

# FCC and ISED Test Report

Manufacturer: SRT Marine Technology Limited  
DSC/VHF Radio – Model: X-100



In accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, ISED RSS-182 and ISED RSS-GEN

Prepared for: SRT Marine Technology Limited  
Wireless House  
Westfield Ind Est.  
Midsomer Norton  
Bath  
BA3 4BS  
United Kingdom

FCC ID: YYG-4310002      IC: 9384A-4310002B

## COMMERCIAL-IN-CONFIDENCE

Document 75955807-17 Issue 01

### SIGNATURE

A handwritten signature of Simon Bennett.

| NAME          | JOB TITLE                    | RESPONSIBLE FOR      | ISSUE DATE   |
|---------------|------------------------------|----------------------|--------------|
| Simon Bennett | Technical Director (Lab Ops) | Authorised Signatory | 18 June 2025 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

| RESPONSIBLE FOR | NAME                   | DATE         | SIGNATURE                                          |
|-----------------|------------------------|--------------|----------------------------------------------------|
| Testing         | Roscoe Harrison        | 18 June 2025 | A handwritten signature of Roscoe Harrison.        |
| Testing         | Joshua Peploe-Williams | 18 June 2025 | A handwritten signature of Joshua Peploe-Williams. |

### EXECUTIVE SUMMARY / ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on the test pages. A sample of this product was tested to demonstrate limited compliance with FCC 47 CFR Part 80 (2024), FCC 47 CFR Part 2 (2023), ISED RSS-182 Issue 6 (2021-06) and ISED RSS-GEN Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3. The sample tested was found to comply with the requirements defined in the applied rules.



### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

TÜV SÜD  
is a trading name of TUV SUD Ltd  
Registered in Scotland at East Kilbride,  
Glasgow G75 0QF, United Kingdom  
Registered number: SC215164

TUV SUD Ltd is a  
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100  
Fax: +44 (0) 1489 558101  
[www.tuvsud.com/en](http://www.tuvsud.com/en)

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire  
PO15 5RL  
United Kingdom



## Contents

|          |                                                |           |
|----------|------------------------------------------------|-----------|
| <b>1</b> | <b>Report Summary .....</b>                    | <b>2</b>  |
| 1.1      | Report Modification Record.....                | 2         |
| 1.2      | Introduction.....                              | 2         |
| 1.3      | Brief Summary of Results .....                 | 3         |
| 1.4      | Customer Supplied Form .....                   | 4         |
| 1.5      | Product Information .....                      | 7         |
| 1.6      | Deviations from the Standard.....              | 7         |
| 1.7      | EUT Modification Record .....                  | 7         |
| 1.8      | Test Location.....                             | 7         |
| <b>2</b> | <b>Test Details .....</b>                      | <b>8</b>  |
| 2.1      | Bandwidths .....                               | 8         |
| 2.2      | Transmitter Frequency Tolerances .....         | 12        |
| 2.3      | Spurious Emissions at Antenna Terminals .....  | 15        |
| 2.4      | Radiated Spurious Emissions .....              | 30        |
| 2.5      | Modulation Requirements .....                  | 40        |
| 2.6      | Transmitter Power .....                        | 45        |
| 2.7      | Suppression of Interference Aboard Ships ..... | 47        |
| <b>3</b> | <b>Photographs .....</b>                       | <b>54</b> |
| <b>4</b> | <b>Measurement Uncertainty .....</b>           | <b>55</b> |



## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 01    | First version         | 18-Jun-2025   |

**Table 1**

### 1.2 Introduction

|                               |                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Applicant                     | SRT Marine Technology Limited                                                                                                         |
| Manufacturer                  | SRT Marine Technology Limited                                                                                                         |
| Model Number(s)               | X-100                                                                                                                                 |
| Serial Number(s)              | 230587 and 4310002011730002                                                                                                           |
| Hardware Version(s)           | 1.0                                                                                                                                   |
| Software Version(s)           | 220200.01.00.00/20400.01.00.00                                                                                                        |
| Number of Samples Tested      | 2                                                                                                                                     |
| Test Specification/Issue/Date | FCC 47 CFR Part 80 (2024), FCC 47 CFR Part 2 (2023), ISED RSS-182 Issue 6 (2021-06) and ISED RSS-GEN Issue 5 (04-2018) + A2 (02-2021) |
| Order Number                  | POR102834                                                                                                                             |
| Date                          | 09-June-2022                                                                                                                          |
| Date of Receipt of EUT        | 14-April-2023                                                                                                                         |
| Start of Test                 | 14-April-2025                                                                                                                         |
| Finish of Test                | 28-May-2025                                                                                                                           |
| Name of Engineer(s)           | Roscoe Harrison and Joshua Peploe-Williams                                                                                            |
| Related Document(s)           | ANSI C63.26 (2015)<br>KDB 971168                                                                                                      |



### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2 and ISED RSS-182 and ISED RSS-GEN is shown below.

| Section                                         | Specification Clause |        |         |                                         | Test Description                         | Result             | Comments/Base Standard |
|-------------------------------------------------|----------------------|--------|---------|-----------------------------------------|------------------------------------------|--------------------|------------------------|
|                                                 | Part 80              | Part 2 | RSS 182 | RSS GEN                                 |                                          |                    |                        |
| Configuration and Mode: VHF - Voice Config Mode |                      |        |         |                                         |                                          |                    |                        |
| 2.1                                             | 80.205,<br>2.1049    | 5.2    | 6.7     | Bandwidths                              | Pass                                     | ANSI C63.26 (2015) |                        |
| 2.2                                             | 80.209,<br>2.1055    | 5.5    | 6.11    | Transmitter Frequency Tolerances        | Pass                                     |                    |                        |
| 2.3                                             | 80.211,<br>2.1051    | 5.9    | 6.13    | Spurious Emissions at Antenna Terminals | Pass                                     | ANSI C63.26 (2015) |                        |
| 2.4                                             | 80.211,<br>2.1051    | 5.9    | 6.13    | Radiated Spurious Emissions             | Pass                                     | ANSI C63.26 (2015) |                        |
| 2.5                                             | 80.213,<br>2.1047    | 5.4    | N/A     | Modulation Requirements                 | Pass                                     |                    |                        |
| 2.6                                             | 80.215,<br>2.1046    | 5.6    | 6.12    | Transmitter Power                       | Pass                                     | ANSI C63.26 (2015) |                        |
| 2.7                                             | 80.217(b)            | N/A    | N/A     | N/A                                     | Suppression of Interference Aboard Ships | Pass               |                        |

**Table 2**



## 1.4 Customer Supplied Form

### Equipment Description

|                                                                                                                                                            |                                            |                                                                                                             |  |                                         |                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|-----------------------------------------|-----------------------------|--|
| Technical Description:<br><i>(Please provide a brief description of the intended use of the equipment including the technologies the product supports)</i> |                                            | Class D DSC/VHF radio equipped with a class B transceiver and Digital Selective Calling (DSC) capabilities. |  |                                         |                             |  |
| Manufacturer:                                                                                                                                              |                                            | Em-trak Marine Electronics                                                                                  |  |                                         |                             |  |
| Model:                                                                                                                                                     |                                            | X100                                                                                                        |  |                                         |                             |  |
| Part Number:                                                                                                                                               |                                            | 431-0002                                                                                                    |  |                                         |                             |  |
| Hardware Version:                                                                                                                                          |                                            | 1.0                                                                                                         |  |                                         |                             |  |
| Software Version:                                                                                                                                          |                                            | 220200.00.08.12, 220400.00.08.09                                                                            |  |                                         |                             |  |
| FCC ID of the product under test – <a href="#">see guidance here</a>                                                                                       |                                            |                                                                                                             |  | YYG-4310002                             |                             |  |
| IC ID of the product under test – <a href="#">see guidance here</a>                                                                                        |                                            |                                                                                                             |  | 9384A-4310002B                          |                             |  |
| Device Category                                                                                                                                            | Mobile <input checked="" type="checkbox"/> | Portable <input type="checkbox"/>                                                                           |  | Fixed <input type="checkbox"/>          |                             |  |
| Equipment is fitted with an Audio Low Pass Filter                                                                                                          |                                            |                                                                                                             |  | Yes <input checked="" type="checkbox"/> | No <input type="checkbox"/> |  |

### Intentional Radiators

| Technology                                                                                              | Radio-telephone    | DSC     | AIS                | WiFi         | Bluetooth    |  |
|---------------------------------------------------------------------------------------------------------|--------------------|---------|--------------------|--------------|--------------|--|
| Frequency Range (MHz to MHz)                                                                            | 156.050 to 157.425 | 156.525 | 156.025 to 162.025 | 2412 to 2462 | 2402 to 2480 |  |
| Conducted Declared Output Power (dBm)                                                                   | 42.5               | 42.5    | 37                 | 19.5         | 9            |  |
| Antenna Gain (dBi)                                                                                      | 3                  | 3       | 3                  | 2.33         | 2.33         |  |
| Supported Bandwidth(s) (MHz)<br>(e.g. 1 MHz, 20 MHz, 40 MHz)                                            | 0.025              | 0.025   | 0.025              | 20 to 40     | 0.9          |  |
| Modulation Scheme(s)<br>(e.g. GFSK, QPSK etc)                                                           | FM                 | AFSK    | GMSK               | DSSS, OFDM   | GFSK         |  |
| ITU Emission Designator<br>( <a href="#">see guidance here</a> )<br>(not mandatory for Part 15 devices) | 16K0F3E            | 16K0G1D | 16K0G1B            | -            | -            |  |
| Bottom Frequency (MHz)                                                                                  | 156.050            | 156.525 | 156.025            | 2412         | 2402         |  |
| Middle Frequency (MHz)                                                                                  | 156.725            | 156.525 | 159.025            | 2437         | 2441         |  |
| Top Frequency (MHz)                                                                                     | 157.425            | 156.525 | 162.025            | 2462         | 2480         |  |



### Un-intentional Radiators

|                                                                                                                    |          |
|--------------------------------------------------------------------------------------------------------------------|----------|
| Highest frequency generated or used in the device or on which the device operates or tunes                         | 2480 MHz |
| Lowest frequency generated or used in the device or on which the device operates or tunes                          | 19.2 MHz |
| Class A Digital Device (Use in commercial, industrial or business environment) <input checked="" type="checkbox"/> |          |
| Class B Digital Device (Use in residential environment only) <input type="checkbox"/>                              |          |

### AC Power Source

|                                       |                                      |    |
|---------------------------------------|--------------------------------------|----|
| AC supply frequency:                  |                                      | Hz |
| Voltage                               |                                      | V  |
| Max current:                          |                                      | A  |
| Single Phase <input type="checkbox"/> | Three Phase <input type="checkbox"/> |    |

### DC Power Source

|                        |      |   |
|------------------------|------|---|
| Nominal voltage:       | 12   | V |
| Extreme upper voltage: | 31.2 | V |
| Extreme lower voltage: | 9.6  | V |
| Max current:           | 6    | A |

### Battery Power Source

|                                                                                                                                                                                                                |                |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|
| Voltage:                                                                                                                                                                                                       |                | V                                             |
| End-point voltage:                                                                                                                                                                                             |                | V (Point at which the battery will terminate) |
| Alkaline <input type="checkbox"/> Leclanche <input type="checkbox"/> Lithium <input type="checkbox"/> Nickel Cadmium <input type="checkbox"/> Lead Acid* <input type="checkbox"/> * <i>(Vehicle regulated)</i> |                |                                               |
| Other <input type="checkbox"/>                                                                                                                                                                                 | Please detail: |                                               |

### Charging

|                                           |                              |                             |
|-------------------------------------------|------------------------------|-----------------------------|
| Can the EUT transmit whilst being charged | Yes <input type="checkbox"/> | No <input type="checkbox"/> |
|-------------------------------------------|------------------------------|-----------------------------|

### Temperature

|                      |     |    |
|----------------------|-----|----|
| Minimum temperature: | -25 | °C |
| Maximum temperature: | 55  | °C |



### Cable Loss

|                                          |  |    |
|------------------------------------------|--|----|
| Adapter Cable Loss<br>(Conducted sample) |  | dB |
|------------------------------------------|--|----|

### Antenna Characteristics

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                   |                 |    |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|-----------------|----|-----|
| Antenna connector <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                   | State impedance | 50 | Ohm |
| Temporary antenna connector <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                   | State impedance |    | Ohm |
| Integral antenna <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type: |                   | Gain            |    | dBi |
| External antenna <input checked="" type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type: | VHF Vertical Omni | Gain            | 3  | dBi |
| For external antenna only:<br>Standard Antenna Jack <input checked="" type="checkbox"/> If yes, describe how user is prohibited from changing antenna (if not professionally installed): It is specified in the User Instructions to only fit a 3dBi antenna.                                                                                                                                                                                                                                                       |       |                   |                 |    |     |
| Equipment is only ever professionally installed <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                   |                 |    |     |
| Non-standard Antenna Jack <input type="checkbox"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                   |                 |    |     |
| All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc. |       |                   |                 |    |     |

### Ancillaries (if applicable)

|               |  |                    |  |
|---------------|--|--------------------|--|
| Manufacturer: |  | Part Number:       |  |
| Model:        |  | Country of Origin: |  |

I hereby declare that the information supplied is correct and complete.

Name: Shannon Parsons  
Position held: Compliance Technician  
Date: 17 April 2025



## 1.5 Product Information

### 1.5.1 Technical Description

X-100 VHF Radio with Class D DSC and AIS Class B SOTDMA

### 1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                                           | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification Fitted |
|--------------------------------------------------------------|-------------------------------------------------|------------------------|--------------------------|
| DSC/VHF Radio, Model: X-100, Serial Number: 4310002011730002 |                                                 |                        |                          |
| 0                                                            | As supplied by the customer                     | Not Applicable         | Not Applicable           |
| DSC/VHF Radio - Model: X-100, Serial Number: 230587          |                                                 |                        |                          |
| 8                                                            | Software update to v 00.08.12                   | Manufacturer           | 29-January-2025          |

**Table 3**

### 1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

| Test Name                                             | Name of Engineer(s)    | Accreditation |
|-------------------------------------------------------|------------------------|---------------|
| Configuration and Mode: AIS Transceiver - Operational |                        |               |
| Bandwidths                                            | Roscoe Harrison        | UKAS          |
| Transmitter Frequency Tolerances                      | Joshua Peploe-Williams | UKAS          |
| Spurious Emissions at Antenna Terminals               | Joshua Peploe-Williams | UKAS          |
| Radiated Spurious Emissions                           | Joshua Peploe-Williams | UKAS          |
| Modulation Requirements                               | Joshua Peploe-Williams | UKAS          |
| Transmitter Power                                     | Joshua Peploe-Williams | UKAS          |
| Suppression of Interference Aboard Ships              | Joshua Peploe-Williams | UKAS          |

**Table 4**

Laboratory Address: TÜV SÜD, Octagon House,  
Concorde Way, Fareham, Hampshire,  
PO15 5RL, United Kingdom



## 2 Test Details

### 2.1 Bandwidths

#### 2.1.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.205  
FCC 47 CFR Part 2, Clause 2.1049  
ISED RSS-182, Clause 5.2  
ISED RSS-GEN, Clause 6.7

#### 2.1.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

#### 2.1.3 Date of Test

14-April-2025

#### 2.1.4 Test Method

##### AIS Transceiver - Operational

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 80.205, Part 2.1049, ISED RSS-GEN Clause 6.6 and ANSI C63.26-2015, Subclause 5.4.3.

