL 67

Sparkpad Platform Development Guide 11/27/2010

image:save (filename)
Save the image to file in JPEG format.

filename: the name of the file

image:name ()

Return the name of the image. If the image is created by image.load/image.load_fit then
the name is the file name of the image file. Otherwise the name is empty, and it could be
altered by image:set name.

image:set name (name)
Change the name of image.

name:the new name

image:blit (x,y,source, x1,yl,wl,hl)

Copy a rectangular area of pixel from source to the image.
X,y: the left,top coordinate in the destination image
source: the source image

x1,y1: the left, top coordinate in the source image

w1,h1: the width and height of the source rectangle

image:blend(x,y,source ,x1,yl,wl,hl,alpha)

Perform alpha blend of a rectangular area of source with the image.
Sparkpad LLC CONFIDENTIAL 68

Sparkpad Platform Development Guide 11/27/2010

x,y: the left, top coordinate in the destination image
source: the source image

x1,yl: the left, top coordinate in the source image
w1, hl: the width and height of the source rectangle

alpha: the value of alpha channel

2.9. Notes to application developers

Before beginning application development on the Sparkpad platform, please note the
following miscellaneous items:

The memory usage of a scene is about 800 x 600 x 3 bytes, which equals about 1.4MB
for one screen buffer. There are three (3) buffers for the Telechip 8901 board and one (1)
buffer for the ADI Blackfin board.

For the Blackfin board, not all USB drive brands are supported.

All LUA and shell scripts (*.sh) are in Linux format. Please do NOT edit and save those as
text files in a Windows environment, as text files contain different EOF markings and such
files will not be picked up by the system after being copied to the device.

Sparkpad LLC CONFIDENTIAL 69

Sparkpad Platform Development Guide 11/27/2010

Sparkpad LLC CONFIDENTIAL 70

Sparkpad Platform Development Guide 11/27/2010

3. Additional Hardware Information

3.1.1.1. Working temperature range:

Celsius Fahrenheit
Minimum Temperature 0 32
Maximum Temperature 40 104

3.1.1.2. USB Port

All USB ports support USB 2.0 (or higher) only. Do not connect “Powered USB” cable or
devices.

3.1.1.3. FCC Rules, Part 15

This equipment has been tested and found to comply with the limits for a Class B digital
device, pursuant to part 15 of the FCC Rules. These limits are designed to provide
reasonable protection against harmful interference in a residential installation. This
equipment generates, uses and can radiate radio frequency energy and, if not installed
and used in accordance with the instructions, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a
particular installation. If this equipment does cause harmful interference to radio or
television reception, which can be determined by turning the equipment off and on, the

Sparkpad LLC CONFIDENTIAL 71

Sparkpad Platform Development Guide 11/27/2010

user is encouraged to try to correct the interference by one or more of the following
measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver
is connected.

-Consult the dealer or an experienced radio / TV technician for help.

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:
* This device may not cause harmful interference.

+ This device must accept any interference received, including interference that may
cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance
could void the user’s authority to operate the equipment.

Responsible Party:

Sparkpad LLC

46090 Lake Center Plaza #206
Sterling VA 20165

USA

888-907-7275
support@sparkpad.com

Sparkpad LLC CONFIDENTIAL 72