The EUT was transmitting at maximum power, modulated by the standard AIS test signals using a PRBS packet payload. The EUT was connected to a spectrum analyser via a coaxial cable and attenuators, the RBW of the spectrum analyser was set to at least 1% of the emission bandwidth and a video bandwidth of 3 times RBW, the occupied bandwidth measurement function of the analyser was used and the 99% bandwidth was recorded.

The plots on the following pages show the resultant display from the Spectrum Analyser.

#### 2.1.5 Environmental Conditions


|                     |         |
|---------------------|---------|
| Ambient Temperature | 21.2 °C |
| Relative Humidity   | 36.8 %  |

## 2.1.6 Test Results

### AIS Transceiver - Operational

| 99% Occupied Bandwidth (kHz) |             |
|------------------------------|-------------|
| 156.025 MHz                  | 162.025 MHz |
| 9.47                         | 9.44        |

**Table 5 - Occupied Bandwidth Results**



**Figure 1 - 156.025 MHz Occupied Bandwidth**



**Figure 2 - 162.025 MHz Occupied Bandwidth**

FCC 47 CFR Part 80, Limit Clause 80.205

20 kHz

ISED RSS-182, Limit Clause 5.4

20 kHz

### 2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Chamber 11.

| Instrument                | Manufacturer          | Type No            | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|--------------------|-------|-----------------------------|---------------------|
| True RMS Multimeter       | Fluke                 | 79 Series III      | 411   | 12                          | 09-Jan-2026         |
| Hygrometer                | Rotronic              | I-1000             | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20             | 3367  | 12                          | 02-Sep-2025         |
| Network Analyser          | Rohde & Schwarz       | ZVA 40             | 3548  | 12                          | 17-Mar-2026         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS  | 3604  | 12                          | 19-Feb-2026         |
| Calibration Unit          | Rohde & Schwarz       | ZV-Z54             | 4368  | 12                          | 17-Mar-2026         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A             | 4653  | 12                          | 06-May-2026         |
| 2 Channel PSU             | Rohde & Schwarz       | HMP2020            | 4735  | -                           | TU                  |
| Attenuator 30dB 100W      | Weinschel             | 48-30-43-LIM       | 5135  | 12                          | 05-Feb-2026         |

**Table 6**

TU - Traceability Unscheduled  
O/P Mon – Output Monitored using calibrated equipment



## 2.2 Transmitter Frequency Tolerances

### 2.2.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.209  
FCC 47 CFR Part 2, Clause 2.1055  
ISED RSS-182, Clause 5.5  
ISED RSS-GEN, Clause 6.11.

### 2.2.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.2.3 Date of Test

15-May-2025

### 2.2.4 Test Method

#### AIS Transceiver - Operational

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 80.209 (a) and FCC CFR 47 Part 2.1055 (a) (2), (d) (1).

The EUT was set to transmit on maximum power with an unmodulated carrier on bottom and top channels. The EUT was connected to a Spectrum Analyser using an external 10 MHz frequency reference. The difference between the frequency of the fundamental and the frequency of the assigned channel in accordance with the manufacturer's documentation was recorded, this was done using a single marker method on the analyser. In accordance with 2.1055, the temperature was varied from -20°C to +50° in 10° steps. At both minimum and maximum voltage extremes the frequency error was measured at nominal temperature.

The settings on the Spectrum analyser were as follows:

RBW - 100 Hz  
VBW - 300 Hz  
Span - 25 KHz  
Sweep points - 100001  
Sweep time - Auto  
Trace - Max Hold  
Detector - Peak

### 2.2.5 Environmental Conditions

|                     |         |
|---------------------|---------|
| Ambient Temperature | 20.4 °C |
| Relative Humidity   | 40.0 %  |



## 2.2.6 Test Results

### AIS Transceiver - Operational

| Voltage | Frequency Error (ppm) |             |
|---------|-----------------------|-------------|
|         | 156.025 MHz           | 162.025 MHz |
| 10.2 V  | 1.461                 | 1.384       |
| 13.8 V  | 1.445                 | 1.390       |

**Table 7**  
Table 8 - Frequency Stability Under Voltage Variations

| Temperature | Frequency Error (ppm) |             |
|-------------|-----------------------|-------------|
|             | 156.025 MHz           | 162.025 MHz |
| -20 °C      | 3.490                 | 3.391       |
| -10 °C      | 2.851                 | 2.780       |
| 0 °C        | 2.157                 | 2.085       |
| 10 °C       | 0.884                 | 0.748       |
| 20 °C       | 0.043                 | 0.056       |
| 30 °C       | 1.484                 | 1.526       |
| 40 °C       | 2.043                 | 1.966       |
| 50 °C       | 2.543                 | 2.436       |

**Table 9**  
Table 10 - Frequency Stability Under Temperature Variations

### FCC 47 CFR Part 80, Limit Clause 80.209

± 10 ppm.

### ISED RSS-182, Limit Clause 5.5

Coast Station: ±10.0 ppm for transmitter power less than 3 W.  
±5.0 ppm for transmitter power between 3 W and 50 W.

Ship Station: ±10 ppm.

## 2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                | Manufacturer          | Type No                     | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|-----------------------------|-------|-----------------------------|---------------------|
| Multimeter                | Fluke                 | 75 Mk3                      | 455   | 12                          | 09-Jan-2026         |
| Hygrometer                | Rotronic              | I-1000                      | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20                      | 3367  | 12                          | 02-Sep-2025         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS           | 3604  | 12                          | 19-Feb-2026         |
| Meter & T/C               | R.S Components        | Meter 615-8206 & Type K T/C | 3612  | 12                          | 25-Sep-2025         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS          | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A                      | 4653  | 12                          | 06-May-2026         |
| 2 Channel PSU             | Rohde & Schwarz       | HMP2020                     | 4735  | -                           | TU                  |
| Attenuator 30dB 100W      | Weinschel             | 48-30-43-LIM                | 5135  | 12                          | 05-Feb-2026         |
| Climatic Chamber          | Weiss Technik         | TempEvent T/180/40/3        | 5894  | 12                          | O/P Mon             |
| GPSDR Frequency standard  | Orolia                | SecureSync 2402-053         | 6339  | 6                           | 18-Sep-2025         |

**Table 11**

TU - Traceability Unscheduled  
O/P Mon – Output Monitored using calibrated equipment



## 2.3 Spurious Emissions at Antenna Terminals

### 2.3.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211  
FCC 47 CFR Part 2, Clause 2.1051  
ISED RSS-182, Clause 5.9  
ISED RSS-GEN Clause 6.13.

### 2.3.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.3.3 Date of Test

16-May-2025 to 21-May-2025

### 2.3.4 Test Method

#### AIS Transceiver – Operational

For emissions where the frequency is removed less than 250% of the authorized bandwidth measurements were performed conducted as follows:

The EUT was connected to a spectrum analyser via a cable and attenuator. The path loss between the EUT and analyser was calibrated using a network analyser and entered in to the spectrum analyser as a reference level offset. The reference level for the mask was established with an RBW approximately 2 or 3 times the emission bandwidth. The RBW was then reduced to at least 1% of the emission bandwidth, with a VBW of 3 times RBW. The mask as per FCC CFR 47 Part 80.211 (f) was applied.

For emissions where the frequency is removed more than 250% of the authorized bandwidth measurements were performed conducted as follows:

Conducted: A network analyser was used to measure the path loss, and the worst case was entered as a reference level offset in to the spectrum analyser. The EUT was connected to a spectrum analyser via an attenuator, filter and cable. Between 9 kHz and 300 MHz a 50.4dB of attenuation was used to protect the analyser. Between 300 MHz and 2 GHz a 300 MHz high pass filter was used. The spectrum analyser was configured with an RBW of 100 kHz below 1 GHz and 1 MHz for frequencies greater than 1 GHz with the trace set to max hold using a peak detector.

### 2.3.5 Environmental Conditions

|                     |                |
|---------------------|----------------|
| Ambient Temperature | 21.0 - 21.2 °C |
| Relative Humidity   | 40.1 - 47.1 %  |



### 2.3.6 Test Results

#### AIS Transceiver - Operational



Figure 3 – Tx1, 156.025 MHz - Transmitter Spectrum Mask



Figure 4 – Tx1, 162.025 MHz - Transmitter Spectrum Mask



Figure 5 – Tx2, 156.025 MHz - Transmitter Spectrum Mask



Figure 6 – Tx2, 162.025 MHz - Transmitter Spectrum Mask



Figure 7 – Tx1, 156.025 MHz - 9 kHz to 150 kHz



Figure 8 - Tx1, 162.025 MHz - 9 kHz to 150 kHz

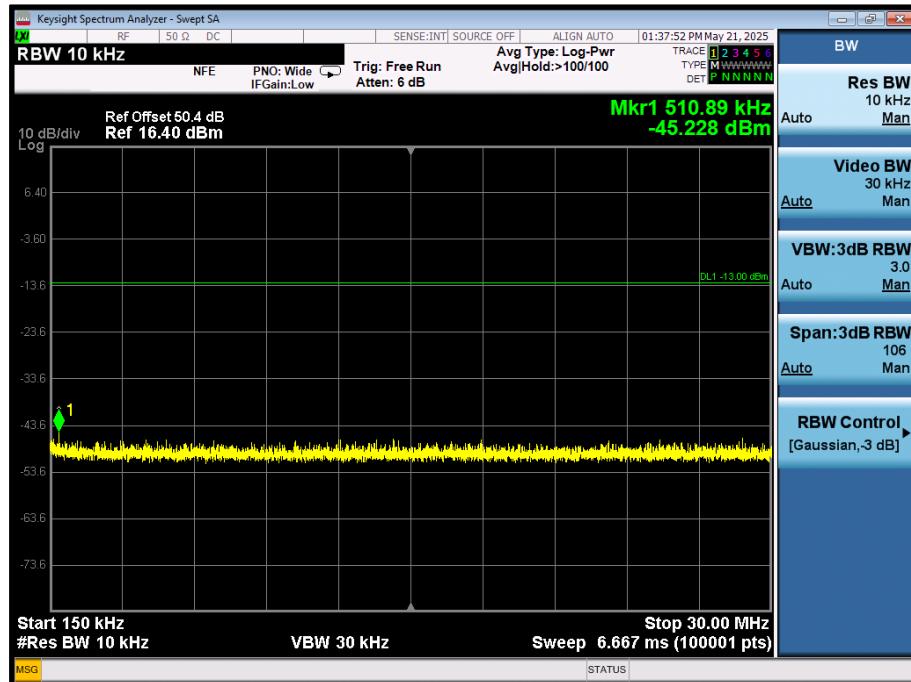



Figure 9 - Tx1, 156.025 MHz - 150 kHz to 30 MHz

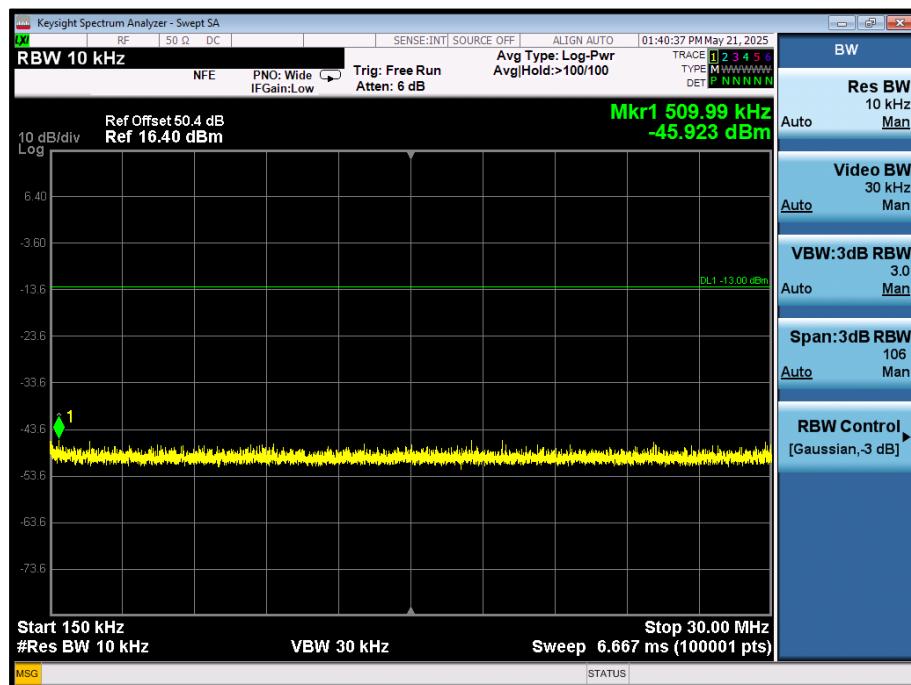



Figure 10 - Tx1, 162.025 MHz - 150 kHz to 30 MHz

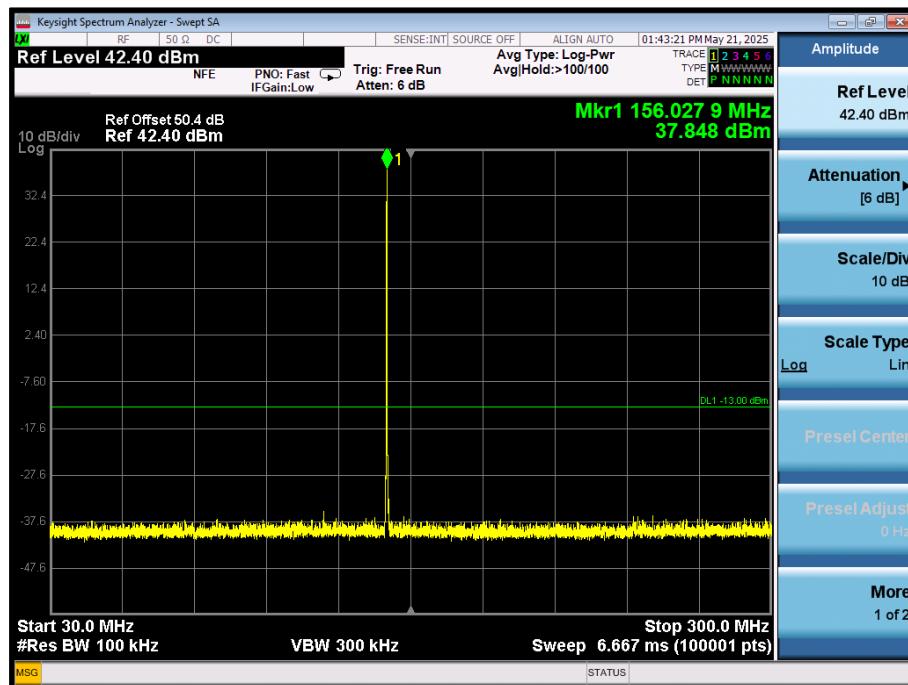



Figure 11 - Tx1, 156.025 MHz - 30 MHz to 300 MHz

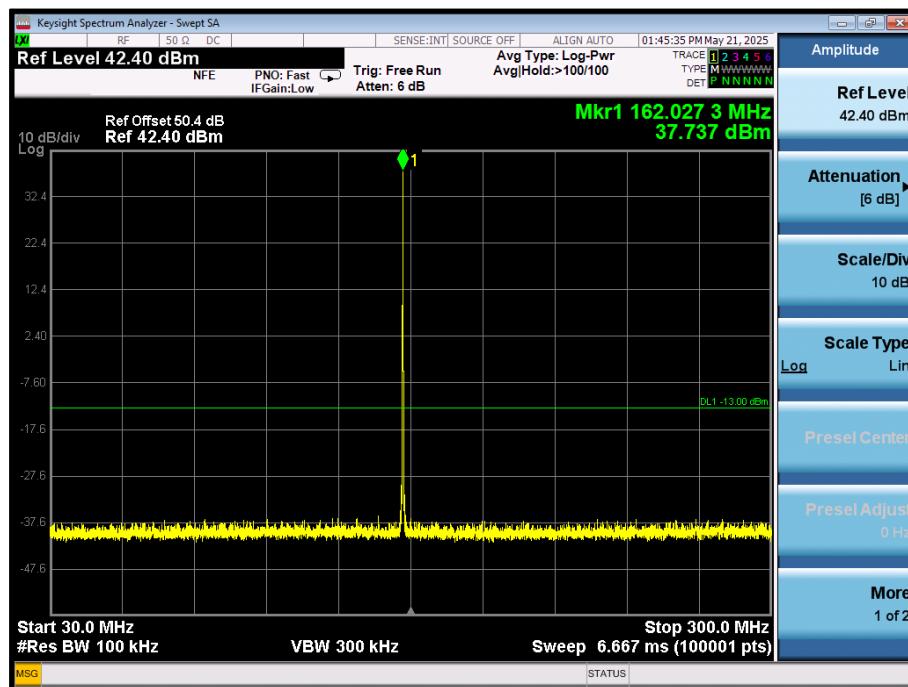



Figure 12 - Tx1, 162.025 MHz - 30 MHz to 300 MHz

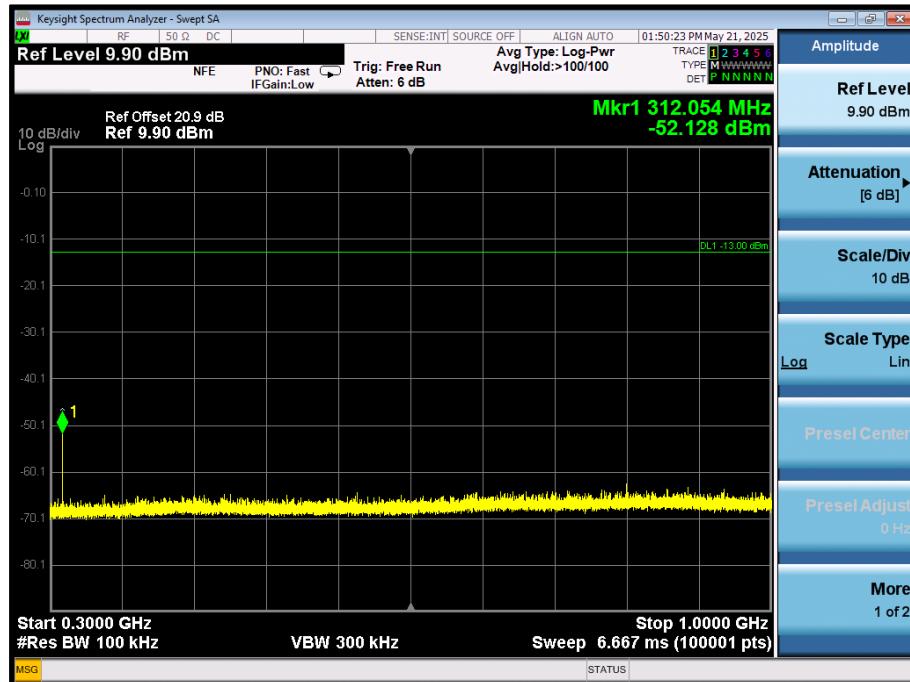



Figure 13 - Tx1, 156.025 MHz - 300 MHz to 1 GHz

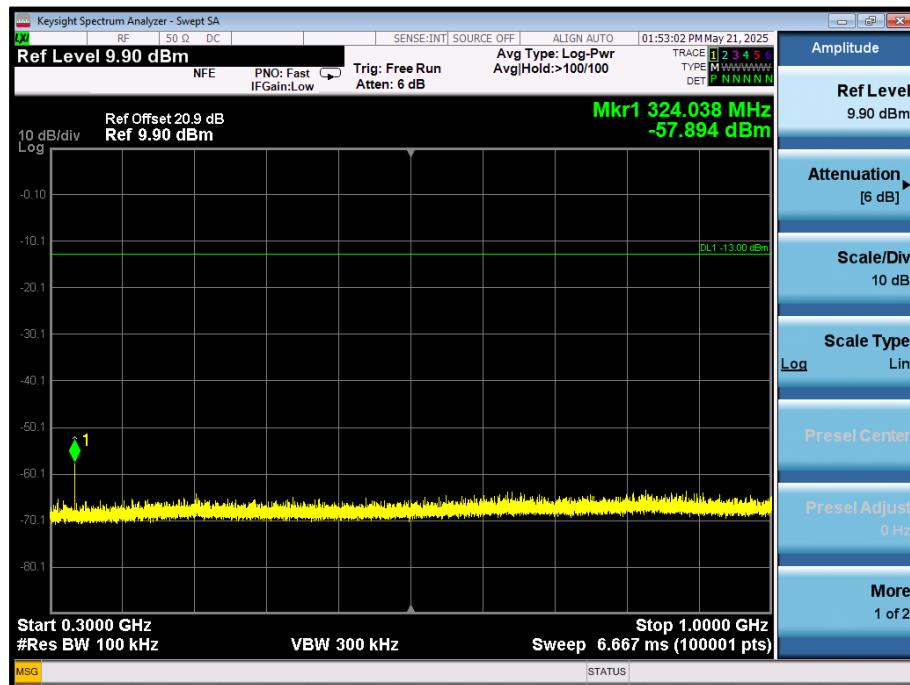



Figure 14 - Tx1, 162.025 MHz - 300 MHz to 1 GHz

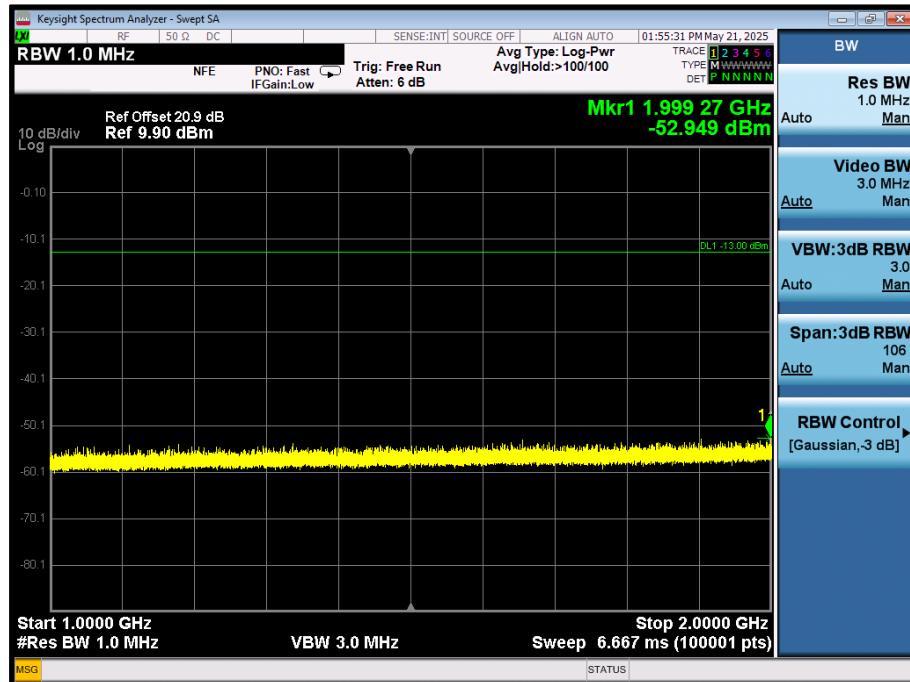



Figure 15 - Tx1, 156.025 MHz - 1 GHz to 2 GHz

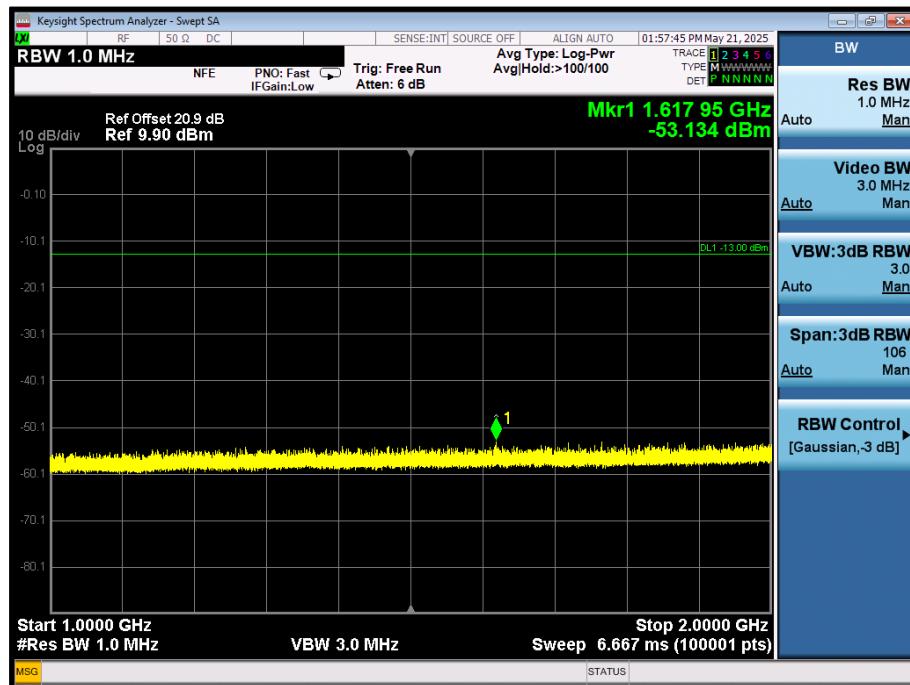



Figure 16 - Tx1, 162.025 MHz - 1 GHz to 2 GHz



Figure 17 – Tx2, 156.025 MHz - 9 kHz to 150 kHz



Figure 18 - Tx2, 162.025 MHz - 9 kHz to 150 kHz

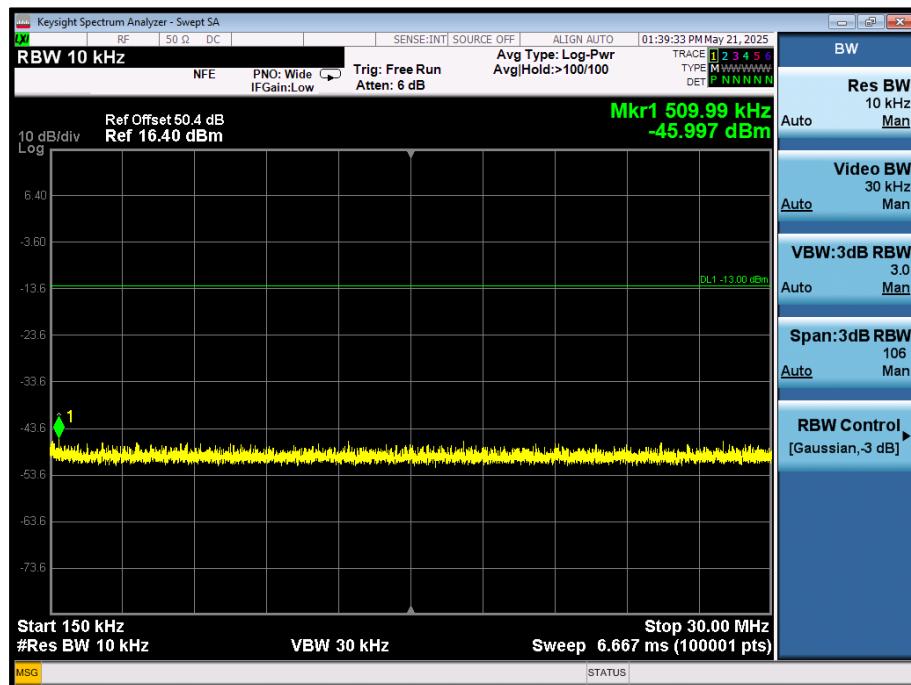



Figure 19 - Tx2, 156.025 MHz - 150 kHz to 30 MHz

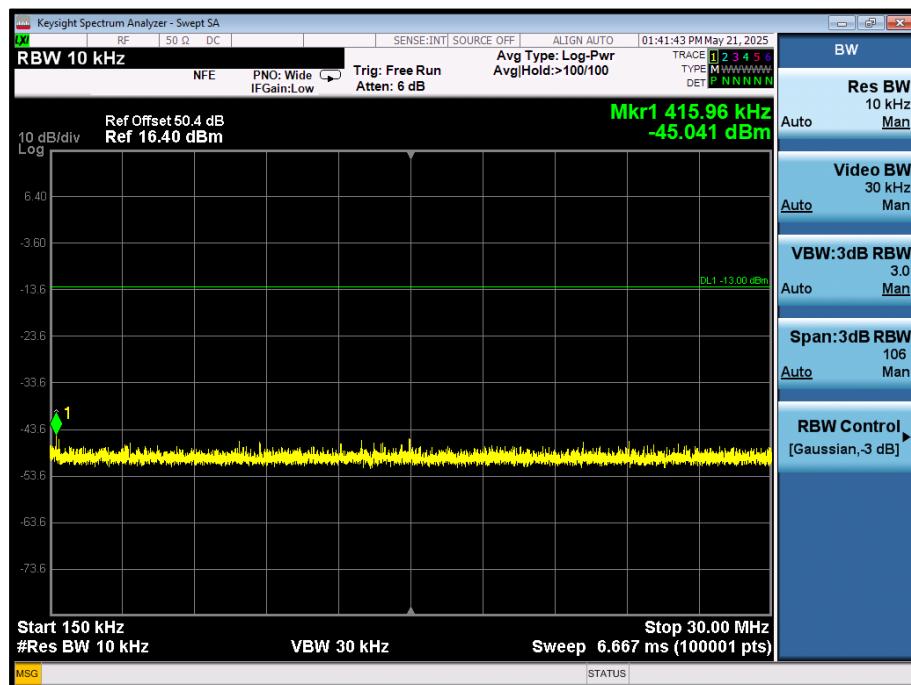



Figure 20 - Tx2, 162.025 MHz - 150 kHz to 30 MHz

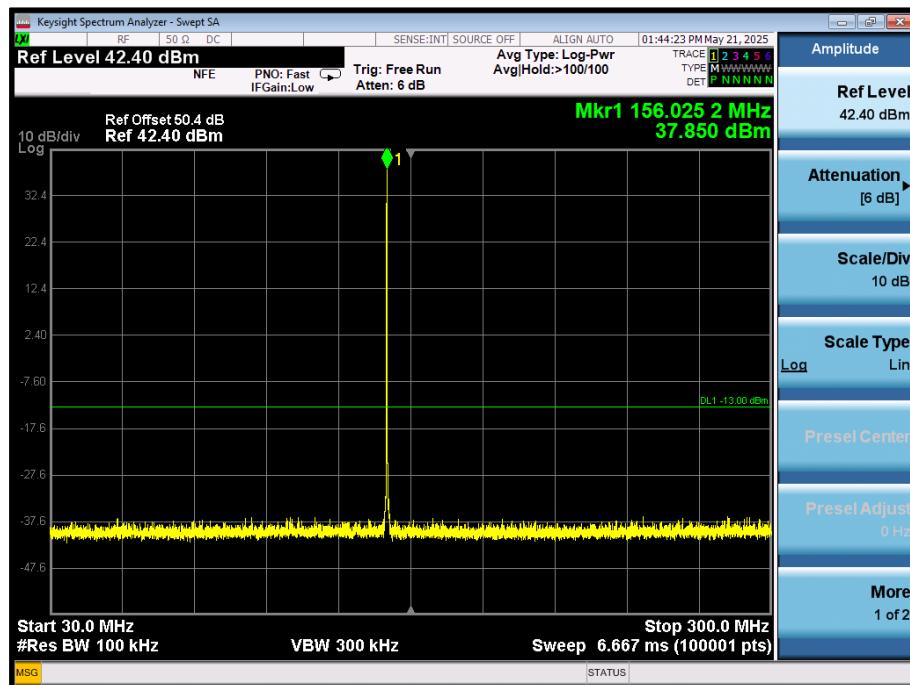



Figure 21 - Tx2, 156.025 MHz - 30 MHz to 300 MHz

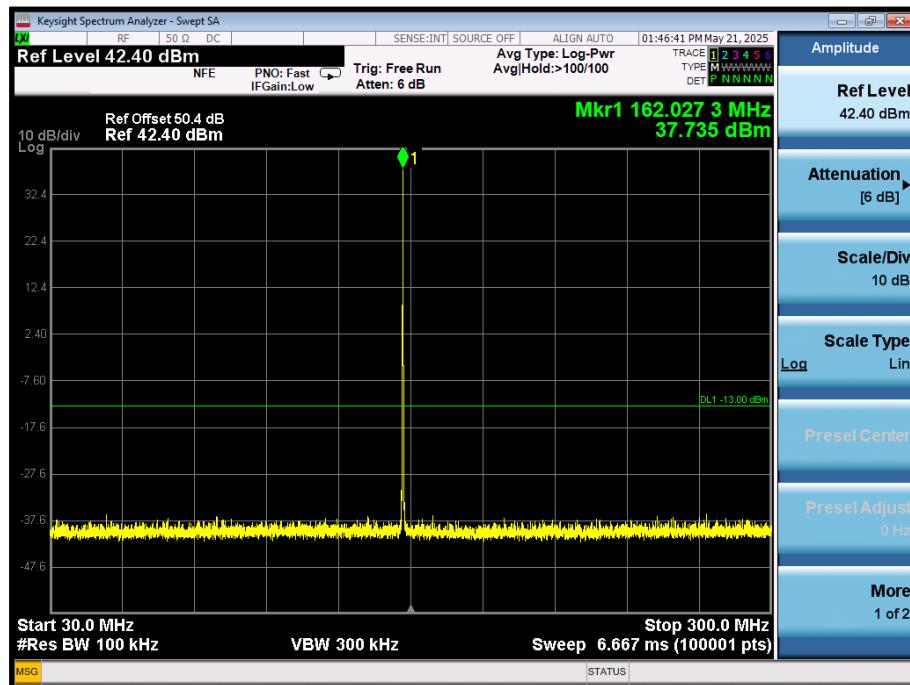



Figure 22 - Tx2, 162.025 MHz - 30 MHz to 300 MHz

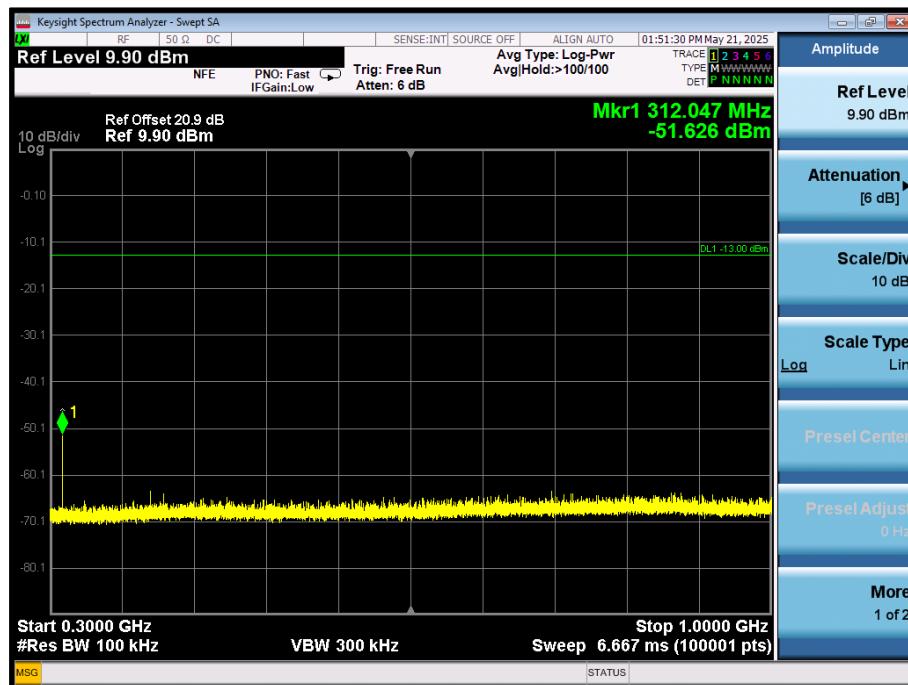



Figure 23 - Tx2, 156.025 MHz - 300 MHz to 1 GHz

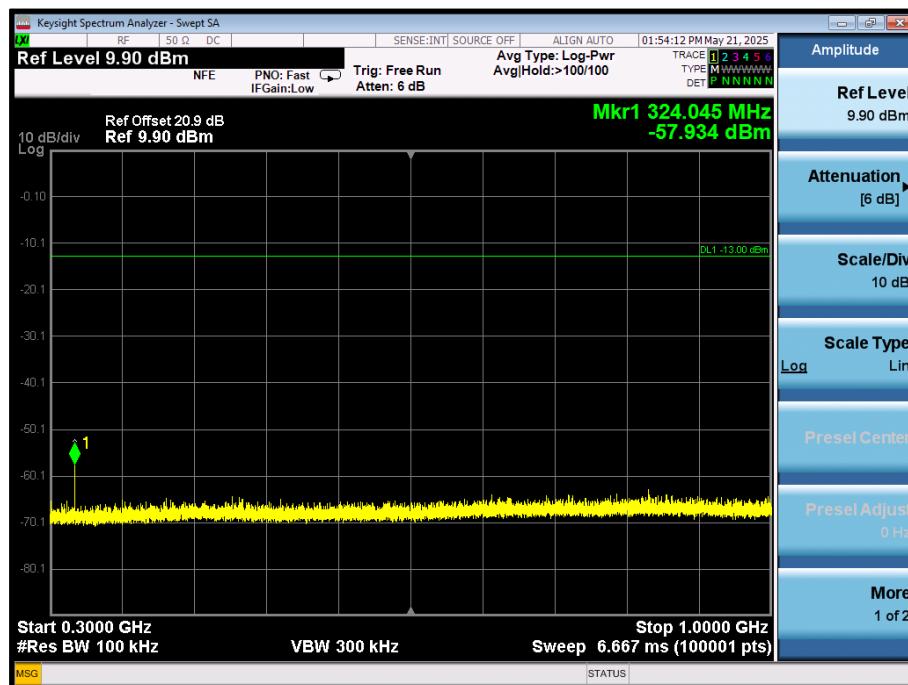



Figure 24 - Tx2, 162.025 MHz - 300 MHz to 1 GHz

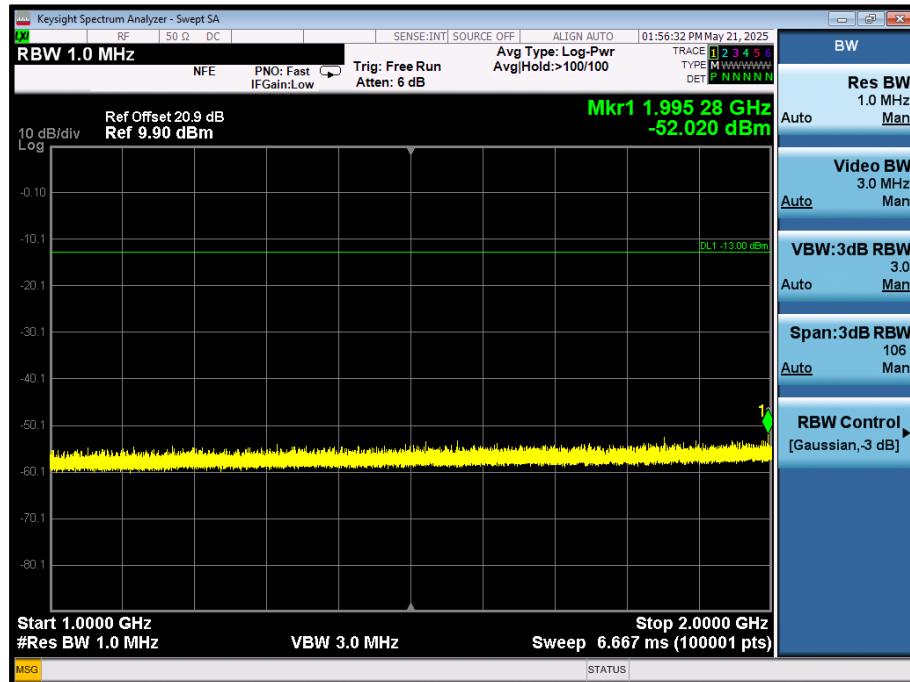



Figure 25 - Tx2, 156.025 MHz - 1 GHz to 2 GHz

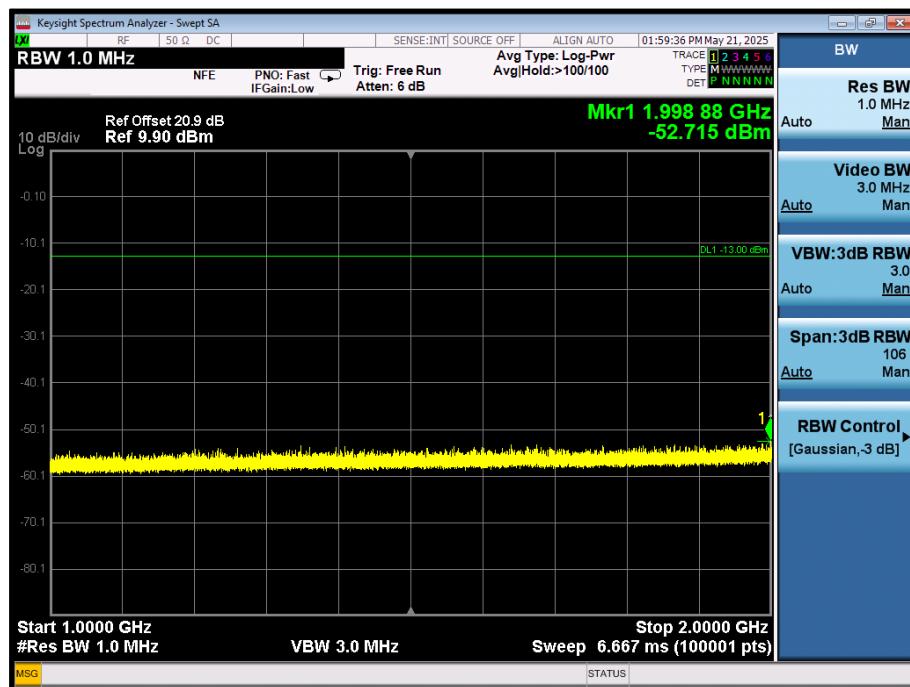



Figure 26 - Tx2, 162.025 MHz - 1 GHz to 2 GHz



FCC 47 CFR Part 80, Limit Clause 80.211

Within 250% of the Authorised Bandwidth:

On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB

More than 250% of the Authorised Bandwidth:

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least  $43 + 10\log_{10}$  (mean power in watts) dB.

ISED RSS-182, Limit Clause 5.9.1

On any frequency removed from the carrier frequency by more than 50%, but not more than 100% of the authorized bandwidth: at least 25 dB, measured with a bandwidth of 300 Hz.

On any frequency removed from the carrier frequency by more than 100%, but not more than 250% of the authorized bandwidth: at least 35 dB, measured with a bandwidth of 300 Hz.

On any frequency removed from the carrier frequency by more than 250% of the authorized bandwidth: at least  $43 + 10\log_{10} p$  (watts) dB, measured with a bandwidth of 30 kHz.



### 2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                | Manufacturer          | Type No            | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|--------------------|-------|-----------------------------|---------------------|
| Modulation Analyser       | Hewlett Packard       | 8901B              | 45    | 12                          | 03-Sep-2025         |
| Multimeter                | Fluke                 | 75 Mk3             | 455   | 12                          | 09-Jan-2026         |
| Sensor                    | Hewlett Packard       | 11722A             | 493   | 12                          | 04-Sep-2025         |
| Audio Analyser            | Hewlett Packard       | 8903B              | 576   | 12                          | 04-Feb-2026         |
| High Pass Filter          | Mini-Circuits         | NHP-300            | 1640  | 12                          | 28-May-2025         |
| Power Supply              | Iso-tech              | IPS 2010           | 2439  | 12                          | O/P Mon             |
| Hygrometer                | Rotronic              | I-1000             | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20             | 3367  | 12                          | 02-Sep-2025         |
| Network Analyser          | Rohde & Schwarz       | ZVA 40             | 3548  | 12                          | 17-Mar-2026         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS  | 3604  | 12                          | 19-Feb-2026         |
| Calibration Unit          | Rohde & Schwarz       | ZV-Z54             | 4368  | 12                          | 17-Mar-2026         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A             | 4653  | 12                          | 06-May-2026         |
| 2 Channel PSU             | Rohde & Schwarz       | HMP2020            | 4735  | -                           | TU                  |
| Attenuator 30dB 100W      | Weinschel             | 48-30-43-LIM       | 5135  | 12                          | 05-Feb-2026         |

**Table 12**

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment



## 2.4 Radiated Spurious Emissions

### 2.4.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211  
FCC 47 CFR Part 2, Clause 2.1051  
ISED RSS-182, Clause 5.9  
ISED RSS GEN, Clause 6.13.

### 2.4.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.4.3 Date of Test

27-May-2025

### 2.4.4 Test Method

#### AIS Transceiver – Operational

A preliminary profile of the Radiated Spurious Emissions was obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

The EUT was powered using a DC power supply at 12 V.

Testing was performed in accordance with ANSI C63.26, Clause 5.5.

Prescans and final measurements were performed using the direct field strength method. Field strength measurements were performed and then converted to Equivalent Power Measurements in accordance with ANSI C63.26, Clause 5.2.7 equation c)

Example calculation:

$E (\text{dBuV/m}) + 20\log(d) - 104.8 = \text{EIRP (dBm)}$  where (d) is the measurement distance.  
 $82.2 (\text{dBuV/m}) + 20\log(3) - 104.8 = \text{EIRP (dBm)}$   
 $-13.0 = \text{EIRP (dBm)}$

#### 2.4.5 Example Test Setup Diagram

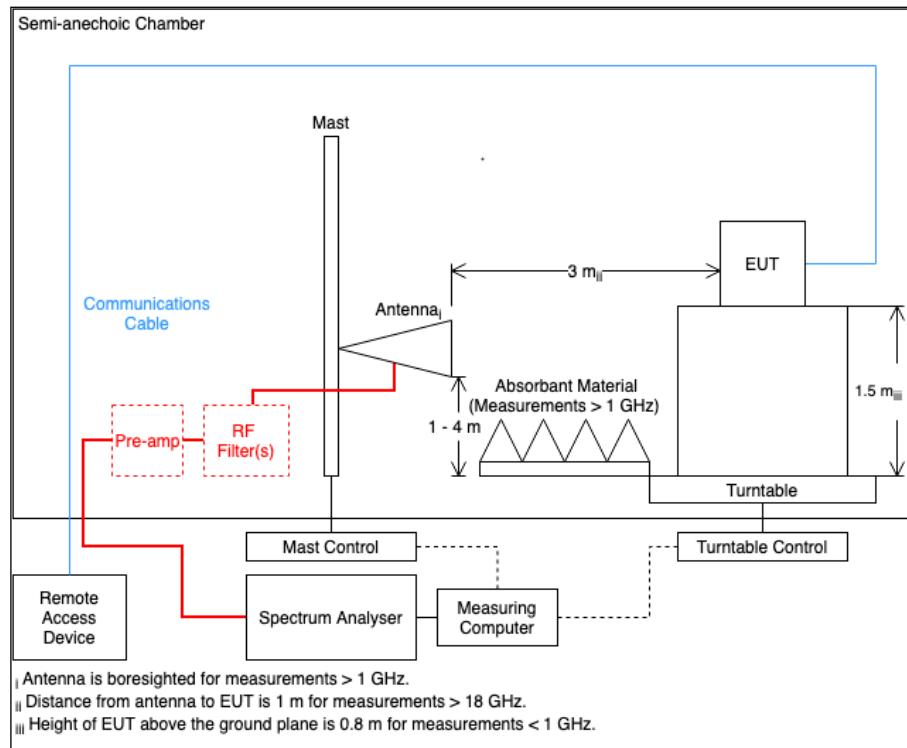
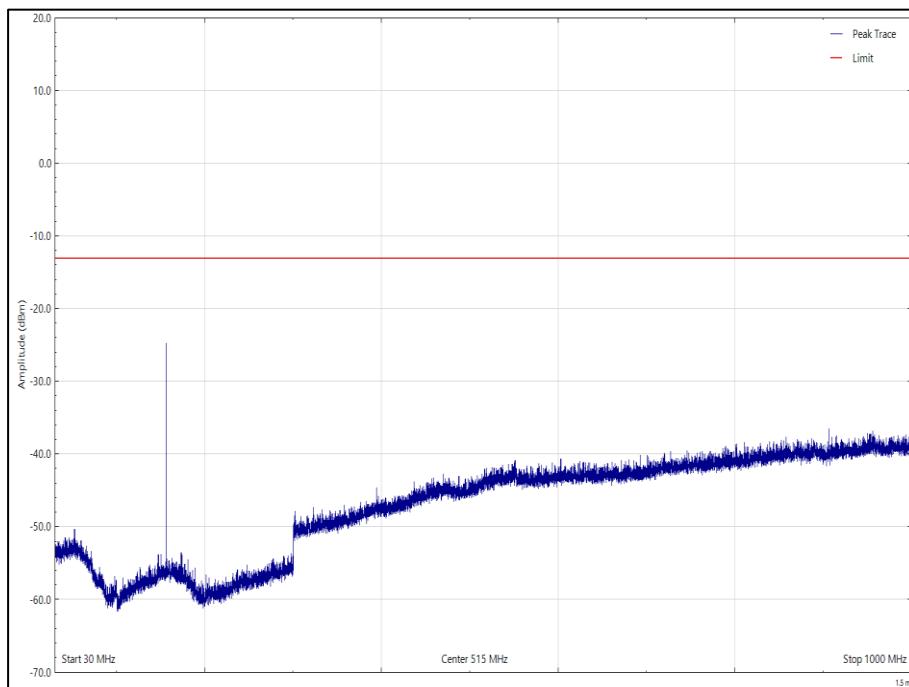


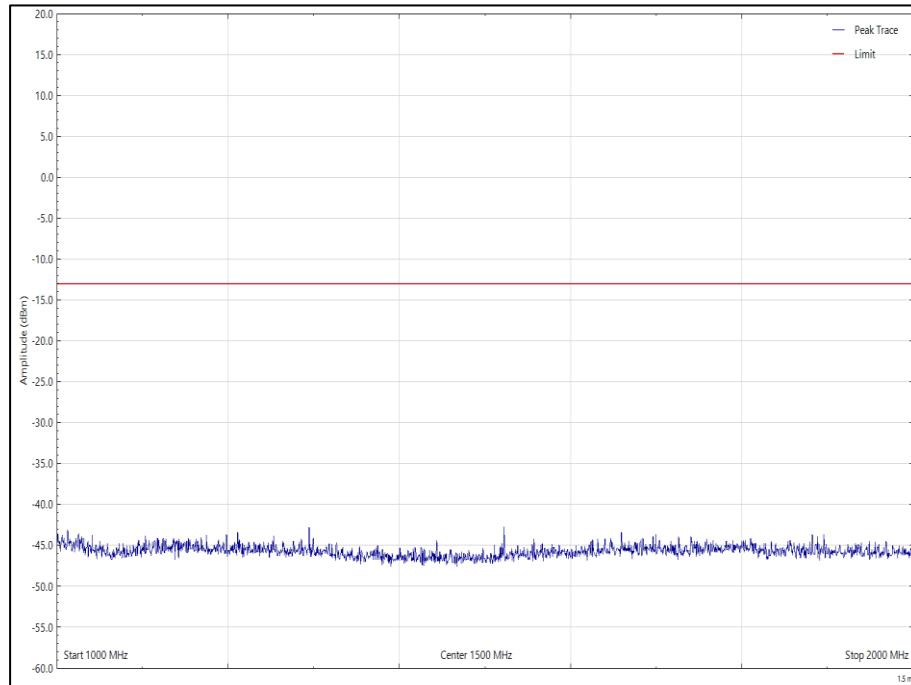

Figure 27

#### 2.4.6 Environmental Conditions

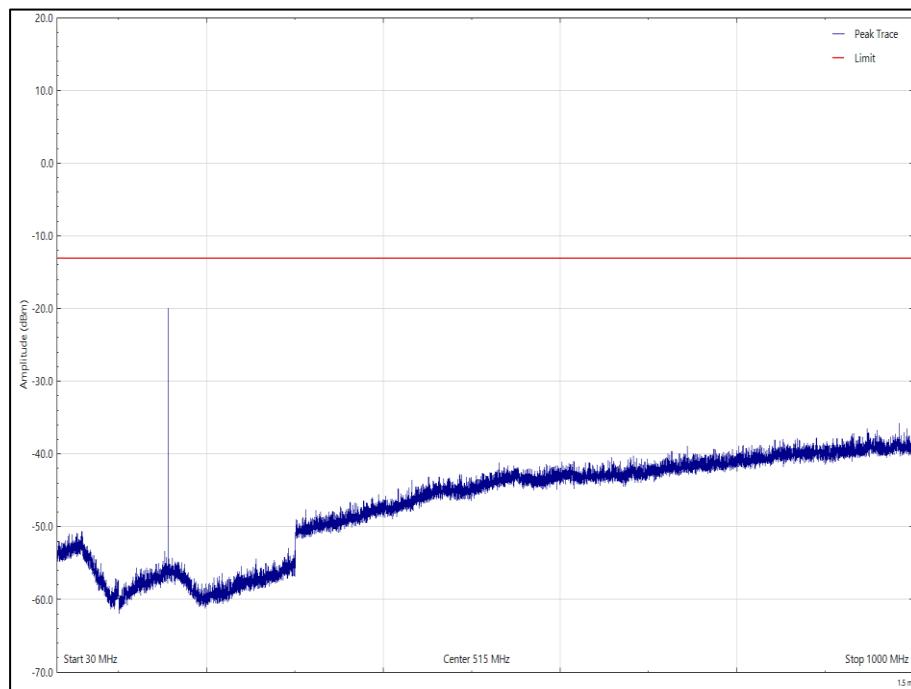
Ambient Temperature 19.8 °C  
Relative Humidity 42.9 %


#### 2.4.7 Test Results

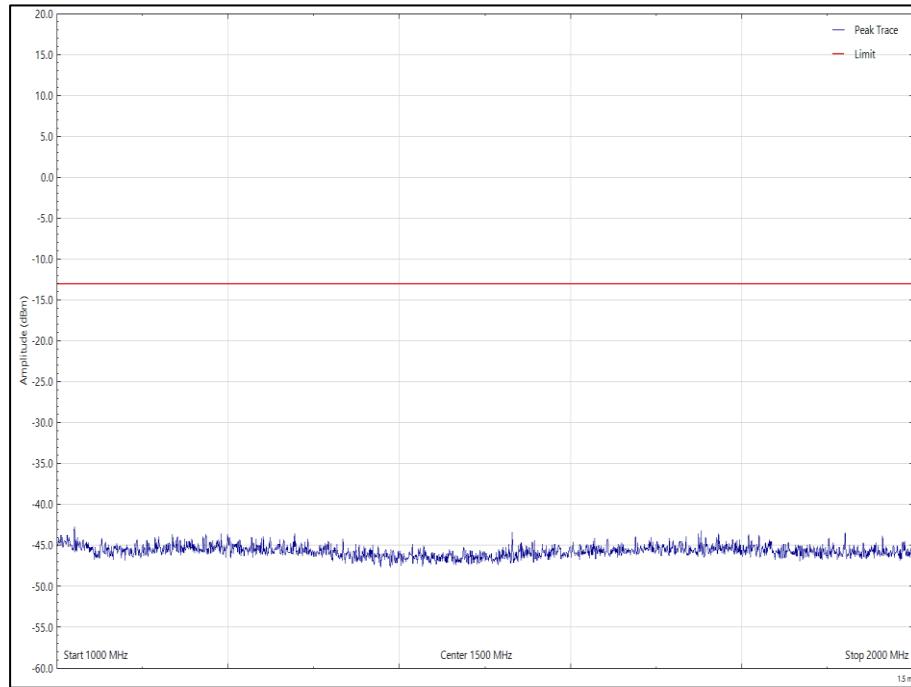
##### AIS Transceiver - Operational


| Frequency (MHz) | Level (dBm) |
|-----------------|-------------|
| *               |             |

**Table 13 - 156.025 MHz - Emissions Results**


\*No emissions were detected within 10 dB of the limit.



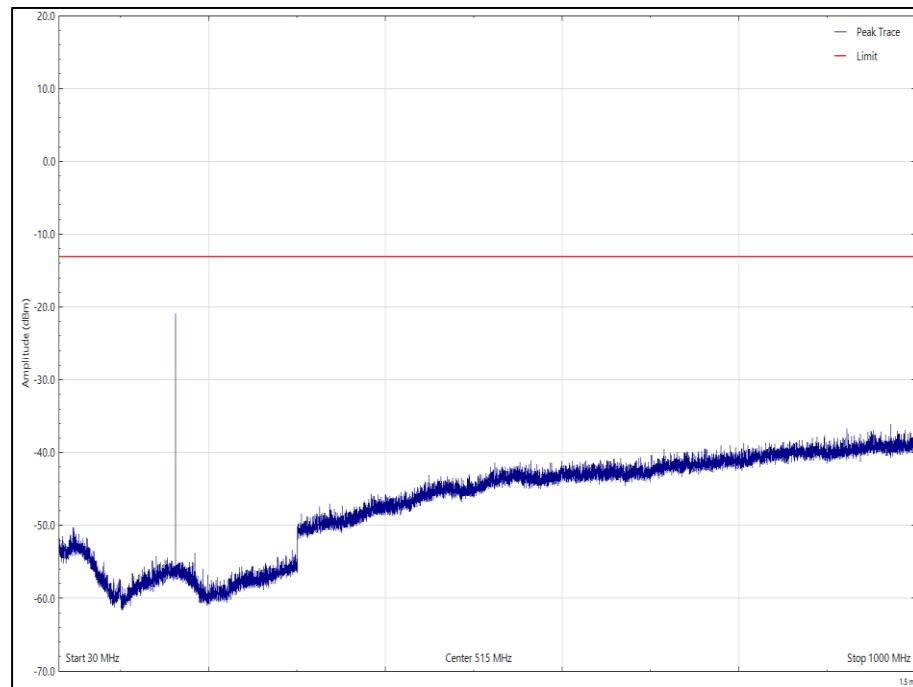

**Figure 28 - 156.025 MHz - 30 MHz to 1 GHz, Horizontal Polarisation**



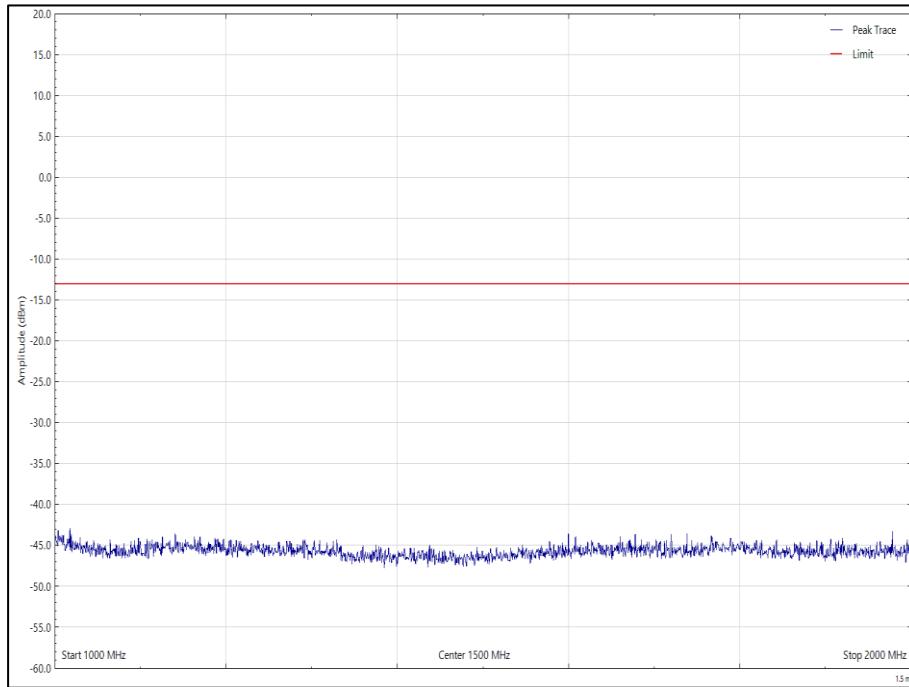
**Figure 29 - 156.025 MHz - 1 GHz to 2 GHz, Horizontal Polarisation**



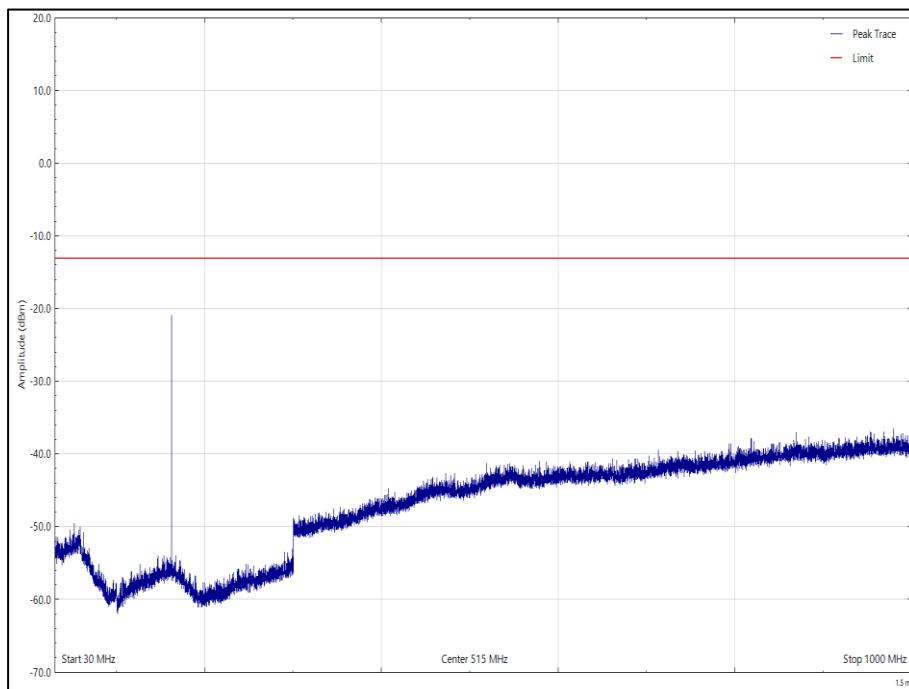
**Figure 30 - 156.025 MHz - 30 MHz to 1 GHz, Vertical Polarisation**



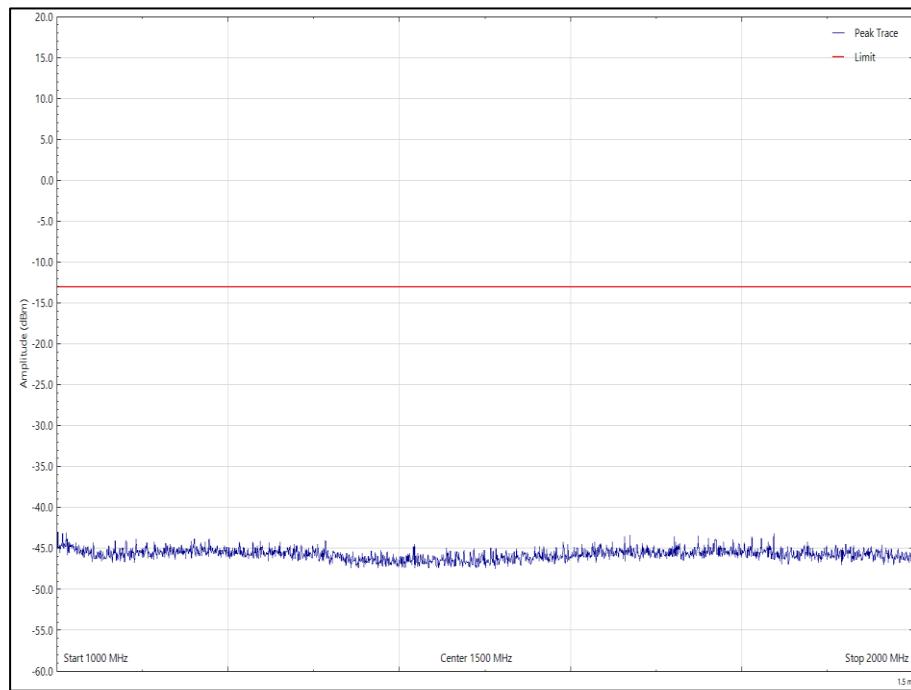

**Figure 31 - 156.025 MHz - 1 GHz to 2 GHz, Vertical Polarisation**


| Frequency (MHz) | Level (dBm) |
|-----------------|-------------|
| *               |             |

**Table 14 - 162.025 MHz - Emissions Results**


\*No emissions were detected within 10 dB of the limit.




**Figure 32 - 162.025 MHz - 30 MHz to 1 GHz, Horizontal Polarisation**



**Figure 33 - 162.025 MHz - 1 GHz to 2 GHz, Horizontal Polarisation**



**Figure 34 - 162.025 MHz - 30 MHz to 1 GHz, Vertical Polarisation**



**Figure 35 - 162.025 MHz - 1 GHz to 2 GHz, Vertical Polarisation**



FCC 47 CFR Part 80, Limit Clause 80.211

More than 250% of the Authorised Bandwidth:

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus  $10\log_{10}$  (mean power in watts) dB.

ISED RSS-182, Limit Clause 5.9.1

On any frequency removed from the carrier frequency by more than 250% of the authorized bandwidth: at least  $43 + 10 \log_{10} p(\text{watts})$  dB, measured with a bandwidth of 30 kHz.



#### 2.4.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument                          | Manufacturer    | Type No              | TE No | Calibration Period (months) | Calibration Expires |
|-------------------------------------|-----------------|----------------------|-------|-----------------------------|---------------------|
| Termination 50ohm/50W               | Bird            | 8085                 | 389   | 12                          | 15-Jul-2025         |
| Audio Analyser                      | Hewlett Packard | 8903B                | 576   | 12                          | 04-Feb-2026         |
| 3m Semi-Anechoic Chamber            | Rainford        | RF Chamber 5         | 1545  | 36                          | 23-Apr-2027         |
| Turntable Controller                | Inn-Co GmbH     | CO 1000              | 1606  | -                           | TU                  |
| High Pass Filter                    | Mini-Circuits   | NHP-300              | 1640  | 12                          | 28-May-2025         |
| Hygrometer                          | Rotronic        | Hygropalm 0          | 3028  | 12                          | 12-Aug-2025         |
| Attenuator (20 dB, 150 W)           | Narda           | 769-20               | 3367  | 12                          | 02-Sep-2025         |
| True RMS Multimeter                 | Fluke           | 179                  | 4007  | 12                          | 10-Dec-2025         |
| Mast Controller                     | Maturo GmbH     | NCD                  | 4810  | -                           | TU                  |
| Tilt Antenna Mast                   | Maturo GmbH     | TAM 4.0-P            | 4811  | -                           | TU                  |
| Antenna (DRG, 1 GHz to 10.5 GHz)    | Schwarzbeck     | BBHA9120B            | 4848  | 12                          | 14-Jul-2025         |
| 4dB Attenuator                      | Pasternack      | PE7047-4             | 4935  | 12                          | 31-Jul-2025         |
| Quad Power Supply                   | Rohde & Schwarz | HMP4040              | 4955  | -                           | O/P Mon             |
| Emissions Software                  | TUV SUD         | EmX V3.5.2           | 5125  | -                           | Software            |
| EMI Test Receiver                   | Rohde & Schwarz | ESW44                | 5527  | 12                          | 26-Jul-2025         |
| 2m Coaxial Cable Assy               | Junkosha        | MWX221-02000AMSAMS/A | 6357  | 12                          | 13-May-2026         |
| Trilog Super Broadband Test Antenna | Schwarzbeck     | VULB 9168            | 6635  | 24                          | 13-Jun-2025         |
| Cable (N-Type to N-Type, 8 m)       | Scott Cables    | SCB800-A-NMNM-08.00M | 6719  | 6                           | 06-Jun-2025         |

**Table 15**

TU - Traceability Unscheduled  
O/P Mon – Output Monitored using calibrated equipment



## 2.5 Modulation Requirements

### 2.5.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.213  
FCC 47 CFR Part 2, Clause 2.1047  
ISED RSS-182, Clause 5.4

### 2.5.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.5.3 Date of Test

16-May-2025

### 2.5.4 Test Method

#### AIS Transceiver – Operational

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 80.213 (d).

The EUT was transmitting at maximum power, modulated by the standard AIS test signals using either PRBS, 01010101 or 00001111 packet payloads. The EUT was connected to a spectrum analyser via a cable and attenuator, using the FM demodulation function of the spectrum analyser, the peak frequency deviation was observed and shown in the plots on the following pages.

### 2.5.5 Environmental Conditions

|                     |         |
|---------------------|---------|
| Ambient Temperature | 20.3 °C |
| Relative Humidity   | 39.8 %  |

## 2.5.6 Test Results

### AIS Transceiver - Operational

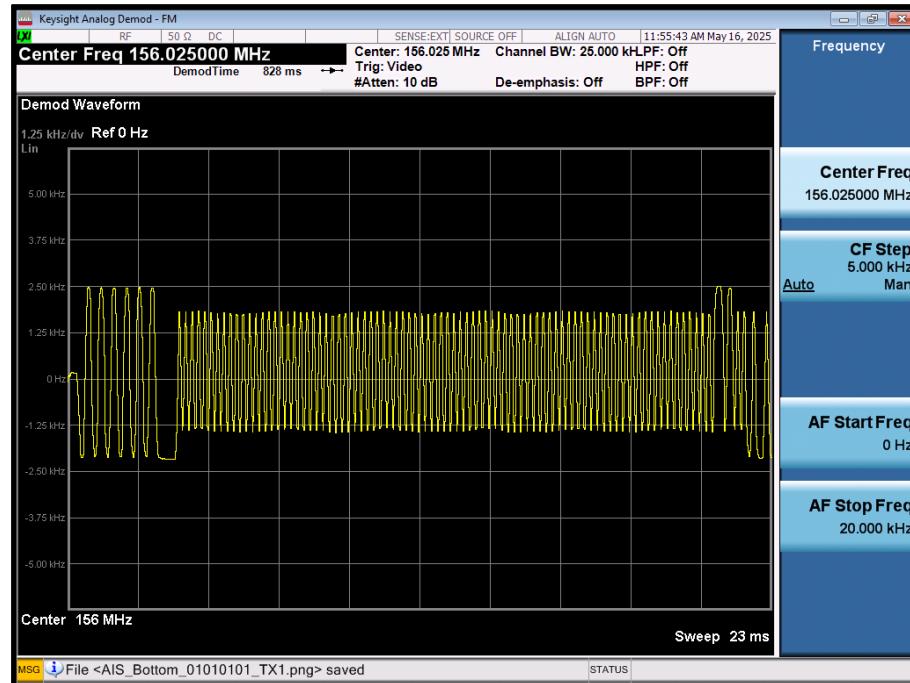



Figure 36 – 156.025 MHz - 01010101

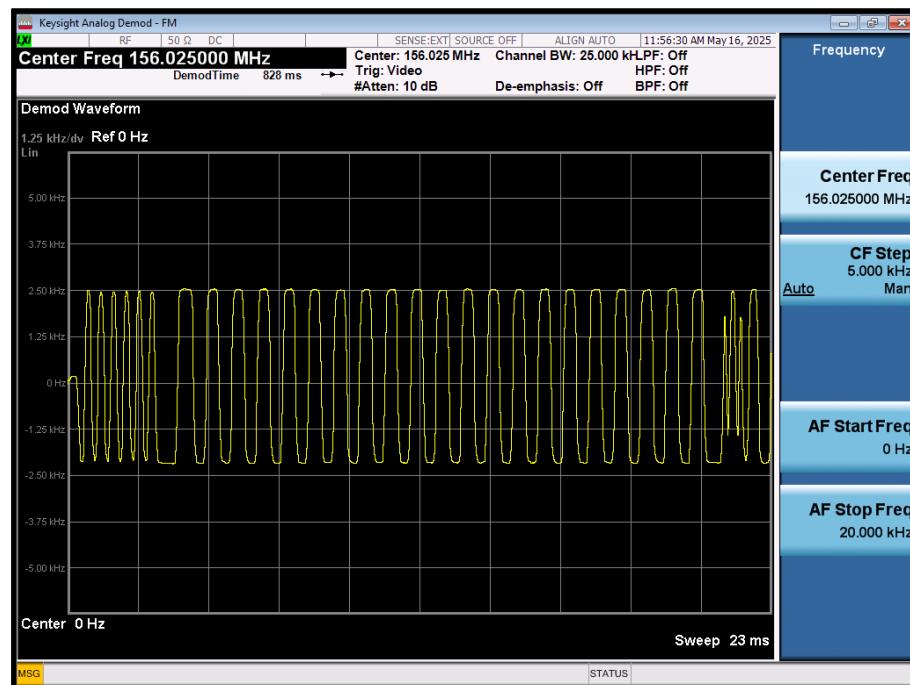



Figure 37- 156.025 MHz - 00001111

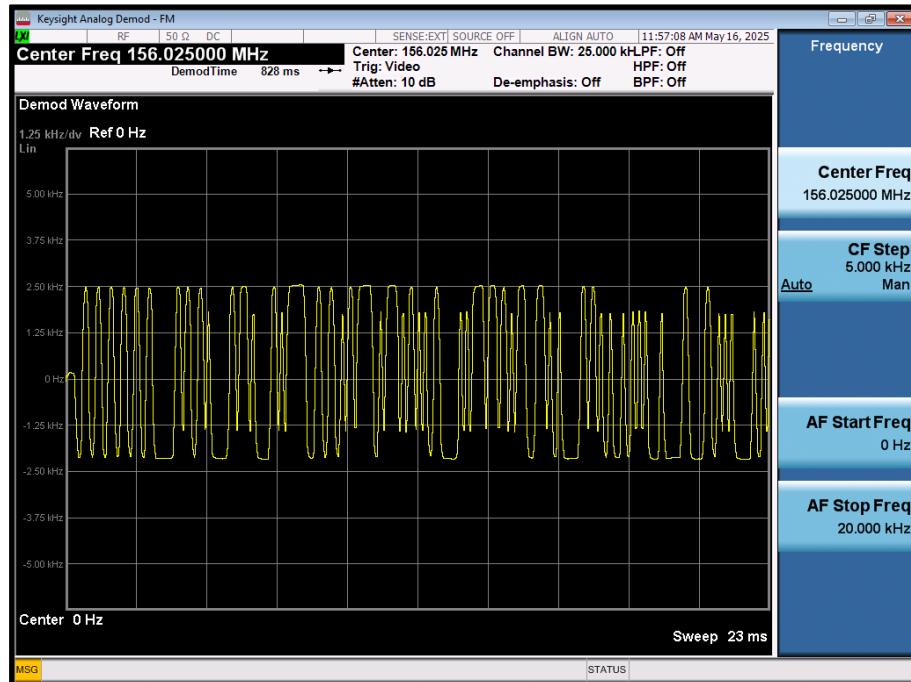



Figure 38- 156.025 MHz - PRBS

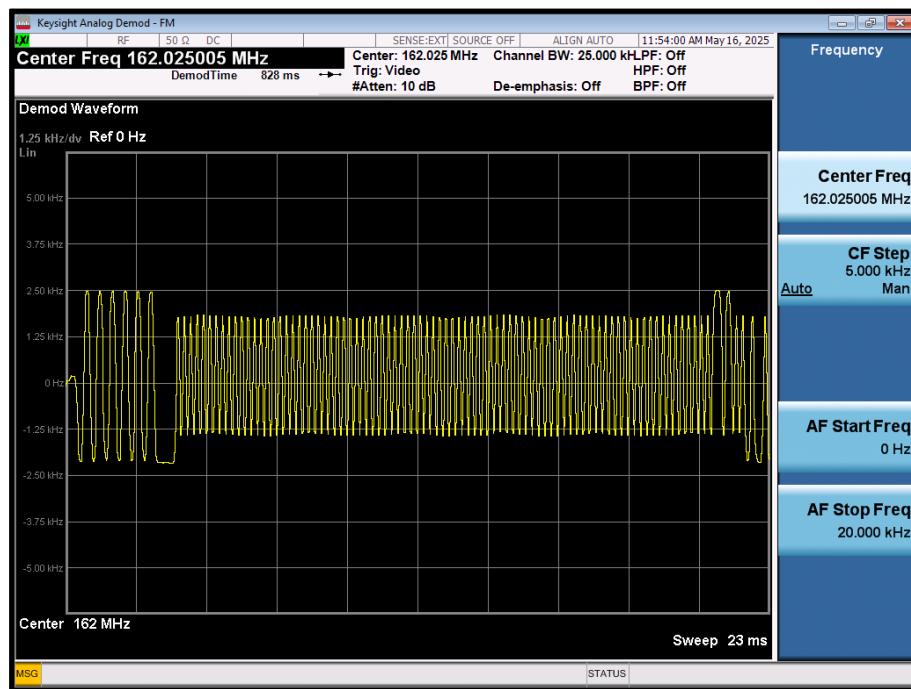



Figure 39 - 162.025 MHz - 01010101

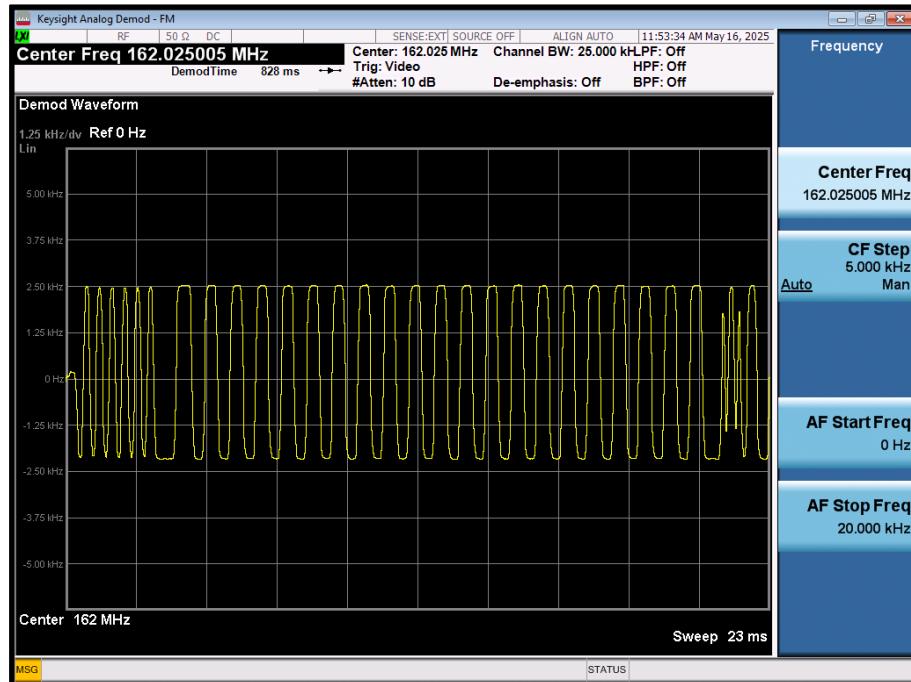



Figure 40- 162.025 MHz - 00001111

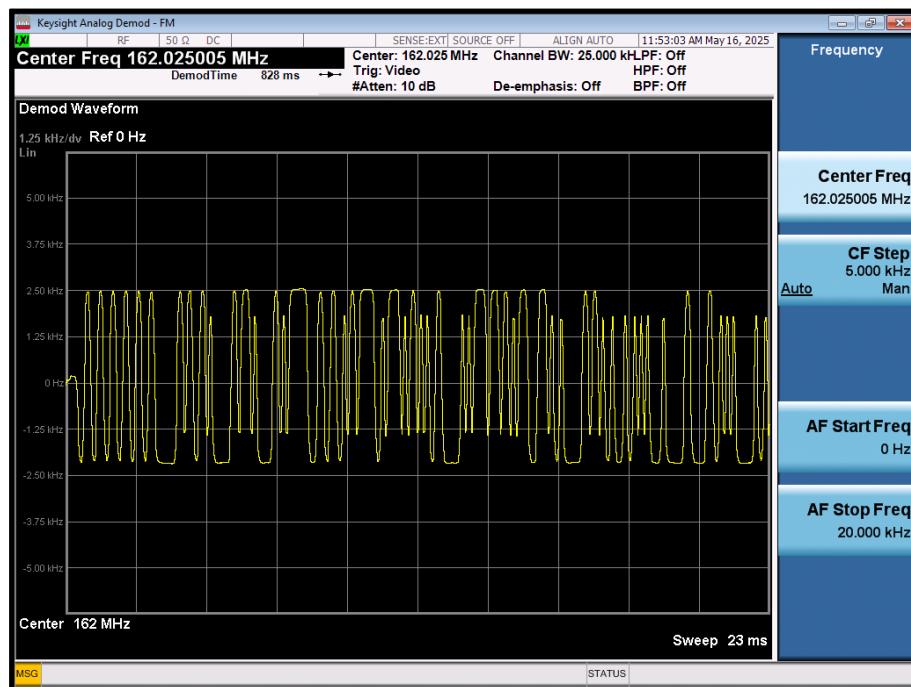



Figure 41- 162.025 MHz - PRBS



FCC 47 CFR Part 80, Limit Clause 80.213(d)

Ship and coast station transmitters operating in the 156–162 MHz and 216–220 bands must be capable of proper operation with a frequency deviation that does not exceed  $\pm 5$  kHz when using any emission authorized by § 80.207

ISED RSS-182, Limit Clause 5.7

The VHF AIS equipment shall comply with the following characteristics.

|                        |                                                                               |
|------------------------|-------------------------------------------------------------------------------|
| Transmitter frequency: | 161.975 MHz (channel AIS1)<br>162.025 MHz (channel AIS2)                      |
| Channel spacing:       | 25 kHz or 12.5 kHz                                                            |
| Modulation scheme:     | GMSK/FM                                                                       |
| Modulation index:      | 0.5 max. for 25 kHz channel spacing<br>0.25 max. for 12.5 kHz channel spacing |
| Transmission rate:     | 9600 bps                                                                      |

#### 2.5.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                | Manufacturer          | Type No            | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|--------------------|-------|-----------------------------|---------------------|
| Modulation Analyser       | Hewlett Packard       | 8901B              | 45    | 12                          | 03-Sep-2025         |
| Multimeter                | Fluke                 | 75 Mk3             | 455   | 12                          | 09-Jan-2026         |
| Sensor                    | Hewlett Packard       | 11722A             | 493   | 12                          | 04-Sep-2025         |
| Audio Analyser            | Hewlett Packard       | 8903B              | 576   | 12                          | 04-Feb-2026         |
| Power Supply              | Iso-tech              | IPS 2010           | 2439  | 12                          | O/P Mon             |
| Hygrometer                | Rotronic              | I-1000             | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20             | 3367  | 12                          | 02-Sep-2025         |
| Network Analyser          | Rohde & Schwarz       | ZVA 40             | 3548  | 12                          | 17-Mar-2026         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS  | 3604  | 12                          | 19-Feb-2026         |
| Calibration Unit          | Rohde & Schwarz       | ZV-Z54             | 4368  | 12                          | 17-Mar-2026         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A             | 4653  | 12                          | 06-May-2026         |
| 2 Channel PSU             | Rohde & Schwarz       | HMP2020            | 4735  | -                           | TU                  |
| Attenuator 30dB 100W      | Weinschel             | 48-30-43-LIM       | 5135  | 12                          | 05-Feb-2026         |

**Table 16**

TU - Traceability Unscheduled  
O/P Mon – Output Monitored using calibrated equipment



## 2.6 Transmitter Power

### 2.6.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.215  
FCC 47 CFR Part 2, Clause 2.1046  
ISED RSS-182, Clause 5.6  
ISED RSS-GEN, Clause 6.12.

### 2.6.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.6.3 Date of Test

13-May-2025

### 2.6.4 Test Method

AIS Transceiver – Operational

This test was performed in accordance with ANSI C63.26, clause 5.2.3.3.

### 2.6.5 Environmental Conditions

Ambient Temperature 20.6 °C  
Relative Humidity 40.4 %

### 2.6.6 Test Results

AIS Transceiver - Operational

| Transmitter | 156.025 MHz  |            | 162.025 MHz  |            |
|-------------|--------------|------------|--------------|------------|
|             | Result (dBm) | Result (W) | Result (dBm) | Result (W) |
| Tx1         | 37.502       | 5.63       | 37.185       | 5.23       |
| Tx2         | 37.552       | 5.69       | 37.188       | 5.23       |

**Table 17 - Transmitter Power**



FCC 47 CFR Part 80, Limit Clause 80.215 (e)

Ship station frequencies above 27500 kHz. The maximum power must not exceed the values listed below:

1. Ships Stations: 156 to 162 MHz - 25 W
2. Marine Utility Stations and Handheld Portable Transmitters: 156 to 162 MHz - 10 W

ISED RSS-182, Limit Clause 5.6

The output power for equipment certified under RSS-182 shall not exceed the limits specified in the table below:

| Radio Equipment Type                     | Maximum Power |
|------------------------------------------|---------------|
| Coast Station                            | 50 W          |
| Ship Stations                            | 25 W          |
| Shipborne hand-held portable transmitter | 6 W           |

**Table 18 - Power Limits Table (RSS-182)**

Ship station transmitters shall have power control features implemented to reduce the carrier power to 1 W or less for use at short ranges, except for DSC equipment operating on the 156.525 MHz (channel 70) frequency, for which the power reduction facility is optional.

Survival two-way radiotelephones should have a minimum equivalent isotropically radiated power (e.i.r.p.) of 0.25 W.



## 2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                | Manufacturer          | Type No            | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|--------------------|-------|-----------------------------|---------------------|
| Multimeter                | Fluke                 | 75 Mk3             | 455   | 12                          | 09-Jan-2026         |
| Power Supply              | Iso-tech              | IPS 2010           | 2439  | 12                          | O/P Mon             |
| Hygrometer                | Rotronic              | I-1000             | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20             | 3367  | 12                          | 02-Sep-2025         |
| Network analyser          | Rhode & Schwarz       | ZVA-40             | 3548  | 12                          | 17-Mar-2026         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS  | 3604  | 12                          | 19-Feb-2026         |
| Calibration unit          | Rhode & Schwarz       | ZV-Z54             | 4368  | 12                          | 17-Mar-2026         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A             | 4653  | 12                          | 06-May-2026         |
| Attenuator 30dB 100W      | Weinschel             | 48-30-43-LIM       | 5135  | 12                          | 05-Feb-2026         |

**Table 19**  
O/P Mon – Output Monitored using calibrated equipment



## 2.7 Suppression of Interference Aboard Ships

### 2.7.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.217(b)

### 2.7.2 Equipment Under Test and Modification State

X-100, S/N: 230587 - Modification State 8

### 2.7.3 Date of Test

21-May-2025

### 2.7.4 Test Method

#### AIS Transceiver – Operational

The test was applied in accordance with the test method requirements of FCC CFR 47 Part 80.217 (b) and KDB 971168.

A network analyser was used to measure the path loss and the worst case was entered as a reference level offset in to the spectrum analyser for each frequency range of interest. The EUT was connected to a spectrum analyser via a cable and attenuator. The EUT was configured in a receive only state. The spectrum analyser settings were configured with an RBW of 100 kHz below 1 GHz and 1 MHz for frequencies greater than 1 GHz using a VBW of 3 times the RBW. The trace set to max hold using a peak detector and the plots recorded as shown.

### 2.7.5 Environmental Conditions

Ambient Temperature 21.4 °C  
Relative Humidity 40.0 %

### 2.7.6 Test Results

#### AIS Transceiver

| EUT Receive Frequency (MHz) | Frequency of Interfering Emissions | Maximum Power delivered to Artificial Antenna (dBm) | Maximum Power delivered to Artificial Antenna (µW) |
|-----------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| 156.025 MHz                 | 9 kHz to 150 kHz                   | -66.67                                              | 0.000215278                                        |
| 156.025 MHz                 | 150 kHz to 30 MHz                  | -74.04                                              | 0.0000394457                                       |
| 156.025 MHz                 | 30 MHz to 1 GHz                    | -59.96                                              | 0.001009253                                        |
| 156.025 MHz                 | 1 GHz to 2 GHz                     | -63.71                                              | 0.000425598                                        |
| 162.025 MHz                 | 9 kHz to 150 kHz                   | -66.74                                              | 0.000211836                                        |
| 162.025 MHz                 | 150 kHz to 30 MHz                  | -74.91                                              | 0.0000322849                                       |
| 162.025 MHz                 | 30 MHz to 1 GHz                    | -59.93                                              | 0.001016249                                        |
| 162.025 MHz                 | 1 GHz to 2 GHz                     | -54.26                                              | 0.00374973                                         |

Table 20 - Receive Mode Spurious Emissions Results

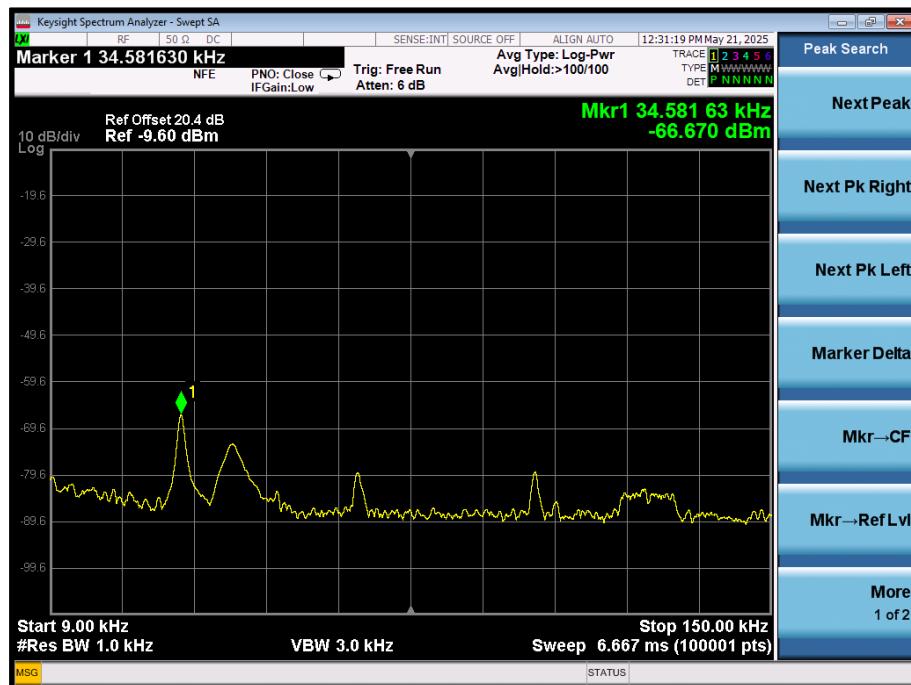



Figure 42 - (156.025 MHz) 9 kHz to 150 kHz

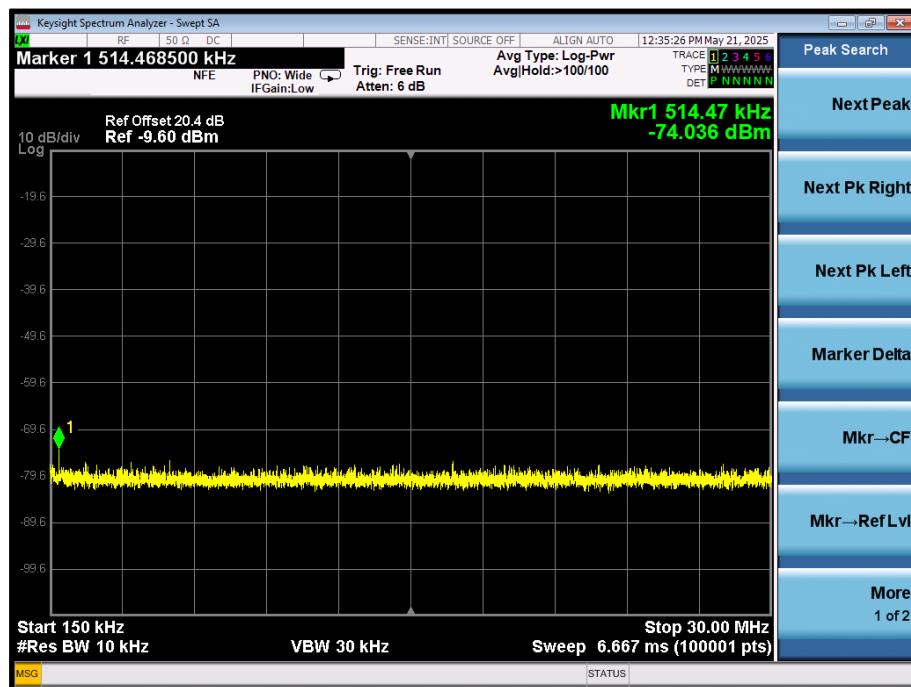



Figure 43 - (156.025 MHz) 150 kHz to 30 MHz

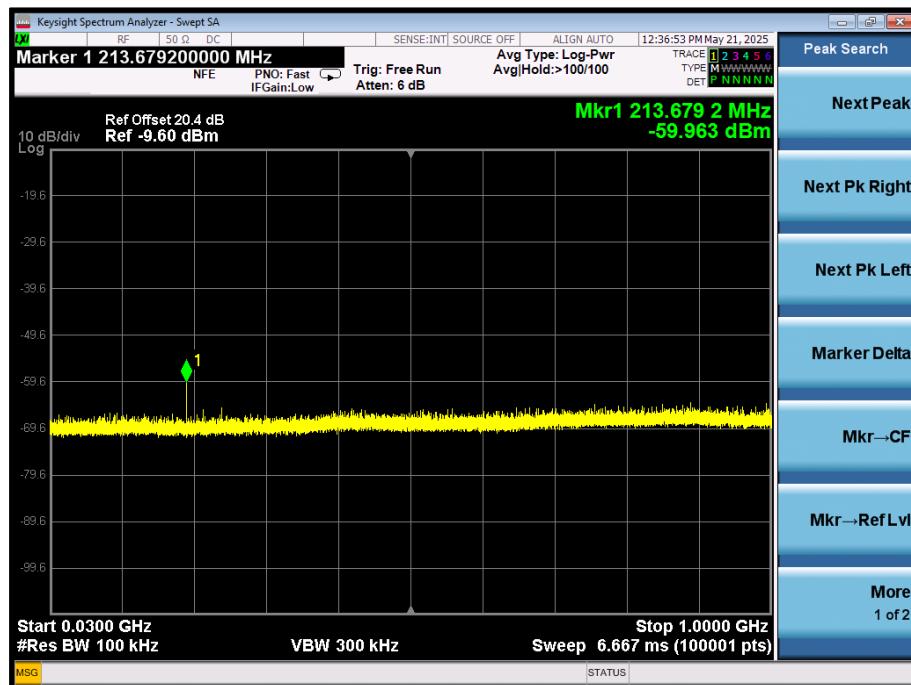



Figure 44 - (156.025 MHz) 30 MHz to 1 GHz

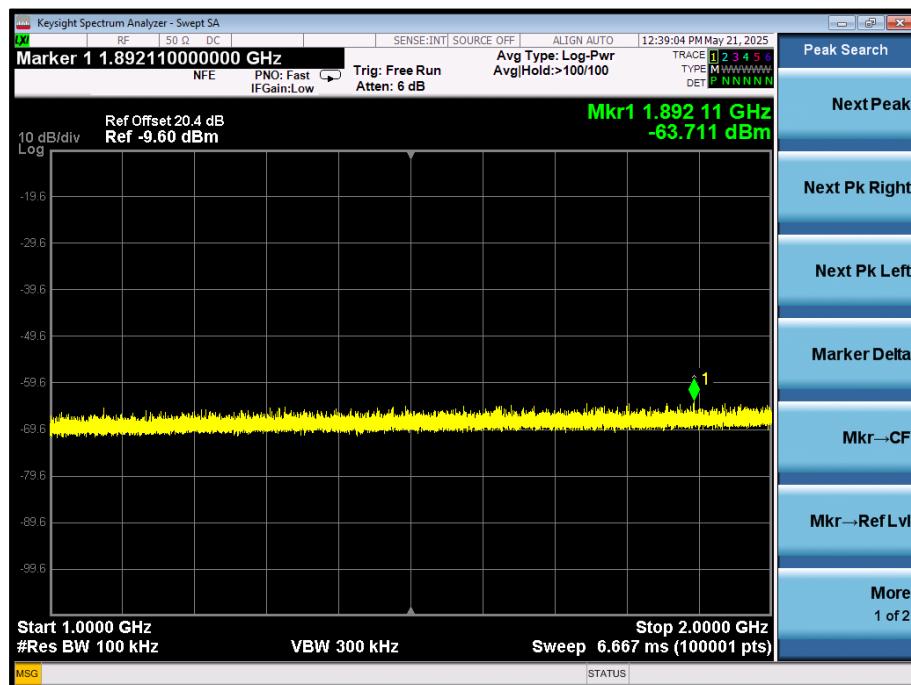



Figure 45 - (156.025 MHz) 1 GHz to 2 GHz




Figure 46 - (162.025 MHz) 9 kHz to 150 kHz

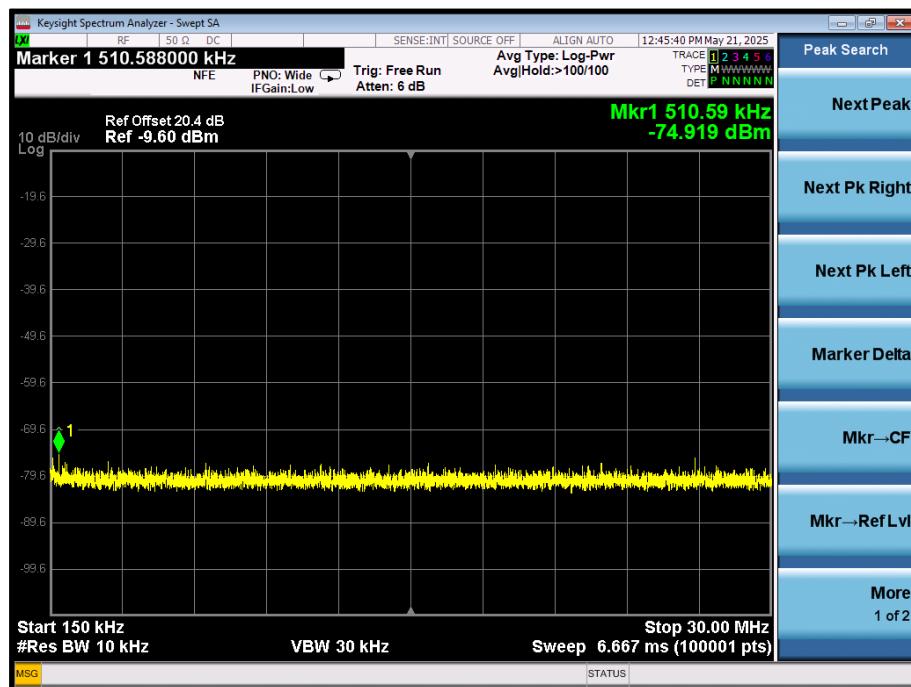



Figure 47 - (162.025 MHz) 150 kHz to 30 MHz

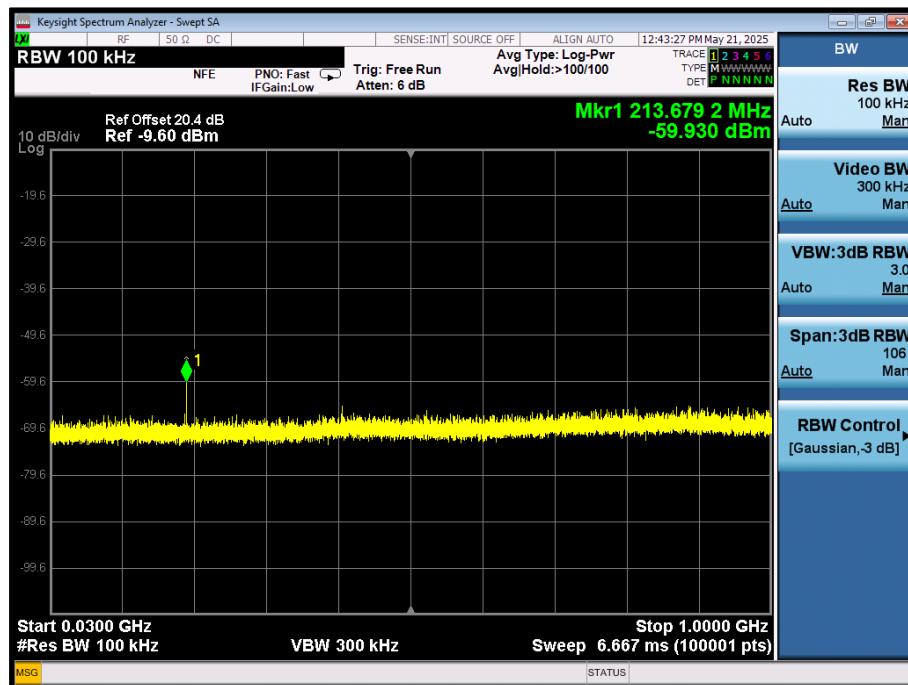



Figure 48 - (162.025 MHz) 30 MHz to 1 GHz

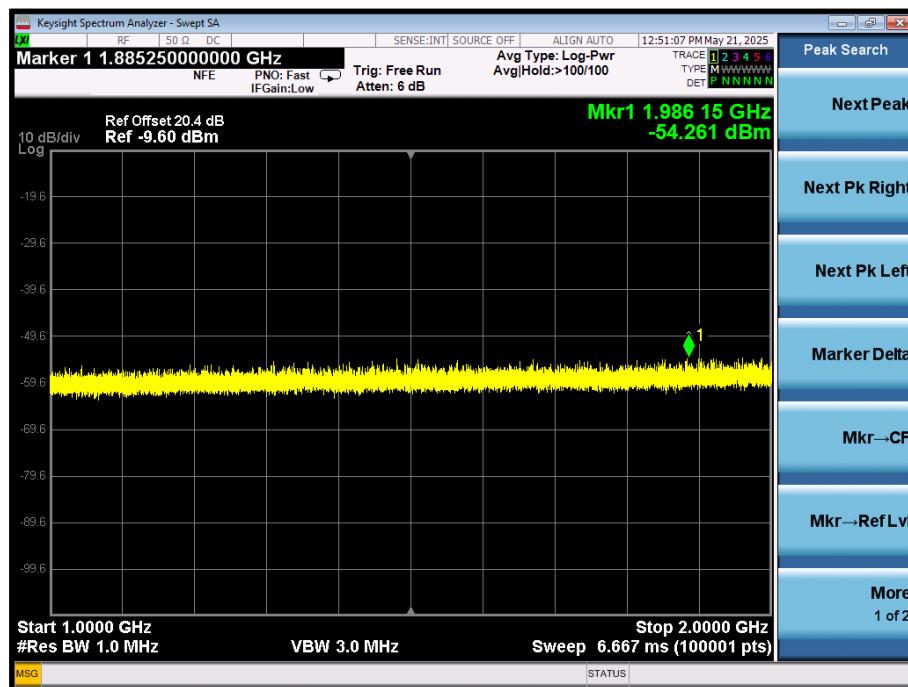



Figure 49 - (162.025 MHz) 1 GHz to 2 GHz



FCC 47 CFR Part 80, Limit Clause 80.217 (b)

The EUT shall deliver not more than the following amounts of power, to an artificial antenna having electrical characteristics equivalent to those of the average receiving antenna(s) use on shipboard:

| Frequency of interfering emissions | Power to artificial antenna in $\mu$ W |
|------------------------------------|----------------------------------------|
| Below 30 MHz                       | 400                                    |
| 30 to 100 MHz                      | 4,000                                  |
| 100 to 300 MHz                     | 40,000                                 |
| Over 300 MHz                       | 400,000                                |

**Table 21**

**2.7.7 Test Location and Test Equipment Used**

This test was carried out in RF Laboratory 1.

| Instrument                | Manufacturer          | Type No            | TE No | Calibration Period (months) | Calibration Expires |
|---------------------------|-----------------------|--------------------|-------|-----------------------------|---------------------|
| Multimeter                | Fluke                 | 75 Mk3             | 455   | 12                          | 09-Jan-2026         |
| Power Supply              | Iso-tech              | IPS 2010           | 2439  | 12                          | O/P Mon             |
| Hygrometer                | Rotronic              | I-1000             | 2891  | 12                          | 02-Dec-2025         |
| Attenuator (20 dB, 150 W) | Narda                 | 769-20             | 3367  | 12                          | 02-Sep-2025         |
| Network Analyser          | Rohde & Schwarz       | ZVA 40             | 3548  | 12                          | 17-Mar-2026         |
| 2m N(m) - N(m) RF Cable   | Rhophase              | NPS-2303-2000-NPS  | 3604  | 12                          | 19-Feb-2026         |
| Calibration Unit          | Rohde & Schwarz       | ZV-Z54             | 4368  | 12                          | 17-Mar-2026         |
| 1 metre N-Type Cable      | Florida Labs          | NMS-235SP-39.4-NMS | 4511  | 12                          | 01-Feb-2026         |
| PXA Signal Analyser       | Keysight Technologies | N9030A             | 4653  | 12                          | 06-May-2026         |

**Table 22**  
O/P Mon – Output Monitored using calibrated equipment

### 3 Photographs

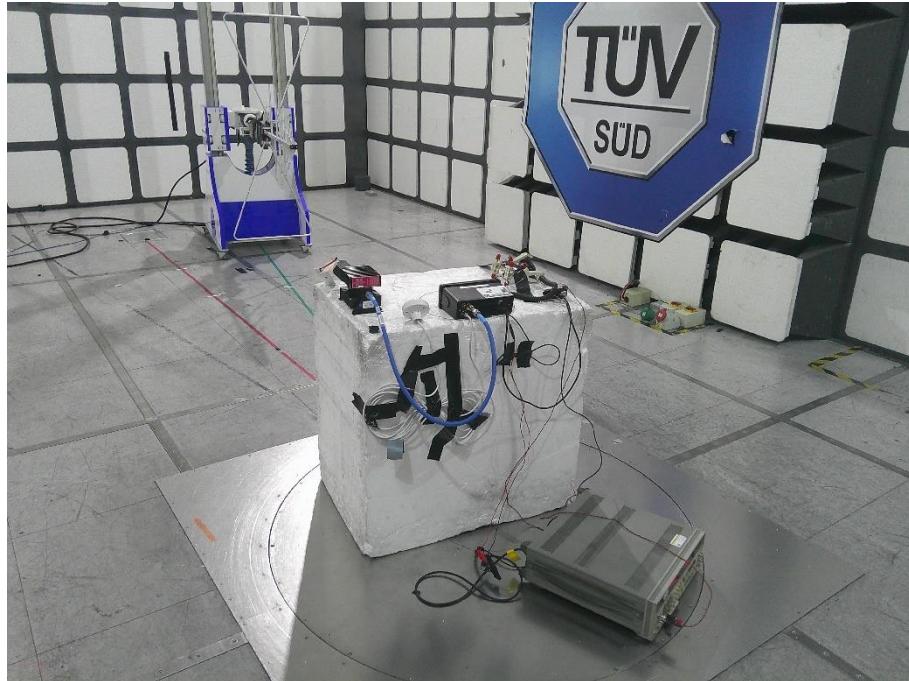



Figure 50 – Test setup 30 MHz to 1 GHz



Figure 51 – Test setup 1 GHz to 2 GHz

## 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                                | Measurement Uncertainty                                        |
|------------------------------------------|----------------------------------------------------------------|
| Bandwidths                               | $\pm 58.05$ Hz                                                 |
| Transmitter Frequency Tolerances         | $\pm 11$ Hz                                                    |
| Spurious Emissions at Antenna Terminals  | $\pm 3.45$ dB                                                  |
| Radiated Spurious Emissions              | 30 MHz to 1 GHz: $\pm 5.2$ dB<br>1 GHz to 18 GHz: $\pm 6.3$ dB |
| Modulation Requirements                  | -                                                              |
| Transmitter Power                        | $\pm 3.2$ dB                                                   |
| Suppression of Interference Aboard Ships | $\pm 3.45$ dB                                                  |

**Table 23**

### Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.